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1 Stratified spaces

1.0.1 (Stratified spaces). We would like to understand the topology of singular spaces. The
fundamental definition is that of a stratified pseudomanifold. An n-dimensional stratified
topological space X is a space with a closed filtration X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X1 ⊇ X0

where we call each connected component of the difference Xj \ Xj−1 the jth-strata such
that for each point x ∈ Xj \Xj−1, there exists an open neighborhood x ∈ Nx ⊆ X and an
n − j − 1-dimensional compact stratified space L called the link with a homeomorphism
ϕ : Nx → Rj × C(L) where C(L) = L × [0, 1)/L × {0} and ϕ must take Nx ∩Xj+i+1 into
Rj × C(Li) for each n − j − 1 ≥ i ≥ 0 and Nx ∩Xj maps into Rj × {vertex of C(L)}. In
particular each difference Xj \ Xj−1 is a j-dimensional manifold. Thus each j-strata is a
j-dimensional connected topological manifold. We call this latter condition for points in
jth-strata to be the local conical triviality condition for jth-strata.

The way to think about such spaces is that we are trying to ”filter” all the singular
points of the space by their dimension in which they occur.

1.0.2. A topological pseudomanifold of dimension n is a paracompact, Hausdorff
stratified space X such that Xn−1 = Xn−2 (no codimension 1 singularity) and X \Xn−1 is
dense in X (the non-singular stratum is dense). The singular locus of X is Xn−2.

1.0.3. Some trivial examples of pseudomanifolds are Sn∨Sn (dimension n), pinched torus,
etc. A non-example is S1∨S1 as it has a codimension 1 singularity, T 2 with a disc covering
its central hole by the same reason is not a pseudomanifold.

2 Simplicial & singular intersection homology

2.1 Definitions

We begin with simplicial intersction homology.

2.1.1 (Recollections on simplicial homology). Recall that a simplicial complex is a collection
N of simplices in a fixed Euclidean space Rn such that for each σ ∈ N , each of the n+1-faces
of σ is again in N and any two simplices can only intersect in another simplex; no non-trivial
intersection between simplices allowed. The support of simplicial complex N in Rn is just
the union of all simplices of N in Rn. It is denoted by |N |. A triangulation of a space X is
a tuple (N,φ) where N is a simplicial complex and φ : |N | → X a homeomorphism.

Fix a field F and an oriented simplicial complex N (an ordering on vertices of σ for each
σ ∈ N). Denote N (k) = {σ ∈ N | σ is a k-simplex}. Let Ck(N) be the free F -vector space
generated by N (k) as a basis. An element ξ ∈ Ck(N) is called a simplicial k-chain. Define
∂ : Ck(N)→ Ck−1(N) on basis by sending σ 7→

∑k
i=0(−1)i∂iσ where i is even iff the chosen

orientation on ∂iσ ∈ N is same as the one obtained by v0, . . .“vi, . . . , vk. This determines
a chain complex (Ck(N), ∂), called the simplicial chain complex. The homology of this
complex is defined to be the simplicial homology of N , denoted Hi(N). If (X,T,N) is a
traingulated space, then we define CT

k (X) := Ck(N) and HT
i (X) := Hi(N). For a simplicial

k-chain ξ ∈ Ck(N), its support is the closed subspace of X given by |ξ| =
⋃

ξσ ̸=0 T (σ).

The standard example is of S1, which is homeomorphic to triangle ∆2 via T :
∣∣∆2

∣∣→ S1.
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One then easily computes that HT
1 (S

1) ∼= F .

2.1.2 (Recollections on singular homology). LetX be a space and fix a field F . Let Si(X) be
the free F -vector space generated by the set of all i-simplices {f : ∆i → X | f is continuous}.
An element of Si(X) is called singular i-chain. Consider the map ∂ : Si(X) → Si−1(X)
which on an i-simplex σ is given by σ 7→

∑i
j=0(−1)j∂jσ where ∂jσ is the σ restricted to

the face opposite to jth-vertex. It follows that ∂2 = 0. Thus, we have a chain complex
(Si(X), ∂), called the singular chain complex.

2.1.3 (Singular homology with closed support/Borel-Moore homology). Let X be a space
and F be a field. A formal infinite linear combination

ξ =
∑
σ

ξσσ

where σ runs over continuous maps ∆i → X is said to be a locally finite singular i-chain
if for all points x ∈ X, there exists an open set x ∈ Ux ⊆ X such that the set {ξσ | ξσ ̸=
0 and σ−1(Ux) ̸= ∅} is finite. Denote the F -vector space generated by set of all locally finite
singular i-chains by Si((X)). We thus get a chain complex (Si((X)), ∂), whose homology is
called the homology with closed supports or the Borel-Moore homology.

2.1.4 (Triangulated pseudomanifolds). An n-dimensional pseudomanifold X is triangulated
by a homeomorphism T : |N | → X where N is a simplicial complex if T respects the
filtration of X, that is, for each 1 ≤ j ≤ n, each Xj is a union of simplices of N (under T ).

2.1.5 (Perversities). A perversity p̄ : N≥2 → N ∪ {0} is a function such that p̄(2) = 0 and
p̄(k+1) = p̄(k) or p̄(k) + 1 for all k ≥ 2. Consequently, it follows that p̄(k) ∈ {0, . . . , k− 2}
for all k ≥ 2.

Top perversity is p̄(k) = k−2, zero perversity is the zero function. For a perversity p̄, its
complementary perversity is q̄ such that q̄+p̄ is the top perversity, that is, q̄(k) = k−p̄(k)−2.

An important perversity is the lower-middle perversity defined by p̄(k) =
⌊
k−2
2

⌋
.

2.1.6 (Simplicial intersection homology). Let (X,T,N) be a triangulated n-dimensional
pseudomanifold with T : |N | → X a homeomorphism. Fix a perversity p̄. A simplicial
i-chain ξ ∈ CT

i (X) is p̄-allowable if for all k ≥ 2, we have

dimR |ξ| ∩Xn−k ≤ i− k + p̄(k).

A quick computation shows that if ξ is a p̄-allowable 1-chain, then it cannot intersect the
singular locus! If ξ is a p̄-allowable 2-chain on the other hand, then it can only intersect the
singular locus at a discrete set of points!

Let I p̄CT
i (X) ⊆ CT

i (X) denote the subspace of all those simpicial i-chains ξ which
are p̄-allowable and ∂ξ is also p̄-allowable i − 1-chain. Then I p̄CT

i (X) is called simplicial
intersection i-chains. Under the usual boundary maps, this forms a chain-complex, whose
homology we denote by I p̄HT

i (X). The refinement of triangulation yields a directed system
of simplicial intersection i-chain, taking limit, we obtain I p̄Ci(X) together with boundary
maps ∂, which makes I p̄Ci(X) into a chain complex. The homology of this chain complex
is called the simplicial intersection homology, denoted I p̄Hi(X).
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2.1.7 (Singular intersection homology). Let X be an n-dimensional pseudomanifold and p̄
be a perversity. Recall that the j-skeleton of ∆i is the set of all j-simplices of ∆i, that is,
the j-dimensional subsimplex of ∆i. A simplex σ : ∆i → X is said to be p̄-allowable if for
all k ≥ 2, we have

σ−1 (Xn−k \Xn−k−1) ⊆ n− k + p̄(k)-skeleton of ∆i.

One can interpret this as saying that a simplex σ is p̄-allowable if its intersection with the
codimension k-strata happens only in n − k + p̄(k)-skeleton of the simplex. A singular
i-chain σ ∈ Si(X) is p-allowable if each simplex fi of σ =

∑n
i=1 cifi is p̄-allowable.

Let I p̄Si(X) ⊆ Si(X) be the subspace of all p̄-allowable i-chains σ such that ∂σ is also
p̄-allowable. Under the usual boundary map of complex (Si(X), ∂), we get a chain complex
(I p̄Si(X), ∂). The homology groups of this chain complex is defined to be the singular
perversity p̄-intersection homology of X. The following theorem allows us to denote this as
I p̄Hi(X) as well.

2.2 Basic tools

Theorem 2.2.1. If X is a PL-pseudomanifold, then both simplicial and singular intersec-
tion homology for a fixed perversity p̄ are isomorphic.

2.2.2 (Relative intersection homology groups). We first define the relative intersection
homology groups. Let X be an n-dimensional pseudomanifold and p̄ be a perversity. For
an open set U ⊆ X. Note that the following is a map of F -vector spaces:

I p̄Si(U) ↪→ I p̄Si(X)

σ 7−→ ι ◦ σ

where ι : U ↪→ X. Note that this defines an inclusion of chain complexes I p̄S•(U) ↪→
I p̄S•(X). We then define the relative chain complex (I p̄Si(X,U), ∂) as follows:

I p̄Si(X,U) =
I p̄Si(X)

I p̄Si(U)

and the differential is given by the map induced on the quotient by universla property of
the quotients (using the fact that I p̄S•(U) ↪→ I p̄S•(X) is an inclusion of chain complexes):

I p̄Si(X,U)
∂−→ I p̄Si−1(X,U).

Hence we define the ith-relative intersection homology groups of the pair (X,U) by I p̄Hi(X,U).

2.2.3 (Some tools for intersection homology). We now gather some important calculational
tools akin to usual homology theory. Fix an n-dimensional pseudomanifold X and a per-
versity p̄.
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1. Homology long exact sequence: Let U ↪→ X be an open set. Then we have a long
exact sequence

I p̄Hi(U) I p̄Hi(X) I p̄Hi(X,U)

I p̄Hi−1(U) I p̄Hi−1(X) I p̄Hi−1(X,U)

.

2. Excision: Let U ↪→ X be an open subset and A ⊆ U be a closed subset of U such that
X −A is a pseudomanifold. Then, the inclusion (X −A,U −A) ↪→ (X,U) induces an
isomorphism

I p̄Hi(X −A,U −A) ∼= I p̄Hi(X,U).

