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Abstract. A well known theorem of Swan establishes an equivalence

between vector bundles over compact-Hausdorff space and finitely gen-

erated projective modules. We generalize this equivalence to spaces

which are only completely regular. Our method of proof avoids parti-

tions of unity and is motivated from Atiyah’s proof of the same theorem

in the compact-Hausdorff case.

1 The statement

Let B be a compact-Hausdorff space, C(B) be the commutative unital

ring of all R-valued continuous maps on B, VB(B) the category of all real

vector bundles over B and Proj(C(B)) the category of finitely generated

projective C(B)-modules. The classical Swan’s theorem states that the

global sections functor

Γ : VB(B) −→ Proj(C(B))

is an equivalence of categories, that is, a fully-faithful and essentially sur-

jective functor.

The goal of this note is to prove the following generalization of Swan’s

theorem.

Theorem 1.1. Let B be a completely regular space and let C(B) be the

ring of all R-valued continuous functions on B. Then the global sections

functor

Γ : VB⊕(B) −→ Proj(C(B))

from the category of finite rank vector bundles which are direct summands

of finite rank trivial bundles to finitely generated projective modules over

C(B) is an equivalence of categories.
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2 2 THE STATEMENT

Remark 1.2. The hypothesis that all our bundles be direct summands of

trivial bundles is not too restrictive:

(1) Every bundle over B is a direct summand of a trivial bundle if B

is compact-Haudorff. Indeed, then any bundle ξ has a finite dimen-

sional ample subspace in Γ(ξ) (see Lemma 1.4.12 of [1]). Conse-

quently, the statement of Theorem 1.1 reduces to classical Swan’s

theorem when B is compact-Hausdorff.

(2) Any soft1 bundle is a direct summand of a trivial bundle. Indeed,

same proof as Lemma 1.4.12 of [1] will work.

Our method to prove Theorem 1.1 is as follows. First, we show that Γ

establishes an equivalence between trivial vector bundles of finite rank over

B and free modules of finite rank over C(B) (Proposition 2.1). Second,

we show that the bundles which are direct summand of a trivial bundle

have global sections module which is always finitely generated projective

(Lemma 2.2). Third, we introduce the notion of projectors in a category

which allows us to relate free modules and projective modules on one hand

(Construction 3.2), and trivial bundles and vector bundles on the other

(Construction 3.5). Having constructed these functors, we relate them via

a commutative diagram (Proposition 3.6), which then allows us to give a

proof of Swan’s theorem in the penultimate section. This idea is loosely

related to the last step of the proof of classical Swan’s theorem by Atiyah

(pp. 31 of [1]).

2 Trivial bundles & free C(B)-modules

We prove the first equivalence as discussed above.

Proposition 2.1. Let B be any topological space. Then the global sections

functor establishes an equivalence between trivial finite rank vector bundles

on B and finite rank free C(B)-modules:

Γ : VBtriv(B) −→ Free(C(B)).

Proof. Note that the global sections functor is given by

Γ : VBtriv(B) −→ Free(C(B))

1a bundle is soft if there is a finite trivializing cover of base and it admits a partition

of unity.
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which on a map of bundles f : ξ → η, ξ = (E, p,B) and η = (E′, p′, B) gives

Γ(f) : Γ(ξ) → Γ(η), mapping a section s : B → E of ξ to f ◦ s : B → E′.

We first show that Γ is fully-faithful. To this end, we have to show that

the following is a bijection:

Γ : HomVBtriv(B) (ξ, η) −→ HomFree(C(B)) (Γ(ξ),Γ(η)).

We construct an inverse as follows. Pick any C(B)-linear map φ : Γ(ξ) →
Γ(η), where Γ(ξ) and Γ(η) are free of rank n andm respectively. We define a

map f : E → E′ which on fiber at b maps as f(
∑

i cisi(b)) 7→
∑

i ciφ(si)(b)

where {s1, . . . , sn} is a free basis of Γ(ξ). We need only show continuity of

f . It is sufficient to show that the composite is continuous:

B ×Rn E E′ B ×Rm∼= f ∼= .

Indeed, this composite maps as follows:

(b, c1, . . . , cn) 7→
∑
i

cisi(b) 7→
∑
i

ciφ(si)(b) 7→

(
b,
∑
i

cidi1, . . . ,
∑
i

cidim

)
where φ(si) =

∑
j dijtj where {t1, . . . , tm} is the free basis of Γ(η). It is

thus clear that the composite is continuous and hence so is f . This defines

a map

θ : HomFree(C(B)) (Γ(ξ),Γ(η)) −→ HomVBtriv(B) (ξ, η)

which is inverse of Γ, as required. Next we show that Γ is essentially

surjective. Indeed, for any free C(B)-module of rank n, say M , there is an

isomorphism to C(B)n. As C(B)n = Γ(ϵn), hence Γ is essentially surjective.

