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Abstract

Let X be a connected CW-complex and P ≤ π1(X) be a perfect normal subgroup of π1(X).
Consider the problem of constructing a CW-complex X+ such that π1(X

+) = π1(X)/P and
that it has same homology as X. This is an important problem as construction X+ applied on
BGL(R) for some associative unital ring R, can give us a space BGL(R)+ whose fundamental
group isK1(R) (it can also be further shown that π2(BGL(R)+) ∼= K2(R) using characterizations
of K2(R) done earlier, see Theorem 5.1.7 of main notes). Thus, one can define higher K-theory
of R as homotopy groups of BGL(R)+. In this note, we construct such a space X+ and prove
the uniqueness of its homotopy type.

Contents

1 The +-construction & its uniqueness 1

A Acyclic fiber theorem 7

1 The +-construction & its uniqueness

Recall that a map f : X → Y is acyclic if its homotopy fiber has homology of a point.

Definition 1.0.1 (+-construction). Let X be a based connected CW-complex and G be a perfect
normal subgroup of π1(X). Then a map of CW-complexes f : X → Y is called a +-construction
on X w.r.t. G if f is acyclic and Ker (f∗ : π1(X) → π1(Y )) = G.

Remark 1.0.2. Let f : X → Y be a +-construction w.r.t. P ≤ π1(X) perfect normal subgroup.

By homotopy long exact sequence corresponding to map Ff → X
f→ Y , we can immediately get

following exact sequence:

π1(Ff) → π1(X)
f∗→ π1(Y ) → π0(Ff).

By Theorem A.0.1, Ff is acyclic and thus π0(Ff) = 0. Thus we have the exact sequence:

0 → G → π1(X)
f∗→ π1(Y ) → 0.

The following construction of X+ is taken from Theorem 2.1 of [Sri95].
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2 1 THE +-CONSTRUCTION & ITS UNIQUENESS

Construction 1.0.3 (The construction of X+). Let X be a based connected CW-complex and
G ≤ π1(X) a perfect normal subgroup. We construct an inclusion i : X → X+ which is a +-
construction of X w.r.t. G. To this end, the main strategy is as follows:

1. First attach 2-cells to X to kill G in π1(X).
2. Then attach 3-cells to remove the extra homology classes added by step 1.

Let us denote G in generators as follows:

G = ⟨gα | α ∈ I⟩.

As gα ∈ π1(X), therefore we may interpret them as loops

gα : S1 → X.

Now attach 2-cells to X along each of the gα:

X ′ ⨿αD
2

X ⨿αS
1

⌜
j0 i0

⨿αgα

. (A1)

We first claim that π1(X
′) is π1(X)/G via j0. Indeed, the map

j0∗ : π1(X) −→ π1(X
′)

is surjective since any element h : S1 → X ′ in π1(X
′) by cellular approximation theorem factors

through the inclusion j0. In particular, the 1-skeleton of X ′ is same as that of X. Consequently
to prove our claim, we need only show that Ker (j0∗) = G. Clearly, Ker (j0∗) ⊇ G by construction.
Furthermore, if k : S1 → X is null-homotopic in X ′, then k extends to k′ : D2 → X ′. By cellular
approximation, we may assume that k′ is a cellular map, so that k′ is mapping in the 2-skeleton of
X ′. It follows at once that if k is not in G, then k (which we assume, by cellular approximation, that
it is in 1-skeleton of X) on composition with j0 gives a non-contractible loop as X ′ only trivializes
all loops in G, a contradiction.

This shows that

π1(X
′) = π1(X)/G.

To complete the proof, we have to now kill all ”new” homology classes of X ′ with an arbitrary
choice of coefficient system L whose groups are isomorphic to L. To this end, we will attach 3-cells
to X ′ to obtain the space X+.

