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In this note, we prove the main theorem on length of rings (finite length iff artinian, Theorem
6) and modules (finite length iff finite support, Corollary 9), apart from some other useful results.
This is part of my master’s thesis on intersection theory.

Definition 1 (Length of a module). Let R be a ring and M be an R-module. Then the length
of M is given by the length of the longest ascending chain of submodules of M :

lenR(M) := sup{r ∈ N |M0 ⊊M1 ⊊M2 ⊊ · · · ⊊Mr is a chain of submodules of M}.

A finite chain M0 ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mr is called a maximal length chain if it cannot be
extended, that is, each factor Mi/Mi−1 is a simple module. A maximal length chain is also called a
composition series. Consequently, length of a module M is defined to be the length of the longest
composition series.

An important result about length of modules is the fact that over a local ring R, any two
composition series have the same length and composition factors.

Theorem 2 (Jordan-Hölder). Let R be a local ring and M be an R-module which contains a
composition series. Then any other composition series has the same length and composition factors.
That is, length of M is equal to length of any composition series.

The following are essential properties of length which one uses while dealing with maps.

Lemma 3. Let f : R → S be a map of rings and M be an S-module. Then lenR(M) ≥ lenS(M)
and equality holds if f is surjective.

Proof. Follows from correspondence of submodules via a quotient map.

The following is an easy exercise.

Lemma 4 (Additivity of length). If Mi are finite length R-modules and the following is exact:

0 →Mn →Mn−1 → · · · →M1 →M0 → 0,

then
n∑

i=0
(−1)i lenR(Mi) = 0.

1



2

We wish to characterize finite length modules over a noetherian ring. We begin with a lemma.

Lemma 5. Any finite length R-module is finitely generated.

Proof. If M is not finitely generated, then let {fα}α∈I be a generating set of M and let {fn}n be
a subsequence. Then, the chain

0 ⊊ ⟨f1⟩ ⊊ ⟨f1, f2⟩ ⊊ . . .

is a chain of submodules of M which doesn’t stabilizes, a contradiction to finite length.

Using results on artinian rings, we see an important characterization of artinian rings and finite
length rings.

Theorem 6. Let R be a ring. The following are equivalent:
1. R is artinian.
2. R has finite length.

Proof. (1. ⇒ 2.) By structure theorem of artinian rings, we reduce to assuming R is local artinian,
(R,m). Recall that for an artinian ring, the Jacobson radical of R is nilpotent, which is just m.
We construct a chain of ideals of R, where each subquotient has finite length. Indeed, consider the
chain

0 = mn ⊊ mn−1 ⊊ · · · ⊊ m2 ⊊ m ⊊ R.

Note that mi−1/mi is an κ = R/m-module. If any one of mi/mi−1 is infinite dimensional as an
κ-vector space, then the above chain of ideals can be refined to an infinite chain of strictly decreas-
ing ideals, a contradiction to artinian condition. Hence each subquotient is a finite dimensional
κ-module and hence its length as an R-module is equal to its dimension as a κ-module (Lemma 3).

(2. ⇒ 1.) Take any descending chain of ideals I0 ⊋ I1 ⊋ I2 ⊋ . . . . If it doesn’t stabilize,
then we have an infinite length chain, so that len(R) is not finite, a contradiction.

The following is an essential result which we’ll use later.

Proposition 7. Let R be a noetherian ring and M be a finitely generated R-module. If p ∈
Supp (M) is a minimal prime of M , then Mp is a finite length Rp-module.

Proof. As Supp (M) = V (Ann(M)), therefore a minimal prime p ∈ Supp (M) is an isolated/minimal
prime of Ann(M). As Mp is an Rp-module, therefore it suffices to construct a composition series
of Mp. Let M be generated by f1, . . . , fn ∈ M , so that Mp is also generated by their respective
images. We thus get the following chain:

0 ⊆ ⟨f1⟩ ⊆ ⟨f1, f2⟩ ⊆ · · · ⊆ ⟨f1, . . . , fn⟩ =Mp.

