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1.1. A GUIDING EXAMPLE 5

1.1 A guiding example

Let X be a compact Hausdorff topological space. In this section we would like to portray the main
point of scheme theory in the case of space X, that is, one can study the geometry over "base"
space completely by studying the algebra of ring of suitable functions over it. In particular, we
would like to establish the following result.

Proposition 1.1.0.1. Let X be a compact Hausdorff topological space. Denote R to be the ring of continuous
real-valued functions on X under pointwise addition and multiplication and denote mSpec (R) to be the
set of maximal ideals of R. Then,

1. We have a set bijection:

mSpec (R) = X.
2. We have that mSpec (R) and X are isomorphic as topological spaces:
mSpec (R) = X
where mSpec (R) is given its Zariski topology.

Proof. 1. Let z € X be an arbitrary point. Denote m;, := {f € R | f(z) = 0} to be the vanishing
ideal of point z. This ideal is maximal because the quotient R/m; = R via the map f+m, — f(z).
Indeed, it is a valid ring homomorphism and is surjective by virtue of the continuous map constant
at a point in R. Moreover, if f(z) = g(z) for f,g € R, then f — g € my and hence f + m, = g+ m,
so it is injective as well. Now consider the function:

¢ : X — mSpec (R)

T myg.

We claim that ¢ is bijective. To see injectivity, suppose m, = m, for z,y € X. Then, we have that
R/m,; = R/m, = R. This tells us that for each f € R, f(z) = f(y) € R. Now assume that z # y.
Since X is Ty, therefore {z}, {y} are two disjoint closed subspaces of X. Then, by Urysohn’s lemma
(we have that X is compact Hausdorff), we get that there exists a continuous R-valued function
f: X — Rsuch that f(z) = 0and f(y) = 1, a contradiction. Hence x = y.

Pick any maximal ideal m € mSpec (R). We show that it is kernel of evaluation at some point.
If not, then for all x € M, there exists f, € m such that f;(z) # 0. As f, : M — R is continuous,
therefore there exists an open z € U C M such that f;(y) # 0 for all y € U,. We have thus ob-
tained a cover of M by {U,}. By shrinking each Uy, if necessary, we may assume that U, C C, C V,
where C; is a compact set of M and V;, is openin M. It follows by compactness that there is a finite
cover M = |, Uz,. As M is compact Hausdorff, therefore there exists smooth bump functions
on each open Uy,. Thus we have maps p; : M — R such that p; = 1 on U,,. Consider then the map
g =Yt pif2,. This is a global smooth map g : M — R such that g(z) = Y7, pi f2,(z) # 0 as for
any x € X, there are finitely many U, containing  on which atleast one of f;, is non-zero and p;
is 1. Hence g is invertible. As fgi € m, therefore g € m and hence m = R, a contradiction. Thus «
is surjective.

2. Let us first establish that ¢ as in item 1 above is continuous. Indeed, let I < R be an ideal
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and V(I) = {m € mSpec(R) | m D I}. A closed set of mSpec (R) looks exactly like above. We
wish to show that p=(V(I)) is closed in X. It is immediate to observe by item 1 that

e (VD) = N{z € X | f(z) = 0}.

fel

Since f : X — R is continuous, so it follows that ¢~(V/(I)) is closed. This shows the continuity
of ¢ : X — mSpec (R). As X is compact and ¢ a bijective homeomorphism, it is thus sufficient to
show that mSpec (R) is Hausdorff.

Fix two points m, # m, in mSpec (R) for z # y € X. Fix two opens U,V of X such that
zeU,yeVandUNV =0. LetC = X\Uand D = X \ V. Note that CUD = X. Now
applying Urysohn’s lemma on C,D yields f : X — Rand g : X — R such that f(C) = 0,
f(D) =1and g(D) =0, g(C) = 1. Consequently, fg = 0 over X. Now consider the basic opens
D(f),D(g) € mSpec (R). As f(z) # 0since x € D, therefore D(f) > . Similarly, D(g) > y. Since
D(f)N D(g) = D(fg) = D(0) = 0, therefore = and y can be separated, as required. O

Remark 1.1.0.2. An important corollary of the above result is that we can actually distinguish
between the points of X by looking at maximal ideals of R; for z,y € X, z # y if and only if m, #
m,. This is interesting because a fundamental goal of algebraic geometry is to study geometric
properties of varieties over an algebraically closed field k¥ and dominant maps between them. A
fundamental equivalence tells that this is equivalent to studying the ring of regular functions over
such a variety. Moreover, this ring recovers the important topology on the variety (there can be
atleast two topologies on the variety if we are in, say C). Hence one motivation to undergo this
switch of viewpoint, where we try to do everything algebraically is that 1) we can completely
recover the points of the variety and the relevant topology on it and that 2) we have a broad
generalization of algebro-geometric techniques and constructions to an arbitrary commutative
and unital ring R.

Caution 1.1.0.3. While in the sequel we will encounter spaces which are compact, it would rarely
(unless you are interested in Boolean rings) be the case that the spaces will be Hausdorff. However,
if one notices the way Hausdorff property is used in the above result, then one can see that if we
somehow makes sure that the space X constructed out of a ring R is such that every point of X
can be "distinguished" by functions on X in R, then you don’t need Hausdorff property. This is
precisely what will happen.

1.2 Affine schemes and basic properties

Let us first swiftly give an account of basic global constructions in scheme theory. The founda-
tional philosophy of scheme theory is to handle a space completely by the ring of globally defined
nice functions on it. This is taken to an unprecedented extreme by the definition of an affine
scheme, which tells us that one can even do geometry on the base space by the knowledge of
globally defined functions on the base space alone; you can indeed reconstruct the base space! So,
we begin with a general ring R and construct a topological space Spec (R). The way we will define
its points is by thinking of each point of this base space Spec (R) as that subset of R, each of whose
function becomes zero at a common point. One then sees that these are exactly the prime ideals of
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R. Hence, the base space Spec (R) is:
Spec(R) := {p C R | pis a prime ideal of R}.

Next thing we wish to do is to actually get a space structure on this constructed base space, that is,
a topology on Spec (R). This is, again, given with the help of the ring R. In particular, we give a
topology on Spec (R) where every closed set is given by the zero locus of collections of functions
S C R, thatis, V(S) := {p € Spec(R) | p 2 S} = {z € Spec(R) | f(z) = 0Vf € S} where the last
equation tells one how to think about the definition of V(S). This is known as Zariski topology on
Spec (R) and is defined by the following:

A C Spec(R) isclosed <= A =V(S) for some S C R.

After defining the topology on Spec (R), one is interested in interested in understanding the set
of all germs of functions at a point p € Spec (R). What are germs of functions at a point? Well,
heuristically, they are all possible ways a function can look different at the given point. So for this,
we have to atleast gather all those functions in R which takes different values at point p € Spec (R).
Clearly this is given by the quotient domain R/p. Now from this, we construct the residue field of
Spec (R) at point p, denoted k(p) := (R/p) ), that is, the fraction field of domain R/p. What does
this x(p) denotes geometrically? Well, it denotes the field of all different values a function can take
at point p € Spec (R). Now, if that is the case, then one sees that if one takes any function f € R,
then "evaluating” f at p should yield a point f(p) in x(p). Indeed, we have the natural quotient
maps:

R — R/p — k(p).
So one should see
k(p) as the field of possible values that a function f € R can take at point p.

However, we have not yet made the set of germs at a point p. The relation between two functions
of having equal germs on R at a point p is given by the heuristic that f,g € R should become
equal in some open neighborhood around p. Since we have a topology on Spec (R), so one can
actually do this formally. One will then see this that the set of all germs at point p are actually all
rational functions of R definable at p, that is, heuristically, f/g with g(p) # 0 for f,g € R. This
in our language turns out to be all the symbols of the form f/g with g ¢ p. This is exactly the
local ring R, the localization of the ring R (seen as ring of functions over Spec (R)) at the point
p € Spec (R). So

germs of functions of R at yp is R,,.

We will expand more on this when we will talk about the structure sheaf of Spec (R).

Let us now see a basic but important dictionary between the topology of space Spec (R) and
the algebra of ideals of R:

Lemma 1.2.0.1. Let R be a ring. We then have the following:
1. If a, b are two ideals of R, then V (ab) = V(a) UV (b).
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2. If {ayn} is a collection of ideals of R, then V (3, an) =, V(an).
3. If a, b are two ideals of R, then V' (a) C V(b) if and only if /a D V/b.

Proof. 1. First, let us see that V(ab) C V(a) U V(b). Take any p 2 ab. Suppose p ¢ V(a) and
p ¢ V(b). Then there exists f € a, g € b such that fg € ab C p. Thus, f € porg € p, a
contradiction in both cases. Second, it is easy to see that V' (a) UV (b) C V(ab) as if either p D a or
b C p, then since ab C aN b C a, therefore ab C p.

2. Letp D >, a,. Since ideals are abelian groups so the sum contains each a,, hence p 2 a,, for
each n, and so p € N,, V(ay,). Conversely, if p D a,, for eachn, thenp=3>,p 2D Y, ay.

3. (L = R) Since each prime ideal containing a also contains b, therefore the intersection of all
prime ideals containing a will contain the intersection of all prime ideals containing b.

(R = L) Take any prime ideal p D a. Since y/a 2 Vb, therefore p2Ob. O

1.2.1 Topological properties of Spec (R)
Let us begin by an algebraic characterization of irreducible closed subspaces of Spec (R).

Lemma 1.2.1.1. Let R be a ring and X — Spec (R) be a closed subspace. Then the following are equiva-
lent:

1. X is irreducible.

2. There is a unique point p € Spec (R) such that X =V (p).
One calls the point p the generic point of the irreducible closed subspace X .

Proof. (1. = 2.) Since X is closed therefore X = V(a) for some ideal a of R. If we assume that
X # V(p) for each prime p C R, then this holds true for points p € X as well. Hence take p € X
and consider the proper closed subset V(p) C X. Let q ¢ V(p). Then, V(q) C X as well. Hence we
get that V(p) UV (q) = V(a), which stands in contradiction to the fact that X is irreducible. Hence
there exists a prime p € Spec (R) such that X = V(p). Uniqueness is quite clear.

