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Abstract

Let X be a connected CW-complex and P < 71 (X) be a perfect normal subgroup of 7 (X).
Consider the problem of constructing a CW-complex X+ such that 71 (X*) = 7 (X)/P and
that it has same homology as X. This is an important problem as construction X+ applied on
BGL(R) for some associative unital ring R, can give us a space BGL(R)" whose fundamental
group is K (R) (it can also be further shown that mo(BGL(R)1) 2 K3 (R) using characterizations
of K3(R) done earlier, see Theorem 5.1.7 of main notes). Thus, one can define higher K-theory
of R as homotopy groups of BGL(R)™. In this note, we construct such a space X and prove
the uniqueness of its homotopy type.
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1 The +-construction & its uniqueness

Recall that a map f: X — Y is acyclic if its homotopy fiber has homology of a point.

Definition 1.0.1 (+-construction). Let X be a based connected CW-complex and G be a perfect
normal subgroup of 71(X). Then a map of CW-complexes f : X — Y is called a +-construction
on X w.r.t. G if f is acyclic and Ker (f, : m1(X) —» m1(Y)) = G.

Remark 1.0.2. Let f : X — Y be a +-construction w.r.t. P < m(X) perfect normal subgroup.

By homotopy long exact sequence corresponding to map Ff — X i> Y, we can immediately get
following exact sequence:

T (Ff) = m(X) B 7 (V) = mo(EFf).

By Theorem A.0.1, F'f is acyclic and thus 7o(F f) = 0. Thus we have the exact sequence:

0= G —m(X) 5 mE) > o.

The following construction of X is taken from Theorem 2.1 of [Sri95].
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Construction 1.0.3 (The construction of XT). Let X be a based connected CW-complex and
G < m(X) a perfect normal subgroup. We construct an inclusion i : X — X which is a +-
construction of X w.r.t. G. To this end, the main strategy is as follows:

1. First attach 2-cells to X to kill G in m(X).

2. Then attach 3-cells to remove the extra homology classes added by step 1.
Let us denote G in generators as follows:

G= (9o |ael).
As g, € m1(X), therefore we may interpret them as loops
go: ST — X,
Now attach 2-cells to X along each of the g,:

X' — I1,D?

o] Jio - (A1)
X —— 11,51
Haga
We first claim that 71 (X’) is 71(X)/G via jo. Indeed, the map
Jox : T (X) — m(X')

is surjective since any element h : S — X’ in m1(X’) by cellular approximation theorem factors
through the inclusion jo. In particular, the 1-skeleton of X’ is same as that of X. Consequently
to prove our claim, we need only show that Ker (jo.) = G. Clearly, Ker (jo«) 2 G by construction.
Furthermore, if k£ : S — X is null-homotopic in X', then k extends to k¥’ : D?> — X'. By cellular
approximation, we may assume that &’ is a cellular map, so that k' is mapping in the 2-skeleton of
X'. Tt follows at once that if k is not in G, then k (which we assume, by cellular approximation, that
it is in 1-skeleton of X) on composition with jg gives a non-contractible loop as X’ only trivializes
all loops in G, a contradiction.
This shows that

7T1(X/) = 7T1(X)/G

To complete the proof, we have to now kill all "new” homology classes of X’ with an arbitrary
choice of coefficient system £ whose groups are isomorphic to L. To this end, we will attach 3-cells
to X' to obtain the space X T.

To illustrate the idea, suppose we have constructed X by attaching 3-cells to X’. Our goal
is then to show that Hg(X ;L) = Hy(X;L). We thus have a triplet (X, X’ X). By homology
le.s. for the pair (X', X) , it suffices to show that

Hiy(XT,X;£)=0

for all £ > 0. Recall that the homology of pair (X, X') with coefficient £ is given by the homology
of complex L ®zx, (x)/q] C.(XJF,X) where X is the pullback of X+ along X — X*. It is thus



sufficient to show that C’.(yjr , X) is an acyclic complex (whose homology in every degree is 0). As

X+ / X will be a 3-dimensional CW-complex with no 1-cells, it is thus sufficient to show that the
differential

d:Cy(X+,X) > Co(X T+, X)
is an isomorphism. - - -
Now since we have isomorphisms C’g,(XJr X) = C3(X+,X") = H3(X+,X’) and Co(X+,X) =

C’g(X " X) = H, (X /' X) by the fact that cells of universal cover are obtained by lifting, therefore

we have to show that the boundary map obtained by the triplet l.e.s. for ()?I,)f{’ X ) is an
isomorphism. This is how we construct X+ and then show that for this construction the above
actually holds.

