
Notes on Geometry

(Under heavy construction!!)

November 13, 2024



2



Contents

I The Algebraic Viewpoint 1

1 Foundational Algebraic Geometry 3
1.1 A guiding example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Affine schemes and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Schemes and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 First notions on schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5 Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6 Fundamental constructions on schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.7 Dimension & components of a scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.8 Projective schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.9 OX -modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
1.10 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
1.11 Smoothness & differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
1.12 Morphism of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
1.13 Coherent and quasicoherent sheaf cohomology . . . . . . . . . . . . . . . . . . . . . . 144

II The Arithmetic Viewpoint 147

2 Foundational Arithmetic 149
2.1 Fundamental properties of Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.2 Algebraic number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

III The Topological Viewpoint 153

3 Foundational Geometry 155
3.1 Locally ringed spaces and manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.3 Constructions on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.4 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.5 Global algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
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1.1 A guiding example

LetX be a compact Hausdorff topological space. In this section we would like to portray the main
point of scheme theory in the case of space X , that is, one can study the geometry over "base"
space completely by studying the algebra of ring of suitable functions over it. In particular, we
would like to establish the following result.

Proposition 1.1.0.1. LetX be a compact Hausdorff topological space. DenoteR to be the ring of continuous
real-valued functions on X under pointwise addition and multiplication and denote mSpec (R) to be the
set of maximal ideals of R. Then,

1. We have a set bijection:

mSpec (R) ∼= X.

2. We have that mSpec (R) and X are isomorphic as topological spaces:

mSpec (R) ∼= X

where mSpec (R) is given its Zariski topology.

Proof. 1. Let x ∈ X be an arbitrary point. Denote mx := {f ∈ R | f(x) = 0} to be the vanishing
ideal of point x. This ideal is maximal because the quotient R/mx

∼= R via the map f +mx 7→ f(x).
Indeed, it is a valid ring homomorphism and is surjective by virtue of the continuous map constant
at a point in R. Moreover, if f(x) = g(x) for f, g ∈ R, then f − g ∈ mx and hence f +mx = g +mx,
so it is injective as well. Now consider the function:

ϕ : X → mSpec (R)
x 7→ mx.

We claim that ϕ is bijective. To see injectivity, suppose mx = my for x, y ∈ X . Then, we have that
R/mx = R/my

∼= R. This tells us that for each f ∈ R, f(x) = f(y) ∈ R. Now assume that x ̸= y.
SinceX is T1, therefore {x}, {y} are two disjoint closed subspaces ofX . Then, by Urysohn’s lemma
(we have that X is compact Hausdorff), we get that there exists a continuous R-valued function
f : X → R such that f(x) = 0 and f(y) = 1, a contradiction. Hence x = y.

Pick any maximal ideal m ∈ mSpec (R). We show that it is kernel of evaluation at some point.
If not, then for all x ∈ M , there exists fx ∈ m such that fx(x) ̸= 0. As fx : M → R is continuous,
therefore there exists an open x ∈ U ⊆ M such that fx(y) ̸= 0 for all y ∈ Ux. We have thus ob-
tained a cover ofM by {Ux}. By shrinking each Ux if necessary, we may assume that Ux ⊆ Cx ⊆ Vx
whereCx is a compact set ofM and Vx is open inM . It follows by compactness that there is a finite
cover M =

⋃n
i=1 Uxi . As M is compact Hausdorff, therefore there exists smooth bump functions

on each open Uxi . Thus we have maps ρi :M → R such that ρi = 1 on Uxi . Consider then the map
g =

∑n
i=1 ρif

2
xi . This is a global smooth map g : M → R such that g(x) =

∑n
i=1 ρif

2
xi(x) ̸= 0 as for

any x ∈ X , there are finitely many Uxi containing x on which atleast one of fxi is non-zero and ρi
is 1. Hence g is invertible. As f2xi ∈ m, therefore g ∈ m and hence m = R, a contradiction. Thus α
is surjective.

2. Let us first establish that ϕ as in item 1 above is continuous. Indeed, let I ≤ R be an ideal
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and V (I) = {m ∈ mSpec (R) | m ⊇ I}. A closed set of mSpec (R) looks exactly like above. We
wish to show that ϕ−1(V (I)) is closed in X . It is immediate to observe by item 1 that

ϕ−1(V (I)) =
⋂
f∈I
{x ∈ X | f(x) = 0}.

Since f : X → R is continuous, so it follows that ϕ−1(V (I)) is closed. This shows the continuity
of ϕ : X → mSpec (R). As X is compact and ϕ a bijective homeomorphism, it is thus sufficient to
show that mSpec (R) is Hausdorff.

Fix two points mx ̸= my in mSpec (R) for x ̸= y ∈ X . Fix two opens U, V of X such that
x ∈ U , y ∈ V and U ∩ V = ∅. Let C = X \ U and D = X \ V . Note that C ∪ D = X . Now
applying Urysohn’s lemma on C,D yields f : X → R and g : X → R such that f(C) = 0,
f(D) = 1 and g(D) = 0, g(C) = 1. Consequently, fg = 0 over X . Now consider the basic opens
D(f), D(g) ⊆ mSpec (R). As f(x) ̸= 0 since x ∈ D, therefore D(f) ∋ x. Similarly, D(g) ∋ y. Since
D(f) ∩D(g) = D(fg) = D(0) = ∅, therefore x and y can be separated, as required.

Remark 1.1.0.2. An important corollary of the above result is that we can actually distinguish
between the points of X by looking at maximal ideals of R; for x, y ∈ X , x ̸= y if and only if mx ̸=
my. This is interesting because a fundamental goal of algebraic geometry is to study geometric
properties of varieties over an algebraically closed field k and dominant maps between them. A
fundamental equivalence tells that this is equivalent to studying the ring of regular functions over
such a variety. Moreover, this ring recovers the important topology on the variety (there can be
atleast two topologies on the variety if we are in, say C). Hence one motivation to undergo this
switch of viewpoint, where we try to do everything algebraically is that 1) we can completely
recover the points of the variety and the relevant topology on it and that 2) we have a broad
generalization of algebro-geometric techniques and constructions to an arbitrary commutative
and unital ring R.