3. Mayer-Vietoris: Let X = U ∪ V where U, V ⊆ X are open sets. Then there is a long
exact sequence

I p̄Hi(U ∩ V ) I p̄Hi(U)⊕ I p̄Hi(V ) I p̄Hi(X)

I p̄Hi−1(U ∩ V ) I p̄Hi−1(U)⊕ I p̄Hi−1(V ) I p̄Hi−1(X)

4. Künneth formula: We have that X × (0, 1) is a pseudomanifold of dimension n + 1
and

I p̄Hi(X × (0, 1)) ∼= I p̄Hi(X).

The following showcases an important calculation using the above tools.

Proposition 2.2.4 (Intersection homology of a cone). Let X be a compact pseudomanifold
of dimension n ≥ 1. Then for any perversity p̄, we have

I p̄Hi(C(X)) =

®
I p̄Hi(X) if i < n− p̄(n+ 1)

0 else.

and

I p̄Hi(C(X), C(X)− {∗}) =
®
0 if i ≤ n− p̄(n+ 1)

I p̄Hi−1(X) else.
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Proof. For the first statement, observe that for any σ ∈ I p̄Si(CX) such that i ≤ n−p̄(n+1),
σ cannot intersect the vertex of the cone CX because σ is p̄-allowable, vertex lives in
codimension n + 1 and i − (n + 1) + p̄(n + 1) ≤ −1. We thus deduce that I p̄Si(CX) =
I p̄Si(CX − {∗}) if i ≤ n− p̄(n+ 1). Hence, for i < n− p̄(n+ 1), by Künneth formula, we
have

I p̄Hi(CX) = I p̄Hi(CX − {∗}) ∼= I p̄Hi(X × (0, 1)) ∼= I p̄Hi(X).

Now fix i ≥ n − p̄(n + 1). We will show that every cycle in I p̄Si(CX) is a boundary,
which will complete the proof. To this end, we first pick any σ : ∆i → CX such that
∂σ = 0, then it is a boundary of some i − 1-simplex. Indeed, we claim the following;
there is a map c : I p̄Si(X) −→ I p̄Si+1(CX) which establishes a chain homotopy between
κ : I p̄S•(X) → I p̄S•(CX) and 0 : I p̄S•(X) → I p̄S•(CX), where κ is obtained by the
inclusion of X ↪→ CX. We define c as follows on the basis elements and then extend
linearly:

c : I p̄Si(X) −→ I p̄Si+1(CX)

σ : ∆i → X 7−→ cσ : ∆i+1 → CX

where cσ([s, t]) = tσ(s) where [s, t] ∈ ∆i+1 is a representation where s ∈ ∆i and t ∈ [0, 1]
and cσ is oriented by labelling the cone point as 0 and the rest starting from 1 to i. That
is, cσ is the cone of σ. We now wish to show that cσ is an p̄-allowable i+1-singular chain of
CX. Indeed, pick any stratum Sk = Xn−k −Xn−k−1 for 2 ≤ k ≤ n. Note that since CX is
n+1-dimensional pseudomanifold with filtration C(Xn) ⊇ C(Xn−1) ⊇ C(X0) ⊇ C(X−1) =
{∗} ⊇ ∅, therefore the codimensiona k-strata of C(X) are Tk = (Xn−k−Xn−k−1)×(0, 1) for
0 ≤ k ≤ n and Tn+1 = {∗}. We wish to show that (cσ)−1(Tk) ⊆ (i+ 1− k + p̄(k))-skeleton
of ∆i+1. This can be checked by conditioning on each 0 ≤ k ≤ n + 1, whether σ−1(Sk)
is empty or not. If not, then σ−1(Sk) ⊆ i − k + p̄(k)-skeleton of ∆i, from which it follows
by construction of cσ that (cσ)−1(Tk) ⊆ i + 1 − k + p̄(k)-skeleton of ∆i+1. If empty, then
(cσ)−1(Tk) = or (cσ)−1(Tn+1) ⊆ 0-skeleton of ∆i+1, as (i+ 1)− (n+ 1) + p̄(n+ 1) ≥ 0.

One can see that ∂c+ c∂ = κ− 0 = κ. This completes the proof of first statement. For
the latter, a simple use of Mayer-Vietoris concludes the proof.

2.3 Local coefficients

Recall that a local system is just another name for a locally constant sheaf on a space X.
We will define singular intersection homology groups with coefficient in a local system L.
We first recall some technicalities of local systems. Let us first show that any local system
over [0, 1] is constant, as it will be useful to define monodromy.

Lemma 2.3.1. Every local system L on [0, 1] is constant.

Proof. Let L be locally system on [0, 1]. We may assume Ii = (ti, ti+1) is a finite cover of
[0, 1] such that L restricted on each Ii is constant. As each Ii by construction intersects
Ii+1, it follows that the restriction of L to each Ii is a constant sheaf with the constant
abelian group being the same. Let t ∈ Lx = A for any x ∈ Ii0 for some i0. Then t can
be glued to each i to give a constant global section t ∈ Γ(X,L), which is unique by sheaf
condition.
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Lemma 2.3.2. If X is path-connected and L is a local system over X, then all stalks of L
are same.

Proof. Pick two points x ̸= y ∈ X and a path γ : [0, 1]→ X with γ(0) = x and γ(1) = y. We
wish to show that Lx

∼= Ly. Indeed, consider the sheaf γ∗L. As inverse image of a locally
constant sheaf is again locally constant, it follows at once from Lemma 2.3.1 that γ∗L is a
constant sheaf in say abelian group A. Pick any t ∈ I and observe that A ∼= (γ∗L)t ∼= Lγ(t).
It follows that stalks of L along the path γ are constant, as needed.

2.3.3 (Local systems-Monodromy). Let (X,x0) be a path-connected, locally path-connected
and semi-locally simply connected space. We wish to show the following equivalence between
local systems with local groups A and Aut(A)-representations of π1(X):

LocSysA(X) ∼= HomGrp (π1(X,x0),Aut(A)) .

Let L be a local system of abelian groups over X. By Lemma 2.3.2, it follows that L is a
local system with fiber (stalk) a fixed abelian group A. We will construct a representation
of π1(X,x0) in the group Aut(A). Indeed, consider the map

φ : π1(X,x0) −→ Aut(A)

[γ] 7−→ γ× : (γ∗L)0 ∼= A ∼= (γ∗L)1.

We omit the proof that this is well-defined. Conversely, pick any map φ : π1(X,x0) →
Aut(A). We wish to construct a local system L over X. Let p : X̃ → X be the universal
cover over X, which exists by our hypotheses over X. Recall from covering space theory
that π1(X,x0) ∼= G(X̃/X), the latter being the Deck-group of (X̃, p,X). Now consider
the constant sheaf A on X̃. Let U ⊆ X be an evenly covered neighborhood of X. Then,
p−1(U) =

∐
α∈π1(X) Vα. Now consider the following sheaf L which on an open set U ⊆ X

gives the following set of sections:

L(U) := {s ∈ A(p−1(U)) | s ◦ θ = φ(θ)s ∀θ ∈ G(X̃/X) = π1(X,x0)}

where s ∈ A(p−1(U)) is a section of p as in s : p−1(U) → A =
∐

a∈A X̃ and it is in L(U)

if and only if for any deck transformation θ ∈ G(X̃/X) = π1(X,x0), we must get that the
following commutes12

p−1(U) p−1(U)

A A

θ

ss

φ(θ)

∼=

∼=

.

We wish to show that L is a locally constant sheaf and its associated monodromy coincides
with φ. The local triviality follows from covering property. Monodromy coinciding again
follows by simple unravelling of underlying definitions.

The action of π1(X,x0) on A obtained by a local system L is called the monodromy

1θ by restriction gives a homeomorphism of p−1(U) by definition.
2further, any automorphism of A, say κ : A → A gives a homeomorphism of A =

∐
a∈A X̃ by permuting

the index A by κ.
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action of L on A. Observe that under the above bijection, the trivial action 0 : π1(X,x0)→
Aut(A) which maps [γ] to the identity automorphism of A corresponds to the local system
L on X whose local sections are G(X̃/X)-invariant sections over X.

We thus obtain the following result which gives a characterization of local systems.

Proposition 2.3.4. Let X be a path-connected, locally path-connected and semi-locally
simply connected space. The following are equivalent:

1. L is a local system on X of finite dimensional vector spaces,
2. {Lx}x∈X is a collection of finite dimensional vector spaces such that for any path

γ : I → X we get a linear isomorphism

γ∗ : Lφ(0) → Lφ(1)

such that the following two conditions are satisfied:
(a) for any two paths γ, η homotopic rel end points, the maps γ∗ and η∗ are same,
(b) if γ ∗ η is the concatenation of two paths, then (γ ∗ η)∗ = γ∗ ◦ η∗.

Proof. (1. ⇒ 2.) Pick any local system L. By hypothesis on X, we immediately have a
collection of isomorphic vector spaces A ∼= Lx for each x ∈ X. Pick any path γ : I → X.
We get a map

γ∗ : Lφ(0) → Lγ(1)

by the usual process of taking the inverse image of L under γ and calculating stalks (see
proof of Lemma 2.3.2). Consider the corresponding monodromy (see 2.3.3)

π1(X,x0)→ Aut(A).

The two conditions of item 2 now follows from the conditions of monodromy.
(2. ⇒ 1.) From the given data, we wish to construct a locally constant sheaf. By 2.3.3,
it suffices to obtain an action φ : π1(X,x0) → Aut(A). Indeed, pick any [γ] ∈ π1(X,x0).
Define φ([γ]) to be the automorphism associated to the loop γ, the γ∗, as provided by the
hypothesis. Its well-definedness follows from the first condition of item 2. That it defines a
group homomorphism follows from second condition of item 2.

Corollary 2.3.5. Let X be a locally path-connected, simply-connected space. Then any
local system L over X is constant.

Proof. If X is simply-connected, then the deck group of its universal cover is singleton.
Hence HomGrp (π1(X,x0),Aut(A)) consists of only one map, the trivial map. It follows by
2.3.3 that the local system associated to this is the constant sheaf associated to A, A over
X (which is its own universal cover).

We now first define homology with local coefficients on a space X.