In order to construct X+, we need maps S? — X’ through which we can attach 3-cells. In
particular, these are elements of m2(X’). Consider the following pullback square

— X
J lﬂ
X/

Jo

N R

where X’ — X' is the universal cover. As pullback of covering is a covering, thus the map XX
is a covering. Now, it is clear that X=n ~1(X), thus the inclusion X < X’ is also induced by
attaching 2-cells to X. Tt follows that m (X) = G.

Next, observe that in the homology lLe.s. of (X X ), we get the following isomorphism by
Hurewicz (as X' is 1-connected)

mo(X") — Ho(X') 25 Ho(X', X) — Hi(X).
Again, by Hurewicz, we have
Hi(X)=m((X)®=G"=0

as (G is perfect. Hence the above sequence becomes
m(X') = Hy(X') 5 Hy(X7, X).

Using the above, we have a surjection my(X’) — Ho(X’,X). For each homology class [cg] €
Hy(X', X) in a fixed generating set, choose one and only element in the fiber [hg] € ma(X’). We
thus have a collection of maps {hg 52 5 X7 3. Composing them with 7 : X" — X’ yields maps
{hg : S? 5 X" 3. We use these maps to attach 3-cells to X’. Indeed, consider the pushout space:

x+ &%y p

ko} r I (A2)

X i s
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We thus have the following inclusions of subcomplexes of X T:

1 k
X x' 8 x+,

We again pass to universal cover of X in order and take pullback along X’ < X to have better
algebraic control via Hurewicz:

X’c—>3(v+

I

X 5 Xt
ko

But 7 (X’) = 0 since kg, is an isomorphism on 7 and 7 (3(\I ) = 0. Hence, we deduce that

that is, X’ is the universal cover of X'.
By naturality of Hurewicz, we have a map between the long exact sequences of homotopy groups
induced by the map X’ < X7 to that of homology groups

Tt (X T, X)) —— m0(X)) —— m(XF) —— mp(X+, X)

| L |

Hyp1 (X, X)) —— Hy(X!) —— Hp(XT) —— Ho(X+,X)

For n = 3, we get the following sequence from the above

m3(X T, X') —— mo(X)

|k

—~ —~ ~

Hy(X+, X) = Ha(X) —— Hy(X', X)

We claim that j, o d is an isomorphism. Note that this is isomorphic to the required boundary map
d : 03(5(\3; X ) — CQ(}—(\I X ), as discussed earlier. This will hence complete the proof. Indeed,
observe that Hg(?(er , X/ ) is a free abelian group generated by the lift of 3-cells attached by iL,g. We
thus need only show that j, o O maps this bijectively onto the generators of Ho ()A(/’ X ) which we
know are [cg]. We know that the lifted map i~15 : §2 — X' determines an element in 773,(3(\1 ,)?’ )
by definition of relative homotopy, whose image in 7r2(§(v ") is exactly [ﬁg] Moreover, the class
determined by hg in 73 ()/(\I G ), under the Hurewicz map, determines a class [lg] € Hg(}—(j; X! ).
By commutativity of above, it follows that j, o 0 maps [lg] — [cg]. As for each generator [cg] €
Hg()A(:’ X ), the element [lg] is unique by construction, we get that j, o d is an isomorphism, as
required.

Remark 1.0.4. While it is rarely that we will use the explicit construction above, it is still good to
keep in mind the precise way in which we found the 3-cells to attach to X’ to get X . In particular,
the attaching steps (A1) and (A2) are good to keep in mind.



Example 1.0.5 (+-construction of homology spheres). Let X be a based connected CW-complex
which is a homology n-sphere for n > 1 so that m;(X) is perfect. For P = m(X), we claim that
any +-construction of X w.r.t. P, f: X — X7, is such that S" ~ X,

Indeed, observe that m1(X) is perfect as X is a homology n-sphere. As f is a +-construction,
therefore w1 (X ) is 71 (X) /71 (X) = 0 by Remark 1.0.2. Moreover, X itself is a homology n-sphere
as f: X — X7 is acyclic. We now find a map g : S™ — X such that g is a weak equivalence, so
that by Whitehead’s theorem we will conclude that g is a homotopy equivalence, as required.

