
SIMPLICIAL SETS & THE COBAR CONSTRUCTION

ANIMESH RENANSE

Abstract. The goal of this project is to study simplicial sets and an application of simplicial
techniques in proving Adams’ theorem on homology of loop spaces via cobar construction. In
this note, we study basic homotopy theory of simplicial sets, ending with the establishment of
geometric realization adjunction (Proposition 2.6.7). In the next section, as an application of
simplicial techniques, we study cobar construction and the rigidification-homotopy coherent nerve
adjunction. The work of [5] on rigidification gives a concrete realization of the mapping simplicial
sets which appears in the resulting simplicial category. In the end, this leads to the proof of a
generalized Adam’s theorem for path-connected spaces (Theorem 3.3.1), following [3].
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1. Introduction

Simplicial sets give an algebraic replacement of topological spaces. The fundamental adjunction
between simplicial sets and spaces further gives an equivalence of the corresponding homotopy
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theories (Quillen equivalence)

sSet Top
T

S

⊣ .

In this way, one loses no information upto homotopy type while working with simplicial sets.
Further, this adjunction shows that every space is weakly equivalent to a CW-complex, a result
usually attributed to Milnor, [8]. One of the goals of §2 is to establish this adjunction and setup a
part of homotopy theory of simplicial sets, barring the discussion on Kan fibrations.

One of the uses of simplicial sets in algebraic topology is as gadgets which can include data of
higher morphisms which are usually not available at the space level, but is inherently preserved
in constructions which yields simplicial sets. One of such instances is that of homotopy coherent
diagrams, which is discussed extensively in §3.4. The problem of homotopy coherence gives rise to
the free resolution functor

C : Cat −→ sCat

and via application of Kan’s theorem (Theorem A.1.1), we get a fundamental adjunction

sSet sCat

C

N

⊣

.

The left adjoint C, usually called rigidification, is a key player in this note, whose role is to produce a
(simplicial) category which encodes all homotopy coherent data of a simplicial set. To manipulate
the rigidification of a simplicial set, one must know a characterization of the resulting mapping
simplicial sets. This is precisely done in [5]. We discuss this result in §3.5.

The rigidification can then be used to give a generalization of Adams’ theorem (Theorem 3.3.1)
on homology of loop spaces via cobar construction, where the rigidification functor plays the role
of an intermediary between the cobar construction on normalized chain complex of a space and the
normalized chain complex of Moore loop space. This is the content of §3.6, further showcasing the
utility of simplicial techniques.

2. Simplicial sets

Let Z be a topological space. One way to understand Z is via understanding all the singular
chains S∗(Z) of Z and how they relate to each other.

Remark 2.0.1 (Face & degeneracy maps for S∗(Z)). There are natural functions one can define
on X = S∗(Z) by using the combinatorics of the standard n-simplex |∆n|. Recall that

|∆n| := {(e0, . . . , en) ∈ Rn+1 |
n∑

i=0

ei = 1, 1 ≥ ei ≥ 0}.

Consequently, we have maps

di :
∣∣∆n−1

∣∣ −→ |∆n|
(e0, . . . , en−1) 7−→ (e0, . . . , ei−1, 0, ei, . . . , en−1)

and

ρi :
∣∣∆n+1

∣∣ −→ |∆n|
(e0, . . . , en+1) 7−→ (e0, . . . , ei−1, ei + ei+1, . . . , en+1).
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Using these two maps, we may define the following maps on singular chains for each 0 ≤ i ≤ n:

∂i : Xn −→ Xn−1

σ 7−→ σ ◦ di

and

si : Xn −→ Xn+1

σ 7−→ σ ◦ ρi.

The maps ∂i and si are called the face and degeneracy maps of X, respectively.

Lemma 2.0.2. The face and degeneracy maps of X = S∗(Z) satisfies the following identities
(called simplicial identities):

∂i∂j = ∂j−1∂i if i < j

sisj = sj+1si if i ≤ j

∂isj =


sj−1∂i if i < j,

id if i = j, j + 1,

sj ∂i−1 if i > j + 1.

Proof. It follows at once that we have to show the following co-simplicial identities:

djdi = didj−1 if i < j

ρjρi = ρiρj+1 if i ≤ j

ρjdi =


diρj−1 if i < j,

id if i = j, j + 1,

di−1ρj if i > j + 1.

These are immediate from the definitions. □

This motivates the following definition.

Definition 2.0.3 (Simplicial set). A simplicial set is a sequence of sets X = {Xn}n≥0 together
with maps one for each 0 ≤ i ≤ n:

∂i : Xn −→ Xn−1 & si : Xn −→ Xn+1

which satisfies the simplicial identities as stated in Lemma 2.0.2. A simplicial map f : X → Y is a
collection of maps {fn : Xn → Yn}n≥0 which are natural w.r.t. face and degeneracy:

fn−1 ∂i = ∂i fn & fn+1si = sifn.

We hence get a category of simplicial sets and simplicial maps, denoted sSet.

Remark 2.0.4. By Lemma 2.0.2, S∗(Z) for any space Z is a simplicial set and it thus follows that
we have a functor

S : Top −→ sSet .

One of the main goals of this paper is to establish that upto homotopy, this map loses no further
information.
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Remark 2.0.5 (The Kan filler condition). Let ∆n be the standard topological n-simplex. Note
that

|∂i∆n| = Im
(
di
)
= {(e0, . . . , ei−1, 0, ei, . . . , en−1) | (e0, . . . , en−1) ∈

∣∣∆n−1
∣∣}.

We define the kth-horn of |∆n| for 0 ≤ k ≤ n as

|Λn
k | :=

n⋃
i ̸=k

|∂i∆n| ,

that is, the union of all the faces of |∆n| except the one opposite to kth-vertex. Note that we have
n many inclusion maps one for each 0 ≤ i ≤ n and i ̸= k

ιi :
∣∣∆n−1

∣∣ −→ |Λn
k | ⊆ |∆n|

(e0, . . . , en−1) 7−→ (e0, . . . , ei−1, 0, ei, . . . , en−1).

An important observation is that there is a retraction

rk : |∆n| ↠ |Λn
k | .

Indeed, consider a line passing through the kth-vertex vk = (0, . . . , 0, 1, 0, . . . , 0) and pick a point
on it outside the simplex |∆n|, say p. Using p, define rk on x ∈ |∆n| as that point on |Λn

k | which is
obtained by intersection of the horn with the line joining p and x. This map is clearly identity on
the horn.

It follows that for any space and any map σ : |Λn
k | → Z, composing with rk gives a singular

n-simplex σ ◦ rk : |∆n| → Z. If τ0, . . . , τk−1, τk+1, . . . , τn ∈ Sn−1(Z) are n many n − 1-singular
simplices such that they can glue to form a map from the kth-horn |Λn

k | → Z, then by above
discussion it would follow that we get an n-simplex τ ∈ Sn(Z).

We wish to rigorously state the last condition on gluing n many n− 1-simplices to a horn Λn
k .

Lemma 2.0.6. Let τ0, . . . , τk−1, τk+1, . . . , τn ∈ Sn−1(Z) be n many n−1-singular simplices of space
Z and 0 ≤ k ≤ n. Then the following are equivalent:

(1) The simplices τi glues to a map τ : |Λn
k | → Z where τιi = τi for 0 ≤ i ≤ n and i ̸= k.

(2) The simplices τi satisfies the following conditions:

∂i τj = ∂j−1 τi for i < j, i ̸= k, j ̸= k.

Proof. (1. ⇒ 2.) We observe that ∂i τj = τιjd
i and ∂j−1 τi = τιid

j−1. Hence we need only show
that

ιjd
i = ιid

j−1.

This is a simple check.

(2. ⇒ 1.) Define maps on the image of each ιi by τi:

τ̃i : Im (ιi) −→ Z

(e0, . . . , ei−1, 0, ei, . . . , en−1) 7−→ τi(e0, . . . , ei−1, ei, . . . , en−1).

By pasting lemma, we need only check that for τ̃i, τ̃j , i < j, we have

τ̃i|Im(ιj)
= τ̃j |Im(ιi)

.
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Pick p ∈ Im (ιi) ∩ Im (ιj). Then p = (p0, . . . , pn) where pi = pj = 0. Hence, we have by definitions
that

τ̃i(p) = τi(p0, . . . , pi−1, pi+1, . . . , pj−1, pj , pj+1, . . . , pn)

= τid
j−1(p0, . . . , pi−1, pi+1, pj−1, pj+1, . . . , pn)

= τjd
i(p0, . . . , pi−1, pi+1, pj−1, pj+1, . . . , pn)

= τj(p0, . . . , pi−1, pi, pi+1, . . . , pj−1, pj+1, . . . , pn)

= τ̃j(p0, . . . , pi−1, pi+1, pj−1, pj , pj+1, . . . , pn)

= τ̃j(p),

as required. □

This motivates the following condition.

Definition 2.0.7 (Horns, Kan extension condition & Kan complexes). LetX be a simplicial
set. An (n, k)-horn for 0 ≤ k ≤ n is a collection of n many n−1-simplices x0, . . . , xk−1, xk, . . . , xn ∈
Xn−1 such that for all i < j, i ̸= k, j ̸= k, we have

∂i xj = ∂j−1 xi.

The simplicial set X is said to satisfy the Kan extension condition if for all (n, k)-horns {xi} of X,
there exists an n-simplex x ∈ Xn such that for all i ̸= k,

∂ix = xi.

A simplicial set satisfying Kan extension condition is called a Kan complex, or sometimes an ∞-
groupoid.

The following result follows at once from Remark 2.0.5.

Corollary 2.0.8. For any space Z, the simplicial set S∗(Z) is a Kan complex. □

Remark 2.0.9. By the above result, one may consequently study Kan complexes in themselves,
thinking of them as a generalization of spaces. This is a fruitful endeavour, which ends with one
establishing that homotopy theory of Kan complexes is ”same” as that of CW-complexes.

We next wish to establish a more functorial way of constructing simplicial sets.

Definition 2.0.10 (Ordinal category). Let ∆ be the category whose objects are defined as

[n] := 0 < 1 < 2 < · · · < n

the toset of first n non-negative integers and maps f : [n] → [m] are defined to be monotone
non-decreasing maps. There are two distinguished classes of maps for each n and 0 ≤ i ≤ n:

di : [n− 1] −→ [n] & ρi : [n+ 1] −→ [n]

where

di(k) =

®
k if k < i

k + 1 if k ≥ i
& ρi(k) =

®
k if k ≤ i

k − 1 if k > i.

These maps are called coface and codegeneracy maps, respectively.

An important aspect of the category ∆ is that all monotone maps can be generated by coface
and codegeneracy maps.
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Remark 2.0.11. Let f : [n] → [m] be a monotone map. We claim that f = dfρf where df is
composite of certain cofaces di and ρf is composite of certain codegeneracies ρj . Observe that if
i ∈ [m] is such that f−1(i) is of size l, then by monotonicity, we must have f(k) = f(k+1) = · · · =
f(k + l − 1) = i. Observe that f partitions n via its fibers. Let {i0, . . . , ik} be the ordered image
of f and let np =

∣∣f−1(ip)
∣∣. Consequently, we may consider the monotone map g : [n] → [k] where

g(f−1(ip)) = {p} for each 0 ≤ p ≤ k. Clearly, a composition of certain cofaces di will give a map
df : [k] → [m] such that dfg = f . It hence suffices to show that g can be written as a composite of
certain codegeneracies ρi. To this end, by induction it suffices to show that the map a : [n] → [0]
is a composite of codegeneracies. Such a composite is given by a = ρ0 . . . ρn−2ρn−1.

Now if one wishes to define a functor F : ∆ −→ C, then by Remark 2.0.11, it is sufficient to
define F only on the cofaces and codegeneracies. The following is a simple observation from the
definitions.

Lemma 2.0.12. The coface and codegeneracy maps di and ρj satisfies the cosimplicial identities
of Lemma 2.0.2. □

Lemma 2.0.13. The following are equivalent:

(1) X is a simplicial set.
(2) X is a presheaf

X : ∆op −→ Set

Consequently, sSet is isomorphic to the category of presheaves of sets over ∆.

Proof. (1. ⇒ 2.) We define a functor

[n] 7→ Xn

di 7→ ∂i

ρi 7→ si.

The fact that is indeed a functor follows from the decomposition of a map in ∆ into composition
of cofaces followed by codegeneracies as in Remark 2.0.11.

(2. ⇒ 1.) Define Xn = X([n]) and ∂i = X(di) and si = X(ρi). Then, {Xn, ∂i, si} is a sim-
plicial set by Lemma 2.0.12. □

Definition 2.0.14 (Simplicial object). Let C be a category. A simplicial object in C is a
presheaf X : ∆op −→ C. Equivalently, its a sequence of objects {Xn} of C together with arrows
∂i : Xn → Xn−1 and si : Xn → Xn+1 satisfying the simplicial identities. The category of simplicial
objects in C is denoted by sC.

Remark 2.0.15 (Fiber products and quotients). Fiber product of simplicial sets exists. Indeed,
recall that in a presheaf category, the limits and colimits exists and are defined pointwise. Conse-
quently, if f : X → Z and g : Y → Z are two simplicial maps, then the fiber product X ×Z Y is a
simplicial set whose set of n-simplices is Xn ×Zn Yn via the maps fn : Xn → Zn and gn : Yn → Zn.
Furthermore, the face and degeneracy maps are given by those of X and Y applied componentwise.