This shows that Γ is an equivalence of categories. □

Next, we show that Γ(ξ) for a vector bundle ξ is a finitely generated

projective C(B)-module. This is also Problem 3-F of [3].

Lemma 2.2. Let B be a topological space and Γ be the global sections

functor for bundles on B.

(1) We have Γ(ξ ⊕ η) ∼= Γ(ξ)⊕ Γ(η).

(2) A vector bundle ξ is trivial of rank n if and only if Γ(ξ) is a free

C(B)-module of rank n.

(3) If ξ ⊕ η is trivial of finite rank, then Γ(ξ) is a finitely generated

projective module C(B)-module.
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Proof. 1. Recall that there are bundle maps π1 : ξ⊕η → ξ and π2 : ξ⊕η →
η, which are corresponding projections on fibers. Consider the map

θ : Γ(ξ ⊕ η) −→ Γ(ξ)⊕ Γ(η)

s 7−→ (π1 ◦ s, π2 ◦ s).

This is a well-defined map. We claim that this is C(B)-linear. Indeed, we

see that for f ∈ C(B), we have

θ(s+ ft) = (π1(s+ ft), π2(s+ ft))

= (π1 ◦ s+ fπ1 ◦ t, π2 ◦ s+ fπ2 ◦ t)

= θ(s) + fθ(t),

as required. We now show that this is a bijection. Indeed, consider the

map

κ : Γ(ξ)⊕ Γ(η) −→ Γ(ξ ⊕ η)

(s, t) 7−→ s⊕ t

where s ⊕ t : B → E1 ⊕ E2 is the section given by b 7→ (s(b), t(b)) ∈
E1,b ⊕E2,b. We first show that this is indeed a continuous section of ξ ⊕ η.

Let U ⊆ B be a common local trivialization of ξ and η. We then have the

following commutative triangle:

p−1(U) U ×Rn ⊕Rm

U

p

h1⊕h2

π1
s⊕t

where h1 : U × Rn → p−1
1 (U) and h2 : U × Rm → p−1

2 (U) are trivializa-

tions of ξ and η respectively and thus by the theory of continuous functors

(Chapter 3, [3]), h1⊕h2 forms local trivialization of ξ⊕ η. As h1⊕h2 is an

isomorphism, therefore to show continuity of s ⊕ t, it is sufficient to show

that (h1 ⊕ h2)
−1 ◦ (s⊕ t) : U → U × (Rn⊕Rm) is continuous. Indeed, this

map is continuous as it is given by b 7→ (b, h−1
1,b(s(b)), h

−1
2,b(t(b))) where are

all components are continuous maps. Hence s⊕ t is a continuous section of

ξ ⊕ η and thus κ is well-defined. It is clear that κ ◦ θ = id and θ ◦ κ = id,

hence θ is an isomorphism of C(B)-modules, as required.

2. (⇒) Suppose ξ = (E, p,B) is trivial of rank n. We wish to show that

Γ(ξ) is free of rank n. Indeed, we have n-sections s1, . . . , sn ∈ Γ(ξ) which
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are nowhere dependent. We claim that these form a free C(B)-basis of Γ(ξ).

To this end, take ci ∈ C(B) such that c1s1 + · · ·+ cnsn = 0 in Γ(ξ). Hence

for any b ∈ B, we get
∑

i ci(b)si(b) = 0 and by linear independence of si(b),

it follows that all ci(b) = 0. Hence ci = 0, as required, therefore si are lin-

early independent. Next we have to show that Γ(ξ) is spanned by s1, . . . , sn.

Indeed, if s ∈ Γ(ξ), then for any b ∈ B, we have s(b) =
∑

i ci(b)si(b). We

need only show that each ci : B → R is continuous. As Eb = Rn is spanned

by {si(b)}, s : B → B ×Rn maps b 7→ (b, c1(b), . . . , cn(b)) and hence each

ci is continuous by continuity of s, as required.

(⇐) Suppose Γ(ξ) is free of rank n. Then there are sections s1, . . . , sn ∈
Γ(ξ) which forms a free basis. Consequently, they are linearly independent

and hence for each b ∈ B, the vectors s1(b), . . . , sn(b) are linearly indepen-

dent. We have thus found n-sections of ξ which are nowhere dependent.