(2. = 1.) Suppose Y = V(a) and Z = V(b) are two closed subspaces of X = V(p) such that
X=YUZ=V(a)UV(b) =V(anb) = V(ab) (Lemma 1.2.0.1). Assume that Y, Z are proper
inside X. Then, there are two points q; € Y \ Z and q2 € Z \ Y. Algebraically, this is equivalent
to saying that q; 2 a, g1 2 band q2 2 b, g2 2 a. It follows that g1 N g2 is also a prime ideal which
contains a N b = ab. Since X = V(ab) = V(p) > p, hence it follows that q; N q2 2 p as it already
contains ab. Thus g1 N gz € V(a) N V(b) C V(p). Since V(a) NV (b) = V(a + b), hence it follows
that g1 N g2 2 a, b, which implies in particular that q; 2 a, b, a contradiction. O

Remark 1.2.1.2. The main idea of the above proof has been to first translate the topological con-
dition to algebraic, and then using the critical observation that the closed subspace V'(p) contains
point p itself.

A simple corollary of above gives all closed points of an affine scheme.

Lemma 1.2.1.3. Let R be a ring. Then
{Closed points of Spec (R)} = {Maximal ideals of R.}

Proof. Follows immediately from Lemma 1.2.1.1. O

!Such spaces where every irreducible closed set has a unique generic point are called sober spaces.
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Let us next observe a simple but important observation about topology of Spec (R).

Lemma 1.2.1.4. Let R be a ring. For f € R, define Spec (R); := {p € Spec (R) | f & p}. Then,
1. Spec(R); — Spec(R) is an open set and such open sets form a basis of the Zariski topology on
Spec (R).
2. Spec (R); < Spec (R), ifand only if f € \/Ry.
Proof. 1. Clearly Spec (R), = Spec (R) \ V(f) where we know that V(f) = {p € Spec(R) | f € p}.
Hence X is open. It is also clear that if U C Spec (R) is open, then Spec (R) \ U = V (a) is closed
and hence U = Uy, Spec (R) ;. Further, Spec (R) = Spec (R), and @ = Spec (R),,.

2. This follows from the following equivalences. Let Spec(R); < Spec(R),, then we get the
following (we implicitly use Hilbert Nullstellensatz)

Spec (R); = Spec(R), <= f(p) #0 = g(p) #0 < g(p) =0 = f(p) =0 < V(g) CV(f)
<— VRg2ORf ODRf <— fe€+/Rg.
This completes the proof. O
Next we observe the equivalent formulation of partitions of unity in the context of algebra.

Lemma 1.2.1.5. Let R be a ring. Then,
1. If U < Spec (R) is any open set given by U = Uyeg Spec (R) ; for some subset S C R, then

Spec(R)\U =V <Z Rf) .
fes

2. Spec (R) = Uyeg Spec (R) ; for some S C R if and only if the ideal of R generated by S is the whole
of R.

Proof. 1. Let U — Spec (R) be an open set. Then, p € Spec (R)\U <= p¢ U <= Vfe S, p¢
SpeC(R)f <<= VfeS fep <= pDS < peV(9).
2. Follows from 1. O

We next have an interesting observation that Spec (R) are always quasicompact?.
Lemma 1.2.1.6. Let R be a ring. Then Spec (R) is quasicompact.

Proof. Take any arbitrary basic open cover Uscg Spec (R); for some S C R. Then by Lemma
1.2.1.5,2, we get that > © . g Rf 2 1 and hence there are f1,..., fn € Ssuchthatgifi+...gnfn =1
for some g; € R. Hence Spec (R) \ Uix; = V(f1,-..,fn) = V(R) = 0. O

Next, we see the topological effects on space Spec (R) of Noetherian hypothesis on ring R.
In particular, we see that the space Spec (R) itself becomes noetherian topological space, that is, it’s
closed sets satisfies descending chain condition.

%it is customary in algebraic geometry to call the topological compactness as quasi-compactness; compactness in
algebraic geometry historically means Hausdorff and topological compactness.
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Lemma 1.2.1.7. Let R be a ring. If R is noetherian, then Spec (R) is noetherian.
Proof. Use V(=) and I(—), where I(Y) = {f € R | f € pVp € Y}. Rest is trivial. O

We next discuss few things about the irreducible subsets of a closed set of Spec (R). Let F' —
Spec (R) be a closed subset. Then we can contemplate irreducible subsets of F. Clearly, each
irreducible subset has to be in a maximal irreducible subset, which are called irreducible components
of Spec (R). We have few basic observations about irreducible components.

Lemma 1.2.1.8. Let R be a ring and F' be a closed subset of Spec (R). Then,
1. Each irreducible component of F' is closed.
2. If R is noetherian, then there are only finitely many irreducible components of Spec (R).
3. We have that

{Irreducible components of Spec (R)} = {Closed sets V (p), p is minimal prime}.

Proof. Statement 1. follows from Lemma 1.2.1.1. Statement 2. follows from Lemma 1.2.1.7 and the
fact that a noetherian topological space has only finitely many irreducible components. We now
show statement 3. If Z is an irreducible component, then it is closed and Z = V(p) by Lemma
1.2.1.1. We claim that p is a minimal prime. If not, then as every prime has a minimal prime, we
will have p’ C p such that p’ is minimal. Consequently, we get V(p') 2 V(p). An another use
of Lemma 1.2.1.1 yields that V(p’) is irreducible. But V(p) was irreducible component, giving a
contradiction. We deduce that p is a minimal prime, as required.

Conversely, if p is minimal, then V' (p) is an irreducible closed set which cannot be contained in
a larger irreducible closed set as otherwise we will have V(p’) 2 V(p) and thus, /p’ C 1/p (Lemma
1.2.0.1), but as the ideals are prime, so p’ 2 p, a contradiction to minimality. O

Note that we are already in a position to prove some algebraic statements using topological
arguments, as the following lemma shows.

Lemma 1.2.1.9. Let A be a ring and let ay, ..., a, € A generate the unit ideal in A. Then for all m > 0,
the collection o', ..., a7 € A also generates the unit ideal in A.

Proof. From Lemma 1.2.1.6, 2, it follows that {D(a;) }i=1,... » covers Spec (A). Since for any a € A,
the basic open D(a) C Spec(A) is equal to D(a™) as a prime p doesn’t contain a if and only if
it doesn’t contain any of its power. Consequently, we get that {D(a]")}i=1,...,» also forms a basic
open cover of Spec (A). An application of Lemma 1.2.1.6, 2 again proves the result. O

1.2.2 The structure sheaf Ogyec(r)

The next important thing we want to consider on Spec (R) is a sheaf of suitable nice functions over
it. This sheaf will be of utmost importance as it will not be treated as an additional structure, but
will be an integral part (in-fact, the most important part) of the definition of an affine scheme.

The question now is, what are nice functions over Spec (R) whose sheaf we should take. We
turn to classical algebraic varieties for that (one may skip the following if he/she find himself/herself
to be brave enough to face the abstraction of the structure sheaf). See Section 1.5 for more details.
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Example 1.2.2.1. (Structure sheaf of an algebraic variety) Let k be an algebraically closed field. An
important aspect of varieties is their morphism. We will display this only in the affine case. Let
X,Y be two affine varieties. To define a morphism between X and Y, we would first need to
understand the notion of reqular functions over any variety X. A function ¢ : X — k is said to be
regular if it is locally rational. That is, for each p € X, there exists an open set U > p of X and
there exists two polynomials f,g € k[z1,...,zy] such that g(q) # 0Vg € U and ¢|; = f/g. It then
follows that a regular function is continuous when X and k are equipped with its Zariski topology
(Lemma 3.1, [??] [Hartshorne]). We now define morphism of affine varieties.

A function ¢ : X — Y is said to be a morphism of varieties if
1. ¢: X — Y is continuous,
2. for each open set V' C Y and a regular map f : V — k, the map f o ¢ as below

%4
g X
-1
N e
is also a regular map.
Hence the main part of the data of a variety is the locally defined regular maps. This is what we
will take as our motivation in defining the structure sheaf over Spec (R), as this example tells us to
take care of these local functions to the base field. A question that may arise from this discussion
is how are we going to define a regular map from an open set U < Spec (R) when we don’t even

have a field. The answer is, as we discussed previously, to work with residue field at a point
instead.

We now start to define the structure sheaf of Spec (R). First, let us give the following lemma,
which reduces the burden of construction only to basis elements of Spec (R).

Lemma 1.2.2.2. Let X be a topological space and B be a basis. Let F" be an assignment over sets of B which
satisfies sheaf conditions for it. Then, F extends to a sheaf I over X.

Proof. The main observation here is that we can find the stalk of J at each point z just by the
knowledge of F', because of the basis B. Take any point € X. We see that we can get the stalk F,
as follows:

o= lim F(B).
reEBEB

Once we have the stalks, we can define the sections of J quite easily as follows. Let U C X be
an open set. Then JF(U) is defined to be the subset of [[,cyy I of those elements (s;) where there
exists a basic open cover {B;} of U and there exists elements s; € F(B;) such that s, = (s;) for
each z € B;. One can check that this satisfies the conditions of a sheaf. O

Construction 1.2.2.3. (The Ogpec(r)) Let R be a ring. By virtue of Lemma 1.2.2.2, we will define
Ospec(r) only on basic open sets of the form Spec (R) ;. Let X := Spec (R). Motivated by Example
1.2.2.1, take a basic open set Xy < X for some f € R and then we wish to consider rational
functions over X ¢. This means those functions of the form g/h for g, h € R such that h(p) # 0Vp €
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X . This is equivalent to demanding that h ¢ pVp € Xy, thatis, X 2 X. This is again equivalent
to stating that f € V'Rh by Lemma 1.2.1.4, 2. Hence f” = ah for somen € N and a € R. Thus,
we see that the notion of rational functions over X is equivalent to all functions of the form g/ f"
where g € R and n € N. Commutative algebra has an apt name for this, that is, the localization
of R at f denoted by Ry := {a/f" | a € R, n € N} which is again a ring by natural operation on
fractions (see Special Topics, ??). Thus, we should define the sections over X as:

Ox(Xf) := Ry.