If Z ⊆ X is a sub-simplicial set, then we can define a simplicial set X/Z whose set of n-simplices
is Xn/Zn together with the face and degeneracies which descends from X. Note that there is a
simplicial map q : X → X/Z.
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Our main goal in the rest of this section is to develop basic homotopy theory as for topological
spaces, but for Kan complexes. In particular, one of our aim is to define and study homotopy groups
of a Kan complex. Also recall that studying homotopy theory in topological spaces amounts to
studying fibrations and cofibrations of spaces. We will introduce those notions in the simplicial
setting, using which we will establish classical results on homotopy theory in the simplicial setting.

2.1. Homotopy of simplices in a Kan complex. Let Z be a space and X = S∗(Z) be its
singular simplicial set, which we now know is a Kan-complex by Corollary 2.0.8. We want a notion
of homotopy of two n-simplices purely in terms of simplices of X. The following definition is thus
made.

Definition 2.1.1 (Homotopy of simplices). Let X be a simplicial set and x, x′ ∈ Xn be two
n-simplices. Further suppose that they satisfy the compatibility condition: ∂i x = ∂i x

′ for each
0 ≤ i ≤ n. Then, x and x′ are said to be homotopic if there exists an n + 1-simplex y ∈ Xn such
that

∂n y = x,

∂n+1 y = x′,

∂i y = sn−1 ∂i x = sn−1 ∂i x
′ ∀ 0 ≤ i ≤ n− 1.

Here is the lemma which recovers the usual notion of homotopy when X = S∗(Z).

Proposition 2.1.2. Let Z be a space and X = S∗(Z). If two n-simplices x, x′ ∈ Xn are homotopic,
then there exists H : ∆n × I → Z such that

H0 = x

H1 = x′

∂iHt = ∂i x = ∂i x
′ ∀ 0 ≤ i ≤ n.

Proof. There exists an n + 1-simplex y : ∆n+1 → Z such that the conditions of Definition 2.1.1
holds. We define H as follows:

H : ∆n × I −→ Z

((e0, . . . , en), t) 7−→ y(e0, . . . , en−1, ten, en − ten).

This is clearly a continuous map. Indeed, we have that H0 = ∂n y = x and H1 = ∂n+1 y = x′.
Furthermore, for any 0 ≤ i ≤ n, we have

∂iHt(e0, . . . , en−1) = Htd
i(e0, . . . , en−1)

= y(e0, . . . , ei−1, 0, ei, . . . , en−2, ten−1, en−1 − ten−1)

= ydi(e0, . . . , en−2, ten−1, en−1 − ten−1) = ∂i y(e0, . . . , en−2, ten−1, en−1 − ten−1)

= sn−1 ∂i x(e0, . . . , en−2, ten−1, en−1 − ten−1)

= xdiρn−1(e0, . . . , en−2, ten−1, en−1 − ten−1)

= xdi(e0, . . . , en−2, en−1) = ∂i x(e0, . . . , en−1)

and similarly for x′. Finally, to see that ∂nHt = ∂n x = ∂n x
′, we simply observe the following:

∂nHt(e0, . . . , en−1) = Ht(e0, . . . , en−1, 0) = y(e0, . . . , en−1, 0, 0)

= ∂n y(e0, . . . , en−1, 0) = x(e0, . . . , en−1, 0)

= ∂n+1 y(e0, . . . , en−1, 0) = x′(e0, . . . , en−1, 0),
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as required. □

Proposition 2.1.3. Let X be a Kan complex. Then the relation of homotopy of pairs of compatible
n-simplices is an equivalence relation for all n ≥ 0.

Proof. Reflexivity is clear as for x ∈ Xn, we may take the homotopy to be y = snx and verify by the
simplicial identities that y is indeed a homotopy x ∼ x. We will show symmetry and transitivity
in one go by showing the following: x ∼ x′ and x ∼ x′′ implies x′ ∼ x′′. It is easy to see that both
symmetry and transitivity follows from this. We now prove this implication.

Let y′ : x ∼ x′ and y′′ : x ∼ x′′. Thus,

∂n y
′ = x, ∂n+1 y

′ = x′, ∂i y
′ = sn−1 ∂i x = sn−1 ∂i x

′ ∀ 0 ≤ i ≤ n− 1

∂n y
′′ = x, ∂n+1 y

′′ = x′′, ∂i y
′′ = sn−1 ∂i x = sn−1 ∂i x

′′ ∀ 0 ≤ i ≤ n− 1.

As X is a Kan complex, we will employ the Kan condition to obtain the required homotopy.
Consider the n+ 2 many n+ 1-simplices {zi}n+1

i=0 where

zi =


∂i snsnx

′ if 0 ≤ i ≤ n− 1,

y′ if i = n,

y′′ if i = n+ 1.

We claim that {zi} forms an (n + 2, n + 2)-horn. Indeed, we need only check ∂i zj = ∂j−1 zi for
i < j < n+ 2. We may check this case by case.

(1) If 0 ≤ i < j ≤ n− 1, then we have

∂i zj = ∂i ∂j snsnx
′ = ∂j−1 ∂i snsnx

′ = ∂j−1 zi.

(2) If 0 ≤ i ≤ n− 1 and n ≤ j ≤ n+ 1, then we have (we show for j = n, for j = n+ 1, same
observation will work)

∂i zj = ∂i y
′ = sn−1 ∂i x

′

and

∂j−1 zi = ∂n−1 ∂i snsnx
′ = ∂n−1 sn−1 ∂i snx

′ = ∂i snx
′ = sn−1 ∂i x

′,

as required.
(3) If i = n and j = n+ 1, then

∂n zn+1 = ∂n y
′′ = x = ∂n zn.

Hence by Kan condition on X, there exists an n+2-simplex z such that ∂i z = zi for all i ̸= n+2.
Let h = ∂n+2 z. We claim that h : x′ ∼ x′′. Indeed, observe that for 0 ≤ i ≤ n− 1, we have

∂n h = ∂n ∂n+2 z = ∂n+1 ∂n z = ∂n+1 zn = ∂n+1 y
′ = x′

∂n+1 h = ∂n+1 ∂n+2 z = ∂n+1 ∂n+1 z = ∂n+1 zn+1 = ∂n+1 y
′′ = x′′

∂i h = ∂i ∂n+2 z = ∂n+1 ∂i z = ∂n+1 ∂i snsnx
′ = ∂n+1 sn−1sn−1 ∂i x

′ = sn−1 ∂i x
′ = sn−1 ∂i x

′′.

This completes the proof. □

Recall that for a space Z, the notion of homotopy relative to a subspace L ⊆ Z is needed to define
relative homotopy groups. We hence define homotopy of two n-simplices relative to a sub-simplicial
set L of X.
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Definition 2.1.4 (Relative homotopy). Let X be a simplicial set and L ⊆ X be a sub-simplicial
set. Two n-simplices x, x′ ∈ Xn are said to be homotopic rel L if ∂i x = ∂i x

′ for all 1 ≤ i ≤ n,
∂0 x, ∂0 x

′ ∈ Ln−1 and there is an n+ 1-simplex w ∈ Kn+1 such that

∂nw = x, ∂n+1w = x′, ∂iw = sn−1 ∂i x = sn−1 ∂i x
′ ∀ 0 ≤ i ≤ n− 1

where furthermore ∂0w ∈ Ln and is a homotopy between ∂0 x and ∂0 x
′.

By the same technique of Proposition 2.1.3 (constructing an appropriate (n + 2, n + 2)-horn in
X), one can show the following (for more details, see [1], Chapter 1, Proposition 3.4).

Proposition 2.1.5. Let X be a Kan complex and L ⊆ X be a sub-Kan complex. The relation of
homotopic rel L is an equivalence relation.

Any subset of simplices Sn ⊆ Xn of a simplicial set X defines a unique sub-simplicial set of X.

Definition 2.1.6 (Generated sub-simplicial set). Let X be a simplicial set and Sn ⊆ Xn be a

subset for each n ≥ 0. The simplicial set generated by {Sn}n≥0 is the smallest sub-simplicial set S̃

of X such that S̃n ⊇ Sn for each n ≥ 0.

We next show that this relation is well-behaved with respect to maps of simplicial sets.

Lemma 2.1.7. Let f : (X,K) → (Y, L) be a simplicial map of pairs and x, x′ ∈ Kn for some
n ≥ 0. If x ∼ x′ rel K, then f(x) ∼ f(x′) rel L.

Proof. Let w inXn+1 be a homotopy rel K between x and x′. We claim that f(w) ∈ Yn+1 is
a homotopy rel L for f(x) and f(x′). Indeed, ∂n fn+1(w) = fn ∂n(w) = fn(x), ∂n+1 fn+1(w) =
fn ∂n+1(w) = fn(x

′) and for 0 ≤ i ≤ n− 1, we have

∂i fn+1(w) = fn ∂i(w) = fn(sn−1 ∂i x) = sn−1fn−1(∂i x) = sn−1 ∂i fn(x).

Similarly, one shows that ∂i fn+1(w) = sn−1 ∂i fn(x
′). We need only show that ∂0 f(w) ∈ Ln and

is a homotopy between ∂0 f(x) and ∂0 f(x
′). This also follows from similar steps as above. □

2.2. Homotopy classes of simplices. We now define homotopy groups of a Kan complex. To be
able to derive the homotopy long exact sequence, we will define relative homotopy groups as well.

Definition 2.2.1 (Kan triples & homotopy classes). Let K be a Kan complex and ϕ ∈ K0 be

a vertex. Then (K,ϕ) is called a pointed Kan complex. We identify ϕ with ϕ̃, the sub-simplicial

set generated by ϕ. Note that ϕ̃ will have exactly one simplex in each dimension. A Kan triple is
a tuple (K,L, ϕ) where L ⊆ K is a sub-Kan complex and ϕ ∈ L0 is a vertex. Define ∂(K,ϕ)n :=
{x ∈ Kn | ∂i x = ϕ, 0 ≤ i ≤ n} and

πn(K,ϕ) := ∂(K,ϕ)n/ ∼

where x ∼ x′ is the homotopy equivalence relation. Similarly, we may define ∂(K,L, ϕ)n = {x ∈
Kn | ∂0 x ∈ Ln−1, ∂i x = ϕ, 1 ≤ i ≤ n} and thus

πn(K,L, ϕ) := ∂(K,L, ϕ)n/ ∼

where x ∼ x′ is the homotopy rel L equivalence relation. Note that [ϕ] ∈ πn(K,L, ϕ) is a distin-
guished element, making πn(K,L, ϕ) a pointed set. By Lemma 2.1.7, a simplicial map gives rise to
a map on πn.
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Remark 2.2.2. Recall that in the case of usual spaces, a pair (X,A) is well-behaved homologically
if it is a cofibration; i : A → X satisfies homotopy extension property. It turns out that in sSet,
notion of subcomplex is sufficient for pairs (K,L) to be well-behaved. In-fact, we will see that
subcomplexes exactly forms the subcategory of cofibrations for a model category structure on sSet.
The hard part will be to study fibrations in sSet.

Our goal now is to derive the analog of homotopy long exact sequence of pairs for a Kan triple.

Theorem 2.2.3. Let (K,L, ϕ) be a Kan triple with inclusions i : (L, ϕ) ↪→ (K,ϕ) and j :
(K,ϕ, ϕ) ↪→ (K,L, ϕ). Then there is a long exact sequence of sets induced by inclusions:

· · · → πn+1(K,L, ϕ)
∂→ πn(L, ϕ)

i→ πn(K,ϕ)
j→ πn(K,L, ϕ) → · · ·

where ∂ is defined as

∂ : πn+1(K,L, ϕ) → πn(L, ϕ)

[x] 7→ [∂0 x].

Proof. As all other proofs use similar ideas (finding the right horn to fill using Kan condition),
we show the exactness at πn(L, ϕ). We first show i ∂ = ϕ. Pick x ∈ ∂(K,L, ϕ)n+1. To show
∂0 x ∈ Ln is null-homotopic in Kn, i.e. there is a homotopy w : ∂0 x ∼ ϕ rel ϕ in K. We construct
a Λn+2

0 -horn, whose 0th-face will be the required homotopy. Indeed, it is easy to see that the n+2
many n+ 1-simplices

{ϕ, ϕ, . . . , ϕ, x}

satisfy the Kan condition for K and thus gives a z ∈ Kn+2 such that ∂i z = ϕ for 1 ≤ i ≤ n + 1
and ∂n+2 z = x. Let w = ∂0 z. We claim that it is the required homotopy. Indeed, we have for
0 ≤ i ≤ n− 1 the following

∂nw = ∂n ∂0 z = ∂0 ∂n+1 z = ϕ

∂n+1w = ∂n+1 ∂0 z = ∂0 ∂n+2 z = ∂0 x

∂iw = ∂i ∂0 z = ∂0 ∂i+1 z = ϕ,

as required.
Next, we show that Ker (i) ⊆ Im (∂). Pick x ∈ ∂(L, ϕ)n such that x ∈ Kn is null homotopic rel ϕ.

This gives a homotopy w ∈ Kn+1 such that w : x ∼ ϕ rel ϕ. We wish to construct y ∈ ∂(K,L, ϕ)n+1

such that ∂0 y ∼ x rel ϕ in L. Consider the following n+ 2 many n+ 1-simplices of K

{w, ϕ, ϕ, . . . , ϕ}

where, it is easily established that they form a Λn+2
n+2, giving rise to z ∈ Kn+2. Let y = ∂n+2 z. We

claim that y ∈ ∂(K,L, ϕ)n+1 and ∂0 y ∼ x rel ϕ in L. Indeed, we see that for 1 ≤ i ≤ n+ 1

∂0 y = ∂0 ∂n+2 z = ∂n+1 ∂0 z = ∂n+1w = x

∂i y = ∂i ∂n+2 z = ∂n+1 ∂i z = ϕ,

as required. □

In the definition of homotopy of simplices, one may ease out the condition that the top two
boundaries of the homotopy yields the simplices between which it is the boundary.