It suffices to show that ⟨f1,...,fi⟩
⟨f1,...,fi−1⟩ is a finite length Rp-module. Indeed, we have a surjection

⟨fi⟩ ↠
⟨f1, . . . , fi⟩
⟨f1, . . . , fi−1⟩

,
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hence it suffices to show that ⟨fi⟩ is a finite length Rp-module. To this end, pick any x ∈M . We’ll
show that ⟨x⟩ = xRp is a finite length Rp-module. Observe that ⟨x⟩ = xRp is isomorphic to Rp/I
where I is the annihilator of x in Rp. We may write I = aRp where a ≤ R is contained in p. Hence,
we wish to show that S = Rp/aRp is a finite length Rp-module, that is S is a finite length ring.
Indeed, as S = (R/a)p and p is a minimal prime in Supp (M), that is, minimal prime containing
Ann(M), and since Ann(M) ⊆ a ⊆ p, therefore p is a minimal prime of a as well. It follows that
S = (R/a)p is a dimension 0 ring. Since R is noetherian and noetherian property is inherited by
quotients and localizations, therefore S is a noetherian ring of dimension 0, hence artinian. From
Theorem 6, it follows that S is of finite length, as required.

Theorem 8. Let R be a noetherian ring and M be an R-module. Then the following are equivalent:
1. M has finite length.
2. M is finitely generated and dimR/Ann(M) = 0, i.e. R/Ann(M) is an artinian ring.

Proof. (1. ⇒ 2.) By Lemma 5, M is finitely generated. Let 0 =M0 ⊊M1 ⊊M2 ⊊ · · · ⊊Mr =M
be a composition series of M , which exists as len(M) <∞. We thus get that Mi/Mi−1 ∼= R/mi for
some maximal ideals mi, as these subquotients are simple. Note that dimR/Ann(M) = 0 if and
only if Supp (M) consists only of maximal ideals. So let p ∈ Supp (M). Thus Mp ̸= 0. It follows
that for some i, (Mi/Mi−1)p ̸= 0. As (Mi/Mi−1)p = (R/mi)p, therefore this can only happen if
mi ⊆ p, i.e. mi = p, as required. This also shows that Supp (M) = {m1, . . . ,mr}.

(2. ⇒ 1.) We need only construct a composition series of M . We have Supp (M) consists only
of maximal ideals. Consider Supp (M) ⊆ Spec (R). As M is finitely generated, say by f1, . . . , fn.
Then we get a chain of submodules

0 ⊊ ⟨f1⟩ ⊊ ⟨f1, f2⟩ ⊊ · · · ⊊ ⟨f1, . . . , fn⟩ =M.

We need only show that each subquotient is a finite length R-module. Indeed, as we have a
surjection

⟨fi⟩ ↠
⟨f1, . . . , fi⟩
⟨f1, . . . , fi−1⟩

,

so it suffices to show that ⟨fi⟩ is a finite length R-module. To this end, it suffices to show that for
each x ∈ M , the submodule Rx is of finite length. Indeed, we have Rx ∼= R/I where I = Ann(x).
As I ⊇ Ann(M), therefore

R/I ∼=
R/Ann(M)
I/Ann(M) .

As R/Ann(M) is an artinian ring and any quotient of artinian ring is an artinian ring, it follows
at once that R/I is an artinian ring. By Theorem 6, R/I ∼= Rx is of finite length, as required.

From the above proof, we can deduce the following.

Corollary 9. Let R be a noetherian ring and M be a finitely generated R-module. Then the
following are equivalent:

1. M is of finite length.



4

2. There exists a chain

0 =M0 ⊊M1 ⊊ · · · ⊊Mn =M

where Mi/Mi−1 ∼= R/mi and Supp(M) = {m1, . . . ,mn}.
3. Support of M consists of finitely many maximal ideals.