2.3.6 (Homology with local coefficients). LetX be a path-connected, locally path-connected
and semi-locally simply-connected space and let L be a local system over X. We will
construct homology groups with local coefficients L, denoted Hi(X,L), as follows.
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Let A ∼= Lx for all x ∈ X. Pick any i-simplex σ : ∆i → X. Taking inverse image of L
under σ, we obtain a local system σ∗L over ∆i. By Corollary 2.3.5, it follows that σ∗L is
the constant sheaf over A which we denote by Aσ i.e. σ∗L ∼= Aσ. To each σ : ∆i → X,
we attach a copy of A by considering the global sections of Aσ which is just A. Thus, we
construct the group of i-chains with coefficients in L as follows:

Si(X,L) =

{∑
σ

aσσ | σ : ∆i → X, aσ ∈ Aσ & aσ ̸= 0 only for finitely many σ

}
.

We further define the boundary map

d : Si(X,L) −→ Si−1(X,L)

by first defining an isomorphism ρστ : Aσ → Aτ where τ = σ ◦dj is the jth-face of σ. Indeed,
observe that for any point p ∈ ∆i, we can define the following isomorphism:

ρσp : A = Aσ = Γ(∆i, Aσ)→ Lσ(p)
∼= A.

Using this, we can then define the restriction map ρστ as in the following diagram where
p ∈ ∆i−1:

Aσ Aτ

Lσ(p)

ρστ

ρσp
(ρτp)

−1
.

This map ρστ is independent of any choice of point p ∈ ∆i−1 by path-connectedness of
∆i−1 and the isomorphisms between the stalks by a path as given by Proposition 2.3.4,
item 2. Using this map ρστ , we obtain the following differential defined on a simple i-chain
σ : ∆i → X:

d : Si(X,L) −→ Si−1(X,L)

aσσ 7−→
i∑

j=0

(−1)jρσ∂jσ(aσ)∂jσ.

This makes (S•(X,L), d) into a chain complex, whose homology is defined to be homology
groups with local coefficients, Hi(X,L).

The following is a simple lemma, showcasing what we have done so far is indeed a
generalization of coefficients in the usual homology.

Lemma 2.3.7. Let X be a path-connected, locally path-connected and semi-locally simply-
connected space. The usual homology groups of X with coefficient Z are in isomorphism
with the homology with coefficient in the constant local system Z. That is, for all i ∈ Z, we
have

Hi(X,Z) ∼= Hi(X,Z).
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Proof. We need only show that the map ρστ in 2.3.6 are identity. As ρστ : Z → Z is an
isomorphism of abelian groups, therefore it has to be id.

Next, we define intersection homology with local coefficients.

2.3.8 (Intersection homology with local coefficients). Let X be an n-pseudomanifold with
a fixed stratification S. Recall that X −Xn−2 is the non-singular locus and it is a manifold
of dimension n. To define intersection homology with local coefficients, it will suffice to
consider a local system on the manifold X−Xn−2. Indeed, if L is a local system defined on
X −Xn−2 and p̄ is a perversity, then we can still define I p̄Si(X,L) even though L is only
defined on the non-singular locus by the following procedure. Define

I p̄Si(X,L) =

{∑
σ

aσσ | σ : ∆i → X & dσ are p̄− allowable, aσ ∈ Aσ is ̸= 0 for finitely many σ

}
.

This is well-defined as if σ is p̄-allowable and aσ ̸= 0 in Aσ = Γ(∆i, σ
∗L), therefore it has

to intersect the non-singular locus X − Xn−2. Similarly for any face τ of σ. Hence, we
get intersectiom homology groups with coefficients in a local system L over the
non-singular stratum X −Xn−2, denoted by I p̄Hi(X,L).

We define the dual of a local system now.

2.3.9 (Dual local systems). Let X be a space and L be a local system over X. We can
then define a new local system

L∨ = Hom(L,K).

Then L∨
x = Hom (Lx,K).

3 Sheaf theoretic intersection homology

Let X be an n-dimensional pseudomanifold. We construct a complex of sheaves Ip̄S−i
X whose

local sections at open U are the locally-finite intersection i-singular chains over U .

Construction 3.0.1 (The sheaves S−i
X and Ip̄S−i

X ). Let X be a paracompact Haudorff
space and F be a field. We globalize the construction of homology with closed supports by
constructing a complex of sheaves S−i

X .
We first define the presheaf over X whose sections over the open set U ⊆ X is given by

S−i
X (U) = Si((U)),

the set of locally-finite singular i-chains. The main difficulty is in defining the restriction
maps. Let V ↪→ U be an inclusion of open sets of X. We define the restriction map

ρ : Si((U)) −→ Si((V ))

as follows. As the map to be constructed must be F -linear, hence it suffices to define ρ
only on a single singular i-simplex σ : ∆i → X. Indeed, from σ, define the set Jσ by the
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following process. If Im (σ) ⊆ V , then set Jσ = {σ}. If Im (σ) ̸⊆ V , then subdivide σ and
put those τ in the subdivision whose Im (τ) ⊆ V in Jσ. Further subdivide those Im (τ) ̸⊆ V
and repeat the process.

At the end of this process, we have a set of i-simplices in V , denoted by Jσ. We thus
define

ρ(σ) =
∑
τ∈Jσ

τ.

This is a locally-finite singular i-chain in V .
We now wish to show that S−i

X is a sheaf. Indeed, for any open set U ⊆ X, an open
cover {Uj}j∈J of U and ξj ∈ S−i

X (Uj) = Sj((Ui)) which agrees on intersection, we wish to
glue the matching family (ξj) to a locally finite i-chain ξ ∈ Si((U)). Indeed, define ξ as the
sum

∑
j∈J ξj . This is a locally-finite i-chain in U as for each x ∈ U we have that x ∈ Uj ,

and thus there is an open set x ∈ Ux ⊆ Uj which intersects atmost finitely many simplices
in ξj with non-zero coefficient by local compactness of X. Observe that ξ|Uj

= ξj as by
definition of restriction.

Now we define a map of sheaves

∂ : S−i
X −→ S−i+1

X

which is defined on an open set U ⊆ X by

∂U : Si((U)) −→ Si−1((U))

in the usual manner. The fact that this commutes with restrictions follows from checking
it on a simplex, where it is immediate.

It follows that we have a complex of sheaves (S•X , ∂) which is bounded above.
In exactly the same mannerism, we construct the presheaf

Ip̄S−i
X : U 7→ I p̄Si((U))

which becomes a subsheaf of S−i
X such that the map ∂ restricts to define a differential

∂ : Ip̄S−i
X −→ Ip̄S−i+1

X .

We thus have a subcomplex of S•X given by (Ip̄S•X , ∂), called the intersection complex.

The main point of sheafifying the above construction is the following theorem, which
makes computing intersection homology amenable to tools from sheaves.

Theorem 3.0.2. Let X be an n-pseudomanifold. Then,

1. the sheaves Ip̄S−i
S̄,L

are soft,

2. the hypercohomology of Ip̄S•
S̄,L

is same as intersection homology with coefficients in

L.

We next study singular intersection complex with coefficients in a local system.

11



3.1 Intersection complex with local coefficients

We will now construct a complex of sheaves with local coefficients on the non-singular
stratum.

Construction 3.1.1 (Intersection complex with local coefficients, Ip̄S−i
X,L). Let X be an

n-pseudomanifold and L be a local system on X − Xn−2, the non-singular stratum. Fix
a perversity p̄. We will construct sheaves Ip̄S−i

X,L for each i ∈ Z, called the intersection
sheaves with local coefficients.

Fix an i ∈ Z. Consider the following presheaf

U 7→ I p̄Si((U,L))

where I p̄Si((U,L)) is the vector space of all locally-finite intersection i-chains with coeffi-
cients in L where the restriction map is defined exactly in the same manner as in Construc-
tion 3.0.1. For the same reasons as for Ip̄S−i

X , we get that this is a sheaf, which we denote
by Ip̄S−i

X,L. Moreover, the differential again lifts to a map of sheaves, giving us a cochain

complex Ip̄S•X,L, called the intersection complex with local coefficient L.

We’ll later see that intersection complex with local coefficients actually forms a proto-
typical example of a perverse sheaf.

Let S ⊆ X be any stratum in X and a local system L. From this data, we will construct
a new complex over X, which will thus give us many examples of perverse sheaves over X.

3.1.2 (From a pair (S,L) to Ip̄S•
S̄,L

). Let iS : S ↪→ X be a stratum of (complex) codimension

k and L be a local system over S. We will construct a complex of sheaves Ip̄S•
S̄,L

over X

which we call the extended intersection complex with local coefficient (the name
will make sense in a minute).

As iS : S ↪→ X is a stratum, then S̄ is a pseudomanifold of dimension n − k and thus
L is a local system defined on the non-singular locus of S̄ (which is S). By Construction
3.1.1, we get the intersection complex Ip̄S•

S̄,L
on S̄ with coefficient in L. Now consider the

inclusion of the closed set i : S̄ ↪→ X. Consider the extension by zeroes of each sheaf of the
complex Ip̄S•

S̄,L
to obtain a complex of sheaves over X, which, to reduce linguistic baggage,

we again write as Ip̄S•
S̄,L

. This complex we call the extended intersection complex with

coefficient in L.
We will later see that this is a quintessential example of a perverse sheaf.

Remark 3.1.3. As was the case before, the following are true for extended intersection
complex Ip̄S•

S̄,L
:

1. the sheaves Ip̄S−i
S̄,L

are soft,

2. the hypercohomology of Ip̄S•
S̄,L

is same as intersection homology with coefficients in

L.

3.2 Characterization of Ip̄S•
X in Db(X)

There are certain axioms which completely classify the intersection complex Ip̄S•X upto
isomorphism in Db(X).

12



3.2.1 (Axioms for Ip̄S•X inDb
S(X)). Fix an n-pseudomanifoldX and a perversity p̄. Further,

fix a stratification S of X. Denote for each 2 ≤ k ≤ n+ 1 the following two susbsets of X:

Uk = X −Xn−k

Sk = Xn−k −Xn−k−1

and denote the inclusions as follows:

Sk
jk
↪→ Uk+1

ik←↩ Uk.