Proposition 2.2.4. Let (K,ϕ) be a Kan pair and h ∈ Kn+1 be an n+1-simplex such that ∂i h = ϕ

for all i ̸= k, k + 1. Then there is a homotopy ĥ : ∂k h ∼ ∂k+1 h.
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Proof. Consider the following sequence of n+ 2 many n+ 1-simplices (i ̸= k)

zi =


ϕ if i ̸= k + 1, k + 2, k + 3

sk+1 ∂k+1 h if i = k + 1

h if i = k + 2

sk ∂k+1 h if i = k + 3.

We claim that this is a Λn+2
k -horn for K. This is a simple check. Consequently, there exists an

n+ 2-simplex z ∈ Kn+2 such that ∂i z = zi for i ̸= k. Let ĥ1 = ∂k z. Observe that for i ̸= k, k + 1,
we have

∂k+1 ĥ1 = ∂k+1 ∂k z = ∂k ∂k+2 z = ∂k h

∂k+2 ĥ1 = ∂k+2 ∂k z = ∂k ∂k+3 z = ∂k sk ∂k+1 h = ∂k+1 h

∂i ĥ1 = ∂i ∂k h =

®
∂k ∂i−1 h = ϕ if i ≤ k − 1

∂k+1 ∂i h = ϕ if i ≥ k + 2.

Thus, ĥ1 ∈ Kn+1 is an n + 1-simpliex satisfying the same hypotheses as h but for k replaced by
k + 1. Inducting over k gives the required homotopy ∂k h ∼ ∂k+1 h. □

2.3. The simplicial sphere. We construct analogs of important spaces in topology but in sim-
plicial sets.

Construction 2.3.1 (Standard simplicial sets). Recall that if ∆n is the topological n-simplex,
then |∆n| ∼= Dn and |∂∆n| ∼= Sn−1. Consequently, (|∆n| , |∂∆n|) ∼= (Dn, Sn−1) as pairs. We first
generalize the notion of Dn to simplicial sets. Indeed, consider the simplicial set given by

∆n := h[n],

where h[n] ∈ sSet is the representable functor on ∆ determined by [n]

h[n] : ∆
op −→ Set

[m] 7−→ Hom∆ ([m], [n]).

The face and degeneracy maps are clear from the definition; they are hom-duals of coface and
codegeneracy maps. We call ∆n the standard n-simplicial set and they play the role of n-disc in
simplicial sets.

There is a very important description of simplices of ∆n, which is often very useful.

Lemma 2.3.2. Let us denote

Inc(m,n) := {(a0, . . . , am) | 0 ≤ a0 ≤ · · · ≤ am ≤ n}.

Then there is a bijection

Inc(m,n) ∼= ∆n(m).

Under this identification, we have

∂i(a0, . . . , am) = (a0, . . . , ai−1, ai+1, . . . , am)

si(a0, . . . , am) = (a0, . . . , ai−1, ai, ai, ai+1, . . . , am).
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Proof. Take any m-simplex of ∆n, say x. Then x ∈ Hom∆ ([m], [n]), i.e. x is a monotone map
x : [m] → [n]. Let ai = x(i) for each 0 ≤ i ≤ m. Then (a0, . . . , am) forms the required element of
Inc(m,n). Converse is also easy. As ∂i x = x ◦ di and si(x) = x ◦ ρi, the other statement follows at
once. □

Corollary 2.3.3. For each n ≥ 0 and m > n, every m-simplex of ∆n is degenerate.

Proof. By Lemma 2.3.2, any m-simplex of ∆n is of form (a0, . . . , am) where 0 ≤ a0 ≤ · · · ≤ am ≤ n.
As m > n, thus some ai = ai+1, immediately leading to the simplex being degenerate. □

We would like to identify HomsSet (∆
n, X) for a simplicial set X. Yoneda lemma tells us what

we need.

Lemma 2.3.4. Let X be a simplicial set. Then the following data are equivalent:

(1) x ∈ Xn is an n-simplex of X.
(2) x̄ : ∆n → X is a simplicial map.

Proof. It follows from Yoneda lemma that the map

φ : HomsSet (∆
n, X) −→ Xn

x̄ 7−→ x̄n(id)

is a bijection. More explicitly, if x ∈ Xn, we may define a map f : ∆n → X by

fm : ∆n(m) −→ Xm

a⃗ = (a0, . . . , am) 7−→ X (⃗a)(x)

where X (⃗a) = Xn → Xm, the map induced by X on a⃗ : [m] → [n]. □

Remark 2.3.5 (∆n is generated by id). In computations with the standard n-simplices, its an
important step to reduce to dealing with only one simplex of ∆n. To this end, one observes that
∆n is generated by (0, 1, . . . , n) ∈ ∆n(n), i.e. the id : [n] → [n]. This is simple to establish as by
Remark 2.0.11, any f ∈ ∆n(m) is composite of di and ρj . As face and degeneracies of ∆n are just
composites with di and ρj , it follows at once that any simplex of ∆n is generated by id. Hence for
purposes of many constructions with ∆n, it is sufficient to work with the simplex id ∈ ∆n(n).

An obvious question is the following: Is ∆n a Kan complex? A small amount of thought tells
no.

Remark 2.3.6 (∆n is not a Kan complex). Choose a0 < b0 in [n] and consider 1-simplices of ∆n

given by

z0 = (a0, a), z1 = (b0, a).

It is immediate to see that {z0, z1} satisfies the (2, 2)-horn condition. If ∆n is a Kan complex,
then there exists a 2-simplex z of ∆n such that ∂i z = zi for i = 0, 1. Denoting z = (p0, p1, p2) for
0 ≤ p0 ≤ p1 ≤ p2 ≤ n, we deduce that we must have

(p1, p2) = (a0, a), (p0, p2) = (b0, a).

It follows that p1 = a0 and p0 = b0. As p0 ≤ p1, we must have b0 ≤ a0, a contradiction to our
beginning assumption. This shows that ∆n is not a Kan complex.

There are many important sub simplicial sets of ∆n, just like there are many important subspaces
of the disc Dn. We discuss few of them now.
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Construction 2.3.7 (Boundaries and horns). For 0 ≤ p ≤ n, define ∂p∆
n to be the sub-simplicial

set of ∆n such that for m ≥ 0, the m-simplices of ∂p∆
n is given by

(∂p∆
n)(m) := {(a0, . . . , am) | 0 ≤ a0 ≤ · · · ≤ am ≤ n, ai ̸= p ∀i},

Define ∂∆n to be the sub-simplicial set of ∆n such that for m ≥ 0, the m-simplices of ∂∆n is given
by

(∂∆n)(m) := {(a0, . . . , am) | 0 ≤ a0 ≤ · · · ≤ am ≤ n, ∃0 ≤ p ≤ n s.t. ai ̸= p ∀i},

=
n⋃

p=0

(∂p∆
n)(m).

i.e. the set of non-decreasing maps [m] → [n] which are not surjective. We hence write ∂∆n =
∪0≤p≤n ∂p∆

n and call it the boundary simplicial set of ∆n and ∂p∆
n the pth-boundary simplicial

set of ∆n.
We similarly define horn Λn

k for 0 ≤ k ≤ n as a sub-simplicial set of ∆n as follows

(Λn
k)(m) := {(a0, . . . , am) | 0 ≤ a0 ≤ · · · ≤ am ≤ n, ai = k for some i},

i.e. the set of non-decreasing maps [m] → [n] which always have k in the image. Note that there
are n many n − 1 non-degenerate simplices of Λn

k , each corresponding to the unique coface map
di : [n − 1] → [n] for 0 ≤ i ≤ n, i ̸= k. The pair (∆n, ∂∆n) acts similar to the pair (Dn, Sn−1) in
topology.

Remark 2.3.8. An important aspect of dealing with boundaries and horns is to be able to construct
maps into simplicial sets from these special simplicial sets. To this end, an important role is played
by results which identifies these simplicial sets as a universal construction. Indeed, we have the
following results to this end.

Theorem 2.3.9 (Universal properties). The simplicial sets ∂∆n and Λn
k are coequalizers of the

following diagrams:

∐
0≤i<j≤n∆

n−2
∐

0≤p≤n∆
n−1 ∂∆n

ιid
j−1

ιjd
i

g

∐
0≤i<j≤n,i ̸=k,j ̸=k ∆

n−2
∐

0≤p≤n,p ̸=k ∆
n−1 Λn

k
ιid

j−1

ιjd
i

g

where g on (∆n−1, p) is dp and ιjd
i is the map which on (∆n−2, (i, j)) maps as di : ∆n−2 → ∆n−1

where the ∆n−1 is in the jth-component of the disjoint union. Similarly for others.

Proof. We prove this for ∂∆n since the proof is similar for Λn
k . Take any m ≥ 0. As a simplicial

set is a presheaf and small colimit of presheaves is computed pointwise, we need only find the
coequalizer of the following diagram

∐
1≤i<j≤n∆

n−2
m

∐
0≤p≤n∆

n−2
m

ιid
j−1

ιjd
i

.

Recall that coequalizer of a, b : X → Y is constructed as the quotient Y/ ∼ where ∼ is generated by
a(x) ∼ b(x) for x ∈ X. Consequently, we get that the coequalizer of this diagram is the following
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set

Xm =
∐

0≤p≤n

∆n−1
m

/
∼

where ∼ is generated by (dikn−2
m , j) ∼ (dj−1kn−2

m , i) for all 0 ≤ i < j ≤ n and kn−2
m ∈ ∆n−2

m . This
defines a simplicial set X. To complete the proof, we need only construct a map f : X → ∂∆n

which is an isomorphism, i.e. maps on simplices of each degree is a bijection. We define fm : Xm →
(∂∆n)m as follows. First consider the map

f̄m :
∐

0≤p≤n

∆n−1
m −→ (∂∆n)m

such that f̄m on (∆n−1
m , p) is given by dp. One checks easily that f̄m preserves the relation ∼ and

thus descends to a map

fm : Xm → (∂∆n)m.

The surjectivity is easily established. For injectivity, it suffices to show that if zn−2
m , wn−2

m ∈ ∆n−2
m

are such that diwn−1
m = djzn−1

m for i < j, then wn−1
m = dj−1kn−2

m for some kn−2
m ∈ ∆n−2

m . Indeed,
this can be seen by expanding the equality diwn−1

m = djzn−1
m . □

For example, we expect that an (n, k)-horn in a simplicial set X is equivalent to a map Λn
k → X.

Indeed, this is what we show.

Lemma 2.3.10. Let X be a simplicial set and 0 ≤ k ≤ n. Then the following are equivalent:

(1) The collection {z0, . . . , zk−1, zk+1, . . . , zn} ⊆ Xn−1 forms a (n, k)-horn of X.
(2) There is a simplicial map z : Λn

k → X such that z(di) = zi for each 0 ≤ i ≤ n, i ̸= k.

Proof. It is immediate that 1. ⇒ 2. from the easy observation that Λn
k is generated by the n− 1-

simplices {di}0≤i≤n,i ̸=k and the Theorem 2.3.9. For 2. ⇒ 1., observe that for zi = z(di), we need
only check the horn condition. This is immediate from simplicial identities. □

In a similar way, one has the following result.

Lemma 2.3.11. Let X be a simplicial set. Then the following are equivalent:

(1) The collection {z0, . . . , zn} ⊆ Xn−1 satisfies ∂i zj = ∂j−1 zi for all 0 ≤ i < j ≤ n.
(2) There exists a map z : ∂∆n → X such that z(di) = zi for each 0 ≤ i ≤ n.

□

We may define simplicial n-sphere now as follows.

Definition 2.3.12 (Simplicial n-sphere). For each n ≥ 0, the simplicial n-sphere is defined to
be the quotient Sn := ∆n/ ∂∆n. Observe that Sn(m) = {pt.} for m < n.

2.4. Homotopy of maps. Our goal in this section is to revisit the notion of homotopy of simplices
and show a type of coherence result that will yield that homotopy classes of maps from the simplicial
n-sphere to a Kan complex X is indeed in bijection with homotopy classes of n-simplices. Let us
begin by homotopy between two simplicial maps.

Definition 2.4.1 (Simplicial homotopy). Let K,L be two simplicial sets and f, g : K → L be
two simplicial maps. A homotopy h from f to g is a collection of maps {hqi : Kq → Lq+1}0≤i≤q,q≥0
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which satisfy the following identities:

∂0 h0 = f, ∂q+1 hq = g

∂i hj =


hj−1 ∂i if i < j

∂i hi−1 if i = j

∂i hi if i = j + 1

hj ∂i−1 if i > j + 1

sihj =

®
hj+1si if i ≤ j

hjsi−1 if i > j.

The usual notions of homotopy of pairs and deformation retracts are immediate.

While this definition is more useful, the following shows how it was arrived at.

Proposition 2.4.2. Let f, g : X → Y be two simplicial maps. Then the following are equivalent:

(1) Maps f and g are homotopic.
(2) There exists a simplicial map H : X × ∆1 → Y such that H0 = g and H1 = f , where

H0, H1 : X → Y are given on q-simplices by x 7→ Hq(x, 0), Hq(x, 1) respectively where
0, 1 ∈ ∆1(q) denotes the constant sequences.

Proof. (1. ⇒ 2.) Let hqi : Xq → Yq+1 be a homotopy from f to g. We construct H : X ×∆1 → Y
as follows on q-simplices:

Hq : Xq ×∆1(q) −→ Yq+1

(x, i) 7−→


∂q+1 h

q
q(x) if i = q + 1,

∂i+1 h
q
i (x) if 0 < i ≤ q,

∂0 h
q
0(x) if i = 0.