3. By item 1, Γ(ξ ⊕ η) ∼= Γ(ξ)⊕ Γ(η). By item 2, Γ(ξ ⊕ η) is free. Hence,

Γ(ξ) is a direct summand of a free C(B)-module, hence projective. The

module Γ(ξ) is finitely generated since there is a surjection from a finitely

generated free C(B)-module: Γ(ξ ⊕ η) ↠ Γ(ξ). □

Remark 2.3. It follows from Lemma 2.2 that the global sections functor

Γ on VB⊕(B) maps any vector bundle to a finitely generated projective

C(B)-module. Thus, we have a functor

Γ : VB⊕(B) −→ Proj(C(B))

as required in the statement of Theorem 1.1.

3 Projectors & image functor

Let C be a category. We define a projector in C to be an idempotent

endomorphism f : C → C of an object C ∈ C, i.e. f ◦ f = f . A map of

projectors is a commutative square in C where horizontal maps are same:

C C ′

C C ′

h

f f ′

h

.

We denote the category of projectors of C as Pro(C). The following is a

lemma of interest to us.
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Lemma 3.1. Let Γ : C → D be an equivalence of catgories. Then the

functor

Γ̃ : Pro(C) −→ Pro(D)

which maps a projector f : C → C to a projector Γ(f) : Γ(C) → Γ(C) is

also an equivalence of categories.

Proof. Let f : C → C and g : C ′ → C ′ be two projectors and suppose

h, k : f → g are two maps such that Γ(h) = Γ(k) : Γ(f) → Γ(g). It

follows from faithfulness of Γ that h = k. This shows that Γ̃ is faithfull. If

φ : Γ(f) → Γ(g) is a map of projectors inD, then φ is a map Γ(C) → Γ(C ′).

It follows by fullness of Γ that there exists h : C → C ′ such that Γ(h) = φ,

as required. □

Construction 3.2 (Image functor-1). Let R be a commutative ring with

1. We construct a functor

Im (−) : Pro(Free(R)) −→ Proj(R)

which is full and essentially surjective. This functor on a projector φ :

M → M gives Im (φ), which is clearly a projective module. On a map of

projectors

M N

M N

β

φ ψ

β

Im (β) : Im (φ) → Im (ψ) is the restriction of β on Im (φ) since M =

Im (φ) ⊕ Ker (φ) and N = Im (ψ) ⊕ Ker (ψ). We first show that this is

essentially surjective. Indeed, if P is a f.g. projective R-module, then M ∼=
P ⊕Q whereM is a free R-module of finite rank. Thus φ :M ↠ P ↪→M is

the required projection such that Im (φ) ∼= P . To see that this is full, take

any R-linear map β : P → Q of projective modules. Let φ : M → M and

ψ : N → N be projectors corresponding to P and Q respectively. Then

M = P ⊕Ker (φ) and N = Q⊕Ker (ψ). Define a map of projectors given

by the following square:

P ⊕Ker (φ) Q⊕Ker (ψ)

P ⊕Ker (φ) Q⊕Ker (ψ)

β⊕0

φ ψ

β⊕0

.
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Clearly, the functor Im (−) on β⊕ 0 gives the map β : P → Q, as required.

This shows that Im (−) is full, as required.

We next construct a functor from a projector of trivial bundle to vector

bundles. To this, we first need to observe that a projector of trivial bundles

is of locally constant rank, so that its image is a vector bundle.

Lemma 3.3. A projector f : ξ → ξ of any bundle ξ = (E, p,B) of rank n

is of locally constant rank.

Proof. As f ◦ f = f , therefore f ◦ (id− f) = 0 where id is the identity map

of E. Thus, for each b ∈ B, we have dim(Im (fb)) + dim(Im (id− fb)) =

dimEb = n. Note that Im (id− fb) = Ker (fb). By upper semi-continuity of

rank function, it follows that n− dim(Im (id− fb)) is lower-semicontinous.

It follows that dim Im (fb) is continuous and hence f is of locally constant

rank. □

Remark 3.4. By Theorem 8.2 of [2], it follows that if f : ξ → ξ is a

projector, then Im (f) is a vector bundle.

Construction 3.5 (Image functor-2). Consider the mapping

Im (−) : Pro(VBtriv(B)) → VB⊕(B)

mapping a projector on trivial bundle f : ξ → ξ to the image bundle Im (f).

On a map of projectors

ξ η

ξ η

h

f g

h

,

we get an induced map h : Im (f) → Im (g), which is a bundle map. Note

that we have the following split exact sequence of vector bundles:

0 Ker (f) ξ Im (f) 0
f

f

.

Consequently, ξ ∼= Ker (f) ⊕ Im (f). This shows that Im (f) is a direct

summand of a trivial bundle and hence lies in VB⊕(B), as required. This

defines the desired functor Im (−).