We would not verify the sheaf axioms here as it is a tedious but straightforward calculation. The
sheaf Ox thus formed is called the structure sheaf on the space X. One should think of the sheaf
Ox as natural as the ring R itself. In particular we will see in the next section that it indeed is the
case.

Next, we would like to see the stalks of this sheaf Ox. To understand this, we would have
to understand the maps on sections induced by X; < X,. As we saw earlier, this is equivalent
to stating that f* = ag for some n € N and a € R. Hence, the induced map on sections are the
restriction maps of the sheaf and is given by

pxex; : By = 0x(Xy) — Ox(Xy) = Ry
b/g™ — ba™/a" g™ = ba™ [ ™.

We are now ready to calculate the stalk. Take any point € X. The stalk becomes:

:I)EXf

= lim Ry
.'ZteXf
féx

=R,

where the last equality follows from a small colimit calculation (which should really be thought
of as a definition). Hence Ox is a sheaf whose stalks are local rings. So we have a complete
description of the sheaf O x when X = Spec (R).

We finally define an affine scheme.

Definition 1.2.2.4. (Affine scheme) Let R be a ring. Then the pair (Spec (R), Ogpec(r)) is called an
affine scheme.

Remark 1.2.2.5. (Evaluation of functions) Let (Spec (R), Ospec(r)) be an affine scheme. As noted
earlier, we now see how all rational functions over Spec (R) are exactly the elements of R. In par-
ticular, since I'(Spec (R), Ospec(r)) = R1 = R. Hence if we interpret Ospec(r) as the sheaf of regular
maps over Spec (R), then R itself appears as the globally defined regular maps.
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Now take global map f € R and any point p € Spec(R). We can "evaluate" f at p via the
following composite (note that k(p) = R,/pR, = (Ry)., the last one is the fraction field of R,
obtained by localizing at 0 ideal):

F(Spec (R),oSpec(R)) — oSpec(R),p — Kl(p)

where the first map on the left is the inclusion into the direct limit and the map on right is the
natural quotient map. Algebraically, we have the following maps

R — R, — R,/pR,
given by
f f

f*—)T'—>T+PRp,

where f/1 + pR, denotes the class of all those functions in the stalk Ogpec(r),, = Ry which takes
same value at p as f does.

For completeness’ sake, we give a description of the section of the sheaf Ogpec(r) On any open
set U C Spec (R).

Lemma 1.2.2.6. Let Rbearing and (Spec (R), Ospec(r)) the associated affine scheme. Let U C Spec (R) =:
X be an open set. Then,

Ox(U) = {(sp) € H R, |Vp € U,3basicopen Xg 5 p & f/g" € Rgs.t. sq=f/g"Vq € Xg} .
peU
More concretely, we have
Ox (U)={s:U—]1,cp R | VPEU, s(p)ER, & Fopen peVCU & f,g€Rs.t. VA€V, g¢a & s(a)=F/g}-

Proof. Follows from Lemma 1.2.2.2 and Construction 1.2.2.3. O

Ring morphisms and Spec (—)

We now discuss some properties of ring morphisms and the associated map of affine schemes.
Lemma 1.2.2.7. 3 Let Abearingand f € A. Then, D(f) C Spec (A) is empty if and only if f is nilpotent.
Proof. Both sides follow immediately from the Lemma 16.1.2.9. O

We further obtain the following two results which corresponds to what happens on the level
of sheaves.

Proposition 1.2.2.8. * Let X = Spec (A) and Y = Spec (B) be two affine schemes and ¢ : A — B be a
morphism of rings.

SExercise I1.2.18, a of Hartshorne.
“Exercise I1.2.18 b,c,d of Hartshorne.
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1. The ring map ¢ : A — B is injective if and only if the corresponding map of schemes f : Y — X
yields injective map of structure sheaves, that is, > : Ox — f.Oy is injective.

2. Ifp : A — Bis injective, then f : Y — X is dominant®.

3. The ring map ¢ : A — B is surjective if and only if the corresponding map of schemes f : Y — X is
a closed immersion.

Proof. 1. (L = R) It suffices to show that f” is an injective map over basic opens of X. Pick any
g € A and consider the basic open D(g) C X. We wish to show that the map

b : Ox(D(9)) — Oy (f71(D(9)))

is an injective homomorphism. Indeed, we first observe that Ox(D(g)) & Ay and f~1(D(g)) =
D(p(g)), so that Oy (D(¢(g))) & By(g)- It follows that the map f})(g) : Ag = By, is the localiza-
tion map

»(9)

(" Ag — B‘p(g)

a . ¢)

g" o(g)™

We wish to show that the above map is injective. If p(a)/¢(g)™ = 0, then for some k € N we have
©(9)*p(a) = 0. It follows by injectivity of ¢ that g¥a = 0 in A. Consequently, we can write

a ag®

I

(R = L) As a sheaf map is injective if and only if the kernel sheaf is zero (Theorem 20.3.0.7),
where the latter is equivalent to the fact that every map on sections is injective. Consequently,
over X, we get

f% :D(0x,X) — T(Vy,Y)

Since I'(Ox, X) 2 Aand I'(Oy,Y) = B, and the map f% : A — B isjust p itself, therefore we are
done.

2. We wish to show that for any basic non-empty open D(g) C X for g € A, the intersection
D(g) N f(Y) is non-empty. We have the following equalities:

DignfY)={peX|pef(Y)&g¢nr}
={p '@ eX|qeY, g¢ v (q)}
={p' (@) eX|q€eY, o9 ¢a}
= f(D(¢(9)))-

Conequently, D(g) N f(Y') is non-empty if and only if D(¢(g)) is non-empty, which in turn implies
by Lemma 1.2.2.7 that D(g) N f(Y") is non-empty if and only if ¢(g) is not nilpotent. As g is not
nilpotent because D(g) is not empty, therefore ¢(g) is not nilpotent as ¢ is injective.

Sthat is, f has dense image.
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3. (L=1R) Letp: A = B besurjective and I < A be the kernel. We wish to show that f : Y —+ X
is a closed immersion. For that, we first need to show that f is a topological closed immersion,
that is its image is closed and is homeomorphic to it. We claim that f(Y) = V(I) C X. Indeed, for
any ¢~ 1(q) € f(Y), we have that I C ¢~(q). Thus, f(Y) C V(I). Conversely, for any p € V(I),
as ¢ is surjective and p contains I, therefore (p) € Y is a prime ideal such that ¢~ ((p)) = p, so
that g = ¢(p) € Y is such that f(p(p)) = p, hence p € f(Y).

Next, we wish to show that f is homeomorphic to its image. It suffices to show that f : ¥ —
f(Y) is a closed mapping. But this is immediate by the fact that a surjective map ¢ : A — B with
kernel I induces an order preserving isomorphism of ideals of A containing I and ideals of B by
mapping ideals of B to those of A containing I via ¢~1. Alternatively, one can see that A/I = B
and Spec (A/I) 2 V(I) = f(Y), therefore application of Spec (—) functor would do the job.

Next, we wish to show that f° : Ox — f.Oy is surjective. We can check this on a basis of
X. Let D(g) € X for some g € A. Indeed, for t € (f«Oy)(D(g)) = Oy(D(p(g)) & By, we
wish to find an open covering of D(g) say U; and s; € Ox(U;) such that f[bji(si) = t|y, for each
i. Indeed, the open set D(g) as its own covering will suffice here as Ox(D(g)) = A4 and the map
flb)(g) = pg : Ag — Byg)- As p is surjective, therefore for t = b/¢(g)" € B,,), we obtaina € A
such that ¢(a) = b and thus a/g" is mapped by ¢4 to b/¢(g)", as required.

(R=L)Let f:Y — X be a closed immersion. We wish to show that ¢ : A — B is surjec-
tive. Pick b € B. We wish to show that there exists a € A such that ¢(a) = b. As the sheaf map
f?: Ox — f.Oy is surjective, therefore there exists a basic open covering (which will be finite by
quasi-compactness of affine schemes, Lemma 1.2.1.6) namely {D(a;)}i=1,...n of X together with
sections s; € Ox(D(a;)) such that fjbj(ai)(si) € Oy (f~1(D(a;))) is the restriction of b € T'(Oy,Y) to
D(p(a:)), namely px. pp(a)(t). Aswehave Ox(D(@)) = Aq,, Oy (f7(D(a:))) = Oy (D(p(a:))) =
B4,y and that the restriction py, p(y(a;)) * ['(Ox,X) — Ox(D(a;)) is just the natural localization
map A — A,,, therefore we may identify s; = :le € Ag, and px p(q,)(b) = be B(a;)- Conse-

quently, we have for each ¢ = 1,...,n the followinig equation in Byq,)
b _ y(ci)
1 p(ai)k

It follows that we obtain an equation of the form

P(a™)b = p(cia")

for some m;,l; > 0. Taking M = max; m;, we obtain

p(a;")b = p(ds) (%)

for some d; € A.

, 2, the collection {a;}i=1,... » generates the unit ideal in A. By Lemma 1.2.1.9, it follows that the
collection {a]"}i—1,.. » also generates the unitideal in A. Consequently, we have ria*+- - -+rpay =
1 for some r; € A. Using this in (x), we yield

b=y (Z Tz'di> ,
i=1
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as required®. O

1.2.3  Ospec(r)-modules

As we pointed out in Construction 1.2.2.3, the structure sheaf Ogpe(r) should really be thought of
as natural as the ring R itself. This way of thought will be justified in this section, where we will
see that, just like we can understand a ring by understanding the category of R-modules, we can
understand the structure sheaf Ogye(r) by understanding the category of soon to be constructed
Ospec(r)-modules.

Let R be a ring and M be an R-module. Just like we underwent a "geometrification" to go
from ring R (algebra) to the locally ringed space Spec (R) (geometry), we will also "geometrify"

the notion of an R-module. This will yield us a sheaf M over Spec (R).

Definition 1.2.3.1. (M) Let Rbe a ring and M be an R-module. The following presheaf on X :=
Spec (R) generated by the following definition on basic opens

Xf — M(Xf) = Mf = M®RRf
and restrictions given by

id®pxg X

(Xf;)Xg)l—)M(X)RRg — M®RRf
defines a unique sheaf on Spec (R) corresponding to R-module M denoted M.