To illustrate the idea, suppose we have constructed X+ by attaching 3-cells to X ′. Our goal
is then to show that Hk(X

+;L) ∼= Hk(X;L). We thus have a triplet (X+, X ′, X). By homology
l.e.s. for the pair (X+, X) , it suffices to show that

Hk(X
+, X;L) = 0

for all k ≥ 0. Recall that the homology of pair (X+, X ′) with coefficient L is given by the homology

of complex L ⊗Z[π1(X)/G] C•(X̃+, X̂) where X̂ is the pullback of X̃+ along X → X+. It is thus
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sufficient to show that C•(X̃+, X̂) is an acyclic complex (whose homology in every degree is 0). As

X̃+/X̂ will be a 3-dimensional CW-complex with no 1-cells, it is thus sufficient to show that the
differential

d : C3(X̃+, X̂) → C2(X̃+, X̂)

is an isomorphism.

Now since we have isomorphisms C3(X̃+, X̂) ∼= C3(X̃+, X̃ ′) ∼= H3(X̃+, X̃ ′) and C2(X̃+, X̂) ∼=
C2(X̃ ′, X̂) ∼= H2(X̃ ′, X̂) by the fact that cells of universal cover are obtained by lifting, therefore

we have to show that the boundary map obtained by the triplet l.e.s. for (X̃+, X̃ ′, X̂) is an
isomorphism. This is how we construct X+ and then show that for this construction the above
actually holds.

In order to construct X+, we need maps S2 → X ′ through which we can attach 3-cells. In
particular, these are elements of π2(X

′). Consider the following pullback square

X̂ X̃ ′

X X ′

⌟
π

j0

where X̃ ′ → X ′ is the universal cover. As pullback of covering is a covering, thus the map X̂ → X
is a covering. Now, it is clear that X̂ = π−1(X), thus the inclusion X̂ ↪→ X̃ ′ is also induced by
attaching 2-cells to X̂. It follows that π1(X̂) ∼= G.

Next, observe that in the homology l.e.s. of (X̃ ′, X̂), we get the following isomorphism by
Hurewicz (as X̃ ′ is 1-connected)

π2(X̃ ′)
∼=−→ H2(X̃ ′)

j∗−→ H2(X̃ ′, X̂) −→ H1(X̂).

Again, by Hurewicz, we have

H1(X̂) ∼= π1(X̂)ab = Gab = 0

as G is perfect. Hence the above sequence becomes

π2(X̃ ′)
∼=−→ H2(X̃ ′)

j∗
↠ H2(X̃ ′, X̂).

Using the above, we have a surjection π2(X̃
′) ↠ H2(X̃

′, X̂). For each homology class [cβ] ∈
H2(X̃

′, X̂) in a fixed generating set, choose one and only element in the fiber [h̃β] ∈ π2(X̃
′). We

thus have a collection of maps {h̃β : S2 → X̃ ′}β. Composing them with π : X̃ ′ → X ′ yields maps
{hβ : S2 → X ′}β. We use these maps to attach 3-cells to X ′. Indeed, consider the pushout space:

X+ ⨿βD
3

X ′ ⨿βS
2

⌜

⨿βdβ

k0

⨿βhβ

. (A2)
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We thus have the following inclusions of subcomplexes of X+:

X
j0
↪→ X ′ k0

↪→ X+.

We again pass to universal cover of X+ in order and take pullback along X ′ ↪→ X+ to have better
algebraic control via Hurewicz:

X̂ ′ X̃+

X ′ X+

⌟
π

k0

.

But π1(X̂ ′) = 0 since k0∗ is an isomorphism on π1 and π1(X̃+) = 0. Hence, we deduce that

X̂ ′ ∼= X̃ ′,

that is, X̂ ′ is the universal cover of X ′.
By naturality of Hurewicz, we have a map between the long exact sequences of homotopy groups

induced by the map X̂ ′ ↪→ X̃+ to that of homology groups

· · · πn+1(X̃+, X̂ ′) πn(X̂ ′) πn(X̃+) πn(X̃+, X̂ ′) · · ·

· · · Hn+1(X̃+, X̂ ′) Hn(X̂ ′) Hn(X̃+) Hn(X̃+, X̂ ′) · · ·

.

For n = 3, we get the following sequence from the above

π3(X̃+, X̃ ′) π2(X̃ ′)

H3(X̃+, X̃ ′) H2(X̃ ′) H2(X̃ ′, X̂)

∼=

∂̃ j∗

.