We now lay down a set of axioms which will uniquely characterize Ip̄S•X upto isomorphism
in Db(X). Let F• ∈ Db

S(X). We call the following axioms [AX1]p̄,S:

1. [Normalization] : We have a quasi-isomorphism on the non-singular stratum F•|X−Xn−2
≃

RX−Xn−2 [n] where RX−Xn−2 is a local system on X −Xn−2.
2. [Lower bound on cohomology] : Hi(F•) = 0 for all i < −n.
3. [Vanishing condition] : Hi(F•|Uk+1

) = 0 for all i > p̄(k)− n and k ≥ 2.

4. [Attaching condition] : The map

Hi(j∗k F•|Uk+1
) −→Hi(j∗kRik∗i

∗
k F

•|Uk+1
)

is an isomorphism for i ≤ p̄(k)− n and k ≥ 2.

Furthermore, these axioms are equivalent to the following axioms which we call [AX2]p̄,S:

1. [Lower bound on stalk cohomology] : For any x ∈ X, we have H i(j∗xF
•) = 0 for all

i < −n.
2. [Non-singular stalk cohomology] : For any x ∈ X − Xn−2, we have H−n(F•) is a

constant local system on X −Xn−2 such that for all x ∈ X −Xn−2,

H i(j∗xF
•) =

®
R if i = −n
0 else.

Furthermore, over X −Xn−2, we have H−n(F•)|X−Xn−2
∼= R.

3. [Stalk cohomology in positive stratum] : for any x ∈ Xn−k − Xn−k−1 for k > 0, we
have

H i(j∗xF
•) = 0 for i > p̄(k)− n.

4. [Costalk cohomology in positive stratum] : for any x ∈ Xn−k −Xn−k−1 for k > 0, we
have

H i(j!xF
•) = 0 for i < −q̄(k)

where q̄ is the complementary perversity of p̄, i.e. p̄(k) + q̄(k) = k − 2.

The benefit of [AX2]p̄,S over the [AX1]p̄,S is that we are only talking about local conditions
for a sheaf to satisfy; all conditions in [AX2]p̄,S are about stalks and costalks.

For local coefficients, we have the following.
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3.2.2 (Axioms for Ip̄S•X,L in Db
S(X)). Let Σ = X −Xn−2 be the non-singular stratum and

consider a local system L on Σ. By 3.1.2, we get the intersection complex with local coef-
ficients Ip̄S•X,L where we don’t need to extend by zeros as Σ̄ = X. Following the notations

as in 3.2.1, we again get the same axioms for Ip̄S•X,L as for the usual intersection complex,
but the only difference is in the normalization axiom where we demand F•|X−Xn−2

≃ L[n].
We call these axioms [AX1]p̄,S,L. Similarly, we can form [AX2]p̄,S,L by replacing the axiom
of non-singular stalk cohomology by

H i(j∗xF
•) =

®
Lx if i = −n
0 else.

Furthermore, over X −Xn−2, we have H−n(F•)|X−Xn−2
∼= L.

3.2.3 ([AX2]p̄,S via Verdier dual). Following the notations of 3.2.1, we can reframe the
axioms of [AX2]p̄,S using the Verdier dual functor DX as follows and we call them [AX2V]p̄,S:

1. [Lower bound on stalk cohomology] : For any x ∈ X, we have H i(j∗xF
•) = 0 for all

i < −n.
2. [Non-singular stalk cohomology] : For any x ∈ X − Xn−2, we have H−n(F•) is a

constant local system on X −Xn−2 such that for all x ∈ X −Xn−2,

H i(j∗xF
•) =

®
R if i = −n
0 else.

Furthermore, over X −Xn−2, we have H−n(F•)|X−Xn−2
∼= R.

3⋆ [Costalk cohomology in positive stratum of twisted dual] : for any x ∈ Xn−k−Xn−k−1

for k > 0, we have

H i(j!x((DXF
•)[n])) = 0 for i < −p̄(k).

4⋆ [Stalk cohomology in positive stratum of twisted dual] : for any x ∈ Xn−k −Xn−k−1

for k > 0, we have

H i(j∗x((DXF
•)[n])) = 0 for i > q̄(k)− n.

where q̄ is the complementary perversity of p̄, i.e. p̄(k) + q̄(k) = k − 2.
The proof of this is immediate from Theorem A.4.3, 5 (the version for inverse images).

Theorem 3.2.4. The complex Ip̄S•X satisfies [AX2]p̄,S. The complex Ip̄S•X,L satisfies [AX1]p̄,S,L.
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4 Perverse sheaves

Recall notions surrounding constructibility from Appendix B. We fix a complex algebraic
or analytic varieties of R-dimension 2n (so dimCX = n) with a fixed Whitney stratification
S. Hence there is no odd-dimensional strata. We further fix our perversity as the lower
middle perversity m̄.

We will now construct a subcategory of Db
S(X) which will satisfy various properties

which are ideal for further development of intersection complex.

4.0.1 (jth-support and cosupport of a complex). Let F• be a complex of sheaves over X
and j ∈ Z. For any x ∈ X, denote the inclusion ix : {x} ↪→ X. Then, the jth-support of F•

is defined by

suppj(F•) := {x ∈ X | Hj(i∗xF
•) ̸= 0}

and the jth-cosupport of F• is defined by

cosuppj(F•) := {x ∈ X | Hj(i!xF
•) ̸= 0}.

4.0.2 (Perverse sheaves). A cohomologically S-constructible complex F• ∈ Db
S(X) is said

to be a perverse sheaf if the following two conditions are satisfied:
1. dimC supp−j(F•) ≤ j for all j ∈ Z,
2. dimC cosuppj(F•) ≤ j for all j ∈ Z.

We denote the subcategory of perverse sheaves in Db
S(X) as PervS(X).

There is an alternate characterization of this definition which is very helpful to keep in
mind.

Theorem 4.0.3. Let F• be a complex of sheaves in Db
S(X). Then the following are equiv-

alent:
1. F• is a perverse sheaf,
2. [Beilinson-Bernstein-Deligne] for any non-empty stratum S (so that it is a complex

manifold) with inclusion iS : S ↪→ X, we have

Hj(i∗SF
•) = 0 ∀j > −dimC S

Hj(i!SF
•) = 0 ∀j < −dimC S.

3. [Kashiwara-Schapira] for any non-empty stratum iS : S ↪→ X and any point x ∈ S
with inclusion ix : {x} ↪→ X, we have

Hj(i∗xF
•) = 0 ∀j > −dimC S

Hj(i!xF
•) = 0 ∀j < dimC S.

4. [Kirwaan-Woolf ] the shifted complex F•[dimCX] satisfies that for any stratum S ⊆ X
and any x ∈ S with inclusion ix : {x} ↪→ X, we have

Hj(i∗xF
•[dimCX]) = 0 ∀j > −dimCX − dimC S

Hj(i!xF
•[dimCX]) = 0 ∀j < dimC S − dimCX.
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5. [Kirwaan-Woolf ] for any stratum iS : S ↪→ X and any point x ∈ X with inclusion
ix : {x} ↪→ S, we have

Hj(i!xDXF
•) = 0 ∀j < dimC S

Hj(i∗xDXF
•) = 0 ∀j > −dimC S

Proof. Proposition 10.2.4 and Corollary 10.2.5 of Kashiwara and Schapira.
(3. ⇐⇒ 5.) Observe that by Theorem A.4.3, we have

Hj(i!xDXF
•) = 0 ⇐⇒ Hj(D⋆i

∗
xF

•) = 0

⇐⇒ Hj(i∗xF
−•)∨ = 0

⇐⇒ H−j(i∗xF
•) = 0.

Using this and Theorem A.4.3, we also deduce

Hj(i∗xDXF
•) = 0 ⇐⇒ H−j(i!xD

2
XF

•) = 0

⇐⇒ H−j(i!xF
•) = 0,

as required.

Let us now give some examples of perverse sheaves.

4.0.4 (Perverse sheaves over a point). Let F• ∈ Db
S({x}), which we may thus think as a

complex of C-vector spaces. Then, we claim that the following are equivalent:

1. F• is perverse,
2. Hj(F•) = 0 for all j ̸= 0.

Hence we may call a complex of vector spaces perverse if the only non-zero cohomology is
in degree 0.

Indeed, this follows immediately from the equivalence of first and second item of Theo-
rem 4.0.3 with iS = id.

4.0.5 (Perverse sheaves over manifolds). Let X be a complex non-singular variety of
dimCX = n and let F• ∈ Db

S(X) be a cohomologically S-constructible complex over X
where S is the trivial stratification of X as there are no-singularities. We claim that the
following are equivalent:

1. F• is perverse,
2. F• is quasi-isomorphic to H−n(F•)[n].

Indeed, we may use the second item of Theorem 4.0.3 by putting S = X and iX = id to
yield

Hj(F•) = 0 ∀j ̸= −n.

Now, shifting the constant complexHj(F•) by −n, we immediately get that both complexes
have same cohomology. Now as this is a complex of sheaves of vector spaces, so there exists
a quasi-isomorphism as required.
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4.0.6 (Local systems and perverse sheaves over manifolds). LetX be a complex non-singular
variety of dimCX = n. Let L be a local system over X. Then we claim that L[n] is a
perverse sheaf over X with the trivial stratification S.

Indeed, observe that we are treating L as a complex concentrated in degree 0, thus
L[n] represents complex which has L at −n-position and 0 elsewhere. As X has trivial
stratification, therefore by 4.0.5, L[n] is perverse if and only if L[n] has same cohomology
sheaves as H−n(L[n])[n] and the latter is just L[n] again, as required.

It is not true that if L is a local system on X where X is an n-complex singular variety
that L[n] is a perverse sheaf.

We will later see that still in the case of local complete intersection X (see Appendix
??) and any local system L over X, the complex L[n] would be perverse!