Caution 1.1.0.3. While in the sequel we will encounter spaces which are compact, it would rarely
(unless you are interested in Boolean rings) be the case that the spaces will be Hausdorff. However,
if one notices the way Hausdorff property is used in the above result, then one can see that if we
somehow makes sure that the space X constructed out of a ring R is such that every point of X
can be "distinguished" by functions on X in R, then you don’t need Hausdorff property. This is
precisely what will happen.

1.2 Affine schemes and basic properties

Let us first swiftly give an account of basic global constructions in scheme theory. The founda-
tional philosophy of scheme theory is to handle a space completely by the ring of globally defined
nice functions on it. This is taken to an unprecedented extreme by the definition of an affine
scheme, which tells us that one can even do geometry on the base space by the knowledge of
globally defined functions on the base space alone; you can indeed reconstruct the base space! So,
we begin with a general ringR and construct a topological space Spec (R). The way we will define
its points is by thinking of each point of this base space Spec (R) as that subset ofR, each of whose
function becomes zero at a common point. One then sees that these are exactly the prime ideals of
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R. Hence, the base space Spec (R) is:

Spec (R) := {p ⊂ R | p is a prime ideal of R}.

Next thing we wish to do is to actually get a space structure on this constructed base space, that is,
a topology on Spec (R). This is, again, given with the help of the ring R. In particular, we give a
topology on Spec (R) where every closed set is given by the zero locus of collections of functions
S ⊆ R, that is, V (S) := {p ∈ Spec (R) | p ⊇ S} = {x ∈ Spec (R) | f(x) = 0 ∀f ∈ S} where the last
equation tells one how to think about the definition of V (S). This is known as Zariski topology on
Spec (R) and is defined by the following:

A ⊆ Spec (R) is closed ⇐⇒ A = V (S) for some S ⊆ R.

After defining the topology on Spec (R), one is interested in interested in understanding the set
of all germs of functions at a point p ∈ Spec (R). What are germs of functions at a point? Well,
heuristically, they are all possible ways a function can look different at the given point. So for this,
we have to atleast gather all those functions inRwhich takes different values at point p ∈ Spec (R).
Clearly this is given by the quotient domain R/p. Now from this, we construct the residue field of
Spec (R) at point p, denoted κ(p) := (R/p)⟨0⟩, that is, the fraction field of domain R/p. What does
this κ(p) denotes geometrically? Well, it denotes the field of all different values a function can take
at point p ∈ Spec (R). Now, if that is the case, then one sees that if one takes any function f ∈ R,
then "evaluating" f at p should yield a point f(p) in κ(p). Indeed, we have the natural quotient
maps:

R→ R/p→ κ(p).

So one should see

κ(p) as the field of possible values that a function f ∈ R can take at point p.

However, we have not yet made the set of germs at a point p. The relation between two functions
of having equal germs on R at a point p is given by the heuristic that f, g ∈ R should become
equal in some open neighborhood around p. Since we have a topology on Spec (R), so one can
actually do this formally. One will then see this that the set of all germs at point p are actually all
rational functions of R definable at p, that is, heuristically, f/g with g(p) ̸= 0 for f, g ∈ R. This
in our language turns out to be all the symbols of the form f/g with g /∈ p. This is exactly the
local ring Rp, the localization of the ring R (seen as ring of functions over Spec (R)) at the point
p ∈ Spec (R). So

germs of functions of R at p is Rp.

We will expand more on this when we will talk about the structure sheaf of Spec (R).

Let us now see a basic but important dictionary between the topology of space Spec (R) and
the algebra of ideals of R:

Lemma 1.2.0.1. Let R be a ring. We then have the following:
1. If a, b are two ideals of R, then V (ab) = V (a) ∪ V (b).
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2. If {an} is a collection of ideals of R, then V (
∑
n an) =

⋂
n V (an).

3. If a, b are two ideals of R, then V (a) ⊆ V (b) if and only if
√
a ⊇
√
b.

Proof. 1. First, let us see that V (ab) ⊆ V (a) ∪ V (b). Take any p ⊇ ab. Suppose p /∈ V (a) and
p /∈ V (b). Then there exists f ∈ a, g ∈ b such that fg ∈ ab ⊆ p. Thus, f ∈ p or g ∈ p, a
contradiction in both cases. Second, it is easy to see that V (a) ∪ V (b) ⊆ V (ab) as if either p ⊇ a or
b ⊆ p, then since ab ⊆ a ∩ b ⊆ a, therefore ab ⊆ p.
2. Let p ⊇

∑
n an. Since ideals are abelian groups so the sum contains each an, hence p ⊇ an for

each n, and so p ∈
⋂
n V (an). Conversely, if p ⊇ an for each n, then p =

∑
n p ⊇

∑
n an.

3. (L =⇒ R) Since each prime ideal containing a also contains b, therefore the intersection of all
prime ideals containing a will contain the intersection of all prime ideals containing b.
(R =⇒ L) Take any prime ideal p ⊇ a. Since

√
a ⊇
√
b, therefore p ⊇ b.

1.2.1 Topological properties of Spec (R)
Let us begin by an algebraic characterization of irreducible closed subspaces of Spec (R).

Lemma 1.2.1.1. Let R be a ring and X ↪→ Spec (R) be a closed subspace. Then the following are equiva-
lent:

1. X is irreducible.
2. There is a unique point p ∈ Spec (R) such that X = V (p).

One calls the point p the generic point of the irreducible closed subspace X1.