We claim that j∗ ◦ ∂̃ is an isomorphism. Note that this is isomorphic to the required boundary map

d : C3(X̃+, X̂) → C2(X̃+, X̂), as discussed earlier. This will hence complete the proof. Indeed,

observe that H3(X̃+, X̃ ′) is a free abelian group generated by the lift of 3-cells attached by h̃β. We

thus need only show that j∗ ◦ ∂̃ maps this bijectively onto the generators of H2(X̃ ′, X̂) which we

know are [cβ]. We know that the lifted map h̃β : S2 → X̃ ′ determines an element in π3(X̃+, X̃ ′)

by definition of relative homotopy, whose image in π2(‹X ′) is exactly [h̃β]. Moreover, the class

determined by h̃β in π3(X̃+, X̃ ′), under the Hurewicz map, determines a class [lβ] ∈ H3(X̃+, X̃ ′).
By commutativity of above, it follows that j∗ ◦ ∂̃ maps [lβ] 7→ [cβ]. As for each generator [cβ] ∈
H2(X̃ ′, X̂), the element [lβ] is unique by construction, we get that j∗ ◦ ∂̃ is an isomorphism, as
required.

Remark 1.0.4. While it is rarely that we will use the explicit construction above, it is still good to
keep in mind the precise way in which we found the 3-cells to attach to X ′ to get X+. In particular,
the attaching steps (A1) and (A2) are good to keep in mind.
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Example 1.0.5 (+-construction of homology spheres). Let X be a based connected CW-complex
which is a homology n-sphere for n > 1 so that π1(X) is perfect. For P = π1(X), we claim that
any +-construction of X w.r.t. P , f : X → X+, is such that Sn ≃ X+.

Indeed, observe that π1(X) is perfect as X is a homology n-sphere. As f is a +-construction,
therefore π1(X

+) is π1(X)/π1(X) = 0 by Remark 1.0.2. Moreover, X+ itself is a homology n-sphere
as f : X → X+ is acyclic. We now find a map g : Sn → X such that g is a weak equivalence, so
that by Whitehead’s theorem we will conclude that g is a homotopy equivalence, as required.

Indeed, observe that sinceX+ is 1-connected, therefore by Hurewicz’s theorem, we have π2(X
+) ∼=

H2(X
+). If n ̸= 2, then π2(X

+) = 0 as X+ is also a homology n-sphere. By induction and using
Hurewicz repeatedly, we get that πk(X

+) = 0 for all 0 ≤ k ≤ n − 1, so that X+ is n − 1-
connected and thus by another application of Hurewicz, we have πn(X

+) ∼= Hn(X
+) = Z. We

thus have a non-trivial map g : Sn → X+ whose homology class is the generator. We finally claim
that g induces an isomorphism in integral homology, which will complete the proof by Theorem
7.5.9 of [Spa66] (Whitehead’s theorem). To this end, as X+ is a also a homology n-sphere, thus
we need only show that g∗ : Hn(S

n) = Z → Hn(X
+) = Z takes [id] 7→ [g]. Indeed, we have

g∗([id]) = [g ◦ id] = [g] ∈ Hn(X
+), as needed.

Proposition 1.0.6. Let i : X → X+ and j : Y → Y + be +-constructions w.r.t. perfect normal
subgroups G ≤ π1(X) and H ≤ π1(Y ). Then

i× j : X × Y → X+ × Y +

is a +-construction of X × Y w.r.t. the perfect normal subgroup G×H ≤ π1(X × Y ).

Proof. We first show acyclicity of i × j. By unravelling definitions, one reduces to showing that
F (i × j) ∼= F (i) × F (j) is acyclic. To this end, use Künneth formula to deduce that if X,Y are
acyclic, then so is X × Y . The fact that kernel of (i× j)∗ is G×H follows from (i× j)∗ = i∗ × j∗ :
π1(X)× π1(Y ) → π1(X

+)× π1(Y
+), as required.