We denote i ∈ ∆1(q) to be the sequence (0, . . . , 0, 1, . . . , 1) where 0 ≤ i ≤ q + 1 denotes the no. of
0s in the sequence. Observe that Hq maps (x, q+1) 7→ ∂q+1 h

q
q(x) = gq(x) and (x, 0) 7→ ∂0 h

q
0(x) =

fq(x), as required.

(2. ⇒ 1.) Define hqi : Xq → Yq+1 as x 7→ Hq+1(six, i+1) for 0 ≤ i ≤ q. We now establish the relevant
identities. First, observe that we have ∂0 h

q
0(x) = ∂0Hq+1(s0x, 0) = Hq(∂0 s0x, ∂0 1) = Hq(x, 0) =

fq(x) and ∂q+1 h
q
q(x) = ∂q+1Hq+1(sqx, q + 1) = Hq(∂q+1 sqx, ∂q+1 q + 1) = Hq(x, q) = fq(x). The

remaining identities are straightforward to establish. It also is straightforward to establish that
both these constructions are invertible. □

The following is now immediate.

Corollary 2.4.3. Let K,L be simplicial sets and f, g : K → L be two simplicial maps. A homotopy
{hqi : Kq → Lq+1}0≤i≤q,q≥0 from f to g is equivalent to a 1-simplex h in LK such that ∂0 h = f
and ∂1 h = g. □

Remark 2.4.4 (On homotopy being an equivalence relation). An important aspect of this notion
is the question whether it is an equivalence relation on set of simplicial maps K → L. One can
understand this best by trying to interpret a homotopy as a 1-simplex in the hypothetic simplicial
set of all simplicial maps, LK . Indeed, we can define this simplicial set quite easily. Denote

(LK)q := HomsSet (K ×∆q, L)
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together with ∂i(f) := f ◦ (id×di) and si(f) := f ◦ (id×ρi) for some f : K×∆q → L. Clearly, this
makes LK a simplicial set. What does homotopy being an equivalence relation translates to LK?

Lemma 2.4.5. Let K,L be simplicial sets and f, g : K → L be two simplicial maps. If LK is a
Kan complex, then simplicial homotopy is an equivalence relation.

Proof. By Corollary 2.4.3, we know that f ≃ f by the 1-simplex s0(f) ∈ (LK)1. Next, suppose
h : f ≃ g and h′ : f ≃ g′, then we wish to construct h′′ : g ≃ g′. Consider the collection
of 2 many 1-simplices {h′, h} of LK . Observe that {h′, h} forms a Λ2

2-horn. As LK is a Kan
complex, therefore there exists a 2-simplex z of LK extending the horn. Let h′′ = ∂2 z. Then,
∂0 ∂2 z = ∂1 ∂0 z = ∂1 h

′ = g′ and ∂1 ∂2 z = ∂1 ∂1 z = ∂1 h = g. Thus h′′ is a homotopy from g′ to
g, as required. □

Our main goal now is to give an equivalent formulation of homotopy classes of maps as classes
of simplicial homotopy from simplicial sphere to the given Kan complex. To this end, we first need
to establish that the homotopy classes of simplices in both ways is same.

Lemma 2.4.6. For a Kan pair (K,ϕ) and x, x′ ∈ ∂(K,ϕ)n two compatible n-simplices with corre-
sponding maps being x̄, x̄′ : (∆n, ∂∆n) → (K,ϕ), the following are equivalent:

(1) The simplices x,x′ are homotopic.
(2) The simplicial maps x̄, x̄′ are homotopic rel ∂∆n.

Proof. (1. ⇒ 2.) Let h ∈ Kn+1 be a homotopy x ∼ x′. Define a homotopy Hq
i : ∆n(q) → Kq+1

for 0 ≤ i ≤ q as follows. First, observe that since ∆n is generated by the identity n-simplex, thus
it suffices to define the map Hn

i : ∆n(n) → Kn+1 on id = (0, 1, . . . , n) which should satisfy the
identities for homotopy for id. We define it as follows

Hn
i (id) :=

®
six if 0 ≤ i ≤ n− 1

h if i = n.

It is then easy to see that Hn
i satisfies the earlier relations.

(2. ⇒ 1.) Let Hq
i : ∆n(q) → Kq+1, 0 ≤ i ≤ q be a homotopy from x̄ to x̄′. We wish to con-

struct a homotopy h ∈ Kn+1 from x to x′. Recall that x̄n(id) = x and x̄′n(id) = x′. Denote for
each 0 ≤ i ≤ n the following n+ 1-simplex

zi = Hn
i (id).

Observe that since H is a homotopy rel ∂∆n, therefore we have ∂i zj = ϕ for i ̸= j, j+1. It follows
from Proposition 2.2.4 that ∂i zi ∼ ∂i+1 zi for 0 ≤ i ≤ n. As ∂0 z0 = ∂0H

n
0 (id) = x̄(id) = x and

∂n+1H
n
n (id) = x̄′(id) = x′, it follows that x ∼ x′, as needed. □

By Lemma 2.4.6, it is now immediate to see that the two notions of homotopy are equivalent.

Theorem 2.4.7. Let (K,ϕ) be a Kan pair. Then we have a bijection

πn(K,ϕ) ∼= [(∆n, ∂∆n), (K,ϕ)].

established by the map [x] 7→ [x̄]. □
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2.5. Homotopy groups. The set of homotopy classes of simplices πn(K,ϕ) for a Kan pair (K,ϕ)
forms a group, which we will call the homotopy group of the Kan pair.

Construction 2.5.1 (The group operation). Let (K,ϕ) be a Kan pair. We construct a group
operation on each πn(K,ϕ) for n ≥ 1 as follows. For any two simplices x, y ∈ ∂(K,ϕ)n, we may
consider the Λn+1

n -horn given by (i ̸= n)

zi =


ϕ if i ̸= n− 1, n+ 1

x if i = n− 1

y if i = n+ 1.

This satisfies the horn condition and thus glues to an n+ 1-simplex z ∈ Xn+1. We thus define

πn(K,ϕ)× πn(K,ϕ) −→ πn(K,ϕ)

([x], [y]) 7−→ [x] · [y] := [∂n z]

Theorem 2.5.2 (Simplicial homotopy group). Let (K,ϕ) be a Kan pair. Then,

(1) The product defined in Construction 2.5.1 is well-defined.
(2) Under this product, πn(K,ϕ) is a group.
(3) For n ≥ 2, πn(K,ϕ) is abelian.

2.6. Geometric realization. From previous discussion, it is clear that a simplicial set (more
specifically, a Kan complex), encodes combinatorially the homotopy theory of spaces. In this
section we wish to establish more rigorously the relation between spaces and simplicial sets. We
will give a functorial construction which will yield a space out of a simplicial set. We already have
a functorial construction of a simplicial set (actually a Kan complex) out of a space, by the singular
simplicial set construction. The question which now remains is of the relation between these two
functors. We will show that they form an adjoint pair

sSet Top
T

S

⊣ .

We begin by constructing the realization of a simplicial set.

Construction 2.6.1 (Realizing a simplicial set). Let K ∈ sSet be a simplicial set. We denote by
|∆n| the topological n-simplex as in Remark 2.0.1. We define the following space

T (K) :=
∐
n≥0

Kn × |∆n|

/
∼

where ∼ is generated by the following relations (0 ≤ i ≤ n)

(∂i kn, un−1) ∼ (kn, d
iun−1), kn ∈ Kn, un−1 ∈

∣∣∆n−1
∣∣ ,

(sikn, un+1) ∼ (kn, ρ
iun+1), kn ∈ Kn, un+1 ∈

∣∣∆n+1
∣∣ .

A class of (kn, un) ∈ T (K) is denoted by [kn, un]. If f : K → L is a simplicial map, then we define
a map T (f) : T (K) → T (L) as follows

T (f)[kn, un] := [fn(kn), un].

By definition of simplicial maps, it is easy to see that T (f) takes maps an equivalence class into an
equivalence, so that it is well-defined. Furthermore, T (f) is continuous by the universal property
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of quotient maps ∐
n≥0Kn × |∆n|

∐
n≥0 Ln × |∆n|

T (K) T (L)

f×id

T (f)

.

In-fact, T (f) is also a cellular map, as is clear from diagram above. Consequently, we get a functor
T : sSet → Top.

We now prove the main result about T (K).

Theorem 2.6.2. Let K be a simplicial set. Then T (K) is a CW-complex whose n-cells are in
bijection with non-degenerate n-simplices of K.

Before proving this, we first establish the following.

Proposition 2.6.3 (Milnor). Let K be a simplicial set and [kn, un] ∈ T (K) be a point. Then there
is a unique (k′m, u

′
m) ∈ Km × |∆m| such that [kn, un] = [k′m, u

′
m], k′m is non-degenerate and u′m is

in the interior of |∆m|. We call such a pair (k′m, u
′
m) ∈ Km × |∆m| non-degenerate.

Proof. Let K̄ =
∐

n≥0Kn × |∆n|. We define two maps λ, ρ : K̄ → K̄ which maps as follows. Pick
any kn ∈ Kn. By Remark 2.0.11, we may write kn = sjp . . . sj1kn−p where kn−p ∈ Kn−p which is
non-degenerate and kn−p is unique such. We may thus define the function

λ(kn, un) = (kn−p, ρ
j1 . . . ρjpun).

Similarly, if un ∈ |∆n|, then un = diq . . . di1un−p where un−p ∈ |∆n−p| is an interior point and is
unique. We thus define the map ρ as

ρ(kn, un) = (∂i1 . . . ∂iq kn, un−q).

We now prove the following four claims about the map λ ◦ ρ:
(1) λ ◦ ρ descends to T (K).
(2) λ ◦ ρ(kn, un) is non-degenerate.
(3) λ ◦ ρ(kn, un) ∼ (kn, un).
(4) λ ◦ ρ(kn, un) is the unique non-degenerate element in the class [kn, un].

It is clear that proving these four claims will complete the proof. For the statement (1), it suffices
to show that λ ◦ ρ(∂i kn, un−1) = λ ◦ ρ(kn, diun−1) and similarly for degeneracy. Indeed, we have

λ ◦ ρ(∂i kn, un−1) = λ(∂i1 . . . ∂iq ∂i kn, un−1−q)

λ ◦ ρ(kn, diun−1) = λ(kn, d
idiq . . . di1un−1−q) = λ(∂i1 . . . ∂iq ∂i kn, un−1−q)

so they are same. This proves statement (1). For statement (2), observe that ρ(kn, un) has
second coordinate non-degenerate. Furthermore, if un−q ∈ |∆n−q| is non-degenerate, then so is
ρj1 . . . ρjpun−q ∈ |∆n−q−p|. Since the first coordinate of λ(kn, un) is non-degenerate, it thus fol-
lows that λ ◦ ρ(kn, un) is non-degenerate, proving statement (2). For statement (3), observe that
ρ(kn, un) ∼ (kn, un) and λ(kn, un) ∼ (kn, un), from which it follows immediately. Finally, for state-
ment (4), we first observe that λ ◦ ρ(kn, un) is non-degenerate by statement (2) and is in the same
class as (kn, un) by statement (3). To show uniqueness, take (k′n, u

′
n) ∼ (kn, un) such that both

are non-degenerate. We wish to show that (kn, un) = (k′n, u
′
n). Observe by statement (1) that

λ ◦ ρ(kn, un) = λ ◦ ρ(k′n, u′n). Since λ ◦ ρ fixes non-degenerate elements of Kn × |∆n|, it follows that
λ ◦ ρ(kn, un) = (kn, un) and λ ◦ ρ(k′n, u′n) = (k′n, u

′
n). This completes the proof. □
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We may now alternatively define T (K) as follows by Proposition 2.6.3.

Corollary 2.6.4. Let K be a simplicial set. Then T (K) is homeomorphic to the space

∐
n≥0

NKn × |∆n|

/
∼

where ∼ is generated by (xn, d
iun−1) ∼ (∂i xn, un−1) for all xn ∈ NKn, un−1 ∈

∣∣∆n−1
∣∣ and

NKn ⊆ Kn the subset of non-degenerate n-simplices of K. □

Using this corollary, we can do some basic computations.

Example 2.6.5. Geometric realization of standard simplicial sets ∆n, ∂p∆
n, ∂∆n and Λn

k are
exactly what we expect. To begin with, we observe T (∆n) ∼= |∆n| as follows. Consider the map

φ : T (∆n) −→ |∆n|
[(a0, . . . , ak), (e0, . . . , ek)] 7−→ δa0e0 + · · ·+ δakek

where δi = (0, . . . , 0, 1, 0, . . . , 0), i.e. 1 is in the index 0 ≤ i ≤ n and (a0, . . . , ak) ∈ ∆n
k and

(e0, . . . , ek) ∈
∣∣∆k

∣∣. This is well-defined since if uk−1 = (e0, . . . , ek−1) ∈
∣∣∆k−1

∣∣, then diuk−1 =

(e0, . . . , ei−1, 0, ei, . . . , ek−1) ∈
∣∣∆k−1

∣∣. Consequently,
φ([(a0, . . . , ak), (e0, . . . , ei−1, 0, ei, . . . , ek−1)]) =

i−1∑
j=0

δajej +

k∑
j=i+1

δajej−1

= φ([∂i(a0, . . . , ak), (e0, . . . , ek−1)]),

as required. This shows that φ is a homeomorphism. Similarly, one can identify all the rest of the
spaces. Furthermore, the geometric realization of the simplicial map di : ∆n−1 → ∆n is indeed
given by the map di :

∣∣∆n−1
∣∣→ |∆n|. This immediately follows from the definition of the map

∣∣di∣∣.
We may now prove the CW-structure on the geometric realization. We begin by the following

observation.