The above construction gives the sheaf M over R a structure of an Ospec(r)-module, that is,
a sheaf J of abelian groups where for each open U C Spec (R) the group F(U) is a Ogpec(r) (U)-

module. Since M (X t) = M ®g Ry isan Ox(Xy) = Rf-module, therefore M are basic examples of
Ospec(r)-modules.

Amapn : F — G of Ogpec(r-modules is just a sheaf morphism where for each inclusion
U — V of Spec (R), we get that the following commutes

F(V) 2 G(V)

| |

FU) = SU)

where the top horizontal map is a Ogpec(r)(V)-module homomorphism, bottom horizontal is a
Ospec(R) (U)-module homomorphism and the verticals are the restriction map of sheaves J and G,
which are also module homomorphisms w.r.t. Ospec(r) (V) = Ospec( r)(U). The latter has the fol-
lowing meaning. If M is an R-module and N is an S-module, then a map ¢ : M — N is a module
homomorphism w.r.t f : R — Sif ¢(r - m) = f(r) - p(m).

®Note that in the whole proof, we didn’t even required the fact that f : Y — X is also a topological closed immersion!
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We thus get a functor

= : Mod(R) — Mod(Ospec(r))
M+— M
f:M— Nw+— f ‘M —> N

where fx ; + My — Ny is given by localization. We may denote ﬁo/d((‘)spec( R)) = Mod(Ospec(r))
to be the full subcategory of Ogpec(r)-modules of the form M.

An explicit form of the sheaf M can be obtained by expanding the definition of the sheaf we
obtain from it’s definition on the basis.

Lemma 1.2.3.2. Let M be an R-module and consider the associated Ogpec(r)-module M. For any open
U C Spec (R), we have

]VI(U)E{S:U—)HpeU My, | VpeU, s(p)EM, & Jopen peVCU & IMEM,FER s.t. YaEV, f¢q & s(a)=m/f}
Proof. Follows from Remark 20.2.0.4. O

We now collect properties of M below.

Proposition 1.2.3.3. Let R be a ring and M, N, M; be R-modules for i € I,
1. (M)p = M, for all p € Spec (R),
2. M(Spec(R);) & My forall f € R,
3. I'(M, Spec(R)) = M.

Proof. Statement 1 follows from the alternate definition given in Lemma 1.2.3.2. Indeed one con-
siders the function

p: (JT/I/))g — M,
(U, 8)p — s(p)-

One immediately sees this is R-linear. Injectivity and surjectivity is then also trivially checked by
the above cited lemma.

Statements 3 follows from statement 2 by setting f = 1 and statement is just the Definition
1.2.3.1. O

We can also understand how Ogpe(r)-modules behave under morphism of affine schemes (see
direct and inverse image of modules at Section 3.5)

Lemma 1.2.3.4. 7 Let f : Spec(S) — Spec(R) be a morphism of affine schemes associated to map
¢ : R — S of rings. Then,
1. if N is an S-module, then f,N = rN where gN is the R-module obtained by restriction of scalars
by ¢,

"We will call it the globalized extension and restriction of scalars.
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2. if M is an R-module, then f *M m where S ® g M is the S-module obtained by extension
of scalars by .

Proof. The proof is routine with main observation being the facts that for g € R, we have (rN)q =

O

N, (g) and for q € Spec (S), we get the natural isomorphism (f *M )q = mq.

Theorem 1.2.3.5. Let R be a ring. There is an equivalence of categories between those of R-modules and
Ospec(r)-modules of the form M:

) —
MOd(R) = MOd(OSpeC(R))
F(X7_)

which moreover satisfies the following properties

1. (=) is an exact functor; if 0 - M’ — M — M" — 0 is exact, then0 - M' - M — M" — 0 is
exact,

2. (=) preserves tensor product; M @g N = M ®¢,, N,

3. (—) preserves coproducts; @;c; M; = @1 M;.
Proof. Let X = Spec (R). Consider the following map
Hompg (M, N) — Homy (M, ﬁ)
f:M—> N~ f: M~ N
nX:M—>N<—¢'r):]T/[/—>]V

Now, beginning from 7, we may show that (7x)x, = nx, for some basic open X; < X. The result
follows from the fact that n : M — N is completely characterized by the map on global sections
nx : M — N from the following square

M, 45 N

i

where the verticals are restrictions morphisms w.r.t R —+ R4 and the top horizontal is R,-module
homomorphism and bottom is R-module homomorphism.

For statement 1, by Theorem 20.3.0.8, the question is local in nature. We deduce the result then
from Lemma 16.1.2.2.

For statement 2, we proceed as follows. To define an isomorphism

S

—
nx

w:M@oXﬁ—)M@)RN

we need only define a map from the presheaf F given by U — M(U) ®¢ x(U) N(U) to M ®g N
such that on basic open sets, we have an isomorphism. Indeed, let D(f) C Spec (R) be an open
set for some f € R. We define

¢v: My ®r, Ny = (M ®g N);
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as the obvious natural isomorphism. One checks that this does define ¢ to be a sheaf map.
For statement 3, as (—) is a left adjoint, therefore it preserves all colimits. ]

Remark 1.2.3.6. We will later see that on affine schemes Spec (R), the category K’[\o/d((r)spec( R)) is
precisely the category of quasicoherent Ogpec(r)-modules, which is a class of modules of utmost
importance in algebraic geometry.

1.3 Schemes and basic properties

We can now define scheme to be a locally ringed space (see Foundational Geometry, 3) with an
affine open covering.

Definition 1.3.0.1. (Schemes) A locally ringed space (X, Ox) is a scheme if there exists an open
affine cover {(Spec (Rz), oSpeC(Ri))} of (X, Ox) such that OX|Spec(Ri) = OSpec(Ri)'

As we go along in understanding schemes, it will be more and more apparent the need of sheaf
language to talk about the "generalized functions" over the scheme X. Indeed, there is a fine in-
terrelationship between the space structure of the scheme (X, Ox) (that is, the topological space X)
and the function structure on the scheme (that is, the sheaf of functions Ox). A big part of learning
scheme theory is to understand and use this relationship between them.

We will now bring some global topological properties of schemes which reflect their affine
origins. An analogue of Lemma 1.2.1.1 holds in the general case of schemes.

Lemma 1.3.0.2. 8 Let X be a scheme. The following are equivalent.
1. S C X isaclosed irreducible subset.
2. There exists a point x € S such that {z} = S.

Proof. (1. = 2.) Let U be an affine open in X intersecting S. Then U N S is an open subset of S. As
open subsets of irreducibles are dense, therefore U N S is dense in S. Consequently, it suffices to
show that there exists a point z € U N S such that {z} = U N S. As open subsets of irreducibles
are irreducible, therefore U N § is irreducible. Replacing X by U, we may assume X is affine. The
result then follows by Lemma 1.2.1.1.

(2. = 1.) Since z € U for some open affine U C X, thus,z € UNS. Sin_ce uns giand Uis
open, therefore closure of {z} in U is same as closure of {z} in X. Now, {z} = Sbut{z} CU. It
thus follows that S C U and hence S is in an open affine. The result follows by Lemma 1.2.1.1. [

Every open subspace of a scheme is a scheme.
Lemma 1.3.0.3. Let X be a scheme and U C X be an open subspace. Then (U, O x|yy) is a scheme.

Proof. Since for an affine scheme Spec (R), the basic open Spec (R) ; = Spec (Ry) for f € R, there-
fore for an open subspace U C X and an affine open cover {U;} of X, U; N U is open in U; and
thus covered by affines of the form Spec (Ry). O

8Exercise I1.2.9 of Hartshorne.
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Write Sch to be the category of schemes and Sch/S to be the category of schemes over S.
Morphisms of schemes is merely the same concept as that of morphism of locally ringed spaces
(see Foundational Geometry, Chapter 3).

Definition 1.3.0.4. (Map of schemes) Let X and Y be two schemes. A map of underlying locally
ringed spaces (f, f!) : (X,0x) = (Y, Oy) is called a map of schemes. In a more expanded form,
f X =Y is a continuous map and fﬁ : f10y = Oxisa map of sheaves such that the induced
map (see Topics in Sheaf Theory, Chapter 20) on stalks for each z € X

1 Oy i) = Oxa

is a map of local rings, i.e., (fg)_l(mx’m) = My f(z)-

An important theorem in global study of schemes is a complete characterization of schemes
over Spec (R), which is of-course of paramount importance.

Theorem 1.3.0.5. Let X be a scheme and R be a ring. Then, there’s a natural bijection
Homgp, (X, Spec (R)) = Homging (R, I'(X, Ox)).
In other words, we have the following adjunction’

r'(-)
— > p:
Sch N Ring? .

Spec(-)

Proof. The proof will be played out in two steps. In the first one we will show the candidates for
the unit and counit of this adjunction. In the second play we will show that they indeed satisfy
the required triangle identities.

Act 1: The units and counits.

Let us first define the simpler one of them, the counit. For any R € Ring, we define a natural
transformation € : idring — I' 0 Spec() given by (note how we adjusted for the contravariant
nature of Spec (—) and I'(—))

er: R— T'(Spec(R)) 2R
f—7f

Thus, eg = idg. Hence, € = idRjnger-

Next, we define the more intricate part, which is the unit. Take any scheme X € Sch. We
define i : idgen — Spec (T') on X by
nx : X — Spec (I'(X))
zr— p=1nx(z) ={f €T(X) | fo € me}.

°This is also sometimes called the algebra-geometry duality or the fundamental duality of algebraic geometry.



1.3. SCHEMES AND BASIC PROPERTIES 21

Moreover, the map on structure sheaves is given by

(77)()b : OSpec(l"(X)) — (nX)*OX

where as the map on global sections we keep it id and on a basic open Spec ((I'(X))y) this is
defined on sections by

(100 y) * FOO1 2 Ospecniony (Spee (T(X))) ) — Ox (i (Spec (LX) )

by the unique map that is obtained in the following diagram

LX) ----» Ox(nx' ((Spec (I(X)))s))

[ ’

I'(X)

where, indeed, f € T'(X) is mapped to to an unit element in Ox(ny'((Spec (I'(X)))s because of
the following simple lemma:
(*) For alocally ringed space (X, Ox) and an open subspace U C X, f € Ox(U) is a unit if and
only if f, ¢ my C Ox 4 forallz € U.
This construction has the following properties and we give the main idea which drives each one
of them.