The following universal property tells us what we need, and then some more1.

Theorem 1.0.7 (Universal property of X+). Let X be a CW-complex and P be a perfect normal
subgroup of π1(X). Let f : X → Y be a +-construction on X w.r.t. P . If g : X → Z is a map
such that

P ⊆ Ker (g∗ : π1(X) → π1(Z)),

then there exists a map h : Y → Z such that the following diagram of spaces commutes

Y Z

X

h

f
g

and h is unique upto homotopy.

An immediate corollary is what we seek.

1This is usually attriuted to Quillen, who mentioned this in his ICM report [Qui70] without proof.
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Corollary 1.0.8 (Uniqueness of +-construction). Let X be a CW-complex and P be a perfect
normal subgroup of π1(X). If f : X → Y and g : X → Z are two +-constructions, then there is a

homotopy equivalence h : Y
≃→ Z.

Another important consequence is that we have maps in +-construction.

Lemma 1.0.9. Let X,Y be two connected CW-complexes and i : X → X+ and j : Y → Y +

be +-constructions w.r.t. perfect normal subgroups G ≤ π1(X) and H ≤ π1(Y ) respectively. If
f : X → Y is a map such that f∗ : π1(X) → π1(Y ) maps G into H, then there exists a map
f̃ : X+ → Y + unique upto homotopy w.r.t. the commutativity of the following square of spaces:

X+ Y +

X Y

f̃

i

f

j .

Proof. The map j ◦ f on π1 takes G to 0, so by Theorem 1.0.7 gives the required map unique upto
homotopy.

We shall prove Theorem 1.0.7 by using obstruction theory as developed in [Whi78], Chapter
VI.

Proof of Theorem 1.0.7. Consider the based connected CW-complex X+ obtained by Construction
1.0.3. Let g : X → Z be a map such that

P ⊆ Ker (g∗ : π1(X) → π1(Z)).

We wish to extend g to g̃ : X+ → Z. Consider the map θ : π1(X)/P → π1(Z) as in the triangle
below which exists by hypothesis on g∗:

π1(X)/P π1(Z)

π1(X)

θ

i∗ g∗
.

We wish to show that g extends to g̃ : X+ → Z such that g̃∗ = θ. To this end, by obstruction
theory, it is sufficient to show that

Hq(X+, X;L) = 0

for all q ≥ 3 and all local coefficient systems L on X+. Fix a local coefficient system L with group
G. Note that we have

Hq(X+, X;L) ∼= Hq
Ä
HomZ[π1(X+)]

Ä
C•(X̃+, X̂), G

ää
where we have the following pullback of the universal cover of X+:

X̂ X̃+

X X+

⌟ .
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Now note from the Construction 1.0.3 that

Ck(X̃+, X̂) = 0

for all k ̸= 2, 3 and d : C3(X̃+, X̂) → C2(X̃+, X̂) is an isomorphism. It follows at once that
Hq(X+, X;L) = 0 for all q ≥ 0, as required.

For uniqueness upto homotopy, obstruction theory further gives us a sufficient criterion that
H2(X+, X;L) = 0. Hence we are done. Moreover, by the long exact sequence of pairs for coho-
mology with local coefficients, we deduce that the map i : X ↪→ X+ induces isomorphism

i∗ : Hq(X+;L) → Hq(X; i∗L),

that is, i : X → X+ is cohomologically acyclic as well. This shows the universal property for the
explicit construction. We now show that any +-construction on X w.r.t. P is homotopy equivalent
to the explicit one. This will then complete the proof.

Let f : X → Y be a +-construction w.r.t. P . Then by above there exists a map f̃ : X+ → Y
as in the following triangle

X+ Y

X

f̃

i
f

.