Our next claim is that the following diagram commutes:
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Proposition 3.6. Let B be any topological space. Then the following dia-

gram commutes:

Pro(VBtriv(B)) Pro(Free(C(B)))

VB⊕(B) Proj(C(B))

Γ̃

Im(−) Im(−)

Γ

where Γ̃ is the functor induced on projectors from the functor Γ : VBtriv(B) →
Free(C(B)).

Proof. Let f : ξ → ξ be a projector for a trivial bundle ξ of rank n. We wish

to show that Im (Γ(f)) = Γ(Im (f)), where Im (f) is the image bundle of f .

Pick s ∈ Γ(Im (f)). Then, f ◦ s is a section in Γ(ξ) such that Γ(f)(f ◦ s) =
f ◦f ◦s = f ◦s ∈ Im (f). But f |Im(f) = id by above splitting in Construction

3.5, thus f ◦ s = s. It follows that Γ(Im (f)) ⊆ Im (Γ(f)). Conversely, if

f ◦ t ∈ Im (Γ(f)) for some t ∈ Γ(ξ), then clearly f(t(b)) ∈ Im (fb) for each

b ∈ B, as required. This completes the proof. □

4 Proof of Swan’s theorem

We now bring all the ideas together. We first show that global sections

is already a faithful functor on vector bundles. This is the only place where

we will use the completely regular hypothesis.

Lemma 4.1. Let B be a completely regular space. Then the global sections

functor is a faithful functor between finite rank vector bundles on B which

are direct summands of a finite rank trivial bundle and finitely generated

projective C(B)-modules:

Γ : VB⊕(B) −→ Proj(C(B)).

Proof. By Remark 2.3, this functor is well-defined. Let ξ = (E, p,B) and

η = (E′, p′, B) be rank n and m bundles respectively. We wish to show

that the following is an injection:

Γ : HomVB(B) (ξ, η) −→ HomProj(C(B)) (Γ(ξ),Γ(η)).

Indeed, suppose Γ(f) = Γ(g) for f, g : ξ → η. Pick any common local

trivialization U ⊆ B for both the bundles. We claim that

Γ(f |p−1(U)) = Γ(g|p−1(U))
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as homomorphisms Γ(ξ|U ) → Γ(η|U ). Indeed, let s : U → p−1(U) be a

section in Γ(ξ|U ). We wish to show that f |p−1(U) ◦ s = g|p−1(U) ◦ s. Pick

any u0 ∈ U . As B is completely regular, therefore there exists a continuous

map ρ : B → [0, 1] such that ρ(B − U) = 0 and ρ(u0) = 1. It follows

that ρ · s : B → E is a section in Γ(ξ). Thus f ◦ (ρ · s) = g ◦ (ρ · s). It

follows that f ◦ (ρ(u0)s(u0)) = g ◦ (ρ(u0)s(u0)) from which it follows that

f ◦s(u0) = g ◦s(u0). As u0 ∈ U is arbitrary, thus f |p−1(U) ◦s = g|p−1(U) ◦s,
as required.

Note that f |p−1(U) , g|p−1(U) : p
−1(U) → p′−1(U) is a map of trivial bun-

dles hence by the equivalence in Proposition 2.1, it follows that f |p−1(U) =

g|p−1(U). As U is arbitrary trivializing neighborhood, thus f = g, as re-

quired. □

To complete the proof of Theorem 1.1, we need only show that Γ is full

and it is essentially surjective. This will now follow from discussions in past

few sections.

Proof of Theorem 1.1. From Lemma 4.1, the global sections functor is al-

ready faithful. By Proposition 3.6, Γ : VB⊕(B) → Proj(C(B)) is essen-

tially surjective since Im (−) : Pro(Free(C(B))) → Proj(C(B)) is essen-

tially surjective, Γ̃ is equivalence and the diagram commutes. Finally to

show fullness, pick any homomorphism of modules h : Γ(ξ) → Γ(η) for two

bundles ξ, η ∈ VB⊕(B). As Im (−) : Pro(Free(C(B))) → Proj(C(B)) is

full, therefore there exists a map of projectors

M N

M N

h̃

φ ψ

h̃

where M,N are free of finite rank, Im (φ) = Γ(ξ) and Im (ψ) = Γ(η). By

equivalence of of Γ̃ (Lemma 3.1), there is a unique projector map

µ ν

µ ν

h′

f g

h′

where µ and ν are trivial bundles of finite rank such that Γ(µ) = M ,

Γ(ν) = N and similarly for maps. By commutativity of Proposition 3.6, it
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follows that the bundle map h′ : Im (f) → Im (g) maps to h : Γ(ξ) → Γ(η)

under the functor Γ, as required. □
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