1. nx(z) is a prime ideal of T'(X) : This follows from m, being a maximal (hence prime) ideal of
Oxq-

2. nx is continuous : Working with basis and reducing to assumption that X = Spec (5) is affine,
we reduce to showing that {p € Spec(R) | f, ¢ m,} is open, which is true as it is equal to
(Spec(S));-

3. n:idgen — Spec () oI is a natural transformation : We wish to show that commutativity of the
natural square. For a map of schemes f : X — Y, this reduces to showing that

Ve € X, ny(f(2)) = ()" (nx())-

This further follows from the observation that for g € I'(Y), f2.(9) € m; <= fu(g f(z)) € Mz
and the latter is clearly true by the definition of maps of locally ringed spaces, where f; :
Oy,f(z) = Ox,z is the map on stalks.
Hence, we have obtained a map of schemes (nx,7%) : X — Spec (I'(X)). This is our candidate for
the unit of the adjunction.

Act 2 : nand e satisfies the triangle identities.

It follows that we wish to show that the following two diagrams commute:

I'(X) Lnx I'(Spec (I'(X))) = I'(X) Spec (R) Tpel®y Spec (I'(Spec (R))) = Spec (R)
idr o) Tér(x) idspecr lSpec(eR)
I'(X) Spec (R)

in Ring in Sch
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This follows from a simple unraveling of the maps involved in the diagram as defined in Act 1.

O
Corollary 1.3.0.6. The above adjunction restricts to the following equivalence of categories:
I'(-)
————— R op
AfSch i Ring? .
Spec(—)
O

Corollary 1.3.0.7. Let X be a scheme over Spec (R) for a ring R. Then, for any open affine Spec (S) C X,
S is an R-algebra. Consequently, all stalks O x p, are R-algebras. O

1.3.1 Basic properties

We can now observe some more basic properties.

Local rings at non-closed points

Let X be an arbitrary scheme and p € X be a non-closed point. One can show that the local ring
Ox,p is obtained by localizing local rings at closed points. Indeed, we have the following simple
observation in this direction.

Lemma 1.3.1.1. Let X be a scheme and p € X be a non-closed point. Then, Oxy is isomorphic to
localization of a local ring Ox 5 at a prime ideal, where x € X is a closed point.

Proof. Let p € X be a non-closed point and U = Spec (A) be an open affine containing p. Con-
sequently, p corresponds to a prime ideal p < A which is not maximal. Let m < A be a maximal
ideal containing p and let m € U be the corresponding closed point in X. As Ox, = A, and
Oxm = An, and since (An)p,, = Ay, therefore we have that O x  is obtained by localizing O x ,, at
a prime ideal, as required. O

Using ideas similar to above, we can also prove the following simple result.
Lemma 1.3.1.2. Let X be an integral scheme and n € X be a non-closed point. Then the fraction field of
Ox .y = K(X) where K(X) is the function field of X. O

Non-vanishing locus of a global section

We next see that how a global section of a scheme defines an open set which is the set of those
points where that element, when treated as a function, is non-zero. One then finds what the ring
of functions over this open set looks like. First, for any scheme X and any f € I'(Ox, X), define
the non-vanishing locus of f by

Xf ::{£B€X|f¢mx,$}.

We first have the following simple result about non-vanishing locus.
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Lemma 1.3.1.3. Let f : X — Spec (B) be a scheme over a ring B and let g € B. Let ¢ : B — I'(Ox, X)
be the map induced on the global sections. Then,

fH(D(g)) = Xo(g)-

Proof. Observe that x € X, if and only if p(g), ¢ mx .. As we have the following commutative
square

B —¥ 5 I(0x,X)

! !

OSpec(B),f(x) fﬁ ” OX,;::

where vertical arrows are image into the stalk, therefore we deduce that ¢(g), ¢ mx . if and only
if fg(gm) ¢ mx, As fﬁ is a local ring homomorphism, therefore fﬁ.(gm) ¢ my, if and only if
9z & Mspec(B),f(@) = f(Z)Bf(z)- As B — Ospec(B), f(z) 18 just localization map B — By, therefore
gz ¢ f(2)Bj() if and only if g ¢ f(z), thatis f(z) € D(g). This completes the proof.

Proposition 1.3.1.4. '° Let X be a scheme and f € T'(Ox, X).

1. Let U = Spec (A) be an affine open subset of X and denote f = px y(f). Then, U N Xy = D(f).
Consequently, Xy C X is an open subscheme.

2. Let X be quasicompact and a € T(Ox, X) such that px x,(a) = 0. Then, f"a = 0inT'(Ox, X) for
some n > 0.

3. Let X admit an affine open cover U; such that U; N\ U; is quasicompact. If b € Ox(Xy), then there
exists a € I'(Ox, X) and n > 0 such that f*b = px x,(a) in Ox(Xy).

4. There is an isomorphism of rings I'(Ox,, X¢) = (I'(Ox, X))

Proof. 1. We wish to show that {z € U | f, ¢ mx,} = {z € U | f ¢ z}, where z € U in latter
is treated as a prime ideal of A. The side ” C ” follows from the fact that for x € U, we have
Oxgqz & Az, mxg = zA; and the fact that the map into stalks Ox(U) — Ox 4 is given by the
canonical map A — Az, a — a/1. One further would need the commutativity of the following
diagram:

oX,w

1

Ox(U) +— I'(0x, X)

The side ” D ” also follows from the commutativity of the above triangle together with the canon-
ical isomorphisms of the local ring and its maximal ideal.

2. TODO from notebook. O

Locality of isomorphism on target

We now show a rather simple result on locality of isomorphism on target, but it is quite useful in
scenarios where one understands the map well on individual opens of target but not on the global
level.

OExercise I1.2.16 of Hartshorne.
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Proposition 1.3.1.5. Let f : X — Y be a map of schemes and Y = \J;c; U; be an open cover of Y such
that f|;-1p,) : f~YU;) = U, is an isomorphism. Then, f is an isomorphism.

Proof. TODO from notes. O

Criterion for affineness

We now show a useful criterion for a scheme to be affine. This also portrays the power of previous
result on locality of isomorphism.

Proposition 1.3.1.6. Let X be a scheme and denote A = T'(Ox, X). Then the following are equivalent:
1. X is affine,
2. there exists fi1,..., fr € Asuch that Xy, are open affine subsets of X and (fi,..., fr) = A.

Proof. TODO from notes. O
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1.4 First notions on schemes

Having defined schemes, our next goal is to bring to light some of the obvious definitions that
one can make on them. In some sense, having made the general definition of schemes, we are
now trying to go back to try and find where does varieties lie in this big world of Sch. Indeed, we
will see that the definitions introduced in the following few sections are bringing us ever closer
to define varieties as certain type of schemes, which will thus enable us to bring to light the most
important geometric notions on varieties.

1.4.1 Noetherian schemes

Definition 1.4.1.1. (Noetherian schemes) A scheme X is called locally noetherian if there exists
an affine open cover X = U,;c;U; where each U; = Spec (A4;) where A; is a noetherian ring. If
moreover, X is quasicompact, then X is called noetherian.

Remark 1.4.1.2. Since X = Spec (A) is already quasi-compact (Lemma 1.2.1.6), therefore for affine
schemes X, the notion of locally noetherian and noetherian are equal.

The only immediately important result about such schemes that one needs is that an affine
scheme is noetherian if and only if the obvious thing happens.

Lemma 1.4.1.3. Let X = Spec (A) be an affine scheme. Then, the following are equivalent:
1. X is a noetherian scheme.
2. A s a noetherian ring.

Proof. (2. = 1.) This follows from Remark 1.4.1.2 and the fact that localization of noetherian rings
are noetherian (Proposition 16.3.0.7).

(1. = 2.) Let X be noetherian. Then there is an affine open cover of X by spectra of noethe-
rian rings. Pick any ideal I < A. We shall show it is finitely generated. There is a finite cover
{Spec (Af,)}, of Spec (A) where Ay, are noetherian and f; € A. Hence we have that the ideal
IAy, of Ay, is finitely generated for all ¢ = 1,...,n. By Lemma 1.2.1.5, 2, we see that fi,..., f,
generate the whole ring A. The result then follows by Lemma 16.1.2.10. O

Example 1.4.1.4. By the Lemma 1.4.1.3, we observe that any of the variety over a field is a noethe-
rian scheme (technically, we are identifying the affine variety with its associated scheme, see Sec-
tion ??, Schemes associated to varieties). So any of your favorite variety

k[z,y, 2] . .
Spec (a:z B ) , k is algebraically closed

gives a (is a) noetherian scheme.
Our next goal is to show that a noetherian scheme is a noetherian space.
Proposition 1.4.1.5. If X is a noetherian scheme, then X is a noetherian space.

Proof. As X has a finite open affine cover by spectra of noetherian rings and such spectra are
noetherian schemes by Lemma 1.4.1.3, thus by the fact that finite union of noetherian spaces is
noetherian we can complete the proof. O
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Local rings of a locally noetherian scheme are noetherian.
Lemma 1.4.1.6. If X is locally noetherian, then Ox  is a noetherian ring.

Proof. Since localization of a noetherian ring at a prime is again noetherian by Proposition 16.3.0.7,
therefore O x , is noetherian. O

Being locally noetherian is a local property.

Proposition 1.4.1.7. Let X be a locally noetherian scheme. If Spec(A) C X is an open affine, then
Spec (A) is noetherian and thus A is a noetherian ring.

Proof. Let U; = Spec (A;) be an open cover by noetherian affine schemes (A; are noetherian). Then,
a finitely many of U; will cover Spec (A) by quasi-compactness of Spec (A), say Uy, ..., Uy. Thus
we obtain a finite basic open cover D(f;) of Spec (A) for f; € A where each D(f;) C U; for some j
such that D(f;) is also basic in U; (Lemma 1.4.4.3). As U; is noetherian, therefore if we can show
that Oy, (D(f;)) is noetherian, then we would have shown that Ay, is noetherian, which would
complete the proof by Lemma 16.3.0.8. We thus reduce to assuming X = Spec (A) noetherian
affine and to show that U = D(f) C X is noetherian for f € A.