We claim that the map f̃ is a homotopy equivalence. By Whitehead’s theorem, it is sufficient to
show that f̃ is a weak-equivalence. Observe that as i and f are homologically acyclic, it follows at
once that f̃ is also acyclic. Moreover, f̃ induces isomorphism in fundamental groups. By acyclic
fiber theorem (Theorem A.0.1), it follows that the homotopy fiber F f̃ is acyclic. We further claim
that F f̃ is 1-connected. Indeed, from the long exact sequence for homotopy groups for f̃ and that
f̃∗ : π1(X

+) → π1(Y ) is an isomorphism, it follows that the map π1(F f̃) → π1(X
+) is the zero

map. It suffices to show that the transgression π2(Y ) → π1(F f̃), which is surjective by exactness,
is the zero map as well. As F f̃ is acyclic, therefore π1(F f̃) is a perfect group. By above, it is also
abelian, and thus the zero group, as required.

Hence F f̃ is a 1-connected acyclic space, so that by Hurewicz’s theorem, all homotopy groups
of F f̃ are 0. By homotopy long exact sequence of f̃ , it follows that f̃ is a weak-equivalence, as
required. This also proves Corollary 1.0.8.

A Acyclic fiber theorem

The following is an important characterization of acyclicity in terms of homotopy fiber.

Theorem A.0.1 (Acyclic fiber theorem). Let f : X → Y be a based map of connected CW-
complexes. Then the following are equivalent:

1. For all k ≥ 0, we have

f∗ : Hk(X;M)
∼=−→ Hk(Y ;M)

for every π1(Y )-module M2.

2That is, M is a left Z[π1(Y )]-module.
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2. The homotopy fiber Ff of f is acyclic3.

Proof. (1. ⇒ 2.) By replacing X by the fibration replacement of f (see Construction 10.2.1.11 of

[FoG]), we may assume that we have a fibration Ff
i→ X

f→ Y . Assume that π1(Y ) = 0, so that
we have a Serre spectral sequence E2

pq = Hp(Y ;Hq(Ff)) ⇒ Hp+q(X) and for the trivial fibration

pt. → Y
id→ Y which gives another Serre spectral sequence ′E2

pq = Hp(Y ;Hq(pt.)) ⇒ Hp+q(Y ). We
have a commutative diagram:

Ff X Y

pt. Y Y

i f

f id

id

.

By comparison theorem (Proposition 5.13 of [Hat04]), we deduce that Ff is acyclic. lt follows that
if Y is simply connected and f induces isomorphism on integral homology, then homotopy fiber of
f is acyclic.

Now suppose π1(Y ) ̸= 0. The main idea is to reduce to the simply connected case by going to
universal cover of Y . Indeed, if Ỹ is the universal cover of Y , then we have the following pullback
diagrams (by Lemma 10.2.1.2 of [FoG], we have that f̃ is a fibration):

F f̃ X ×Y Ỹ Ỹ

Ff X Y

⌟

f̃

⌟
p

f

.

Denote X̃ = X ×Y Ỹ . It then follows by maps constructed by unique path lifting that F f̃ ∼= Ff .
It thus suffices to show that F f̃ is acyclic. To this end, by above, we reduce to showing that we
have an isomorphism f̃∗ : Hk(X̃;Z) → Hk(Ỹ ;Z) for all k ≥ 0. This follows from the following
comutative square with vertical maps being isomorphisms:

Hk(X̃;Z) Hk(Ỹ ;Z)

Hk(X;Z[π1(Y )]) Hk(X;Z[π1(Y )])

f̃∗

∼= ∼=

f∗

.

As f∗ is an isomorphism by hypothesis, we win.

(2. ⇒ 1.) As before, we may assume that Ff
i→ X

f→ Y is a fibration. Observe that the
E2-page of Serre spectral sequence E2

pq = Hp(Y ;Hq(Ff)) ⇒ Hp+q(X;Z) is all 0 except possibly
the bottom row (which consists of Hq(Y ;Z)) since Hq(Ff) = 0 forall q ≥ 1 and H0(Ff) = Z. It
follows that E collapses on the E2-page, so that Hn(X;Z) ∼= Hn(Y ;Z). In particular, this isomor-
phism comes from f∗ as the above isomorphim is by the edge homomorphism which we know in
Serre spectral sequence is via the map f : X → Y (see Addendum 2, Theorem 5.3.2 of [Wei94]).

3that is, Ff has homology of a point.
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