Proof. (1. ⇒ 2.) Since X is closed therefore X = V (a) for some ideal a of R. If we assume that
X ̸= V (p) for each prime p ⊆ R, then this holds true for points p ∈ X as well. Hence take p ∈ X
and consider the proper closed subset V (p) ⊊ X . Let q /∈ V (p). Then, V (q) ⊊ X as well. Hence we
get that V (p)∪ V (q) = V (a), which stands in contradiction to the fact that X is irreducible. Hence
there exists a prime p ∈ Spec (R) such that X = V (p). Uniqueness is quite clear.
(2. ⇒ 1.) Suppose Y = V (a) and Z = V (b) are two closed subspaces of X = V (p) such that
X = Y ∪ Z = V (a) ∪ V (b) = V (a ∩ b) = V (ab) (Lemma 1.2.0.1). Assume that Y,Z are proper
inside X . Then, there are two points q1 ∈ Y \ Z and q2 ∈ Z \ Y . Algebraically, this is equivalent
to saying that q1 ⊇ a, q1 ̸⊇ b and q2 ⊇ b, q2 ̸⊇ a. It follows that q1 ∩ q2 is also a prime ideal which
contains a ∩ b = ab. Since X = V (ab) = V (p) ∋ p, hence it follows that q1 ∩ q2 ⊇ p as it already
contains ab. Thus q1 ∩ q2 ∈ V (a) ∩ V (b) ⊆ V (p). Since V (a) ∩ V (b) = V (a + b), hence it follows
that q1 ∩ q2 ⊇ a, b, which implies in particular that q1 ⊇ a, b, a contradiction.

Remark 1.2.1.2. The main idea of the above proof has been to first translate the topological con-
dition to algebraic, and then using the critical observation that the closed subspace V (p) contains
point p itself.

A simple corollary of above gives all closed points of an affine scheme.

Lemma 1.2.1.3. Let R be a ring. Then

{Closed points of Spec (R)} ∼= {Maximal ideals of R.}

Proof. Follows immediately from Lemma 1.2.1.1.

1Such spaces where every irreducible closed set has a unique generic point are called sober spaces.
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Let us next observe a simple but important observation about topology of Spec (R).

Lemma 1.2.1.4. Let R be a ring. For f ∈ R, define Spec (R)f := {p ∈ Spec (R) | f /∈ p}. Then,
1. Spec (R)f ↪→ Spec (R) is an open set and such open sets form a basis of the Zariski topology on

Spec (R).
2. Spec (R)f ↪→ Spec (R)g if and only if f ∈

√
Rg.

Proof. 1. Clearly Spec (R)f = Spec (R) \ V (f) where we know that V (f) = {p ∈ Spec (R) | f ∈ p}.
Hence Xf is open. It is also clear that if U ⊆ Spec (R) is open, then Spec (R) \ U = V (a) is closed
and hence U =

⋃
f∈a Spec (R)f . Further, Spec (R) = Spec (R)1 and ∅ = Spec (R)0.

2. This follows from the following equivalences. Let Spec (R)f ↪→ Spec (R)g, then we get the
following (we implicitly use Hilbert Nullstellensatz)

Spec (R)f ↪→ Spec (R)g ⇐⇒ f(p) ̸= 0 =⇒ g(p) ̸= 0 ⇐⇒ g(p) = 0 =⇒ f(p) = 0 ⇐⇒ V (g) ⊆ V (f)

⇐⇒
√
Rg ⊇

√
Rf ⊇ Rf ⇐⇒ f ∈

√
Rg.

This completes the proof.

Next we observe the equivalent formulation of partitions of unity in the context of algebra.

Lemma 1.2.1.5. Let R be a ring. Then,
1. If U ↪→ Spec (R) is any open set given by U =

⋃
f∈S Spec (R)f for some subset S ⊆ R, then

Spec (R) \ U = V

(∑
f∈S

Rf

)
.

2. Spec (R) =
⋃
f∈S Spec (R)f for some S ⊆ R if and only if the ideal of R generated by S is the whole

of R.

Proof. 1. Let U ↪→ Spec (R) be an open set. Then, p ∈ Spec (R) \ U ⇐⇒ p /∈ U ⇐⇒ ∀f ∈ S, p /∈
Spec (R)f ⇐⇒ ∀f ∈ S, f ∈ p ⇐⇒ p ⊇ S ⇐⇒ p ∈ V (S).
2. Follows from 1.

We next have an interesting observation that Spec (R) are always quasicompact2.

Lemma 1.2.1.6. Let R be a ring. Then Spec (R) is quasicompact.

Proof. Take any arbitrary basic open cover
⋃
f∈S Spec (R)f for some S ⊆ R. Then by Lemma

1.2.1.5, 2, we get that
∑
f∈S Rf ∋ 1 and hence there are f1, . . . , fn ∈ S such that g1f1 + . . . gnfn = 1

for some gi ∈ R. Hence Spec (R) \
⋃n
i=1 = V (f1, . . . , fn) = V (R) = ∅.

Next, we see the topological effects on space Spec (R) of Noetherian hypothesis on ring R.
In particular, we see that the space Spec (R) itself becomes noetherian topological space, that is, it’s
closed sets satisfies descending chain condition.

2it is customary in algebraic geometry to call the topological compactness as quasi-compactness; compactness in
algebraic geometry historically means Hausdorff and topological compactness.
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Lemma 1.2.1.7. Let R be a ring. If R is noetherian, then Spec (R) is noetherian.

Proof. Use V (−) and I(−), where I(Y ) = {f ∈ R | f ∈ p∀p ∈ Y }. Rest is trivial.

We next discuss few things about the irreducible subsets of a closed set of Spec (R). Let F ↪→
Spec (R) be a closed subset. Then we can contemplate irreducible subsets of F . Clearly, each
irreducible subset has to be in a maximal irreducible subset, which are called irreducible components
of Spec (R). We have few basic observations about irreducible components.

Lemma 1.2.1.8. Let R be a ring and F be a closed subset of Spec (R). Then,
1. Each irreducible component of F is closed.
2. If R is noetherian, then there are only finitely many irreducible components of Spec (R).
3. We have that

{Irreducible components of Spec (R)} = {Closed sets V (p), p is minimal prime}.