Lemma 2.6.6. Let K be a simplicial set and skn(K) be the sub-simplicial set of K generated by
all simplices of K of degree ≤ n, which we call the n-skeleton of K. Then there is a pushout square

sknK skn−1K

NKn ×∆n NKn × ∂∆n

⌜
fn−1

where NKn is the subset of Kn of non-degenerate n-simplices and fn−1 maps on m-simplices as
(xn, k

n
m) 7→ (knm)∗(xn). Furthermore, K =

⋃
n≥0 sknK.

Proof. Consider P to be the pushout of the given map. As the bottom row of the square is given
by the inclusion map ∂∆n ↪→ ∆n, therefore we must have that P is given by

P =
(NKn ×∆n)⨿ skn−1K

∼
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where ∼ is generated by (xn, d
ikn−1

m ) ∼ (∂i xn, k
n−1
m ) ∼ (kn−1

m )∗(∂i xn) for all xn ∈ NKn and
kn−1
m ∈ ∆n−1

m . We identify P with sknK as follows. Define first a map

φ̄m : ((NKn ×∆n)⨿ skn−1K)m −→ (sknK)m

(xn, k
n
m) ∈ NKn ×∆n

m 7−→ (knm)∗(xn)

z ∈ (skn−1K)m 7−→ z.

We claim that this φ̄m descends to φ : Pm → (sknK)m. Indeed, suppose that φ̄m(xn, k
n
m) =

φ̄m(yn, l
n
m). It follows that (knm)∗(xn) = (lnm)∗(yn). We now deduce the following

(xn, k
n
m) ∼ (knm)∗(xn) = (lnm)∗(yn) ∼ (yn, l

n
m).

Consequently, φm is injective. For surjectivity, pick (kpm)∗(xp) for some xp ∈ NKp for 0 ≤ p ≤ n.
If p ≤ n − 1, then its in the image of skn−1K. If p = n, then its in the image of NKn × ∆n. It
follows that φm : Pm → (sknK)m is a bijection and φ : P → skn−1K is thus an isomorphism, as
required. □

The adjunction of T and S is actually simple to establish.

Proposition 2.6.7. The pair of functors T : sSet → Top and S : Top → sSet establishes an
adjunction

sSet Top
T

S

⊣ .

Proof. We wish to show natural isomorphisms

ψ : HomTop (TK,X) ⇆ HomsSet (K,SX) : ϕ.

We first construct ψ. Define ψ(g : TK → X) as follows on n-simplices

ψ(g) : Kn → SXn

kn 7→ ψ(g)(kn) : |∆n| → X

where ψ(g)(kn)(un) = g([kn, un]). Similarly, we define ϕ(f : K → SX) as follows

ϕ(f) : TK → X

[kn, un] 7→ f(kn)(un).

For well-definedness, we need only show that ψ(g) is a simplicial map and ϕ(f) is continuous. The
former follows from definition and the latter from the universal property of quotients. Finally, the
fact that ϕ ◦ ψ = id and ψ ◦ ϕ = id are immediate. □

Proof of Theorem 2.6.2. By Corollary 2.6.4, we may assume T (K) is the space constructed as in the
corollary. Applying the functor T on the pushout square of Lemma 2.6.6, we deduce by Proposition
2.6.7 and the fact that left adjoint preserves colimits that we have a pushout square in Top given
by

|sknK| |skn−1K|

NKn × |∆n| NKn × |∂∆n|

⌜
|fn−1|

together with T (K) := |K| =
⋃

n≥0 |sknK|. The proof is then complete by calculations in Example
2.6.5. □
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Remark 2.6.8. The counit of the realization and chain functor given by ϵ : TS → idTop is in-fact
a weak homotopy equivalence. Using this fact, Milnor showed that any space is weakly equivalent
to a CW-complex.

3. The cobar construction

We begin our study of cobar construction by studying the categories involved in this functor.

3.1. Differential graded coalgebras. A coalgebra is a formal dual of an algebra. Fix K to be
a commutative unital ring.

Definition 3.1.1 (Coalgebras & graded coalgebras). A K-coalgebra is a tuple (A,∆, ϵ) where
A is a K-module, ∆ and ϵ are K-linear maps

∆ : A→ A×A, ϵ : A→ K

for which the following two squares commute (tensor product is over K):

A A⊗A A A⊗A

A⊗A A⊗A⊗A A⊗A A

∆

∆ ∆⊗id

∆

∆ id id⊗ϵ

id⊗∆ ϵ⊗id

.

These conditions can be referred to as coassociativity and counitality of the comultiplication ∆.
A map of coalgebras f : A → B is a K-linear map of underlying K-modules which is compatible
with comultiplication and counit in the following sense

A B A B

A⊗A B ⊗B K

f

∆ ∆

f

ϵ
ϵ

f⊗f

.

Hence we have a category of K-coalgebras, which we denote by

coAlgK .

A graded K-coalgebra (A,∆, ϵ) is a K-coalgebra whose underlying K-module is a graded K-
module, that is, A =

⊕
d∈ZAd, such that the comultiplication and the counit maps ∆ and ϵ are

graded K-linear maps, where K has the grading concentrated at degree 0.
A map of graded K-coalgebras f : A → B is a graded K-linear map of underlying graded

K-modules which is also a map of coalgebras. Hence we have a category of K-coalgebras, which
we denote by

gcoAlgK .

Definition 3.1.2 (dg-Coalgebras). A differential graded K-coalgebra (A,∆, ϵ, ∂) is a graded
K-coalgebra (A,∆, ϵ) together with a graded K-linear endomorphism on the underlying graded
K-module A

∂ : A→ A

which is of degree +1, i.e. ∂ : An → An+1 if cohomologically graded or degree -1, i.e. ∂ : An → An−1

if homologically graded, and satisfies the following two conditions:
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(1) ∂ is a differential for the comultiplication

∆ ◦ ∂ = (∂⊗id + id⊗ ∂) ◦∆

where there is an appropriate sign in the sum on right side,
(2) ∂2 = 0.

A map of dg coalgebras f : A→ B is a map of the underlying graded coalgebras such that ∂ f = f ∂.
Hence we have a category of dg K-coalgebras, which we denote by

dgcoAlgK .

A dg K-coalgebra (A,∆, ϵ, ∂) is said to be connected if Ad = 0 for all d < 0 and the counit
ϵ : A0 → K is an isomorphism.

Construction 3.1.3 (Alexander-Whitney map). Consider the singular chain complex (C∗(X), ∂),
where ∂ : Cn(X) → Cn−1(X) and Cn(X) is the free abelian group generated by Sn(X) =
Map(|∆n| , X). Our next goal is to establish a dg coalgebra structure on singular chains C∗(X). To
this end, the comultiplication on C∗(X) is given by the Alexander-Whitney map, which is defined
as follows. For two spaces X,Y , we define the map

α : C∗(X × Y ) −→ C∗(X)⊗ C∗(Y )

which maps a singular n-simplex σ : |∆n| → X × Y to the following element in C∗(X)⊗ C∗(Y )

α(σ) =
∑

k+l=n

σX ◦ λnk ⊗ σY ◦ ρnl

where λnk :
∣∣∆k

∣∣→ |∆n| and ρnl :
∣∣∆l
∣∣→ |∆n| are given by the following

λnk(e0, . . . , ek) = (e0, . . . , ek, 0, . . . , 0)

ρnl (e0, . . . , ek) = (0, . . . , 0, e0, . . . , el),

that is, λnk maps
∣∣∆k

∣∣ to the front k-face of |∆n| and ρnl maps
∣∣∆l
∣∣ to the back l-face of |∆n|.

Example 3.1.4 (Singular chain complex is a dg coalgebra). Let K = Z and X be a space. We
define a comultiplication on C∗(X) as follows:

∆ : C∗(X) −→ C∗(X ×X)
α−→ C∗(X)⊗ C∗(X)

where the first map is induced by diagonal. Further define the counit to be the following map on
n-simplices which extends linearly to n-chains:

ϵ : C∗(X) −→ Z
σ 7−→ 1.

One can verify that (C∗(X),∆, ϵ) is a Z-coalgebra. Further, the grading of C∗(X) furnishes a
graded Z-coalgebra structure on it. Finally the (homological) dg structure on it is given by the
map

∂ : Cn(X) −→ Cn−1(X)

σ 7−→
n∑

i=0

(−1)i ∂i(σ).

This clearly satisfies ∂2 = 0. One can further check that ∂ is a differential for ∆, thus making
(C∗(X),∆, ϵ, ∂) is a connected dg Z-coalgebra.
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Example 3.1.5 (dg coalgebra of based chains). For a based space (X,x0), we can construct an
analogue of above example. Indeed, consider C ′

∗(X,x0) to be the subalgebra of C∗(X) generated
by those simplices σ : |∆n| → X which maps each vertex of |∆n| to x0. The comultiplication ∆ on
C∗(X) restricts to a comultiplication on C ′

∗(X,x0). Similarly, the counit. Consider C∗(X,x0) to be
the quotient of C ′

∗(X,x0) by the subalgebra generated by all degenerate simplices. The comulti-
plication on C ′

∗(X,x0) then descends to a comultiplication on C∗(X,x0). We call (C∗(X,x0),∆, ∂)
the connected dg coalgebra of based chains on (X,x0).

Notation 3.1.6 (Sweedler notation). For a dg coalgebra (A,∆, ϵ, ∂) over K and c ∈ A, Sweedler
suggests to write

∆(c) =

n∑
i=1

c(1)i ⊗ c(2)i

which we can further simply write it as

∆(c) =
∑

c(1) ⊗ c(2) = c(1) ⊗ c(2).

When operations on A are linear, then this notation is sometimes useful.

Construction 3.1.7 (Shift functors). Denote si : dgcoAlgK → dgcoAlgK for i ∈ Z to be the
functor which maps a dg coalgebra A to siA which has the underlying graded K-module as siA
where (siA)d = Ad−i for all d ∈ Z. The algebra structure on siA remains the same. The differential
picks up a sign si ∂ = (−1)i ∂. Further if φ : A→ B is a map of dg coalgebras, then siφ : siA→ siB
maps a ∈ (siA)d to φd−i(a) ∈ Bd−i = (siB)d. Sometimes siA is denoted by A[i].

3.2. Cobar construction. We will now construct the cobar functor. This is a functor on the
category of connected dg-coalgebras over K, the category of which we denote by

dgcoAlg0K .

Construction 3.2.1 (The cobar functor). Let (A,∆, ∂) be a connected dg K-coalgebra. We
construct a dg K-algebra Ω(A,∆, ∂) in the following steps.

(1) (Reducing degree 0 homogeneous terms). From the dg coalgebra (A,∆, ∂), consider the dg
coalgebra (A/A0,∆, ∂) whose degree 0 homogeneous terms are now 0. We denote A/A0 by
A>0.

(2) (Shifting degree by -1). Given a dg coalgebra A, we may consider the coalgebra s−1A,
which takes an element of degree a ∈ Ad to a ∈ (s−1A)d−1 = Ad. Note that the differential
of s−1A is − ∂ where ∂ is the differential of A.

(3) (Graded tensor algebra). Let A be a dg coalgebra. Then the graded tensor algebra over A
is a graded K-algebra given by

T (A) = K ⊕A⊕A⊗2 ⊕A⊗3 ⊕ . . . .

where degree d-term of T (A) is

T (A)d = Kd ⊕Ad ⊕ (A⊗2)d ⊕ . . . .

(4) (Differential on T (s−1A)). Let (A,∆, ∂) be a dg coalgebra and consider s−1A. On the
graded algebra T (s−1A) (multiplication by concatenation), we can further construct a dif-
ferential to make it a dg algebra as follows. First, define on s−1A the following K-linear
map

D : s−1A −→ s−1A⊕ (s−1A⊗ s−1A)
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given by D = −s−1 ∂ s+1 + (s−1 ⊗ s−1)∆s+1. We extend this map to s−1A⊗ s−1A by the
Leibnitz rule as follows:

D(a⊗ b) = D(a)⊗ b+ (−1)deg aa⊗D(b).

Similarly extend D to (s−1A)⊗3 as

D(a⊗ b⊗ c) = D(a⊗ b)⊗ c+ (−1)deg(a⊗b)a⊗ b⊗D(c)

and so on to all monomials in T (s−1A) and thus to all of T (s−1A). Hence, we have a map

D : T (s−1A) → T (s−1A)

which on T (s−1A)d is a map to T (s−1A)d−1 and satisfies D2 = 0. Indeed, this follows from
careful tracking of signs, compatibility of ∆ and ∂, ∂2 = 0 and graded coassociativity of
∆. As D is extended by the graded Leibnitz rule, it follows that (T (s−1A), D) is a dg
K-algebra.

Furthermore, if φ : A → B is a map of dg coalgebras, then we get a dg coalgebra map
s−1φ : s−1A → s−1B. This induces a map graded algebras T (s−1A) → T (s−1A) which is
compatible with the differential D since ∂, ∆ and shift functors are so. Hence, we have a
functor

Ts−1 : dgcoAlgK −→ dgAlgK ,

which we call the shifted tensor dg algebra of A ∈ dgcoAlgK .

The cobar functor is then given by first reducing the degree 0 homogeneous terms of a connected
dg-coalgebra and then considering its shifted tensor dg-algebra:

Ω : dgcoAlg0K −→ dgAlgK

(A,∆, ∂) 7−→ (T (s−1A>0), D).

This is the cobar functor.

3.3. Adams’ theorem on Ωx0X. Adams in [2] gave a chain model of based loop space Ωx0X
for X simply connected by applying cobar functor on the dg coalgebra of based chains on (X,x0).
Rivera generalized this to path-connected spaces in [3].

Theorem 3.3.1 (Adams-Rivera). Let (X,x0) be a path-connected based space. Then there is a
quasi-isomorphism of dg algebras

Ω(C∗(X,x0),∆, ∂) ≃ C∗(Ωx0X).