In this case, as A is noetherian, therefore by Corollary 16.3.0.9, the ring A is noetherian, as
required. O

Another important aspect of noetherian schemes is quasi-compactness of intersection of open
affines.

Proposition 1.4.1.8. Let X be a noetherian scheme and U,V C X be two affine opens. Then U NV is
quasi-compact.

Proof. TODO O

One can reduce a lot of arguments from non-noetherian to the noetherian case using the fol-
lowing.

Proposition 1.4.1.9. Let X be a finitely presented scheme over A. Then there exists a noetherian ring
Ao — A and a finitely presented scheme X over Ag such that the base change (Xo) 4 is isomorphic to X.

1.4.2 Reduced, integral schemes and function field

The following are the definitions required, which are clearly geometric in nature.

Definition 1.4.2.1. (Reduced and integral schemes) A scheme X is said to be reduced if local rings
Ox gz for all x € X is a reduced ring; have no nilpotents. A scheme X is said to be integral if it is
reduced and irreducible as a topological space.

The one basic result that must be seen about these two types of schemes is that they are char-
acterized by algebraic properties of local sections. Thus being reduced or integral, while defined
geometrically, is concretely controlled by the algebraic properties of the structure sheaf.

Lemma 1.4.2.2. Let X be a scheme. Then,
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1. X is reduced if and only if O x (U) is a reduced ring for each open set U C X 1.
2. X is integral if and only if Ox (U) is an integral domain for each open set U C X.

Proof. 1. (L = R) Suppose for some open U C X there exists a section f € Ox(U) which is
nilpotent. Using the homomorphism Ox (U) — Ox . given by s — s,, we see that f, € Ox g isa
nilpotent element.

(R = L) Suppose X is not reduced. Hence for some germ f, € Ox, at some pointz € X is a
nilpotent where f € Ox(U) for some openz € U C X. Since f! = 0 for some n € N, we get that
f™ = 0 for some open W C U. Thus pyw (f) € Ox (W) is a nilpotent element!2.

2. (L = R) Pick any open U C X. We wish to show that Ox(U) is an integral domain. In other
words, we wish to show the proposition for the open subscheme (U, Ox|7). Replacing X by U,
we reduce to showing O x(X) is an integral domain. So let f,g € Ox(X) be such that fg = 0. We
wish to show that either f = 0 or g = 0. Suppose neither f nor g is 0 but fg = 0. It follows from
Lemma 1.2.0.1, 1, that V(f) and V(g) covers X and hence by irreducibility of X, either V/(f) = 0
or V(g) =0, thatis, f =0o0r g =0.

(R = L) We first need to show that X is reduced. Indeed, by 1. it follows immediately as inte-
gral domains are reduced. We then wish to show that X is irreducible. Indeed, if there are two
open subsets of X say U;,Us C X such that U; N Uz = 0, then we claim that Ox (U; U Uz) &
Ox(U1) x Ox(Us). Since both Ox(U;), Ox(Usz) have 0 and 1, thus Ox (U; U Uz) will have a zero-
divisor, a contradiction. Indeed, consider the following homomorphism, denoting U := U; U U,

Ox(U) — Ox(Ul) X Ox(Ug)
s — (pu,u,(8), PUs (8))-

This is injective by locality axiom and surjective by gluing axiom of sheaves. O
Corollary 1.4.2.3. Let X be a scheme. If X is integral, then all local rings O x o are integral domains.

Proof. Use Lemma 1.4.2.2, 2 together with the fact that localization of integral domains is an inte-
gral domain. O

Corollary 1.4.2.4. Let X = Spec (A) be an affine scheme. Then X is integral if and only if A is an integral
domain.

Proof. Use Lemma 1.4.2.2, 2 on global sections together to get one side. For the "only if" side, stalks
are reduced as they are integral (localizations of A) and X is irreducible as for any V (a)UV (b) = X,
we have V(ab) = X and thus ab C n where n is the intersection of all prime ideals, the nilradical
(Lemma 16.1.2.9). Since A is integral, therefore o is prime as well and hence n = 0, making ab = 0.
Since A is integral, hencea = oor b = o. ]

Remark 1.4.2.5. (Function field of an integral scheme) Let X be an integral scheme. Since X is irre-
ducible as a topological space, therefore there is a generic point n in X, i.e. a point whose closure

MExercise I1.2.3.a of Hartshorne.

2This is a very inefficient way of using the equality on stalks. Indeed, two germs are equal if and only if the repre-
sentatives are equal on some common shrinking of their domains. This is how usually people work with stalks without
being overly full of symbols.
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is the whole of X (Lemma 1.3.0.2). Now let Spec (4) C X be an affine open such that € Spec (4).
Thus, 7 is a generic point of Spec (A) as well. Hence 1 corresponds to the zero ideal of A, which is
indeed an integral domain from Lemma 1.4.2.2, 2. Since O x , = Ospec( A = A,, therefore Ox y, is
a field, called the function field of the integral scheme X and is in particular given by field of fractions
of any domain A such that open Spec (A) contains 5. We denote the function field of X as K(X)".

Using the fact that the generic point of an integral scheme X will be in every non-empty open
set, we can make some fascinating observations about the function field K (X), which thus justifies
its name.

Lemma 1.4.2.6. Let X be an integral scheme with function field K (X). Then for all x € X, the local ring
Ox g is contained in K(X).

Proof. Letz € X, 1 € X be the generic point and U = Spec (A) be an open affine in X. By Lemma
1.4.2.2,2, Ais a domain. Clearly, n € U and it corresponds to the zero ideal o < A. Further we
have Ox , = Ay, p € U is equal to the point z € U. By definition K(X) = A,. The result follows
by observing that A, C A,. O

The following lemma shows that restriction of functions in an integral scheme is injective.

Lemma 1.4.2.7. Let X be an integral scheme and U — V be an inclusion of open sets. Then, the restriction
maps p: Ox (V) = Ox(U) is an injective ring homomorphism.

Proof. By Lemma 20.3.0.2, we need only show that for any z € V and any s € Ox(V'), we have
(V,8)e = 0in Ox 4. Let W = Spec (A) be an open affine containing z. As U is open in X and
X is irreducible, therefore it is dense. Consequently, U N W is an open non-empty set in X. We
may write pyw(s) = a € A. Let D(f) € U N W be a basic open set of W. Since taking germs
commutes with restrictions, therefore we have the restriction map Ox (W) — Ox(D(f)) which is
the localization map A — Ay, which takes a — 7. As s on U is 0, therefore, s is 0 on W N U and
thus on D(f). Consequently, we have { = 0in Ay. As Ais a domain by Lemma 1.4.2.2, it follows
that a = 0in A. Thus, pyw(s) = 0, hence, (V, s); = 0in Ox 4, as required. O

Example 1.4.2.8. (Spec(Z)) Since Z is an integral domain, therefore by Corollary 1.4.2.4, X =
Spec (Z) is an integral scheme. Clearly, X as a topological space consists of all prime numbers and
a generic point given by the zero ideal o. Further, the topology is thus given by cofinite topology.
At the level of stalks, we have that for a prime p € X, Ox, = Z, and we can describe Z, as all
those rationals whose denominator is not a multiple of prime p where p = (p) as Z is a PID (it's
ED). Clearly, localizing X at the generic point 0 would yield Ox, = Q. More fascinatingly, for
a prime p = (p) in X, the residue field at point p is k(p) = Z,/pZ, = F), the finite field with p
elements!

Now for any affine scheme Spec (A), consider a map f : X — Spec(Z). By the fact that
Z is initial in category of rings, therefore Spec (Z) is terminal in the category of affine schemes
(Corollary 1.3.0.6). Since any scheme is locally affine, it further follows that Spec (Z) is terminal in
the category of schemes.

We now introduce a concept which will be used while discussing divisors.

BExercise I1.3.6 of Hartshorne.
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Definition 1.4.2.9. (Center of a valuation) Let X be an integral scheme with function field K and
v : K — G be a valuation over K with valuation ring R C K. A center of v is defined to be a point
z € X such that R dominates Ox ; in K (see Definition 16.10.1.5).
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1.4.3 (Locally) finite type schemes over k

This section is the beginning of a theme which we would like to understand intimately, schemes
over a field. This is because most of the schemes we will encounter in nature will be varieties
whose coordinate rings would be algebras over a field. Here we first understand in scheme lan-
guage the first thing about coordinate rings of varieties over k, the fact that they are finitely gen-
erated as an k-algebra. Indeed, this is what we seek from the following definition.

Definition 1.4.3.1. (Finite and locally finite type schemes over a field) Let k be a field and let
X — Spec (k) be a scheme over k. Then X is said to be locally finite type if there exists an affine
open covering {Spec (A4;) }icr of X such that each A; is a finitely generated k-algebra. Moreover,
X is said to be finite type if X is locally finite type and quasi-compact.

Example 1.4.3.2. Our hyperboloid of one sheet (introduced in Example 1.5.1.3) has the following
coordinate ring;:

klz, y, 2]
I(V(p))

where p(z,y,2) = 22 + y?> — 22 — 1, where we have chosen a = b = ¢ = 1 for simplicity. Let
b := I(V(p)). Clearly Spec (k[z,y, 2]/b) is a finite type k-scheme.

Great thing about the above definition is that it really doesn’t depend on the affine open cover
that is chosen.

Lemma 1.4.3.3. Let k be a field and X be a k-scheme. Then the following are equivalent.
1. X is of locally finite type over k.
2. For all open affine U — X, the ring O x (U) is finitely generated k-algebra.

Proof. (2. = 1.) Immediate.
(1. = 2.) We shall use Lemma 16.1.2.11 for this. O

1.4.4 Subschemes and immersions
These notions are important in what is to come next.

Definition 1.4.4.1. (Open subscheme) Let X be a scheme. An open set U C X has a canonical
scheme structure, given by (U, O x|i7). We call (U, Ox|7) an open subscheme of X.