Proof. Statement 1. follows from Lemma 1.2.1.1. Statement 2. follows from Lemma 1.2.1.7 and the
fact that a noetherian topological space has only finitely many irreducible components. We now
show statement 3. If Z is an irreducible component, then it is closed and Z = V (p) by Lemma
1.2.1.1. We claim that p is a minimal prime. If not, then as every prime has a minimal prime, we
will have p′ ⊊ p such that p′ is minimal. Consequently, we get V (p′) ⊋ V (p). An another use
of Lemma 1.2.1.1 yields that V (p′) is irreducible. But V (p) was irreducible component, giving a
contradiction. We deduce that p is a minimal prime, as required.

Conversely, if p is minimal, then V (p) is an irreducible closed set which cannot be contained in
a larger irreducible closed set as otherwise we will have V (p′) ⊋ V (p) and thus,

√
p′ ⊊

√
p (Lemma

1.2.0.1), but as the ideals are prime, so p′ ⊋ p, a contradiction to minimality.

Note that we are already in a position to prove some algebraic statements using topological
arguments, as the following lemma shows.

Lemma 1.2.1.9. Let A be a ring and let a1, . . . , an ∈ A generate the unit ideal in A. Then for all m > 0,
the collection am1 , . . . , a

m
n ∈ A also generates the unit ideal in A.

Proof. From Lemma 1.2.1.6, 2, it follows that {D(ai)}i=1,...,n covers Spec (A). Since for any a ∈ A,
the basic open D(a) ⊆ Spec (A) is equal to D(am) as a prime p doesn’t contain a if and only if
it doesn’t contain any of its power. Consequently, we get that {D(ami )}i=1,...,n also forms a basic
open cover of Spec (A). An application of Lemma 1.2.1.6, 2 again proves the result.

1.2.2 The structure sheaf OSpec(R)

The next important thing we want to consider on Spec (R) is a sheaf of suitable nice functions over
it. This sheaf will be of utmost importance as it will not be treated as an additional structure, but
will be an integral part (in-fact, the most important part) of the definition of an affine scheme.

The question now is, what are nice functions over Spec (R) whose sheaf we should take. We
turn to classical algebraic varieties for that (one may skip the following if he/she find himself/herself
to be brave enough to face the abstraction of the structure sheaf). See Section 1.5 for more details.
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Example 1.2.2.1. (Structure sheaf of an algebraic variety) Let k be an algebraically closed field. An
important aspect of varieties is their morphism. We will display this only in the affine case. Let
X,Y be two affine varieties. To define a morphism between X and Y , we would first need to
understand the notion of regular functions over any variety X . A function ϕ : X → k is said to be
regular if it is locally rational. That is, for each p ∈ X , there exists an open set U ∋ p of X and
there exists two polynomials f, g ∈ k[x1, . . . , xn] such that g(q) ̸= 0∀q ∈ U and ϕ|U = f/g. It then
follows that a regular function is continuous whenX and k are equipped with its Zariski topology
(Lemma 3.1, [??] [Hartshorne]). We now define morphism of affine varieties.

A function ϕ : X → Y is said to be a morphism of varieties if
1. ϕ : X → Y is continuous,
2. for each open set V ⊆ Y and a regular map f : V → k, the map f ◦ ϕ as below

V

ϕ−1(V ) k

ϕ f

f◦ϕ

is also a regular map.
Hence the main part of the data of a variety is the locally defined regular maps. This is what we
will take as our motivation in defining the structure sheaf over Spec (R), as this example tells us to
take care of these local functions to the base field. A question that may arise from this discussion
is how are we going to define a regular map from an open set U ↪→ Spec (R) when we don’t even
have a field. The answer is, as we discussed previously, to work with residue field at a point
instead.

We now start to define the structure sheaf of Spec (R). First, let us give the following lemma,
which reduces the burden of construction only to basis elements of Spec (R).

Lemma 1.2.2.2. Let X be a topological space and B be a basis. Let F be an assignment over sets of B which
satisfies sheaf conditions for it. Then, F extends to a sheaf F over X .

Proof. The main observation here is that we can find the stalk of F at each point x just by the
knowledge of F , because of the basis B. Take any point x ∈ X . We see that we can get the stalk Fx
as follows:

Fx := lim−→
x∈B∈B

F (B).

Once we have the stalks, we can define the sections of F quite easily as follows. Let U ⊆ X be
an open set. Then F(U) is defined to be the subset of

∏
x∈U Fx of those elements (sx) where there

exists a basic open cover {Bi} of U and there exists elements si ∈ F (Bi) such that sx = (si)x for
each x ∈ Bi. One can check that this satisfies the conditions of a sheaf.

Construction 1.2.2.3. (The OSpec(R)) Let R be a ring. By virtue of Lemma 1.2.2.2, we will define
OSpec(R) only on basic open sets of the form Spec (R)f . Let X := Spec (R). Motivated by Example
1.2.2.1, take a basic open set Xf ↪→ X for some f ∈ R and then we wish to consider rational
functions over Xf . This means those functions of the form g/h for g, h ∈ R such that h(p) ̸= 0∀p ∈
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Xf . This is equivalent to demanding that h /∈ p∀p ∈ Xf , that is, Xh ⊇ Xf . This is again equivalent
to stating that f ∈

√
Rh by Lemma 1.2.1.4, 2. Hence fn = ah for some n ∈ N and a ∈ R. Thus,

we see that the notion of rational functions over Xf is equivalent to all functions of the form g/fn

where g ∈ R and n ∈ N. Commutative algebra has an apt name for this, that is, the localization
of R at f denoted by Rf := {a/fn | a ∈ R, n ∈ N} which is again a ring by natural operation on
fractions (see Special Topics, ??). Thus, we should define the sections over Xf as:

OX(Xf ) := Rf .