Proof. (1. ⇔ 2.) If M is a finite length module, then the maximal chain has each subquotient a
simple module. Let R/mi be the subquotients. We wish to show that Supp(M) = {m1, . . . ,mn}.
This is what we showed in the proof of Theorem 8. Conversely, supposeM has the a chain as above
with each subquotient a field. Then this is a maximal chain, as required. Note that (2. ⇒ 3.) is
immediate.

(3. ⇒ 1.) Let Supp(M) = {m1, . . . ,mn}. As showed in the forward part of proof of Theorem
8, R/Ann(M) is of dimension 0 if and only if Supp(M) consists of finitely many maximals. The
result follows from the other part of the theorem.

The following lemma shows how one should generalize the valuation of a rational function at a
codimension 1 subvariety.

Lemma 10. Let R be a DVR with valuation v : K → Z and fix a ∈ R. Then,

v(a) = lenRR/aR.

Proof. Let t ∈ R be the local parameter of R. Then a = utn where u ∈ R× is a unit and n ≥ 0.
As v(a) = n, therefore we must show lenRR/aR = n. Indeed, as R is a DVR, therefore every
ideal of R is a principally generated by a power of t. Hence, R/aR = R/tnR. We first show that
M = R/tnR is a finite length R-module. Indeed, as Ann(R) = tnR, therefore by Theorem 8 we
must show R/tnR is a dimension 0 ring. Indeed, as R has only two primes, therefore R/tnR has
only one prime. It follows that dimR/tnR = 0, as required.

The only chain of ideals in R/tnR is the image of the following chain in R:

tnR ⊊ tn−1R ⊊ · · · ⊊ t2R ⊊ tR = m ⊊ R.

Thus, lenRR/tnR = n, as required.

The following is an essential property of lengths.

Lemma 11. Let R be a ring such that for f, g ∈ R, the R-modules R/fR,R/gR and R/fgR has
finite length. Then,

lenRR/fgR = lenRR/fR+ lenRR/gR.

Proof. Follows from simple comparions of chains of ideals.

Here’s a more general result.

Lemma 12. Let M be a finite length R-module. Then,

lenR(M) =
∑

p∈Spec(R)
lenRp(Mp) =

∑
m∈Supp(M)

lenRm(Mm).
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Proof. We first have to show that the sum is finite. Indeed, observe that as M has finite length,
therefore M is finitely generated and R/Supp (M) is an artinian ring by Theorem 8. Consequently,
Supp (M) = V (Ann(M)) has only finitely many maximal ideals of R. This shows that the sum is
finite.

To show the equality, it suffices to show that each maximal m ∈ Supp(M) occurs lenRm(Mm)
many times as a composition factor in any composition series of M . Take a composition series
M0 ⊊ M1 ⊊ · · · ⊊ Mr = M of M with Mi/Mi−1 ∼= R/mi where mi ∈ Supp (M) and fix m ∈
Supp (M). Localizing at m, we get the chain (M0)m ⊆ (M1)m ⊆ · · · ⊆ (Mr)m where the subquotient
(Mi/Mi−1)m ∼= (R/mi)m ∼= R/mi

∼= Rm/miRm. Hence, miRm is the maximal ideal of Rm, showing
that mi = m. Hence m appears lenRm(Mm)-many times as a composition factor of the chain of M ,
as required.

We deal exclusively with length of modules over local rings. The following therefore shows the
effect on length of a module under a map of local rings.

Proposition 13. Let ϕ : A → B be a local homomorphism of local rings. We thus have a field
extension of residue fields κ(B)/κ(A). Then the following are equivalent for a B-module M :

1. As an A-module via ϕ, we have lenA(M) <∞.
2. We have lenB(M) <∞ and [κ(B) : κ(A)] <∞.

Moreover, if any of the above is satisfied, then

lenA(M) = [κ(B) : κ(A)] · lenB(M).