Indeed, locally U will look affine via the open affine cover of X. We can relativize this notion
to define open immersions.

Definition 1.4.4.2. (Open immersion) A map f : X — Y of schemes is said to be an open immer-
sionif f: X — f(X) is a homeomorphism, f(X) C Y is open and f|bf(X) 1 Oy pxy = (F+O0x)1(x)
is an isomorphism.

We observe that for any point in an intersection of open subschemes is contained in some
special open subscheme. This is a very important result as this will be used as a technical tool
to allow passage from one open affine with certain properties to another open affine, all the time
while handling only basic open sets.
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Lemma 1.4.4.3. Let U = Spec (A),V = Spec (B) < X be two affine open subsets. For eachz € UNYV,
there exists an affine open subset x € W — U NV such that W = Spec (Ay) and W = Spec (By) for
some f € Aand g € B. Moreover, under the isomorphism Ay = By, the element f € Ay maps to g € By.

Proof. By replacing B by B, for some g € B, we may assume that x € V' C U. Consequently,
let f € A be such that Dy(f) C V and contains z, where Dy (f) = {p € U | f ¢ p}. We thus
have z € Dy(f) C V C U. Consider the restriction h = pyv(f) € Ox(V) = B. We claim that
Dy (h) = Dy(f). Denote ¢ : A — B obtained by V' C U. We then have that py,y = ¢ and h = ¢(f).
Thus g € Dy(h) <= h¢q < o(f) ¢q < f ¢ ¢ '(q). Aseachp € Dy(f)is p~'(q) for
some q € V, therefore we are done. The last statement is immediate from above. O

Closed subschemes are defined in not that obvious way in which we have defined open sub-
schemes, but at any rate, they are natural. We motivate the need for ideal sheaves as follows.
Let X be a scheme. Suppose a closed subset C — X intersects some collection of affine opens
{Spec (A;)} and moreover it happens that C N Spec (4;) = C N Spec (4;) for some ¢ # j. Now by
Corollary 1.4.4.14 we may write C N Spec (4;) = Spec (A;/a;) and C N Spec (A;) = Spec (4;/a;)
for some ideals a; C A; and a; C A;. Hence, we get two different structure sheaves Ogpec(4;/a;)
and Ogpec(4,/4;) 0N on open subset of C. Thus we have to systematically track such identifications
in order to define a unique scheme structure on the closed set C. Indeed, we take the help of the
rich amount of constructions that we can make on the category of sheaves over a space (for more
information, see Section 3.5).

We first define closed immersions.

Definition 1.4.4.4. (Closed immersions) A map f : X — Y of schemes is a closed immersion if
f: X — f(X) is a homeomorphism, f(X) C Y is closed and f* : Oy — f.Ox is a surjective map.

Remark 1.4.4.5. Let f : X — Y be a closed immersion, so that f* : Oy — f,Ox is surjective. This
is equivalent to saying that for each point z € X, the map on stalks (see Theorem 20.3.0.6 and
Lemma 20.5.0.5)

f;’(z) O0vf@) — Oxe

is surjective. Observe that the above map is NOT the usual map on stalks [ Oy t2) = Ox.a-
Further observe that since f" is surjective, therefore we have an ideal (see Section 3.5, Global alge-
bra for more details) J = Ker ( fb) < Oy. We will later see that a closed subscheme is completely
determined by this ideal sheaf and in-fact these ideal sheaves gives us a family of good examples
of what will later be called quasicoherent modules over a scheme.

Remark 1.4.4.6. Let f : X — Y be a closed immersion. Then, the map ' 0y = fiOx is
surjective. Pick any z € X. Since we have the following commutative square for any open set
Vo flx)inY

b

Oy (V) 1 0x(F1(V))

| |

Oy, f(x) Y Oxe
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It then follows from surjectivity of f* and f : X — f(X) being a homeomorphism that the local
homomorphiosm 7. Oy,f(z) = Ox,z is surjective. It is also a simple exercise to see that surjectiv-
ity of fﬂ : Oy p(e) = Ox for all z € X implies surjectivity of f" : Oy — f.Ox.

Consequently, f : X — Y is a closed immersion if and only if f is a topological closed immer-
sion and for all z € X, the local homomorphism fﬁ : (‘)y, fl@) = Ox,z is surjective.

A closed subscheme is then defined to be an isomorphism class of closed immersions.

Definition 1.4.4.7. (Closed subscheme & ideal sheaf) Let Y be a scheme. A closed subscheme of
Y is an isomorphism class of closed immersions over Y. That is, a closed subscheme is the class
[f : X — Y] of closed immersions where two closed immersions f : X -+ Y and f' : X’ — Y are

identified if there is an isomorphism X 5 X’ such that the following commutes

xX—= Xx

N

For a closed subscheme f : X — Y, we define kernel of f* : Oy — f,Ox to be the ideal sheaf
corresponding to the closed subscheme f.

Remark 1.4.4.8. Note that this definition is not "unnatural" as every closed immersion f : X —
Y defines a closed set f(X) C Y and a scheme structure over it. We then just define a closed
subscheme to be the data of this closed set together with its scheme structure that is given by f.
Clearly to make such a definition via immersions, we would need to identify those immersions
which give same scheme structure on f(X) C Y.

We define an immersion as follows.

Definition 1.4.4.9 (Immersion). A map f : X — Z is said to be an immersion if f is an open
immersion into a closed subscheme of Z.

We first understand closed subscheme structures in affine schemes.

Lemma 1.4.4.10. Let X = Spec (R) be an affine scheme. Then every ideal a < R defines a closed sub-
scheme of X.

Proof. Consider the closed set Y = V(a) C X. We endow Y with a scheme structure given by
the isomorphism Y = Spec (R/a). Now the inclusion map 4 : (Y, Ospec(r/a)) — X is clearly a
topological closed immersion. Further, i Ospec(r) = 4+ Ospec(r/a) 18 given on stalks (see Lemma
20.5.0.5) at point x € Y as Ospec(r),e — Ospec(r/a),e Which is just R; — (R/a), which is surjective.
Thus, a defines a closed subscheme structure on Y. ]

It is important to note that any other ideal b < R such that V' (a) = V(b) will define a possibly
different closed subscheme structure on the underlying topological space. This is another example
of the phenomenon that algebra has much more finer control over the geometric situation at hand.
For example, for X = Spec (k[z]), we have a, = (2") and note that V(a,) = {(z)} C X. But each
ideal a,, defines a new closed subscheme structure on the same point (z) € X.
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Properties of closed immersions

We discuss some general properties of closed immersions. We begin by observing that closed
immersions are local on target.

Proposition 1.4.4.11. Let f : X — Y be a morphism of schemes. Then the following are equivalent:
1. fisa closed immersion.
2. There is an affine open cover {V;} of Y such that f : f=1(V;) — V; is a closed immersion for each i.

Proof. (1. = 2.) As f is a closed immersion, then f(X) C Y is a closed subset and f : X — f(X)
is a homeomorphism. Pick any open affine V. = Spec(B) C Y. Then, we wish to show that
f: f7Y(V) — Visaclosed immersion. Indeed, as f is a closed immersion, therefore f : f~}(V) —
V N f(X) is a homeomorphism. As f(X) is closed in Y, therefore V N f(X) is closed in V. This
shows that g := f|;-1(y) is a topological closed immersion.

Next, we wish to show that the map ¢” : Oy — g.0 F-1(v) 1s a surjection. By Remark 1.4.4.6,
it suffices to show that for any z € f~(V), the local morphism g Ovf) = Of-1(v)q is @
surjection. Since g = f| F1V)r therefore gg = fﬁ because stalks commute with restrictions. Conse-
quently, we wish to show that fﬂ : Oy, f(z) = Oxz is a surjection, but this is true by Remark 1.4.4.6
and the fact that f is a closed immersion.

(2. = 1.) We first wish to show that f is a topological closed immersion. We first establish that
f is a homeomorphism onto its image. Indeed, we have f; = f|;—1(y;) : YV = Vin f(X) a
homeomorphism for each i. Consequently, we have a map g; : V; N f(X) — f~1(V;) which is a
continuous inverse of f;. Clearly g; forms a matching family for f(X) = UJ; V; N f(X) and thus
can be glued to form a global inverse g : f(X) — X of f. Consequently, f : X — f(X)isa
homeomorphism.

We wish to show that f(X) is closed in Y. As being a closed set is a local property, therefore
we need only check that V; N f(X) is a closed set in V;, but this is exactly what our hypothesis that
fi : f~Y(V;) = V; a closed immersion guarantees.

Finally, we wish to show, by Remark 1.4.4.6, that fﬁ : Oy, fl@) = Ox,z is a surjection for each
z € X. Indeed, as taking germs commute with restrictions, therefore 7% is the same local homo-
morphism as ( )k Ov,.f@) = Of-1(v;), where f(z) € V;, which is surjective as f; is a closed
immersion. ]

The following shows that closed immersions are stable under base change.

Proposition 1.4.4.12. ' Let f : X — Y be a closed immersion and g : Y' — Y be any other map. Then,
the map p : X xy Y' — Y is a closed immersion.

Proof. As f : X — Y is a closed immersion, therefore by Proposition 1.4.4.11, there is an affine
open cover {V; = Spec (B;)} of Y such that f : f~1(V;) — V; is a closed immersion. Consequently,
YV = f(F~Y(V;)) C V; is a closed subscheme, thus f~1(V;) = Spec(B;/b;) (see Corollary
1.4.4.14). Consider g~}(V;) C Y’ and cover it by open affines U;;. Hence, we obtain an affine
open cover of Y’ given by {U;; = Spec (BZ’ j) }i;- We claim that p~1(U;;) — Uj; is a closed immer-

sion. Indeed, by Lemma 1.6.4.8, we have p~1(U;;) & Ui; xv, f~1(V;) & Spec (Bzfj ®B, Bi/bz-) =

4Exercise I1.3.11, a of Hartshorne.
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Spec (Bz’-j / biBz’-j), which thus makes p : p~'(U;;) — Uj; equivalent to the scheme morphism
Spec (Bz’-j / biBl{j) — Spec (Bz’-j) obtained by the natural quotient homomorphism (this follows
from the tensor product square obtained by the fiber product U;; xv;, f~1(V;)). Consequently, it is
a closed immersion by Proposition 1.2.2.8, 3, as required. O

Closed subschemes and ideal sheaves

We now study closed subschemes of arbitrary schemes. To read the following results, see Section
1.9 on quasicoherent modules.