We would not verify the sheaf axioms here as it is a tedious but straightforward calculation. The
sheaf OX thus formed is called the structure sheaf on the space X . One should think of the sheaf
OX as natural as the ring R itself. In particular we will see in the next section that it indeed is the
case.

Next, we would like to see the stalks of this sheaf OX . To understand this, we would have
to understand the maps on sections induced by Xf ↪→ Xg. As we saw earlier, this is equivalent
to stating that fn = ag for some n ∈ N and a ∈ R. Hence, the induced map on sections are the
restriction maps of the sheaf and is given by

ρXg ,Xf : Rg = OX(Xg) −→ OX(Xf ) = Rf

b/gm 7−→ bam/amgm = bam/fnm.

We are now ready to calculate the stalk. Take any point x ∈ X . The stalk becomes:

OX,x := lim−→
x∈Xf

OX(Xf )

= lim−→
x∈Xf

Rf

= lim−→
f /∈x

Rf

= Rx

where the last equality follows from a small colimit calculation (which should really be thought
of as a definition). Hence OX is a sheaf whose stalks are local rings. So we have a complete
description of the sheaf OX when X = Spec (R).

We finally define an affine scheme.

Definition 1.2.2.4. (Affine scheme) Let R be a ring. Then the pair (Spec (R),OSpec(R)) is called an
affine scheme.

Remark 1.2.2.5. (Evaluation of functions) Let (Spec (R),OSpec(R)) be an affine scheme. As noted
earlier, we now see how all rational functions over Spec (R) are exactly the elements of R. In par-
ticular, since Γ(Spec (R),OSpec(R)) = R1 = R. Hence if we interpret OSpec(R) as the sheaf of regular
maps over Spec (R), then R itself appears as the globally defined regular maps.
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Now take global map f ∈ R and any point p ∈ Spec (R). We can "evaluate" f at p via the
following composite (note that κ(p) = Rp/pRp

∼= (Rp)0, the last one is the fraction field of Rp

obtained by localizing at 0 ideal):

Γ(Spec (R),OSpec(R)) OSpec(R),p κ(p)

where the first map on the left is the inclusion into the direct limit and the map on right is the
natural quotient map. Algebraically, we have the following maps

R −→ Rp −→ Rp/pRp

given by

f 7−→ f

1 7−→
f

1 + pRp,

where f/1 + pRp denotes the class of all those functions in the stalk OSpec(R),p = Rp which takes
same value at p as f does.

For completeness’ sake, we give a description of the section of the sheaf OSpec(R) on any open
set U ⊆ Spec (R).

Lemma 1.2.2.6. LetR be a ring and (Spec (R),OSpec(R)) the associated affine scheme. LetU ⊆ Spec (R) =:
X be an open set. Then,

OX(U) =
{
(sp) ∈

∏
p∈U

Rp | ∀p ∈ U,∃ basic open Xg ∋ p & f/gn ∈ Rg s.t. sq = f/gn∀q ∈ Xg

}
.

More concretely, we have

OX(U)=
¶
s:U→

∐
p∈U Rp | ∀p∈U, s(p)∈Rp & ∃ open p∈V⊆U & f,g∈R s.t. ∀q∈V, g/∈q & s(q)=f/g

©
.

Proof. Follows from Lemma 1.2.2.2 and Construction 1.2.2.3.

Ring morphisms and Spec (−)

We now discuss some properties of ring morphisms and the associated map of affine schemes.

Lemma 1.2.2.7. 3 LetA be a ring and f ∈ A. Then,D(f) ⊆ Spec (A) is empty if and only if f is nilpotent.

Proof. Both sides follow immediately from the Lemma 16.1.2.9.

We further obtain the following two results which corresponds to what happens on the level
of sheaves.

Proposition 1.2.2.8. 4 Let X = Spec (A) and Y = Spec (B) be two affine schemes and ϕ : A → B be a
morphism of rings.

3Exercise II.2.18, a of Hartshorne.
4Exercise II.2.18 b,c,d of Hartshorne.
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1. The ring map ϕ : A → B is injective if and only if the corresponding map of schemes f : Y → X
yields injective map of structure sheaves, that is, f ♭ : OX → f∗OY is injective.

2. If ϕ : A→ B is injective, then f : Y → X is dominant5.
3. The ring map ϕ : A→ B is surjective if and only if the corresponding map of schemes f : Y → X is

a closed immersion.

Proof. 1. (L ⇒ R) It suffices to show that f ♭ is an injective map over basic opens of X . Pick any
g ∈ A and consider the basic open D(g) ⊆ X . We wish to show that the map

f ♭D(g) : OX(D(g)) −→ OY (f−1(D(g)))

is an injective homomorphism. Indeed, we first observe that OX(D(g)) ∼= Ag and f−1(D(g)) =
D(ϕ(g)), so that OY (D(ϕ(g))) ∼= Bϕ(g). It follows that the map f ♭D(g) : Ag → Bϕ(g) is the localiza-
tion map

ϕg : Ag −→ Bϕ(g)

a

gn
7−→ ϕ(a)

ϕ(g)n .

We wish to show that the above map is injective. If ϕ(a)/ϕ(g)n = 0, then for some k ∈ N we have
ϕ(g)kϕ(a) = 0. It follows by injectivity of ϕ that gka = 0 in A. Consequently, we can write

a

gn
= agk

gn+k
= 0.

(R ⇒ L) As a sheaf map is injective if and only if the kernel sheaf is zero (Theorem 20.3.0.7),
where the latter is equivalent to the fact that every map on sections is injective. Consequently,
over X , we get

f ♭X : Γ(OX , X) −→ Γ(OY , Y )

Since Γ(OX , X) ∼= A and Γ(OY , Y ) ∼= B, and the map f ♭X : A → B is just ϕ itself, therefore we are
done.