Indeed, observe that since Xt is 1-connected, therefore by Hurewicz’s theorem, we have ma(X 1) =
Ho(XT). If n # 2, then (X ™) = 0 as X is also a homology n-sphere. By induction and using
Hurewicz repeatedly, we get that 7 (Xt) = 0 for all 0 < & < n — 1, so that X* is n — 1-
connected and thus by another application of Hurewicz, we have m,(XT) & H,(X1) = Z. We
thus have a non-trivial map g : S — X whose homology class is the generator. We finally claim
that ¢g induces an isomorphism in integral homology, which will complete the proof by Theorem
7.5.9 of [Spa66] (Whitehead’s theorem). To this end, as X is a also a homology n-sphere, thus
we need only show that g, : H,(S™) = Z — H,(X") = Z takes [id] — [g]. Indeed, we have
g«([id]) = [goid] = [g] € H,(XT), as needed.

Proposition 1.0.6. Leti: X — XT and j : Y — YT be +-constructions w.r.t. perfect normal
subgroups G < 71(X) and H < m(Y). Then

ixj: X xY = Xt xy"
is a +-construction of X XY w.r.t. the perfect normal subgroup G x H < m(X xY).

Proof. We first show acyclicity of ¢ x j. By unravelling definitions, one reduces to showing that
F(i x j) 2 F(i) x F(j) is acyclic. To this end, use Kiinneth formula to deduce that if X,Y are
acyclic, then so is X x Y. The fact that kernel of (i X j), is G x H follows from (i X j)x = ix X Jx :
m(X) x (V) = m(XT) x m(YT), as required. O

The following universal property tells us what we need, and then some more’.

Theorem 1.0.7 (Universal property of X*). Let X be a CW-complex and P be a perfect normal
subgroup of m1(X). Let f : X — Y be a +-construction on X w.r.t. P. If g: X — Z is a map
such that

P C Ker (g, : m(X) = m(2)),

then there exists a map h : Y — Z such that the following diagram of spaces commutes

y -ty 7
1 4
X

and h is unique upto homotopy.

An immediate corollary is what we seek.

!This is usually attriuted to Quillen, who mentioned this in his ICM report [Qui70] without proof.
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Corollary 1.0.8 (Uniqueness of +-construction). Let X be a CW-complex and P be a perfect
normal subgroup of m(X). If f: X =Y and g : X — Z are two +-constructions, then there is a

homotopy equivalence h :'Y 5 2. ]
Another important consequence is that we have maps in 4-construction.

Lemma 1.0.9. Let X,Y be two connected CW-complexes and i : X — X and j : Y — Y+
be +-constructions w.r.t. perfect normal subgroups G < m(X) and H < m1(Y) respectively. If
f: X =Y is a map such that f.:m(X) —= m(Y) maps G into H, then there exists a map
f : XT — Y unique upto homotopy w.r.t. the commutativity of the following square of spaces:

Proof. The map jo f on 7 takes G to 0, so by Theorem 1.0.7 gives the required map unique upto
homotopy. O

We shall prove Theorem 1.0.7 by using obstruction theory as developed in [Whi78], Chapter
VI

Proof of Theorem 1.0.7. Consider the based connected CW-complex X ™ obtained by Construction
1.0.3. Let g : X — Z be a map such that

P CKer(gs : m(X) = m(2)).

We wish to extend g to g : XT — Z. Consider the map 6 : m1(X)/P — m1(Z) as in the triangle
below which exists by hypothesis on g.:

We wish to show that g extends to g : XT — Z such that g, = 6. To this end, by obstruction
theory, it is sufficient to show that

HY(XT,X;L)=0

for all ¢ > 3 and all local coefficient systems £ on X . Fix a local coefficient system £ with group
G. Note that we have

HI(X*, X;£) =2 HY (Homyr, (x+y) (Co(X T, X),G))
where we have the following pullback of the universal cover of X*:
X+
Xt

—

B ——



Now note from the Construction 1.0.3 that
C(X+,X)=0

for all £ # 2,3 and d : Cg(XJF,X') — CQ(E(VJF,X) is an isomorphism. It follows at once that
HY(X* X;L) =0 for all ¢ > 0, as required.