Proposition 1.4.4.13. Let X be a scheme.
1. If J < Ox is the ideal sheaf of a closed subscheme Y — X, then J is a quasicoherent O x-module. If
further X is Noetherian, then J is coherent.
2. IfJ < Ox isanideal of O x such that it is quasicoherent, then J determines a unique closed subscheme
Y — X whereY is given by Supp (Ox /7).
3. Consequently, we have a correspondence

Closed subschemes Y <—>}

Quasicoherent ideal
o {X

sheaves 3 < Ox upto
isomorphism

Proof. 1. This follows from the following facts; closed subschemes are quasicompact separated
maps, that direct image of quasicoherent is quasicoherent for such maps and that kernels of maps
of quasicoherent modules is quasicoherent. The second statement follows from reducing to affine
and using the fact that we know all quasicoherent modules over affine.

2. Pick an ideal sheaf J < Ox which is quasicoherent and let Y = Supp (0Ox/J) := {z €
X | Ox4/Jz # 0}. Then consider i : (Y,0x/J) — (X,0x). It is straightforward to see that
the kernel of #* is exactly J. We wish to show that this is a topological closed immersion and that
the map 4° is surjective. Clearly 7 is homeomorphic to its image, thus we need only show that its
image is a closed set. This is a local property, so let X = Spec (R), so that J = a for an ideal a < R.
Now Y = {p € Spec(R) | (R/a), # 0} = {p € Spec(R) | p 2 a} = V(a). Thus ¢ is a topological
closed immersion. Now the surjectivity of the map i’ : Ox — i.Ox/J follows from going to stalks
via Lemma 20.5.0.5. The uniqueness of (Y, Ox/J) w.r.t. J is clear. O

Note that the main use of quasicoherence of J in statement 2 was to make sure that the support
of Ox/Jis indeed closed. We have a straightforward, but important corollary.

Corollary 1.4.4.14. Let X = Spec (A) be an affine scheme. We have the following bijection

J-T(1,X)
~ o~
{Closed subschemes Y — X'} = {Ideals a < A}/ = .
(Spec(A/a),A/a)+a

Note that 1/4\/; = oSpec(A/a)-

Proof. Follows immediately from Proposition 1.4.4.13 and Corollary 1.9.1.12. O
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1.5 Varieties

Most examples of schemes that we will encounter in the wild are quasi-projective/affine varieties.
Therefore, we first cover them in a semi-classical setting not involving schemes. We will then
show how to interpret them as finite type separated integral schemes over the base field. This
will enable us to use the machinery we will be developing for schemes in the study of varieties.
Indeed, by the end of this section, we will comfortably replace the definition of a variety to mean
a separated, integral finite type scheme over an algebraically closed field.

1.5.1 Varieties over an algebraically closed field-I

We define varieties as zero sets of certain polynomials over an algebraically closed field k. We
assume that the reader is aware of the Zariski topology that is present over A}. Let us first give
the classical version of affine varieties.

Definition 1.5.1.1. (Affine algebraic variety) Let k be an algebraically closed field and let A} be
the affine n-space. An affine algebraic variety is an irreducible closed subset of A}.

We recall that the Hilbert Nullstellensatz further tells us that for any ideal a < k[z1,...,z,),
the zero set of the ideal Z(a) C A} is such that the ideal it generates is equal to the radical of the

ideal, I(Z(a)) = y/a.

Let A C A} be an affine algebraic set. Then, the affine coordinate ring of A is defined to be the
following finitely generated k-algebra

klxi1,..., 2]

k[A] := I(A)

where I(A) < k[z1,...,zy] is the ideal generated by A. An important simple lemma to keep in
mind for future is the following.

Lemma 1.5.1.2. Let k be an algebraically closed field. Then B is a finitely generated k-algebra without
nilpotent elements if and only if B is an affine coordinate ring of an algebraic set.

Proof. One side is trivial and the other uses Nullstellensatz. O

Example 1.5.1.3. (Hyperboloid of one sheet) A recurring example that we choose to study in this
notebook, amongst the others, is the hyperboloid of one sheet. This is given by the following
equation

In the affine space over R, A%, we can draw it as shown in Figure 1.1.
We may simply call it a hyperboloid. This hyperboloid determines an affine variety given by the
zero set of the polynomial

p(xay’z) = .’172/0,2 + y2/b2 - ‘2’(2/02 —-1le k[x7 y,Z]
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Figure 1.1: A hyperboloid of one sheet as a subvariety of A3. The parameters are a = 1.05,b =
1.05,c=1.

for any field k. Let X = V(p) C A3. The coordinate ring is given by

_ k[z,y, 2]
S )

As we shall see, we will associate to the above variety (X, Ox) a scheme by considering the spec-
trum of the coordinate ring, Spec (k[X]).

We will understand this fantastic example in much more detail as we develop more tools to
handle it.

We now define projective varieties. Consider an algebraically closed field. Then the projective
n-space is defined to be the quotient P? := A7/ ~ where (ao, .. .,an) ~ (bo, .. .,bn) if and only if
there exists A € k* such that a; = Ab; foralli =0,1...,n. A point of P} is denoted by [ag : - - - : ay]
and this presentation of the point is called the homogeneous coordinates of the point. Assuming
that the reader is aware about graded rings and the natural grading of k[xo, ..., z,], we observe
that we can talk about the zeroes of a homogeneous polynomial p(X) € k[xo, ;2n] as follows:

Z(p) = {P e Py | p(P) = 0},

Indeed, one observes that a homogeneous polynomial is zero at a point P € P in a manner which
is independent of the choice of representation of P in terms of the homogeneous coordinates of P.
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With this in our hand, we further define the zero set of a homogeneous ideal a < k[xo, ..., z,] as
Z(a):={PePy| f(P)=0Vf €T,}

where Tj, is the set of all homogeneous elements of a. Remember that an ideal in a graded ring is
homogeneous if and only if it is generated by the set of all of its homogeneous elements.

Lemma 1.5.1.4. Let k be a field. Then
1. For any two homogeneous ideals a,b < k[, ..., zy], we have Z(ab) = Z(a) U Z(b).
2. For any family of homogeneous ideals {a;} i € I}, we have Mie1Z (i) = Z (3 ;e ai)-

Proof. Straightforward unravelling of definitions. O

Therefore we obtain a topology on P} where a set Y C P} is closed if and only if Y = Z(a;) for
a homogeneous ideal a; of k[zo, ..., z,]. This is called the Zariski topology of P}.

Definition 1.5.1.5. (Projective algebraic variety) Let k£ be an algebraically closed field. An irre-
ducible algebraic set of IP} is said to be a projective algebraic variety in P}.

Let V. C PP} be a projective algebraic variety. Then the ideal generated by V in k[zo, ..., zn]
is I(V') which is the ideal generated by the following set of homogeneous polynomials: {f €
k[zo,...,xs] | f is homogeneous and f(P) = 0}.

For a projective algebraic set Y C P}, we define its homogeneous coordinate ring to be the follow-
ing k-algebra

k] o= 0 ) 7 )

where I(Y) is the homogeneous ideal of Y.

Definition 1.5.1.6 (Zero set and ideal of an algebraic set). Define for any set T' C k[zo, ;2] of ho-
mogeneous elements the zerosetof T'as Z(T) = {p € P} | f(p) =0V f € T}. Forany Y C P}, de-
fine I(Y) as the ideal in k[zo, . . ., ] generated by {f € k[zo,...,zy] | f is homogeneous & f(p) =
0VpeY}.

To distinguish between affine and projective cases, we will reserve Z(a) for zero set of a homo-
geneous ideal in projective space and V (a) as the zero set of an ideal in the affine space.

We now show that how the projective space P} is covered by n + 1 copies of affine space AZ.
Before that we discuss few maps which allows us to treat affine case projectively.

Homogenization and dehomogenization

One way to move back and from affine to projective setting is to use to fundamental functions
between k[y1,...,¥i,--.,Yn] and k[zg, . .., Tp]p.
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Definition 1.5.1.7. ((De)homogenization) Let k be an algebraically closed field and let A :=
klyi,...,yn] and B = Ek[xo,...,x,]n, the set of all homogeneous polynomials in k[zo,...,Zx).
Consider the following two functions

di :B— A
f(mOa'“axn) — f(an"'7$i—1alaxi+1a-"axn)
hi :A— B
xo Ti—1 Ti+1 x
g(yly-“ayn)'_):vfg(_"", - ’ - ,“.,_Tb>
where e is the degree of gand i = 0, ...,n. The map h; is called the if"-homogenization map and

d; is called the i"-dehomogenization map.

Using this, we can establish the result in question.
Proposition 1.5.1.8. Let k be an algebraically closed field and consider the projective n-space over k, .
Then, there exists n + 1 open subspaces say U; C P}, such that P} = Ui U; and for each i, U; is
homeomorphic to A
Proof. Consider the n + 1 open subspaces of P} as follows:

U, :=P;\ H;

where H; = Z({z;)) is the algebraic set obtained by all those points whose i" homogeneous coor-
dinate is zero. Now consider the map

(pi:Ui—>Az
ao a;—1 Q341 an
oot tanl (1, 1 1)
a; a; a; a;

One can check that this pulls closed sets to closed sets by using the i"-homogenization map.
Conversely, one can define the map

0i2A2—>Ui

(a1,...,an) — (a1,...,8;-1,1,Qi41,...,0p)

and this can again be checked to be continuous by an application of i dehomogenization map.
O

Corollary 1.5.1.9. Let k be an algebraically closed field and Y C P} be a projective algebraic variety. Then,
in the notation of Proposition 1.5.1.8, for each i = 0,...,n, Y NU; is an affine algebraic variety.

Proof. This follows from the observation that Y N U; is a closed set of U; & AY. The irreducibility
follows from the fact that open subsets of irreducible spaces are irreducible.