2. We wish to show that for any basic non-empty open D(g) ⊆ X for g ∈ A, the intersection
D(g) ∩ f(Y ) is non-empty. We have the following equalities:

D(g) ∩ f(Y ) = {p ∈ X | p ∈ f(Y ) & g /∈ p}
= {ϕ−1(q) ∈ X | q ∈ Y, g /∈ ϕ−1(q)}
= {ϕ−1(q) ∈ X | q ∈ Y, ϕ(g) /∈ q}
= f(D(ϕ(g))).

Conequently, D(g)∩f(Y ) is non-empty if and only if D(ϕ(g)) is non-empty, which in turn implies
by Lemma 1.2.2.7 that D(g) ∩ f(Y ) is non-empty if and only if ϕ(g) is not nilpotent. As g is not
nilpotent because D(g) is not empty, therefore ϕ(g) is not nilpotent as ϕ is injective.

5that is, f has dense image.
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3. (L⇒ R) Let ϕ : A→ B be surjective and I ≤ A be the kernel. We wish to show that f : Y → X
is a closed immersion. For that, we first need to show that f is a topological closed immersion,
that is its image is closed and is homeomorphic to it. We claim that f(Y ) = V (I) ⊆ X . Indeed, for
any ϕ−1(q) ∈ f(Y ), we have that I ⊆ ϕ−1(q). Thus, f(Y ) ⊆ V (I). Conversely, for any p ∈ V (I),
as ϕ is surjective and p contains I , therefore ϕ(p) ∈ Y is a prime ideal such that ϕ−1(ϕ(p)) = p, so
that q = ϕ(p) ∈ Y is such that f(ϕ(p)) = p, hence p ∈ f(Y ).

Next, we wish to show that f is homeomorphic to its image. It suffices to show that f : Y →
f(Y ) is a closed mapping. But this is immediate by the fact that a surjective map ϕ : A → B with
kernel I induces an order preserving isomorphism of ideals of A containing I and ideals of B by
mapping ideals of B to those of A containing I via ϕ−1. Alternatively, one can see that A/I ∼= B
and Spec (A/I) ∼= V (I) = f(Y ), therefore application of Spec (−) functor would do the job.

Next, we wish to show that f ♭ : OX → f∗OY is surjective. We can check this on a basis of
X . Let D(g) ⊆ X for some g ∈ A. Indeed, for t ∈ (f∗OY )(D(g)) = OY (D(ϕ(g)) ∼= Bϕ(g), we
wish to find an open covering of D(g) say Ui and si ∈ OX(Ui) such that f ♭Ui(si) = t|Ui for each
i. Indeed, the open set D(g) as its own covering will suffice here as OX(D(g)) ∼= Ag and the map
f ♭D(g) = ϕg : Ag → Bϕ(g). As ϕ is surjective, therefore for t = b/ϕ(g)n ∈ Bϕ(g), we obtain a ∈ A
such that ϕ(a) = b and thus a/gn is mapped by ϕg to b/ϕ(g)n, as required.

(R ⇒ L) Let f : Y → X be a closed immersion. We wish to show that ϕ : A → B is surjec-
tive. Pick b ∈ B. We wish to show that there exists a ∈ A such that ϕ(a) = b. As the sheaf map
f ♭ : OX → f∗OY is surjective, therefore there exists a basic open covering (which will be finite by
quasi-compactness of affine schemes, Lemma 1.2.1.6) namely {D(ai)}i=1,...,n of X together with
sections si ∈ OX(D(ai)) such that f ♭D(ai)(si) ∈ OY (f−1(D(ai))) is the restriction of b ∈ Γ(OY , Y ) to
D(ϕ(ai)), namely ρX,D(ϕ(ai))(b). As we have OX(D(ai)) ∼= Aai , OY (f−1(D(ai))) = OY (D(ϕ(ai))) ∼=
Bϕ(ai) and that the restriction ρY,D(ϕ(ai)) : Γ(OX , X) → OX(D(ai)) is just the natural localization
map A → Aai , therefore we may identify si = ci

a
ki
i

∈ Aai and ρX,D(ai)(b) = b
1 ∈ Bϕ(ai). Conse-

quently, we have for each i = 1, . . . , n the following equation in Bϕ(ai)

b

1 = ϕ(ci)
ϕ(ai)ki

.

It follows that we obtain an equation of the form

ϕ(amii )b = ϕ(ciali)

for some mi, li ≥ 0. Taking M = maximi, we obtain

ϕ(ami )b = ϕ(di) (∗)

for some di ∈ A.
, 2, the collection {ai}i=1,...,n generates the unit ideal in A. By Lemma 1.2.1.9, it follows that the

collection {ami }i=1,...,n also generates the unit ideal inA. Consequently, we have r1am1 +· · ·+rnamn =
1 for some ri ∈ A. Using this in (∗), we yield

b = ϕ

Ç
n∑
i=1

ridi

å
,
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as required6.

1.2.3 OSpec(R)-modules

As we pointed out in Construction 1.2.2.3, the structure sheaf OSpec(R) should really be thought of
as natural as the ring R itself. This way of thought will be justified in this section, where we will
see that, just like we can understand a ring by understanding the category of R-modules, we can
understand the structure sheaf OSpec(R) by understanding the category of soon to be constructed
OSpec(R)-modules.

Let R be a ring and M be an R-module. Just like we underwent a "geometrification" to go
from ring R (algebra) to the locally ringed space Spec (R) (geometry), we will also "geometrify"
the notion of an R-module. This will yield us a sheaf M̃ over Spec (R).

Definition 1.2.3.1. (M̃ ) Let R be a ring and M be an R-module. The following presheaf on X :=
Spec (R) generated by the following definition on basic opens

Xf 7−→ M̃(Xf ) :=Mf =M ⊗R Rf

and restrictions given by

(Xf ↪→ Xg) 7−→M ⊗R Rg
id⊗ρXg,Xf→ M ⊗R Rf

defines a unique sheaf on Spec (R) corresponding to R-module M denoted M̃ .