For uniqueness upto homotopy, obstruction theory further gives us a sufficient criterion that
H?(X*+,X;L) = 0. Hence we are done. Moreover, by the long exact sequence of pairs for coho-
mology with local coefficients, we deduce that the map 7 : X — X induces isomorphism

i* HY(XT; L) — HY(X;i*L),

that is, i : X — X is cohomologically acyclic as well. This shows the universal property for the
explicit construction. We now show that any +-construction on X w.r.t. P is homotopy equivalent
to the explicit one. This will then complete the proof.

Let f: X — Y be a 4+-construction w.r.t. P. Then by above there exists a map f Xt =Y
as in the following triangle

We claim that the map f is a homotopy equivalence. By Whitehead’s theorem, it is sufficient to
show that f is a weak-equivalence. Observe that as ¢ and f are homologically acyclic, it follows at
once that f is also acyclic. Moreover, f induces isomorphism in fundamental groups. By acyclic
fiber theorem (Theorem A.0.1), it follows that the homotopy fiber F f is acyclic. We further claim
that F' f is 1-connected. Indeed, from the long exact sequence for homotopy groups for f and that
fe : m(XT) = m(Y) is an isomorphism, it follows that the map 71 (Ff) — m(X1) is the zero
map. It suffices to show that the transgression mo(Y) — 1 (F f ), which is surjective by exactness,
is the zero map as well. As F f is acyclic, therefore 71 (F f ) is a perfect group. By above, it is also
abelian, and thus the zero group, as required.

Hence F' f is a 1-connected acyclic space, so that by Hurewicz’s theorem, all homotopy groups
of F f are 0. By homotopy long exact sequence of f , it follows that f is a weak-equivalence, as
required. This also proves Corollary 1.0.8. O

A Acyclic fiber theorem

The following is an important characterization of acyclicity in terms of homotopy fiber.

Theorem A.0.1 (Acyclic fiber theorem). Let f : X — Y be a based map of connected CW-
complezxes. Then the following are equivalent:
1. For all k > 0, we have

foo Hy(X; M) =5 Hy(Y; M)

for every m (Y)-module M?.

2That is, M is a left Z[r1(Y)]-module.
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2. The homotopy fiber F f of f is acyclic’.

Proof. (1. = 2.) By replacing X by the fibration replacement of f (see Construction 10.2.1.11 of

[FoG]), we may assume that we have a fibration Ff - X I, v, Assume that m1(Y) = 0, so that
we have a Serre spectral sequence B2, = H,(Y; Hy(F[)) = Hpyq(X) and for the trivial fibration

pt. =Y 4y which gives another Serre spectral sequence ’qu = H,(Y;Hy(pt.)) = Hpyq(Y). We
have a commutative diagram:

Ff*)X*)Y

L

pt. Y

By comparison theorem (Proposition 5.13 of [Hat04]), we deduce that F'f is acyclic. 1t follows that
if Y is simply connected and f induces isomorphism on integral homology, then homotopy fiber of
f is acyclic.

Now suppose m1(Y) # 0. The main idea is to reduce to the simply connected case by going to
universal cover of Y. Indeed, if Y is the universal cover of Y, then we have the following pullback
diagrams (by Lemma 10.2.1.2 of [FoG], we have that f is a fibration):

FfHXxY?%Y/

I

Ff y X

A

f

Denote X = X xy Y. It then follows by maps constructed by unique path lifting that Ff = Ff.
It thus suffices to show that F f is acyclic. To this end, by above, we reduce to showing that we
have an isomorphism f, : Hy(X;Z) — Hy(Y;Z) for all k > 0. This follows from the following
comutative square with vertical maps being isomorphisms:

Hy(X;2) — 2 Hu(V32)

~| E

Hy(X; Z[m(Y)]) —— Hi(X5Z[m (Y)])

As f, is an isomorphism by hypothesis, we win.

(2. = 1.) As before, we may assume that F'f % X % Y is a fibration. Observe that the
E?-page of Serre spectral sequence qu = H,(Y;Hy(Ff)) = Hpiq(X;Z) is all 0 except possibly
the bottom row (which consists of H,(Y;Z)) since Hy(Ff) = 0 forall ¢ > 1 and Ho(Ff) =7Z. It
follows that E collapses on the E2-page, so that H,(X;Z) = H,(Y;Z). In particular, this isomor-
phism comes from f, as the above isomorphim is by the edge homomorphism which we know in
Serre spectral sequence is via the map f : X — Y (see Addendum 2, Theorem 5.3.2 of [Wei94]). O

3that is, F'f has homology of a point.
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