Proof. Let 0 = M0 ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mn = M be a composition series of M as a B-module.
Hence lenB(M) = n. As B is local, therefore each subquotient is isomorphic to κ(B). Now for any
1 ≤ i ≤ n, we have the following exact sequence of A-modules:

0 →Mi−1 →Mi → κ(B) → 0.

By Lemma 4, we have the following equalities:

lenA(M) = lenA(Mn−1) + lenA(κ(B))
...
= lenA(M0) + n · lenA(κ(B)).

Consequently, lenA(M) = lenB(M) · lenA(κ(B)). We need only show that lenA(κ(B)) = [κ(B) :
κ(A)]. As lenA(κ(B)) = lenA/mA

κ(B) since mA · κ(B) = 0, therefore lenA(κ(B)) = lenκ(A) κ(B) =
[κ(B) : κ(A)], as required.

Corollary 14. Let ϕ : A → B be a local homomorphism of local rings. We thus have a field
extension of residue fields κ(B)/κ(A). Let f ∈ A be a non zero-divisor. Let M be a B-module be
a finite length modules and κ(B)/κ(A) is a finite extension. Then

lenA
Å
M

fM

ã
= [κ(B) : κ(A)] · lenB

Å
M

fM

ã
.

Proof. Immediate from Proposition 13.
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Corollary 15. Let A be a ring, M be a finite length A-module and f ∈ A be a non zero-divisor.
Then,

lenA
Å
M

fM

ã
=

∑
p∈Supp(M/fM)

lenAp

Å
Mp

fMp

ã
.

Proof. Immediate from Lemma 12

Lemma 16. Let (A,m) be a local ring, ψ : A → B be a finite A-algebra and M be a finite length
B-module. If mi ∈ Spec (B) are the finitely many maximal ideals of B such that ψ−1(mi) = m, then∑

i

lenBmi
(Mmi) · [κ(Bmi) : κ(A)] = lenA (M) .

Proof. Follows from Proposition 13.

The following lemma relates the length of the length of a flat local A-algebra with that of A.

Lemma 17. Let A and B be local rings and ϕ : A→ B be a flat map. Then
1. The induced map f : Spec (B) → Spec (A) is surjective,
2. If A and B are Artinian local rings, then

lenB(B) = lenA(A) · lenB B/mAB.

Proof. 1. Let p ∈ Spec (A) be a prime. We wish to find q ∈ Spec (B) such that ϕ−1(q) = p. Going
modulo p, we get the map ϕ̄ : A/p → B/pB. This map is further flat as base change of a flat map
is flat. We thus reduce to assuming that A is a domain and p = 0. Observe that ϕ(a) in B is a non
zero-divisor for each non-zero a ∈ A since 0 → A

×a→ A remains injective by flatness of B. Thus
Im (ϕ) consists of non zero-divisors of B. Any prime corresponding to B/ϕ(A) ·B will then work.
If this quotient is zero, then B is a domain and hence zero ideal will work.

2. By Theorem 6, ring B has finite length, say r. Thus we have a maximal chain of ideals of
A

0 = I0 ⊊ I1 ⊊ · · · ⊊ Ir = A.

Consequently, Ii/Ii−1 is a simple A-modules, that is,

Ii/Ii−1 ∼= A/mA.

As B is a flat A-algebra, therefore by tensoring with B, we get a chain of ideals of B

0 = I0B ⊆ I1B ⊆ · · · ⊆ IrB = B.

Flatness further yields that IiB/Ii−1B ∼= Ii/Ii−1 ⊗A B ∼= A/mA ⊗A B ∼= B/mAB. Since the
following is exact

0 → Ii−1B → IiB → B/mAB → 0,

thus by Lemma 4 (additivity of length), we have the recurrence relation

lenB IiB = lenB Ii−1B + lenB B/mAB.

From this, the result follows at once.