The above construction gives the sheaf M̃ over R a structure of an OSpec(R)-module, that is,
a sheaf F of abelian groups where for each open U ⊆ Spec (R) the group F(U) is a OSpec(R)(U)-
module. Since M̃(Xf ) =M ⊗RRf is an OX(Xf ) = Rf -module, therefore M̃ are basic examples of
OSpec(R)-modules.

A map η : F → G of OSpec(R)-modules is just a sheaf morphism where for each inclusion
U ↪→ V of Spec (R), we get that the following commutes

F(V ) G(V )

F(U) G(U)

ηV

ηU

where the top horizontal map is a OSpec(R)(V )-module homomorphism, bottom horizontal is a
OSpec(R)(U)-module homomorphism and the verticals are the restriction map of sheaves F and G,
which are also module homomorphisms w.r.t. OSpec(R)(V ) → OSpec(R)(U). The latter has the fol-
lowing meaning. If M is an R-module and N is an S-module, then a map φ :M → N is a module
homomorphism w.r.t f : R→ S if φ(r ·m) = f(r) · φ(m).

6Note that in the whole proof, we didn’t even required the fact that f : Y → X is also a topological closed immersion!
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We thus get a functor ‹− : Mod(R) −→Mod(OSpec(R))

M 7−→ M̃

f :M → N 7−→ f̃ : M̃ → ‹N
where f̃Xf : Mf → Nf is given by localization. We may denote flMod(OSpec(R)) ↪→ Mod(OSpec(R))
to be the full subcategory of OSpec(R)-modules of the form M̃ .

An explicit form of the sheaf M̃ can be obtained by expanding the definition of the sheaf we
obtain from it’s definition on the basis.

Lemma 1.2.3.2. Let M be an R-module and consider the associated OSpec(R)-module M̃ . For any open
U ⊆ Spec (R), we have

M̃(U)∼=
¶
s:U→

∐
p∈U Mp | ∀p∈U, s(p)∈Mp & ∃ open p∈V⊆U & ∃m∈M,f∈R s.t. ∀q∈V, f /∈q & s(q)=m/f

©
Proof. Follows from Remark 20.2.0.4.

We now collect properties of M̃ below.

Proposition 1.2.3.3. Let R be a ring and M,N,Mi be R-modules for i ∈ I ,
1.
Ä
M̃
ä
p
∼=Mp for all p ∈ Spec (R),

2. M̃(Spec (R)f ) ∼=Mf for all f ∈ R,

3. Γ(M̃, Spec (R)) ∼=M .

Proof. Statement 1 follows from the alternate definition given in Lemma 1.2.3.2. Indeed one con-
siders the function

ϕ :
Ä
M̃
ä
p
−→Mp

(U, s)p 7−→ s(p).

One immediately sees this is R-linear. Injectivity and surjectivity is then also trivially checked by
the above cited lemma.

Statements 3 follows from statement 2 by setting f = 1 and statement is just the Definition
1.2.3.1.

We can also understand how OSpec(R)-modules behave under morphism of affine schemes (see
direct and inverse image of modules at Section 3.5)

Lemma 1.2.3.4. 7 Let f : Spec (S) → Spec (R) be a morphism of affine schemes associated to map
ϕ : R→ S of rings. Then,

1. if N is an S-module, then f∗‹N ∼= R̃N where RN is the R-module obtained by restriction of scalars
by ϕ,

7We will call it the globalized extension and restriction of scalars.
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2. if M is an R-module, then f∗M̃ ∼=‰�(S ⊗RM) where S⊗RM is the S-module obtained by extension
of scalars by ϕ.

Proof. The proof is routine with main observation being the facts that for g ∈ R, we have (RN)g ∼=
Nϕ(g) and for q ∈ Spec (S), we get the natural isomorphism (f∗M̃)q ∼=‰�(S ⊗RM)q.

Theorem 1.2.3.5. Let R be a ring. There is an equivalence of categories between those of R-modules and
OSpec(R)-modules of the form M̃ :

Mod(R) flMod(OSpec(R))
(̃−)

Γ(X,−)
≡

which moreover satisfies the following properties
1. (̃−) is an exact functor; if 0 → M ′ → M → M ′′ → 0 is exact, then 0 → ›M ′ → M̃ → M̃ ′′ → 0 is

exact,
2. (̃−) preserves tensor product; ‚�M ⊗R N ∼= M̃ ⊗OX

‹N ,
3. (̃−) preserves coproducts; ‚�⊕

i∈IMi
∼=

⊕
i∈I
›Mi.

Proof. Let X = Spec (R). Consider the following map

HomR (M,N)→ HomOX

Ä
M̃, ‹Nä

f :M → N 7→ f̃ : M̃ → ‹N
ηX :M → N ←[ η : M̃ → ‹N

Now, beginning from η, we may show that (›ηX)Xg = ηXg for some basic openXg ↪→ X . The result
follows from the fact that η : M̃ → ‹N is completely characterized by the map on global sections
ηX :M → N from the following square

Mg Ng

M N

ηXg

ηX

where the verticals are restrictions morphisms w.r.t R → Rg and the top horizontal is Rg-module
homomorphism and bottom is R-module homomorphism.

For statement 1, by Theorem 20.3.0.8, the question is local in nature. We deduce the result then
from Lemma 16.1.2.2.

For statement 2, we proceed as follows. To define an isomorphism

ϕ : M̃ ⊗OX
‹N → ‚�M ⊗R N

we need only define a map from the presheaf F given by U 7→ M̃(U) ⊗OX(U) ‹N(U) to ‚�M ⊗R N
such that on basic open sets, we have an isomorphism. Indeed, let D(f) ⊆ Spec (R) be an open
set for some f ∈ R. We define

ϕU :Mf ⊗Rf Nf
∼=→ (M ⊗R N)f
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as the obvious natural isomorphism. One checks that this does define ϕ to be a sheaf map.
For statement 3, as (̃−) is a left adjoint, therefore it preserves all colimits.