4.0.7 (Cohomology sheaves of a perverse sheaf). Let F• be a perverse sheaf in Db
S(X). We

then claim that

Hj(F•) = 0 ∀j /∈ [−dimCX, 0].

Fix j > 0. We need only show that that for any x ∈ X, the stalk Hj(F•)x = 0. Indeed, by
definition of perverse sheaves, we have

dimC suppj(F•) ≤ −j < 0

and since suppj(F•) = {x ∈ X |Hj(i∗xF
•) ̸= 0} and Hj(i∗xF

•) ∼= i∗xH
j(F•), we see that

Hj(F•)x = 0 for all x ∈ X and j > 0. The other side can also be seen easily.

4.0.8 (Perverse sheaves over a cone). In a paper of Beilinson in which he given an alternate
construction of nearby and vanishing cycles construction, it is shown that if X is the usual
open cone on S1, then the category of perverse sheaves over X is equivalent to category
of diagrams of complex vector spaces f : V ⇆ W : g such that id−gf and id−gf are
invertible operators.

We now show that the intersection complexes IS•X and IC•
X are both perverse (with

lower middle perversity, which is omitted from notation).

Theorem 4.0.9. The shifted intersection complexes IS•X [−dimC X] and IC•
X [−dimC X]

are both
1. cohomologically S-constructible (i.e. in Db

S(X))
2. perverse (i.e. in PervS(X)).

Proof. We have shown that both these complexes are isomorphic in Db(X) as both admit
an isomorphism to Deligne’s sheaf (TODO). We hence only prove this for IC•

X . Recall that
we showed earlier that IC•

X is cohomologically S-constructible (TODO). As shifting only
shifts the cohomology, therefore IC•

X [−dimCX] is also cohomologically S-constructible.
Now we wish to show that IC•

X [−dimCX] is perverse. To this end, we will show that
for any stratum S ⊆ X, the item 4 of Theorem 4.0.3 is satisfied. First, pick stratum S of
positive codimension and any point x ∈ S. We wish to the conditions in item 4 of Theorem
4.0.3 for IC•

X [−dimCX][dimCX] = IC•
X . Thus, we wish to show that

Hj(i∗xIC
•
X) = 0 ∀j > −dimCX − dimC S

Hj(i!xIC
•
X) = 0 ∀j < dimC S − dimCX.
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But both of these are immediate from Theorem 3.2.4 for lower middle perversity. This
completes the proof.

A main source of examples of perverse sheaves for us will be extended intersection
complexes (see 3.1.2).

Theorem 4.0.10. Let S ⊆ X be a stratum of X and L be a local system over S. Consider
the associated extended intersection complex with lower middle perversity IS•

S̄,L
over X.

Then, the shifted extended intersection complex IS•
S̄,L

[−dimC S] is

1. cohomologically S-constructible (i.e. in Db
S(X))

2. perverse (i.e. in PervS(X)).

Proof. The cohomological constructibility of IS•X,L we omit. To show that IS•X,L is perverse,
we follow the same proof as Theorem 4.0.9, where the item 4 Theorem 4.0.3 is true even
for intersection complex with local coefficient.

4.1 Properties of category of perverse sheaves

We now state the main properties of PervS(X). The first being that it is abelian with
triangles only coming from short exact sequences.

Theorem 4.1.1 (PervS(X) is abelian). The category of perverse sheaves PervS(X) is
abelian with

0→ F• u→ G• v→ C• → 0

is an exact sequence in Kom(X) if and only if there is a map C• −→ F•[1] such that

F• u−→ G• v−→ C• −→ F•[1]

is a standard triangle in PervS(X).

The proof that PervS(X) is abelian follows from setting up a triangulated structure on
the category DS(X), finding a t-structure on DS(X) and then showing that the core of
that t-structure is exactly the subcategory PervS(X). The result will then follow from the
general result that core of any t-structure is an abelia subcategory.

If we are given a short exact sequence inKom(X), then by Theorem A.3.6, we know that
we get a distinguished triangle. The non-trivial statement here is that every distinguished
triangle comes only from a short exact sequence of perverse sheaves.

The next important theorem is that on PervS(X) the Verdier duality (see §A.4) functor
DX restricts to DX : PervS(X)op → PervS(X).

Theorem 4.1.2 (Verdier duality). The Verdier duality functor DX : Db(X)op → Db(X)
restricts to a functor DX : PervS(X) → PervS(X). Furthermore, Verdier duality on
PervS(X) is an exact functor.

Proof. We will prove the first part of the claim here. This is clear from Theorem A.4.3 and
4.0.3. The other part follows from theory of t-structures.
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4.1.3 (Verdier dual of extended intersection complexes). Let S ↪→ X be a stratum and L

be a local system over S. We know that we get an extended intersection complex Ip̄S•
S̄,L

over X and we have shown that this is also perverse (Theorem 4.0.10). We now show that
the Verdier dual of Ip̄S•

S̄,L
[−dimC S] is just Ip̄S•

S̄,L∨ [−dimC S], that is,

DXI
p̄S•S̄,L[−dimC S] ∼= Ip̄S•S̄,L∨ [−dimC S],

for a stratum S ↪→ X in X. It follows from Theorem A.4.3. This infact verifies that Verdier
dual of a perverse sheaves of the form Ip̄S•

S̄,L
[−dimC S] are indeed perverse again.

We next show that the category of perverse sheaves is both Noetherian and Artinian.
Recall that an object a in an abelian category is said to be simple if there is no non-trivial
short-exact sequence 0 → p → a → q → 0. For example, prime cyclic groups are exactly
the simple objects of Ab. We first state an equivalent formulation for a category to be both
Artinian and Noetherian. Recall that an abelian category is Artinian (Noetherian) if each
object is Artinian (Noetherian).

Proposition 4.1.4. Let A be an abelian category and A ∈ A. Then the following are
equivalent:

1. A is Noetherian and Artinian.
2. There exists a filtration 0 ↪→ A1 ↪→ A2 ↪→ · · · ↪→ An = A by subobjects such that

Ai/Ai−1 is simple for i = 1, . . . , n.

Proof. StacksProject 0FCJ.

Theorem 4.1.5 (PervS(X) is Noetherian and Artinian). Consider the category of perverse
sheaves PervS(X) over X. The following are true:

1. Category PervS(X) is Noetherian and Artinian; every perverse sheaf satisfies acc and
dcc for its subobjects.

2. For any perverse sheaf F•, there exists finitely many perverse sheaves E•
i , 0 ≤ i ≤ k

as in the following

0 ↪→ E•
0 ↪→ E•

1 ↪→ · · · ↪→ E•
k = F•

such that they form a composition series, that is, E•
i /E

•
i−1 is a simple perverse sheaf.

3. If F• is a simple perverse sheaf, then there is a quasi-isomorphism

F• ≃ IS•S̄,L[−dimC S]

where S ↪→ X is a stratum of X and L is an irreducible local system on S.

To prove the third statement would require realizing the extended intersection com-
plex with coefficients in a local system as a functor, whose formal properties will yield it.
Therefore we postpone it for the next section.

Proof. (Sketch) 1. Pick any perverse sheaf F• over X and consider a strictly decreasing
filtration F• = E•

1 ⊃ E•
2 ⊃ . . . . We claim that there exists an N ∈ N such that E•

N is
supported in a strictly smaller dimensional subset than X. As X is finite dimensional, it
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will then follow that E•
i eventually goes to 0 after some large i. This shows that PervS(X)

is Artinian. Verdier duality reverses inclusions and is exact, therefore we get Noetherian
for free.

2. Follows from Proposition 4.1.4.

4.2 Intermediate extensions

Let X be a C-analytic or algebraic variety with a fixed Whitney stratification S with
dimCX = n.

4.2.1 (Intermediate extension). Let j : U ↪→ X be an open subvariety and let G• ∈
PervS(U). Then there exists a unique extension F• ∈ PervS(X) of G• (that is, j∗F• = G•)
such that for any stratum iV : V ↪→ X − U = Z, we have

Hk(i∗V F
•) = 0 ∀k ≥ −dimC V

Hk(i!V F
•) = 0 ∀k ≤ −dimC V.

Moreover, this is functorial in nature and we denote F• = j!∗(G
•), i.e. j!∗ : PervS(U) →

PervS(X).

The following are important properties of intermediate extensions which shows that they
give us the extended intersection complexes.

Theorem 4.2.2. We have the following statements for intermediate extensions.
1. [Maxim] If j : U ↪→ X is the non-singular locus of X and L a local system on U , then

j!∗(L[dimCX]) ≃ IS•X,L[−dimCX].

2. [Maxim] Let j : U ↪→ X be an open subvariety. If G• ∈ PervS(X) is simple, then
j!∗(G

•) ∈ PervS(X) is simple.
3. [BBD] Let j : U ↪→ X be the non-singular locus and F• ∈ PervS(X). Then,

j!∗(j
∗F•) ≃ F•.

4. [BBD] If j : U ↪→ X is an open subvariety, i : Z = X − U ↪→ X and F• ∈ PervS(X)
then we have a short exact sequence

0→ j!∗(G
•
1)→ F• → i∗(G

•
2)→ 0

where G•
1 ∈ PervS(U) and G•

2 ∈ PervS(Z).

Using these, we first prove Theorem 4.1.5, 3.

Proof of Theorem 4.1.5, 3. Let F• ∈ PervS(X) be simple. Begin with an arbitrary stratum
T ⊆ X −Xn−2 in the non-singular locus. We have the following decomposition

U = X − T̄
j
↪→ X

i←↩ T̄ = Z.
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Now, by Theorem 4.2.2, 4 and simplicity, we get that F• = j!∗(G
•
1) for some G•

1 ∈ PervS(U)
or F• = i∗G

•
2 for some G•

2 ∈ PervS(Z). Consider the former case. Replacing X by U and
repeating the above process inducitvely, we see by finite dimensionality of X that we can
reduce to the latter case, that F• = i∗G

•
2 for some G•

2 ∈ PervS(Z).
Now, in this case, note that we may replace X by Z and F• by G•

2. Thus we may assume
that X is an irreducible pseudomanifold and F• is supported on X. Now, let Σ = X−Xn−2

be the non-singular stratum (only one because of irreducibility). Then, let j : Σ ↪→ X be
the open inclusion. As j∗F• is a perverse sheaf on Σ, so it is quasi-isomorphic to L[dimCX]
where L is irreducible since j∗F• is simple. Now, we see by Theorem 4.2.2, 3 that

j!∗(j
∗F•) ≃ F•

and by Theorem 4.2.2, 1

j!∗(j
∗F•) ≃ j!∗(L[dimCX]) ≃ IS•X,L[−dimCX].