Remark 3.3.2. The author of [3] proves this theorem as follows. Given the simplicial set K =
S∗(X,x0) which is furthermore a Kan complex with a unique 0-simplex x0, we first construct a
simplicial category C(K) called the rigidification of K. This will be a category with a single object
and will thus be treated as a simplicial monoid. Applying the normalized chains functor

C∗ : sSet −→ Ch (Z)
on C(K) one shows that we get a dg algebra C∗(C(K)). One then shows that there is a natural
quasi-isomorphism

C∗(C(K)) ≃ C∗(Ωx0 |K|).
Note that by Remark 2.6.8, we know that |K| is weakly equivalent to X. Using the fact that C∗
maps weak equivalences to quasi-isomorphisms, we deduce that

C∗(C(K)) ≃ C∗(Ωx0X).
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One then shows that there is a natural quasi-isomorphism

C∗(C(K)) ≃ Ω(C∗(X,x0),∆, ∂),

completing the proof.

Our goal is to prove Adam’s theorem using the method of [3]. To this end, we first study the
rigidification functor C in detail. This functor is also sometimes called the coherent realization
for the reason we will see in the next section. In-fact, this functor is an essential part of modern
treatment of homotopy coherence.

3.4. Homotopy coherence. To rightfully motivate the construction of the rigidification functor,
we first go on a slight digression, which will be frutiful later on. Following motivation is taken from
[4]. Recall that a diagram of spaces is a functor F : A → Top. A homotopy commutative diagram is
instead a functor F : A → hTop, that is, a diagram of spaces commuting in the homotopy category
of spaces.

Now suppose if our goal is not to only demand commutativity (i.e. functoriality) of the diagram
upto homotopy, but rather to demand to know all of the homotopies involved in making it homotopy
commutative. The type of information that we need to store to achieve this is best explained by
the following example.

Example 3.4.1 (Homotopy coherent directed system). Let ω be the linearly ordered poset of
natural numbers treated as a category

ω = {0 < 1 < 2 < · · · < n < . . . }.

A homotopy commutative diagram of shape ω is a functor ω → hTop. A homotopy coherent
diagram of shape ω on the other hand is a functor F : ω → Top together with the following data
(let F ({i}) = Xi and fij = F (i, j)):

(1) for all i < j < k, a 1-homotopy hi,j,k : fik ≃ fjk ◦ fij . Note this forms a 2-simplex of nerve
of Top.

(2) for all i < j < k < l, 2-homotopy hijkl filling the square

fil fkl ◦ fik

fjl ◦ fij fkl ◦ fjk ◦ fij

hikl

hijl fkl◦hijk

hjkl◦fij

.

Note this forms a 3-simplex of nerve of Top.
(3) for all i < j < k < l < m, 3-homotopy hijklm filling the cube...
(4) ....

We will soon construct a (simplicial) category C(ω), such that a functor F : C(ω) → Top will
automatically encode all these information.

Construction 3.4.2 (Free resolution of a category). We construct a functor, which is a precursor
to rigidification C, denoted by the same symbol (reason will follow)

C : Cat −→ sCat

where sCat is the category of simplicial categories (simplicial objects in Cat), which are equivalent
to simplicially enriched categories. For a category A, define the simplicial category CA where

CAn = FUn+1A
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where FUA is the free category on the underlying graph of A; it is a category whose objects are
same as A but morphisms are strings of composable morphisms of A. The category CAn is called
the category of n-arrows of A whose arrows are given by strings of morphisms of A where each
morphism in the string is covered in exactly n-many pairs of well-formed parantheses. Note that
this recovers the description of CA0 given earlier. We define face and degeneracy maps of CA as
follows:

∂k,j : CAk+j = (FU)k+j+1A −→ CAk+j−1 = (FU)k+jA

given by

∂k,j =

®
remove those pairs of parantheses which are contained in exactly k pairs of parantheses, if j ≥ 1,

compose the morphisms inside the innermost pairs of parantheses, if j = 0.

Similarly, one defines the degeneracy maps

sk,j : CAk+j = (FU)k+j+1A −→ CAk+j+1 = (FU)k+j+2A

given by

sk,j =

®
double up the parantheses that are contained in exactly k pairs of parantheses, if j ≥ 1,

add a paranthesis around each morphism, if j = 0.

This gives us a simplicial category CA∗. As noted earlier, this can also be treated as a category CA
whose underlying objects are same as A, but the hom sets are given the structure of a simplicial
set as follows

HomCA (x, y)n := HomCAn
(x, y)

with the obvious face and degeneracy maps. We will freely interchange between these two points
of view for CA. Note that if x, y, z ∈ A are objects, then the composition law of CA is given by

CAn(y, z)× CAn(x, y) −→ CAn(x, z)

which juxtaposes both the strings with parantheses.

Remark 3.4.3. One may now define a homotopy coherent diagram of shape A to be a simplicially
enriched functor

F : CA −→ Top,

that is, for each object a ∈ CA, we get a space Xa ∈ Top and for each pair of objects a, b ∈ CA,
we get a map of simplicial sets

CA(a, b) → Map(Xa, Xb)

which is functorial in each variable. Note that Map(Xa, Xb) is a simplicial set by the singular
simplicial structure on it.

It follows that the notion of homotopy coherent diagram of shape A is really just needs the
mapping spaces to be simplicial sets (which are in above cases also Kan complexes). This motivates
the following formal definition of a homotopy coherent diagram.

Definition 3.4.4 (Homotopy coherent diagram). Let K be a category enriched in Kan com-
plexes and A be any category. A homotopy coherent diagram of shape A in K is a simplicially
enriched functor

F : CA −→ K.

We now use this to construct the coherent realization/rigidification of a simplicial set.
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3.5. Rigidification & coherent nerve. There is an adjunction

(∗) sSet sCat

C

N

⊣

where the left adjoint is the functor which we are after. Recall that any simplicial set X ∈ sSet
is a colimit of simplicial n-disc ∆n. As left adjoints preserves colimits, it is thus first sufficient to
understand the simplicial category C∆n, which we call to be the following.

Definition 3.5.1 (Homotopy coherent simplicial n-disc). Let [n] ∈ ∆ be the poset [n] =
{0 < 1 < · · · < n}. The simplicial category C[n] is called (homotopy) coherent simplicial n-disc.

There is a description of mapping simplicial sets of coherent n-disc.

Lemma 3.5.2. For any i < j, consider the category Pi,j whose objects are all subsets of {i, i +
1, . . . , j} containing both i and j and whose arrows are inclusions. Then,

C[n](i, j) ∼= N(Pi,j)

where N : Cat → sSet is the nerve functor.

Proof. Fix k ≥ 0. We establish an isomorphism between k-simplices of C[n](i, j) and N(Pi,j) as
follows. Let f ∈ C[n](i, j)k be a k-arrow. Considering the underlying morphisms of [n] in f , we
get a sequence of non-negative integers T 0 = {i, i1, . . . , im, j} each ≤ n. As each bracket in f is
well-formed, it follows that if a bracket closes at p, then a new starts at p. Thus, observing the
innermost brackets, we obtain a subset {i, j} ⊊ T 1 ⊊ T 0. Continuing this, we get a sequence of
sets {i, j} ⊆ T k ⊊ T k−1 ⊊ · · · ⊊ T 1 ⊊ T 0. This is the required nerve of Pi,j . Converse is also easy
to establish. □

The proof technique above also helps in calculating the free resolution of ω.

Example 3.5.3 (Free resolution of ω). We compute the free resolution of ω as defined in Example
3.4.1. This will be the homotopy coherent directed system, keeping track of all data of higher
morphisms. As is clear by construction, the objects of Cω are the natural numbers:

obCω = {0, . . . , n, . . . }.
We now characterize the mapping simplicial sets Cω(i, j). If i > j then it is empty. If i ≤ j, then
as in the proof of Lemma 3.5.2, it follows that C∆n(i, j) is a simplicial set isomorphic to the nerve
NPi,j . It can then be observed that NPi,j is isomorphic as a simplicial set to the simplicial cube
(∆1)j−i−1. This is immediate from Lemma 2.3.2.

Theorem 3.5.4 (Rigidification and coherent nerve). Consider the functor obtained by restricting
C on ∆

C : ∆ −→ sCat .

This induces an adjunction by Theorem A.1.1, which we denote by (∗).
(1) The left adjoint C is called the rigidification and is characterized by the property that it

maps the simplicial n-disc ∆n to the coherent n-disc C[n].
(2) The right adjoint N maps a simplicial category A to the simplicial set NA where

NAn = sCat(C[n],A),

that is, the homotopy coherent nerve of A. The face and degeneracy maps of NA are given
by those of the simplicial category C[n].
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Proof. By Theorem A.1.1, we get the adjoint pair of (∗) where left adjoint is extension by colimits
of C : ∆ −→ sCat. The left adjoint is unique by Lemma A.1.3. The definition of right adjoint
follows from Theorem A.1.1. □

An important theorem which we will mainly use without proof is the the above adjunction is a
Quillen equivalence.

Theorem 3.5.5 (Dugger-Spivak, Lurie). The rigidification and coherent nerve adjunction of (∗)
is a Quillen equivalence between sSet with Joyal model structure and sCat with Bergner model
structure.

While the existence of the adjunction (∗) is mostly formal, we wish to give a more combinatorial
description of the rigidification of a simplicial set, which should also include a description of its
simplicial hom sets. Such a description is provided by [5], the main theorem of which we will state
here.

Lemma 3.5.6. Let X ∈ sSet be a simplicial set. Then C(X) is a simplicial category whose objects
are exactly the 0-simplices of X.

Proof. As sSet is a presheaf category, thus X is the colimit of the diagram ∆/X → ∆ ↪→ sSet.
Unravelling this composition, we get

∆/X ∆ sSet

([n], x) [n] ∆n

([m], y) [m] ∆m X

f f f x̄

ȳ

.

Thus,

X ∼= lim−→
∆n→X

∆n.

As rigidification is left adjoint to coherent nerve, it follows that it preserves colimits:

CX = lim−→
∆n→X

C∆n.

As colimits in the presheaf category is computed pointwise, we further dedcue that

(CX)i =

Ç
lim−→

∆n→X

C∆n

å
i

= lim−→
∆n→X

(C∆n)i.

Now observe that (C∆n)i is the category of i-arrows of the simplicial category C∆n, which is a
category with objects {0, . . . , n} and arrows as paranthesised string of composable arrows in [n]
where each member of the string is in i-pairs of parantheses. Now the objects of the category (CX)i
is the colimit of the objects of (C∆n)i, that is

ob(CX)i = lim−→
∆n→X

[n] = lim−→
∆n→X

∆n(0) ∼=
Ç

lim−→
∆n→X

∆n

å
0

∼= X0,

thus showing that objects of (CX)i (and hence for CX) are exactly 0-simplices of X. □
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Having found the objects of C(X), our main goal in this section is to find representations for the
mapping simplicial sets of C(X).

Construction 3.5.7 (Category of necklaces, [5]). By T = ∆n0 ∨ ∆n1 ∨ · · · ∨ ∆nk , we mean a
simplicial set obtained by the quotient

T =
∆n0 ⨿∆n1 ⨿ · · · ⨿∆nk

∼
where ∼ is generated by gluing the 0-simplices of the disjoint union , that is [n0], [n1], . . . , [nk], such
that the end point of [ni], namely ni is identified with beginning point of [ni+1], namely 0. Note
that #T0 = n0 + · · ·+nk +1. We call T to be a necklace of dimension n0 + · · ·+nk − (k+1). It is
customary to write the starting vertex of T as αT and last vertex of T as ωT . A map f : T → T ′

of necklaces is a map of simplicial sets such that on vertices, f(αT ) = α′
T and f(ωT ) = ωT ′ . This

gives a category of necklaces Neck which is a subcategory of sSet.
Now suppose X is a simplicial set, x, y ∈ X0 be two vertices and consider the slice of Neck

over X, that is, Neck/X . This consists of all simplicial maps from necklaces to X and maps being
necklace maps over X. We further construct a subcategory of Neck/X denoted by Neck/X,x,y which
consists of necklaces T over X whose structure map f : T → X maps f(αT ) = x and f(ωT ) = y.
It is this category which will yield the mapping simplicial set of CX(x, y).

Lemma 3.5.8. Let K ∈ sSet. The following are equivalent:

(1) f : T → K is a necklace over K where T = ∆n1 ∨ · · · ∨∆nk .
(2) fi ∈ Kni is a collection of simplices of K for 1 ≤ i ≤ k such that the following condition is

satisfied: for each 1 ≤ i ≤ k and 0 ≤ j ≤ ni, consider the unique map dji : [0] → [ni] given

by mapping 0 7→ j and let dj∗i : Kni → K0 be the corresponding boundary map. We must
have

dni∗
i (fi) = d0∗i+1(fi+1)

for all 1 ≤ i ≤ k − 1.

Proof. This is immediate from Construction 3.5.7. □

We may then ask what must be a more direct description of maps in Neck/K .

Lemma 3.5.9 (Generators for necklace maps). Let T = ∆n1∨· · ·∨∆nk and S = ∆m1∨· · ·∨∆ml be
two necklaces. Any map f : T → S is generated under the monoidal operation ∨ : Neck×Neck →
Neck by the following three types of elementary necklace maps:

(1) dj : ∆n ↪→ ∆n+1,
(2) ρj : ∆n+1 → ∆n,
(3) dj,n+1−j : ∆

j ∨∆n+1−j → ∆n+1,

where dj,n+1−j is given by the pair of j and n + 1 − j-simplices of ∆n+1 given by (0, . . . , j) and
(j, . . . , n+ 1), respectively.