Thus unravelling, we see that the original F• onX is quasi-isomorphic to i∗IS
•
X,L[−dimCX],

where i : Z = T̄ ↪→ X, as needed.

4.3 Examples in complex varieties

We show two instances of perverse sheaves that appears in AG.

Proposition 4.3.1. Let X,Y be complex quasi-projective varieties with Whitney stratifica-
tions S and T respectively. Let f : X → Y be a finite map. Then Rf∗ : Db(X) → Db(Y )
descends to a functor PervS(X)→ PervT(Y ).

Proof. (Very brief sketch) Show that it takes cohomologically constructible complexes onto
itself is a long process and is done in §3.8-3.10 of Achar’s book.

Next, to see it preserves perverse sheaves, it suffices to show it induces a ”t-exact”
functor Rf∗D

b(X) → Db(Y ). By Theorem 4.1.1, it further suffices to show that f∗ :
Sh(X) → Sh(Y ) is exact. Thus we need to show that all higher ith-right derived functors
of f∗ are zero. This is also a long and complicated procedure, done in Achar’s book.

Next, we study local complete intersections and show that any twisted constant sheaf
over a local complete intersection is a perverse sheaf.

Theorem 4.3.2. Let X be an analytic variety of pure dimension n (every component is
of dimension n) in Cm. If X is local complete intersection and K a field, then K[n] is a
perverse sheaf over X3.

Proof. (Brief sketch) We may write X = Xn ⨿X0, where Xn is the non-singular stratum
and X0 the discrete collection of isolated complete intersection singularities of X. Observe
that Hj(K[n])x is K for j = −n and 0 else. Now, we claim the following:

Hj(i∗0K[n]) = 0 if j > 0

Hj(i∗nK[n]) = 0 if j > −n.
3This is really worthwhile because of remarks made in 4.0.6.
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The first follows from the previous calculation for if it is non-zero, then for one of the stalks
will be non-zero. The latter follows from oberving that i∗nK[n] is a local system on Xn,
which is a manifold, so it is perverse, and thus we win by 4.0.7. So this makes K[n] satisfy
the support condition of the definition. For the cosupport condition, we need some local
calculations as we did last time and the properties of Verdier duality we saw above, to
reduce to calculating reduced cohomology of the link Lx of x ∈ X0. Then one concludes by
using a result that link of such points in an n-dimensional local complete intersection are
n− 2-connected.
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A Derived category of a space

Let X be a space and Sh(X) be the abelian category of abelian sheaves over X. We want
to construct the derived category of the abelian category Sh(X) so that we can have a very
clean setup for homological algebra. However, defining this category requires a considerable
amount of preparation, which we first undertake.

A.1 Preliminary-I : Injective resolutions, soft sheaves and hypercohomol-
ogy

A.1.1 (Acyclic sheaves for global sections). Let X be a paracompact space. We find a class
of sheaves in Sh(X) which is acyclic for global sections left-exact functor Γ : Sh(X)→ Ab.
Indeed, define a sheaf F ∈ Sh(X) to be soft if the restriction map Γ(X,F) → F(C)
is surjective for all closed sets, where F(C) = lim−→U⊇C

F(U). We also call F c-soft if

Γ(X,F) → F(K) for all compact sets K ⊆ X is surjective. The following theorem tells us
what we want.

Theorem A.1.2. Let X be a paracompact space. Then,

1. Any c-soft sheaf is soft.
2. Any soft sheaf F is Γ-acyclic. That is, for each i ≥ 1, we have

H i(X,F) = 0.

Hence, using soft-resolutions, we may compute cohomology in Sh(X).

We will soon define derived functor hypercohomology. But before that, we need prepa-
rations for resolutions of complexes.

A.1.3 (Direct image with proper support). Let f : X → Y be a map of spaces and let
F ∈ Sh(X). Define f!F to be the sheaf over Y obtained by the sheafification of the presheaf

V 7→ {s ∈ F(f−1(V )) | f ||s| : |s| → Y is proper}.

This is called the direct image with proper supports. Recall |s| = {x ∈ X | sx ̸= 0} is the
support of a section s ∈ F(U).

We then observe that if pX : X → {∗} is the terminal map and F ∈ Sh(X), then
pX!F = Γc(X,F), the global sections with compact support.

A.1.4 (Injective resolution of complex of sheaves). Let F• be a complex of sheaves. An
injective resolution of F• is a quasi-isomorphism F• → I•. Recall f• : F• → G• is a quasi-
isomorphism if on the ith-cohomology sheaves we have an isomorphism Hi(f•) : H

i(F•)→
Hi(G•).

Note that these cohomology sheaves are not the ones which will actually compute our
groups; this will be only useful if we will have an additive left exact functor A → Sh(X)
and then wish to compute its derived functor cohomology. Such a situation would rarely
arise. However, we will use these in our discussion of perverse sheaves.
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For any complex of sheaves, we can get two more complexes; for each point x ∈ X
we may compute the stalks and get the stalk complex and we may use global sections
functor to get a complex of abelian groups. The latter would be later used to construct
hypercohomology of a complex of sheaves.

A.1.5 (Stalk cohomology). Let F• be a complex of sheaves. By taking stalk at x ∈ X
to get F•

x, we obtain a complex of abelian groups called the stalk complex at x ∈ X. The
following lemma tells us that we can compute its cohomology without leaving the category
Sh(X). We will later see this in the setting of derived functors.

Lemma A.1.6 (Cohomology object preservation). Exact functor on an abelian category
takes cohomology objects to cohomology objects.

A.1.7 (Hypercohomology). Let F• be a bounded complex of sheaves and F• → I• be an
injective resolution of F•. Then, the hypercohomology of F• is defined to be the global
sections cohomology of I•:

Hi(X,F•) := H i(Γ(X, I•)).

The following list of results justify the well-definedness of this construction.

Theorem A.1.8 (Hypercohomology preparation theorem). Let F• be a bounded complex
of sheaves. Then,

1. Complex F• has an injective resolution.
2. Any two injective resolutions of F• are homotopy equivalent.
3. Injective resolutions of quasi-isomorphic complexes are homotopy equivalent.

Thus for two injective resolutions F• → I• and F• → J•, we get a homotopy I• → J• to
which we apply Γ(X,−) to get a homotopy Γ(X, I•)→ Γ(X, J•). As homotopic complexes
induce same maps in cohomology, it follows that hypercohomology is well-defined.

For purposes of calculation, we have an important tool which calculates the hypercoho-
mology of a complex of soft sheaves by calculating its global sections cohomology.

Theorem A.1.9 (Soft complex theorem). Let F• be a complex of soft sheaves. Let F• → I•

be an injective resolution. Then, the global sections cohomology of F• is isomorphic to
hypercohomology of F•. That is for all i ≥ 0

H i(Γ(X,F•)) ∼= Hi(X,F•).

In the main text, we will see that the intersection complex Ip̄S•X is a complex of soft
sheaves, therefore computing its hypercohomology is equivalent to computing its global
sections cohomology.

A.2 Preliminary-II : Operations and functors on complexes

Let X be a space and Sh(X) be the category of sheaves over X. Further denote the category
of cochain complexes and maps of complexes by Kom(X).
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A.2.1 (Shift functor). For each n ∈ Z, we have a functor

[n] : Kom(X) −→ Kom(X)

F• 7−→ F•[n]

where (F•[n])i = Fi+n and the boundary map

di[n] : (F•[n])i = Fi+n −→ (F•[n])i+1 = Fi+n+1

is defined to be di[n] = (−1)ndi+n. For a map f• : F
• → G•, we define f [n]i = fi+n.

A.2.2 (Truncation functor). For each n ∈ Z, we define two functors:

τ≤n, τ≥n : Kom(X)→ Kom(X)

where τ≤nF
• = · · · → Fn−1 → Ker (dn) → 0 . . . and τ≥nF

• = · · · → 0 → CoKer
(
dn−1

)
→

Fn+1 → . . . .

The main point of truncation functors is that they truncate the cohomology sheaves as
well.

Proposition A.2.3 (Cohomological truncation). Let F• ∈ Kom(X) and fix n ∈ Z. Then,

Hi(τ≤nF
•) =

®
Hi(F•) if i ≤ n

0 if i > n

and

Hi(τ≥nF
•) =

®
Hi(F•) if i ≥ n

0 if i < n.

We now define a list of operations on complexes that will come in handy in the derived
setting.

A.2.4 (Operations on complexes). Let f : X → Y be a continuous map of spaces.
1. Hom complex : Let F•,G• ∈ Kom(X). Then, the hom complex Hom•(F•,G•) given

by the complex of sheaves Homn(F•,G•) =
∏

p∈ZHom(Fp,Gn+p+1) with the differ-
ential

dn : Homn(F•,G•) −→Homn+1(F•,G•)

which on an open set U ⊆ X gives the following map

dnU :
∏
p∈Z

HomSh(X)

(
Fp|U , Gn+p

∣∣
U

)
−→

∏
p∈Z

HomSh(X)

(
Fp|U , Gn+p+1

∣∣
U

)
(fp)p∈Z 7−→ d ◦ fp + (−1)n+1fp+1 ◦ d

obtained from the following diagram (which may NOT be commutative, as we don’t
have that (fp) forms a cochain map!)

Fp|U Gn+p|U

Fp+1
∣∣
U

Gn+p+1
∣∣
U

d d

fp

fp+1

.
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2. Direct and inverse image complexes : We have two functors corresponding to map
f : X → Y . The first is the direct image functor:

f∗ : Kom(X) −→ Kom(Y )

F• 7−→ (f∗F
•)i := f∗F

i

d : Fi → Fi+1 7−→ f∗d : f∗F
i → f∗F

i+1.

The other is the inverse image functor:

f∗ : Kom(Y ) −→ Kom(X)

G• 7−→ (f∗G•)i := f∗Gi

d : Gi → Gi+1 7−→ f∗d : f∗Gi → f∗Gi+1.

3. Tensor product of complexes : Let F•,G• be two bounded complexes in Kom(X).
Then, the tensor product complex F• ⊗ G• is obtained as follows:

(F• ⊗ G•)i :=
⊕
p+q=i

Fp ⊗ Gq

where to define the differential, we first reduce to defining its restriction on Fp⊗Gq →⊕
k+l=i+1 F

k ⊗ Gl. To this end, we again reduce to defining a map of presheaves

(Fp ⊗ Gq)− −→
⊕

k+l=i+1

Fk ⊗ Gl

where (Fp ⊗ Gq)− is the presheaf U 7→ Fp(U)⊗ Gq(U). To this end, pick an open set
U ⊆ X and define the following map on simple tensors:

Fp(U)⊗ Gq(U) −→
⊕

k+l=i+1

(Fk ⊗ Gl)(U)

xp ⊗ yq 7−→ dxp ⊗ yq + (−1)pxp ⊗ dyq,

just like the usual tensor product of complexes of modules. Most of the time in our
purposes, we would be satisfied by the knowledge of the differential of F•⊗G• on the
simple tensors of the components, hence this description would suffice.

A.3 Derived category

Our fundamental goal is to construct a category of complexes where quasi-isomorphisms
are isomorphisms. We also want a good hypercohomology theory to appear out of this
category; short exact sequences of complexes in this category must yield long exact sequence
in hypercohomology. Experience says that such categories also have more richer properties
than one initially expects, making them ideal for conceptually understanding homological
calculations.

We begin by first constructing a category where homotopy equivalences are inverted.
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A.3.1 (Homotopy category and its defect). Define hKom(X) to be the homotopy category
of Kom(X) where objects are same as Kom(X) but maps are homotopy classes of maps of
Kom(X). This category satisfies some of our needs:

1. If f• : F• → G• is a map of complexes which is a homotopy equivalence, then [f•]
determines a map in hKom(X) which is an isomorphism. Consequently, any two
injective resolutions are isomorphic in hKom(X).

2. hKom(X) is an additive category.
However, a big drawback is that hKom(X) is NOT an abelian category! Consequently, we
cannot make sense of short-exact sequences, let alone cohomology. However we can salvage
this by considering a replacement of exact sequences in hKom(X), which we discuss next.

A.3.2 (Mapping cones, standard triangles and triangles). Let hKom(X) be the homotopy
complex category over X. A standard triangle in hKom(X) is given by the mapping cone
of a map φ• : F• → G• → Cone•(φ), which is defined as the following complex:

Conei(φ) = Fi+1 ⊕ Gi

with differential given by

di : Conei(φ) = Fi+1 ⊕ Gi −→ Conei+1(φ) = Fi+2 ⊕ Gi+1

given by the matrix

di =

ï
−di+1 0
φi+1 di

ò
.

The motivation behind this definition follows from analyzing singular chain complex over
the mapping cone of a map between two spaces.

A standard triangle in Kom(X) is a map of the following type:

F• φ−→ G• [0 1]
−→ Cone•(φ)

[1 0]
−→ F•[1].

A triangle in Kom(X) is given by any map of the following type:

F• φ−→ G• ϕ−→ C• [1]−→ F•[1].

A distinguished triangle is a triangle which is quasi-isomorphic to a standard triangle.
The following proposition gives another good property of hKom(X).

Proposition A.3.3. Any triangle in hKom(X) is isomorphic to a standard triangle.

The following shows that one of our main goals that we wanted out of hKom(X) is
achieved:

Lemma A.3.4. Let the following be a triangle in hKom(X):

F• φ−→ G• ϕ−→ C• [1]−→ F•[1].

Then,
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1. The above triangle induces a long exact sequence in cohomology sheaves as in

· · · →Hi(F•)→Hi(G•)→Hi(C•)→Hi+1(F•)→ . . . .

2. If the above triangle is a triangle of bounded complexes, we get a long exact sequence
in hypercohomology as in

· · · → Hi(X,F•)→ Hi(X,G•)→ Hi(X,C•)→ Hi+1(X,F•)→ . . . .

With all these properties of hKom(X), we still have a big glaring issue at hand; how
do we associate a short exact sequence of complexes to a triangle in hKom(X)? It can be
shown that not all triangles in hKom(X) comes from a short exact sequence of complexes.
For this, we observe the following statement for a category where objects are complexes and
quasi-isomorphisms are isomorphisms:

Every short exact sequence of complexes gives a standard triangle in such a category.

Indeed, let 0→ F• u→ G• v→ C• → 0 be a short exact sequence inKom(X). We will construct
a quasi-isomorphism f• : Cone•(u) → C•. Indeed, consider the map f i : Conei(u) =
Fi+1 ⊕ Gi → Ci given by [0 vi]. To see this is a quasi-isomorphism, we need to check
isomorphism on cohomology sheaves, which one can see by Lemma A.3.4.

Hence we now define a category where objects are complexes and arrows are such that
quasi-isomorphisms are isomorphisms.

A.3.5 (Derived category). Define Db(X) to be the bounded derived category of com-
plexes over X whose objects are complexes and arrows are as follows. An element of

HomDb(X) (F
•,G•) is an equivalence class of maps of complexes F• q.i.←− E• −→ G• which is

called a roof, where two roofs F• q.i.←− E•
1 −→ G• and F• q.i.←− E•

2 −→ G• are equivalent if

there is a third roof F• q.i.←− E•
3 −→ G• which fits in the following commutative diagram:

E•
1

F• E•
3 G•

F•
2

q.i.

q.i.

q.i.

.

We now state some collection of important facts about derived category of sheaves over
a space.

Theorem A.3.6 (Basic properties of Db(X)). Let X be a space and Db(X) be the bounded
derived category of sheaves over X. Then, the following are true:

1. There is a functor D : Kom(X)→ Db(X) taking φ• : F• → G• to F• id←− F• φ•
−→ G•.

2. Every quasi-isomorphism of complexes induces an isomorphism in the derived category
under the functor D.

3. Every short exact sequence in Kom(X) has an associated standard triangle in Db(X).
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4. Every standard triangle in Db(X) induces a long exact sequence of complexes of co-
homology sheaves.

The following lemma is an important one for well-definedness of derived functors.

Lemma A.3.7 (Derived functor preparation lemma). Let X be a space and F : Sh(X)→
Sh(Y ) be a left exact functor. If φ• : I• → J• is a quasi-isomorphism of injective complexes,
then Fφ• : F I• → FJ• is a quasi-isomorphism, where F I• and Fφ• is point-wise application
of functor F .

A.3.8 (Derived functors). Let F : Sh(X) → Sh(Y ) be a left exact functor. Then consider
a functorial assignment of injective resolutions for each complex; consider the following
functor:

I•(−) : Db(X) −→ Db(X)

F• 7−→ I•(F)

where I•(F) is an injective resolution of complex F•. To define on morphisms of Db(X),
we first observe the following diagram obtained by taking a map in HomDb(X) (F

•,G•) (as
in the top row of the diagram below) and using the fact that any two injective resolutions
of a same complex are homotopy equivalent, and thus quasi-isomorphic (Theorem A.1.8):

F• E• G•

I•(F) I•(E) I•(G)

q.i.

q.i. q.i.
q.i.

q.i.

q.i.

.

The bottom row of the above diagram is the required map on arrows.
Using this and Lemma A.3.7, we define the right derived functor of F as the following

functor on derived categories:

RF : Db(X) −→ Db(Y )

F• 7−→ F (I•(F))

where on arrows, we define the map as

F• E• G•

I•(F) I•(E) I•(G)

F (I•(F)) F (I•(E)) F (I•(G))

q.i.

q.i. q.i.
q.i.

q.i.

q.i.

q.i.

.

Moreover, the ith-right derived functor of F is defined to be the following composite:

Db(X) Db(Y ) Sh(Y )RF Hi(−)
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where

Hi(−) : Db(Y ) −→ Sh(Y )

G• 7−→Hi(G•)

where on arrows, we map as

G• Hi(G•)

E• Hi(E•)

K• Hi(K•)

q.i. ∼=

.

We now give plenty examples of derived functors in this generality.

Example A.3.9 (Stalk, costalk and global sections cohomology). Let X be a space and
x ∈ X be a point. Consider the inclusion jx : {x} ↪→ X. Consider also the projection
pX : X → {x}. These gives the following functors on the sheaf categories:

j∗x : Sh(X) −→ Ab (A.3.10.1)

which is the stalk functor, which is exact as it is an inverse image map,

pX∗ : Sh(X) −→ Ab (A.3.10.2)

which is the global sections functor, which is left exact as it is direct image map.
We construct another functor

Γx : Sh(X) −→ Ab (A.3.10.3)

which is called the costalk functor. Indeed, define

Γx(F) := lim←−
U⊇x

Γc(U,F)

where Γc(U,F) = {s ∈ F(U) | |s| ⊆ V is compact} and for x ∈ V ⊆ U , we define Γc(V,F)→
Γc(U,F) by taking s 7→ s! where s! is the section obtained by extending s by zeros outside the
support (which we can do by considering a finite open cover of |s| in V and then obtaining
a cover of U by considering that open cover together with U \ |s|). This defines the required
map, so we can take limit. This gives the required functor of (A.3.10.3).