The rigidification of necklaces is studied in [5], where a main result is a characterization of the
mapping simplicial set of C(T ) for the objects αT , ωT .

Proposition 3.5.10 (Corollary 3.8, [5]). Let T be a necklace and CT be its rigidification. Then
there is a natural isomorphism of mapping simplicial set to the simplicial cube

ϕT : CT (αT , ωT ) ∼= (∆1)dimT .
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Theorem 3.5.11 (Proposition 4.3, [5]). Let X be a simplicial set and x, y ∈ X0 be two vertices. Let
CX be the simplicial category obtained by rigidification of X. The mapping simplicial set CX(x, y)
is isomorphic to the following colimit in sSet:

CX(x, y) ∼= lim−→
T

f→X∈Neck/X,x,y

CT (αT , ωT )

∼= lim−→
T

f→X∈Neck/X,x,y

(∆1)dimT .

Furthermore, the composition law of the category CT

CX(y, z)× CX(x, y) −→ CX(x, z)

is given as follows. Let ((f : T → X), σ) be a pair where f ∈ Neck/X,x,y and α ∈ CT (x, y)k a
k-simplex and similarly ((g : S → X), τ) for g ∈ Neck/X,y,z a k-simplex of CS(y, z). They define a
class in the colimit and their composite is given by the class of ((f ∨ g : T ∨ S → X), σ × τ) where
f ∨ g ∈ Neck/X,x,z and σ × τ ∈ CT ∨ S(x, z)k.

This description of mapping simplicial sets of rigidification is a key step in the proof of Adam’s
theorem.

Example 3.5.12 (Structure of coherent n-disc). As an example, we compute the rigidification
of the simplicial n-disc, C∆n, which we earlier called the homotopy coherent n-disc. As we saw
earlier, it is a category whose objects are {0, . . . , n}. For any 0 ≤ i ≤ j ≤ n, we have a simplicial
set C∆n(i, j). Our goal is to find a complete description of this simplicial set. As noted in Example
3.5.3,

C∆n(i, j) ∼= NPi,j
∼= (∆1)j−i−1.

Thus these mapping simplicial sets are simplicial cubes of appropriate dimensions.

3.6. Proof of Adams’ theorem. We now prove Theorem 3.3.1 via the sketch drawn in the
Remark 3.3.2. We begin by proving the following observation.

Remark 3.6.1 (Moore loop space). Let (X,x0) be a based space. The usual based loop space
Map∗(S

1, X) is not a topological monoid; it is so only after passing to homotopy classes of maps.
However, we wish to find a homotopy equivalent model of the based loop space which in-fact is a
topological monoid. Indeed, we may define

Ωx0X = {γ : [0, a] → X | a > 0 & γ(0) = γ(a) = x0}.

This is called the Moore loop space of (X,x0). Observe that Ωx0X is a topological monoid:

Ωx0X × Ωx0X −→ Ωx0X

(γ : [0, a] → X, η : [0, b] → X) 7−→ γ ∗ η : [0, a+ b] → X

where γ ∗ η is given by

γ ∗ η(t) =
®
γ(t) if 0 ≤ t ≤ a

η(t− a) if a ≤ t ≤ a+ b.

This can be checked to be unital and associative: γ ∗ (η ∗ τ) = (γ ∗ η) ∗ τ . Hence Ωx0X is a
topological monoid. Note that it is homotopy equivalent to Map∗(S

1, X). Indeed, we have (we
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think of Map∗(S
1, X) as space of maps γ : [0, 1] → X with γ(0) = x0 = γ(1))

φ : Ωx0X −→ Map∗(S
1, X)

γ 7−→ φ(γ)(t) = γ(t/a).

Furthermore, consider the standard inclusio:

ι : Map∗(S
1, X) ↪→ Ωx0X.

As φ ◦ ι(γ)(t) = γ(t) and ι ◦ φ(γ)(t) = γ(t/a), therefore we may construct the homotopy

H : Ωx0X × I −→ Ωx0X

(γ, s) 7−→ γ ((s/a+ (1− s))t)

Hence Map∗(S
1, X) ≃ Ωx0X, as required. We will work with Moore loop space in order to have a

topological monoid on the nose.

Proposition 3.6.2. Let K ∈ sSet0 be a simplicial set with a unique 0-simplex, denoted x0. Then
there is a weak homotopy equivalence in sSet

CK ≃ S∗(Ωx0 |K|)

where CK is a simplicial category with one object which is equivalent to a simplicial monoid and
S∗(Ωx0 |K|) is the singular simplicial set of Ωx0 |K|.

Proof. We will use three results from literature to prove this. First observe that the singular
simplicial set S∗(Ωx0 |K|) is a simplicial monoid as Ωx0 |K| is a topological monoid by Remark
3.6.1. It follows that S∗(Ωx0 |K|) is a simplicial category with one object whose mapping simplicial
set is the singular simplicial set above itself. As S∗(Ωx0 |K|) is a Kan complex (Corollary 2.0.8)
and each 0-simplex is invertible upto homotopy as π0(Ωx0 |K|) ∼= π1(|K|), therefore S∗(Ωx0 |K|) is
a fibrant groupoid. By Corollary 2.6.3, [6], it follows that the classiying simplicial set functor

B : sCat −→ sSet

has a natural map BC → NC for each C ∈ sCat which is a weak homotopy equivalence when C is
a fibrant groupoid. Consequently, we have a weak homotopy equivalence in sSet

BS∗(Ωx0 |K|) ≃−→ NS∗(Ωx0 |K|).

By Lemma 15.4, [7], it further follows that for any based space X, there is a map BS∗Ωx0X → X
which is a weak homotopy equivalence. We thus get the following weak equivalences in sSet

K BS∗(Ωx0 |K|) NS∗(Ωx0 |K|)≃ ≃ .

Rigidifying the above equivalences by applying C, we deduce from Theorem 3.5.5 the following
weak equivalences in sCat

CK CBS∗(Ωx0 |K|) CNS∗(Ωx0 |K|)≃ ≃ .

As counit of a Quillen adjunction at fibrant objects is a weak equivalence, therefore we further have
the following weak equivalences

CK CBS∗(Ωx0 |K|) CNS∗(Ωx0 |K|) S∗(Ωx0 |K|)≃ ≃ ≃ .

We thus have the required weak equivalence CK ≃ S∗(Ωx0 |K|), completing the proof. □
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Remark 3.6.3 (Singular chain complex on simplicial monoids). Recall we have the chain complex
functor

C∗ : sSet −→ Ch (Z) .
When restricted to simplicial monoids, we infact a dg-algebra:

C∗ : sMon −→ dgAlgZ

whose dg-algebra structure is given as follows. The multiplication is

α : C∗(X)⊗ C∗(X)
EZ−→ C∗(X ×X)

C∗(m)−→ C∗(X)

where EZ is the Eilenberg-Zilber map and m : X ×X → X is the monoid multiplication on the
simplicial set X. The unit is given by

η : Z −→ C0(X)

n 7−→ n · 1X .
Thus (C∗(X), α, η) is a dg-algebra over Z.

Recall that if X and Y are two CW-complexes which are weakly homotopy equivalent, then
C∗(X) and C∗(Y ) are quasi-isomorphic. Consequently, we have the following corollary.

Corollary 3.6.4. Let K ∈ sSet0 be a simplicial set with a unique 0-simplex, denoted x0. Then
there is a quasi-isomorphism of dg-algebras

C∗(CK) ≃ C∗(Ωx0 |K|).
□

Remark 3.6.5. By Corollary 3.6.4, all that remains to be shown for the proof of Theorem 3.3.1 is
the following weak equivalence in dgAlgZ

C∗(CK) ≃ Ω(C∗(K,x0),∆, ∂).

This is where we will use the results of §3.5.

Remark 3.6.6 (Main idea behind 3.6.5). Using normalized cubical chains functor, we define a

functor which will be chain model of cobar construction. Let K ∈ sSet0 with x0 the unique 0-
simplex of K. The rigidification CK is a simplicial category with one object, which is equivalent
to simplicial monoids by taking the only simplicial mapping set. Note our goal is to understand
C∗(CK), the chain complex of singular chains on the simplicial set CK, therefore we should perhaps
apply the normalized chains functor

C∗ : Top
S∗→ sSet

C∗→ Ch (Z) .

As normalized chains commutes with colimits (left adjoint in Dold-Kan correspondence), we get

C∗ (CK) = lim−→
f :T→K∈Neck/K

C∗
Ä
(∆1)dimT

ä
(∗)

Thus, any element of C∗(CK) is of form [f, σ] where f : T → K is a necklace over K and
σ ∈ Cn((∆

1)dimT ). The dg-algebra structure on the colimit is given as follows. The multiplication
is given by

C∗(CK)× C∗(CK) −→ C∗(CK)

([f, σ], [g, τ ]) 7−→ [f ∨ g,EZ(σ, τ)].
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where f : T → K, g : S → K are necklaces and EZ : C∗((∆
1)dimT ) ⊗ C∗((∆

1)dimS) →
C∗((∆

1)dimT+dimS) is the Eilenberg-Zilber map. The boundary map is given by

∂ : C∗(CK) −→ C∗(CK)

[f, σ] 7−→ [f, ∂ σ].

Taking our clue from (∗), we may alternatively look at the similar colimit, but of standard cubical
sets indexed by Neck/K

F□
∗ (K) := lim−→

f :T→K∈Neck/K

C□
∗ (□

dimT )(∗∗)

where C□
∗ : cSet → Ch (Z) is the normalized cubical chains functor on cubical sets (see Remark

3.6.7 for definitions). The obvious claim here would then be that this colimit is quasi-isomorphic
to C∗(CK). This is what we prove in Proposition 3.6.13. We will see that more is true; this colimit
is a dg-algebra and is infact isomorphic to Ω(C∗(K,x0),∆, ∂)! This we show in Proposition 3.6.12.
This is the main idea of the proof.

Remark 3.6.7 (Cubical sets). Recall the category of cubes □ whose objects are

[n] = {0, 1}n

and arrows are generated by composition from the following two classes of maps

• Coface maps. For each 1 ≤ i ≤ n, we have

d0i , d
1
i : [n] −→ [n+ 1]

given by dki (b1, . . . , bn) = (b1, . . . , bi−1, k, bi, . . . , bn) for k ∈ {0, 1}.
• Codegeneracy maps. For each 1 ≤ i ≤ n, we have

ρi : [n] −→ [n− 1]

(b1, . . . , bn) 7−→ (b1, . . . , b̂i, . . . , bn).

Any map in □ is composite of the above two types of maps. A cubical set is a set-valued presheaf
on □:

cSet := Set□
op

.

For a cubical set X ∈ cSet, the face maps ∂0i , ∂
1
i : Xn+1 → Xn and degeneracy maps si : Xn−1 →

Xn. By Yoneda embedding, we have for each [n] the standard cubical set

□n : [k] 7→ □([k], [n]).

Note we have a functor

C□
∗ : cSet −→ Ch (Z)

X 7−→ C∗(X)

where C□
n (X) is the abelian group of normalized n-cubes of X:

C□
n (X) = Z[Xn]/Z[degenerate n-cubes].

The boundary map ∂□ : C□
n (X) → C□

n−1(X) is given on an n-cube by

∂□(σ) =
n∑

i=1

(−1)i
(
∂1i (σ)− ∂0i (σ)

)
.

We call C□
∗ the normalized cubical chains functor.
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We now begin the sketch laid out in Remark 3.6.6. We begin by describing the functor which
takes a necklace to cubical chain complex of the same dimension.

Construction 3.6.8 (Cubical chains on necklace). Let K ∈ sSet0 with x0 the unique 0-simplex
of K. For a necklace f : T → K over K, we automatically have f(αT ) = f(ωT ) = x0. We consider
the mapping

F : Neck −→ Ch (Z)

T 7−→ C□
∗ (□

dimT ).

We define F on a map of necklaces f : T → S as follows by Lemma 3.5.9:

(1) Define F on map dj : ∆n ↪→ ∆n+1 of type (1) by

F (dj) = C□
∗ (d

0
i ) : C

□
∗ (□

n−1) → C□
∗ (□

n).

(2) Define F on map ρj : ∆n+1 → ∆n of type (2) by

F (ρj) : C□
∗ (□

n) → C□
∗ (□

n−1)

by 0 if n > 0 and by identity if n = 0.
(3) Define F on map dj,n+1−j : ∆

j ∨∆n+1−j → ∆n+1 of type (3) by

F (dj) = C□
∗ (d

1
i ) : C

□
∗ (□

n−1) → C□
∗ (□

n).

Hence we have a monoidal functor

F : Neck −→ Ch (Z) .

We now define the functor which will give us the colimit in (∗∗) of Remark 3.6.6.

Construction 3.6.9 (A chain model for cobar). We finally construct the main functor which we
suspect should be a chain model for cobar construction, using the functor F of Construction 3.6.8.
Consider the functor

F□
∗ : sSet0 −→ Ch (Z)

which maps a simplicial set with a unique vertex K to the chain complex obtained by colimit

F□
∗ (K) = lim−→

f :T→K∈Neck/K

F (T ) = lim−→
f :T→K∈Neck/K

C□
∗ (□

dimT ).

We denote an element of F□
n (K) by the class [(f : T → K), σ] where f ∈ Neck/K and σ ∈

C□
n (□

dimT ). We prove some important properties about this functor now.

Lemma 3.6.10 (Unique representation of generators). Let K ∈ sSet0. For every generator u ∈
F□
n (K) except when u = [s0(x), ι0], there exists a unique representation of u as

u = [f, ιn]

where f : T → K is a necklace with the property that every bead of f is non-degenerate simplex of
K with dimT = n and ιn ∈ C□

n (□
n) is the generator given by the unique non-degenerate n-cube of

the standard cubical set □n.

In-fact, as we expect, F□
∗ (K) has a natural dg-algebra structure and as we will see, it is isomorphic

as a dg-algebra to Ω(C∗(K,x0),∆, ∂).
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Construction 3.6.11 (dg-algebra structure on F□
∗ (K)). Let K ∈ sSet0. Recall by Lemma 3.6.10

that any element u ∈ F□
n (K) is given by

u = [f, ιn] = [f1 ∨ · · · ∨ fk, ιn]

where fi are the beads of the necklace f and ιn ∈ C□
n (□

n) is the unique non-degenerate n-cube of
□n. We thus define the following product on F□

∗ (K):

F□
n (K)× F□

m(K) −→ F□
n+m(K)

([f1 ∨ · · · ∨ fk, ιn], [g1 ∨ · · · ∨ gl, ιm]) 7−→ [f1 ∨ · · · ∨ fk ∨ g1 ∨ · · · ∨ gl, ιn+m].

The unit of this product is as follows. For the map s0 : K0 = {x0} → K1, we get a 0-dimensional
necklace on K given by s0(x0) : ∆1 → K. Thus we get the element [s0(x0), ι0] ∈ F□

0 (K). This
we claim acts as the unit of the above defined multiplication on F□

∗ (K). Indeed, since we have
the following commutative triangle in Neck/K for a necklace T = ∆n1 ∨ · · · ∨ ∆nk (note that

dimT ∨∆1 = n = dimT )

T ∨∆1 T = T ∨∆0

K

id∨ρ0

f1∨···∨fk∨s0(x0)
f1∨···∨fk

,

and by definition of F on s0 in Construction 3.6.8, we have that the classes of (f1∨· · ·∨fk∨s0(x0), ιn)
and (f1 ∨ · · · ∨ fk, ιn) are same in the colimit F□

n (K), as required. Hence we have that F□
∗ (K) is a

graded algebra.
Next, we construct a homological boundary map on F□

∗ (K) as follows

∂□ : F□
n (K) −→ F□

n−1(K)

u = [f1 ∨ · · · ∨ fk, ιn] 7−→ ∂□ u,

where

∂□ u =
k∑

i=1

Ñ
ni−1∑
j=1

±[f1 ∨ · · · ∨ fi|[0,...,j] ∨ fi|[j,...,ni]
∨ . . . fk, ιn−1]−

ni−1∑
l=1

±[f1 ∨ · · · ∨ fi|[0,...,l̂,...,ni]
∨ . . . fk, ιn−1]

é
.

This gives the chain complex F□
∗ (K) the structure of a dg-algebra, as required.

Our first main observation is that this dg-algebra is isomorphic to the cobar construction
Ω(C∗(K,x0),∆, ∂).

Proposition 3.6.12. Let K ∈ sSet0 be a simplicial set with a unique vertex denoted x0. Then
there is an isomorphism of dg-algebras

ψ : F□
∗ (K)

∼=−→ Ω(C∗(K,x0),∆, ∂).

Proof. Recall that

Ω(C∗(K,x0),∆, ∂) = T
(
s−1C∗>0(K,x0)

)
.

Consequently, a homogeneous element in this graded tensor algebra will look like

s−1f̄1 ⊗ . . .⊗ s−1f̄k

where for a simplex fi ∈ Kni , we define f̄i to be its class in the normalized chain group Cni(K).
We now define ψ as follows. We first observe that we need only define it on generators of F□

n (K).
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To this end, let u ∈ F□
n (K) be a generator. If u = [s0(x0), ι0] (Lemma 3.6.10), then we must clearly

define

ψ([s0(x0), ι0]) = 1.

Now suppose u = [f1 ∨ · · · ∨ fk, ιn] where fi ∈ Kni and n1 + · · · + nk − k = n. Then since ψ is a
map of graded rings, it is further sufficient to define ψ for [f1, ιn1−1]. If n1 ≥ 1, we define

ψ([f1, ιn1−1]) = s−1f̄1.

If n1 = 1, then for u = [f1, ι0] ∈ F□
0 (K), we define ψ by

ψ([f1, ι0]) = s−1f̄1 − 1.

This completes the description of ψ. We claim that on each homogeneous degree, it forms a bi-
jection. Surjectivity is clear since each simple tensor is in the image. For injectivity, it is thus
sufficient to observe that the underlying Z-module structure on both the algebras is free. Conse-
quently, mapping each generator bijectively to a unique generator is sufficient for injectivity, as is
the case with ψ. This shows bijectivity. We need only show compatibility with the boundary map.
This again we check on a generator u = [f, ιn] for n ≥ 2, f ∈ Kn is a non-degenerate n-simplex of
K:

Dψ(u) = D(s−1f̄) =
(
−s−1 ∂ s+1 + (s−1 ⊗ s−1)∆s+1

)
(s−1f̄)

= −s−1 ∂ f̄ + (s−1 ⊗ s−1)∆f̄

= −s−1

(
n∑

i=0

(−1)i ∂i f

)
+ (s−1 ⊗ s−1)

(
n∑

i=0

(−1)i f |[0,...,i] ⊗ f |[i,...,n]

)

=
n∑

i=0

(−1)i
Ä
s−1 f |[0,...,i] ⊗ s−1 f |[i,...,n] − s−1 f |[0,...,̂i,...,n]

ä
= ψ ∂□([f, ιn]) = ψ ∂□(u)

Similarly, for u = [f, ι0], f ∈ K1. For arbitrary generators, the check is similar. This completes the
proof of ψ being an isomorphism of dg-algebras. □

Hence the above result gives us a more concrete representation of elements of the cobar construc-
tion. To complete the proof of Theorem 3.3.1 by the plan laid out in Remark 3.6.5, it now suffices
to show that C∗(CK) is quasi-isomorphic to F□

∗ (K).

Proposition 3.6.13. Let K ∈ sSet0 be a simplicial set with a unique vertex denoted x0. Then
there is a quasi-isomorphism of dg-algebras

φ : F□
∗ (K)

≃−→ C∗(CK).

Proof. We construct φ as follows. For the generator u = [f1 ∨ · · · ∨ fk, ιn] ∈ F□
n (K), we define (see

Remark 3.6.6)

φ([f1 ∨ · · · ∨ fk, ιn]) = [f1 ∨ · · · ∨ fk, e×n]

where e ∈ C1(∆
1) is the generator of corresponding to the unique non-degenerate 1-simplex and

e×n ∈ C∗((∆
1)n) is the Eilenberg-Zilber map applied n-times to e. Note that φ is a natural

transformation betwen the functors

F□
∗ , C∗(C) : sSet

0 −→ dgAlgZ .
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Recall that

F□
∗ (K) = lim−→

f :T→K∈Neck/K

C□
∗ (□

dimT )

C∗(CK) = lim−→
f :T→K∈Neck/K

C∗((∆
1)dimT ).

We show that φ is a quasi-isomrophism using acyclic models (Theorem A.2.2). Indeed, the main

problem is to find models in sSet0 for the above. To this end, we consider the following functors
which are enlargement of F□

∗ and C∗(C) (where sSet∗∗ is the category of doubly pointed simplicial
sets):

F : sSet∗∗ −→ Ch (Z)

(K,x, y) 7−→ lim−→
T→K∈Neck/K,x,y

C□
∗ (□

dimT )

G : sSet∗∗ −→ Ch (Z)

(K,x, y) 7−→ lim−→
T→K∈Neck/K,x,y

C∗((∆
1)dimT ).

Clearly, when restricted to sSet0 ↪→ sSet∗∗, we’ll recover the previous two functors. Consider the
following objects in sSet∗∗:

M = {(T, αT , ωT ) ∈ sSet∗∗ | T ∈ Neck}.

The pair (sSet∗∗,M) is then a category with models. It is easy to establish that for each (T, αT , ωT ) ∈
M, both the functors F , G are acyclic and Fk, Gk are free with base in M, k ≥ 0. As the 0th-
homology is just a quotient, which is a colimit and since colimit commutes with colimits, it follows
that we have a natural isomorphism in 0th-homology, compatible with φ. The proof is then complete
by acyclic models theorem. □

Hence, we have proved the following.

Theorem 3.6.14 (Rivera, [3]). Let K ∈ sSet0 be a simplicial set with a unique 0-simplex x0. Then
we have a quasi-isomorphism of dg-algebras

C∗(Ωx0 |K|) ≃ Ω(C∗(K,x0),∆, ∂).

Proof. By Corollary 3.6.4, we have a quasi-isomorphism of dg-algebra

C∗(CK) ≃ C∗(Ωx0 |K|).

By Proposition 3.6.13, we further have

F□
∗ (K) ≃ C∗(Ωx0 |K|).

Finally, by Proposition 3.6.12, we have

Ω(C∗(K,x0),∆, ∂) ≃ C∗(Ωx0 |K|),

as required. □

As a corollary, we can now give the proof of the generalized Adam’s theorem.
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Proof of Theorem 3.3.1. Consider K = S∗(X,x0), the simplicial set of singular simplices based at
x0 (vertex of each simplex maps to x0). This is a simplicial set with a unique 0-simplex. As
|S∗(X,x0)| is weakly equivalent to X since the geometric realization-singular simplicial set is a
Quillen equivalence and every space is a fibrant, therefore we have Ωx0 |S∗(X,x0)| ≃ Ωx0X. As C∗
takes weak homotopy equivalence to quasi-isomorphisms, therefore we have

C∗(Ωx0 |S∗(X,x0)|) ≃ C∗(Ωx0X).

The result now follows from applying Theorem 3.6.14 on K = S∗(X,x0). □

Appendix A. Results from topology

A.1. Extension by colimits. We begin with the following foundational theorem of Dan Kan.

Theorem A.1.1 (Kan). Let A be a small category and C be a locally small category with small
colimits. If u : A → C is any functor, then the following functor

u∗ : C −→ “A
Y 7−→ HomC (u(−), Y )

has a left adjoint given by u! : “A → C which maps a presheaf X to the colimit of the diagram
A/X → A → C by (a, s) 7→ a 7→ u(a)1. Thus we have an adjunction:“A C

u!

u∗

⊣ .

The left adjoint u! is usually called the realization functor.

We’ll use this theorem many times in the main text.

Corollary A.1.2. In the adjunction of Theorem A.1.1, there exists a unique natural isomorphism

u(a) ∼= u!(ha)

for any object a ∈ A. This follows directly from generalized elements and Yoneda lemma.

So if we have a functor u : A → C satisfying the hypotheses of Theorem A.1.1, then the left
adjoint u! is called the extension of u by colimits. There’s a converse of the above result, which

tells us that if there is a colimit preserving functor F : “A → C, then there exists a functor u : A → C

such that u! : “A → Ĉ is isomorphic to F . More clearly,

Lemma A.1.3. Let A be small and C be a locally small category with small colimits. Let F : “A → C
be a colimit preserving functor. Then the functor

u : A −→ C

a 7−→ F (ha)

is such that the left adjoint given by u as in Theorem A.1.1, u!, is isomorphic to F .

In particular, above lemma tells us the following.

1the category A/X is the category of elements of X which has objects given by pairs (a, s) for a ∈ A, s ∈ Xa and
a map (a, s) → (b, t) given by f : a → b in A such that Xf(t) = s. There is a functor A/X → A given by (a, s) 7→ a.

It is a result that every presheaf X ∈ “A is the colimit of the diagram A/X → A ↪→ “A.
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Corollary A.1.4. Let A and C be as in Theorem A.1.1. Then a functor F : “A → C preserves
colimits if and only if F has a right adjoint. □

The extension by colimits always preserves finite limits.

Lemma A.1.5. In the context of Theorem A.1.1, the extension by colimits preserves finite products.

Remark A.1.6 (Using Kan’s theorem to build adjunctions). Let u : ∆ → C be a cosimplicial
object in C where C has small colimits. The above theorem of Kan then yields an adjunction

sSet C

u!

u∗

⊣

.

If we take |−| : ∆ → Top to be the functor mapping [n] 7→ |∆n|, then the corresponding adjunction
we get is the usual geometric realization of simplicial sets of Proposition 2.6.7. In Theorem 3.5.4, we
construct a cosimplicial object in sCat, which yields the important functor of coherent realization.

A.2. Acyclic models theorem. The acyclic models theorem gives us a way to show equivalence
of two chain complex valued functors (most of the time, (co)homology theories). We first recall
some terminology.

Definition A.2.1 (Models, model sets & free functors). A category with models is a pair
(C,M) where C is a category and M is a collection of objects of C. Consider a functor F : C → Ab.
An F -model set X indexed by J is

X = {xj ∈ FMj | j ∈ J}
where {Mj ∈ M}j∈J is a collection of objects of M indexed by J . We say that F is free with
base in M if FC ∈ Ab is free abelian for each C ∈ C and there exists an F -model set X = {xj ∈
FMj | j ∈ J} such that for all C ∈ C, we have that the subset

{(Fσ)(xj) ∈ FC | xj ∈ X, σ :Mj → C}
is a basis of FC.

Theorem A.2.2 (Acyclic models). Let (C,M) be a category with models and F,E : C → Ch (Z)
be two functors. Let φ : H0F → H0E be a natural isomorphism on the 0th-homology functors. If

(1) for all k ≥ 0, the functors

Fk, Ek : C −→ Ab

are free with base in Mk ⊆ M,
(2) every M ∈ M is both E-acyclic and F -acyclic, i.e. Hn(EM) = 0 = Hn(FM) for all n > 0,

then every natural chain map τ : F → E for which the following commutes

F1 F0 H0F 0

E1 E0 H0E 0

τ1 τ0 φ ,

the map τ : F → E is a natural isomorphism.
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