We can right derive these three functors to obtain the following three functors4:

Rj∗x, RpX∗, RΓx : Db(X) −→ Db(x)

4we choose to write Db(Ab) as the bounded derived category over a point to streamline all three functors.
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where if F• q.i.−→ I•(F) is an injective resolution, then we have

j∗x(F
•) = Rj∗x(F

•) = j∗xI
•(F)

is the stalk complex of the injective resolution5,

RpX∗(F
•) = pX∗I

•(F)

is the global sections complex of the injective resolution and

j!x(F
•) := RΓx(F

•) = ΓxI
•(F)

is the costalk complex of the injective resolution.
Furthermore, the ith-right derived functor of j∗x, pX∗ and Γx which respectively assigns

cohomology of the above three complexes of abelian groups are called stalk cohomology,
global sections cohomology and costalk cohomology respectively.

Note that global sections cohomology is just the hypercohomology of F•. In particular,
ith-hypercohomology is the ith-right derived functor of global sections functor pX∗:

Hi(X,−) : Db(X) −→ Ab

F• 7−→ H i(pX∗I
•(F)).

These three will be heavily used in the main text as they store vital information about the
complex F•.

There is a notion of compactly supported hypercohomology as well. For this,
consider pX : X → {x} and consider the direct image with proper support (see A.1.3)

pX! : Sh(X) −→ Ab.

Again, this is left-exact, we may thus right derive it to obtain a functor

RpX! : D
b(X) −→ Db(x)

F• 7−→ pX!I
•(F) = Γ(X, I•(F)).

The ith-right derived functor of pX! is called ith-hypercohomology with compact support,
denoted Hi

c(X,F•).

A.4 Verdier duality

Let X be an n-pseudomanifold. We now construct a functor DX : Db(X)op → Db(X)
which will generalize the notion of the dual of a vector space/abelian groups/modules; i.e.
it generalizes the contravariant functor HomMod(R) (−, R). It follows after some reasoning
that the mapping E 7→ Hom(E,DX) for an appropriate ”dualizing sheaf” satisfies all the
usual properties of the ”expected dual of E” if we assume that DX is not just a sheaf, but
a complex of sheaves, as we will see that it is this which satisfies the required properties we
expect from a ”dual object” (i.e. things like having a natural map into the double dual and
generalizing the one for vector spaces, etc.)

5the equality j∗x(F
•) = Rj∗x(F

•) is true by exactness of inverse image where j∗x is treated as a functor on
Db(X) which applies j∗x pointwise.
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A.4.1 (Contravariant sheaf hom functor). Let X be a space and E• ∈ Kom(X) be any
complex. Consider the functor

Hom(−,E•) : Kom(X) −→ Kom(X)

F• 7−→Hom(F•,E•)

where the complex Hom(F•,E•) is defined as follows:

(Hom(F•,E•))i = Hom(Fi,Ei)

for all i ∈ Z. For a map of complexes φ• : F
• → G•, we get

φ∗
• : Hom(G•,E•) −→Hom(F•,E•)

which on degree i ∈ Z is

φ∗
i : Hom(Gi,Ei) −→Hom(Fi,Ei)

f : Gi → Ei 7−→ f ◦ φi.

It can be seen that Hom(−,E•) functor is left exact as it taking sections is left exact and
taking direct limits is an exact operation. Hence we get a contravariant functor at the
derived level by right-deriving the Hom(−,E•):

RHom(−,E•) : Db(X)op −→ Db(X).

A.4.2 (Verdier dual). Consider X to be an n-pseudomanifold and consider the singular
complex S•X . We define the Verdier dual functor to be the following right derived contrvari-
ant hom of singular complex:

DX(−) := RHom(−,S•X) : Db(X)op −→ Db(X).

We now see that the Verdier duality functor DX is indeed the ”right” duality functor
as it satisfies the usual properties we expect from duals.

Theorem A.4.3. Let X be an n-pseudomanifold. The functor DX satisfies the following
properties:

1. DX takes distinguished triangles to distinguished triangles where

DX(F•[1]) = DX(F•)[−1]

That is, if

F• φ−→ G• ϕ−→ C• [1]−→ F•[1]

is a distinguished triangle, then

DXF
• φ∗
←− DXG

• ϕ∗
←− DXC

• [1]∗←− DX(F•)[−1]

is a distinguished triangle.
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2. If X = {⋆}, then Db(X) has objects as bounded chain complexes of vector spaces and

DX(V •) = (V −•)∨.

3. For any F• in Db(X), there is a natural map

F• −→ D2
XF

•,

that is, there is a natural transformation id→ DX ◦DX over Db(X).
4. If U ⊆ X is open, then

DX(F•)|U ∼= DU (F
•|U ).

5. [Verdier duality] For any map f : X → Y and F• ∈ Db(X), we have a natural
isomorphism between the following composite of functors

Db(X)op Db(X)

Db(Y )op Db(Y )

Rf!

DX

Rf∗

DY

.

That is,

DY Rf∗F
• ∼= Rf!DXF

•.

Furthermore, for inverse images we also have the same isomorphisms:

DXRf∗G• ∼= Rf !DY G
•.

6. [Cohomological constructibility] The Verdier dual functor restricts to the constructible
categpry for any stratification S:

DX : Db
S(X)op −→ Db

S(X)

and for any F ∈ Db
S(X), the natural map F• → D2

XF
• is an isomorphism.

It follows that there is an intricate connection between compactly supported hyperco-
homology of F• and hypercohomology of the dual DXF

•.

Theorem A.4.4. Let X be an n-pseudomanifold and U ⊆ X be an open set with F• be a
complex of sheaves over X. Then,

Hi(U,DXF
•) ∼= H−i

c (U,F•)∨.

Proof. Let pU : U → {⋆}. Then note that Γ(U,F) = pU∗F for any sheaf F. We now have
the following isomorphisms following Theorem A.4.3:

Hi(U,DXF
•) = H i(RpU∗DUF

•)

[A.4.3− 5] ∼= H i(D⋆RpU !F
•)

[A.4.3− 2] ∼= H i(RpU !F
−•)

= H−i(RpU !F
•)∨

= H−i
c (U,F•)∨.

This completes the proof.
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Lemma A.4.5. Let X be a space. Then,

S•X
∼= DX(K).

Lemma A.4.6. Let X be an n-manifold and L be a local system over X of K-vector spaces.
Then, (see 2.3.9)

DXL ∼= L∨[n].
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B Constructiblility

Constructibile sheaves are a mild generalization of local systems. To see why local systems
are important in topology, recall the following theorem.

Theorem B.0.1. Let X be a connected space. Then the following are equivalent:
1. L is a local system over X.
2. p : L→ X is a covering fibration over X.

Proof. (1. ⇒ 2.) Pick a local system L ∈ Sh(X). This is a locally constant sheaf. Let
p : L→ X be the associated étale space of L. Recall that étale space of a constant sheaf A
over an abelian group A on a connected space is just ⨿a∈AX. The étale space of a locally
constant sheaf then simply is a covering space where evenly covered neighbors are obtained
by looking at the open cover of X restricted to each one of them L is constant.

(2. ⇒ 1.) Recall the construction which takes an étale space to a sheaf. Applying that
construction on p : L→ X which is a cover with fiber A, we yield a sheaf L whose sections
at U ⊆ X are all right sections of the map p; L(U) = {s : U → L | p ◦ s = idU}. If U is
an evenly covered neighborhood, we see that L|U (V ) = {s : V → L | p ◦ s = idV } = {s :
V → A | s is continuous} where A is the discrete fiber at any point (the fiber of the bundle
p : L → X). Indeed, the above equality simply follows from the local trivial hypothesis of
p; at U , p : p−1(U)→ U is a homeomorphism where p−1(U) ∼=

∐
a∈A U .

For more on local systems and homology with coefficients in them, see §2.3. As local
systems appear everywhere, a generalization of them is a worthwhile endeavour. We will
now fix an n-pseudomanifold X with a fixed stratification S : X = Xn ⊇ Xn−1 ⊇ Xn−2 ⊇
· · · ⊇ X1 ⊇ X0.

B.0.2 (Constructible sheaves over X). A sheaf F over X is S-constructible if on each
difference Xn−k −Xn−k−1, the restricted sheaf

F|Xn−k−Xn−k−1

is a local system with finitely generated stalks on the n− k-dimensional manifold Xn−k −
Xn−k−1. Denote the category of S-constructible sheaves as ConsS(X) ⊆ Sh(X).

Theorem B.0.3 (Constructive category is abelian). The subcategory of S-constructible
sheaves in Sh(X), i.e. ConsS(X), is abelian.

Proof. Fix 0 ≤ k ≤ n and ik : Zk = Xn−k − Xn−k−1 ↪→ X be the inclusion. Note that
F|Xn−k−Xn−k−1

= i∗kF. Pick any map φ : F → G of S-constructible sheaves. Then we

claim that kernel Ker (φ) is also S-constructible. Indeed, as i∗k is an exact functor we
get that i∗kKer (φ) is the kernel of i∗kφ. As Ker (i∗kφ) is a local system on Zk which is a
subsystem of i∗kF, therefore by abelian nature of LocSys(X), we deduce that Ker (φ) is also
S-constructible. One can similarly show that cokernel of φ is also S-constructible and so is
direct sum.

B.0.4 (Cohomologically S-constructible complexes over X). Let F• be a complex in the
bounded derived category Db(X). Then, F• is cohomologically S-constructible if all
the cohomology sheaves Hi(F•) ∈ Db(X) are constructible sheaves over X.
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B.0.5 (Cohomologically S-constructible category). We define a full subcategory of Db(X)
whose objects are cohomologically S-constructible complexes and arrows arrows are those
of Db(X), called the cohomologically S-constructible category denoted by Db

S(X).

B.0.6 (Constructible sheaves in Db
S(X)). Consider the inclusion of Sh(X) ↪→ Db(X) taking

F 7→ F• which is the complex which is F at 0 and 0 elsewhere and sheaf maps as the corre-
sponding map of complexes. Under this map, we claim that an S-constructible sheaf goes
to a cohomologically S-constructible sheaf. Indeed, this is immediate, as the cohomology
sheaves of complex concentrated at degree 0 is just the sheaf back.

By Theorem B.0.3, it hence follows that there is an abelian subcategory of Db(X) con-
sisting of S-constructible sheaves over X. We denote this subcategory by Db

Sc(X) ⊆ Db
S(X).
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