Remark 1.2.3.6. We will later see that on affine schemes Spec (R), the category flMod(OSpec(R)) is
precisely the category of quasicoherent OSpec(R)-modules, which is a class of modules of utmost
importance in algebraic geometry.

1.3 Schemes and basic properties

We can now define scheme to be a locally ringed space (see Foundational Geometry, 3) with an
affine open covering.

Definition 1.3.0.1. (Schemes) A locally ringed space (X,OX) is a scheme if there exists an open
affine cover {(Spec (Ri),OSpec(Ri))} of (X,OX) such that OX|Spec(Ri)

∼= OSpec(Ri).

As we go along in understanding schemes, it will be more and more apparent the need of sheaf
language to talk about the "generalized functions" over the scheme X . Indeed, there is a fine in-
terrelationship between the space structure of the scheme (X,OX) (that is, the topological space X)
and the function structure on the scheme (that is, the sheaf of functions OX ). A big part of learning
scheme theory is to understand and use this relationship between them.

We will now bring some global topological properties of schemes which reflect their affine
origins. An analogue of Lemma 1.2.1.1 holds in the general case of schemes.

Lemma 1.3.0.2. 8 Let X be a scheme. The following are equivalent.
1. S ⊆ X is a closed irreducible subset.
2. There exists a point x ∈ S such that {x} = S.

Proof. (1. ⇒ 2.) Let U be an affine open in X intersecting S. Then U ∩ S is an open subset of S. As
open subsets of irreducibles are dense, therefore U ∩ S is dense in S. Consequently, it suffices to
show that there exists a point x ∈ U ∩ S such that {x} = U ∩ S. As open subsets of irreducibles
are irreducible, therefore U ∩ S is irreducible. Replacing X by U , we may assume X is affine. The
result then follows by Lemma 1.2.1.1.

(2. ⇒ 1.) Since x ∈ U for some open affine U ⊂ X , thus, x ∈ U ∩ S. Since U ∩ S ⊆ U and U is
open, therefore closure of {x} in U is same as closure of {x} in X . Now, {x} = S but {x} ⊆ U . It
thus follows that S ⊆ U and hence S is in an open affine. The result follows by Lemma 1.2.1.1.

Every open subspace of a scheme is a scheme.

Lemma 1.3.0.3. Let X be a scheme and U ⊆ X be an open subspace. Then (U,OX|U ) is a scheme.

Proof. Since for an affine scheme Spec (R), the basic open Spec (R)f ∼= Spec (Rf ) for f ∈ R, there-
fore for an open subspace U ⊆ X and an affine open cover {Ui} of X , Ui ∩ U is open in Ui and
thus covered by affines of the form Spec (Rf ).

8Exercise II.2.9 of Hartshorne.
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Write Sch to be the category of schemes and Sch/S to be the category of schemes over S.
Morphisms of schemes is merely the same concept as that of morphism of locally ringed spaces
(see Foundational Geometry, Chapter 3).

Definition 1.3.0.4. (Map of schemes) Let X and Y be two schemes. A map of underlying locally
ringed spaces (f, f ♯) : (X,OX) → (Y,OY ) is called a map of schemes. In a more expanded form,
f : X → Y is a continuous map and f ♯ : f−1OY → OX is a map of sheaves such that the induced
map (see Topics in Sheaf Theory, Chapter 20) on stalks for each x ∈ X

f ♯x : OY,f(x) → OX,x

is a map of local rings, i.e., (f ♯x)−1(mX,x) = mY,f(x).

An important theorem in global study of schemes is a complete characterization of schemes
over Spec (R), which is of-course of paramount importance.

Theorem 1.3.0.5. Let X be a scheme and R be a ring. Then, there’s a natural bijection

HomSch (X, Spec (R)) ∼= HomRing (R,Γ(X,OX)).

In other words, we have the following adjunction9

Sch Ringop
Γ(−)

Spec(−)

⊣ .

Proof. The proof will be played out in two steps. In the first one we will show the candidates for
the unit and counit of this adjunction. In the second play we will show that they indeed satisfy
the required triangle identities.

Act 1 : The units and counits.

Let us first define the simpler one of them, the counit. For any R ∈ Ring, we define a natural
transformation ϵ : idRing → Γ ◦ Spec () given by (note how we adjusted for the contravariant
nature of Spec (−) and Γ(−))

ϵR : R −→ Γ(Spec (R)) ∼= R

f 7−→ f.

Thus, ϵR = idR. Hence, ϵ = idRingop .

Next, we define the more intricate part, which is the unit. Take any scheme X ∈ Sch. We
define η : idSch → Spec (Γ) on X by

ηX : X −→ Spec (Γ(X))
x 7−→ p = ηX(x) := {f ∈ Γ(X) | fx ∈ mx}.

9This is also sometimes called the algebra-geometry duality or the fundamental duality of algebraic geometry.
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Moreover, the map on structure sheaves is given by

(ηX)♭ : OSpec(Γ(X)) −→ (ηX)∗OX

where as the map on global sections we keep it id and on a basic open Spec ((Γ(X))f ) this is
defined on sections by

(ηX)♭Spec((Γ(X))f) : Γ(X)f ∼= OSpec(Γ(X))((Spec (Γ(X)))f ) −→ OX(η−1X ((Spec ((Γ(X))))f ))

by the unique map that is obtained in the following diagram

Γ(X)f OX(η−1X ((Spec (Γ(X)))f ))

Γ(X)
ρ

,

where, indeed, f ∈ Γ(X) is mapped to to an unit element in OX(η−1X ((Spec (Γ(X)))f because of
the following simple lemma:

(*) For a locally ringed space (X,OX) and an open subspace U ⊆ X , f ∈ OX(U) is a unit if and
only if fx /∈ mx ⊂ OX,x for all x ∈ U .

This construction has the following properties and we give the main idea which drives each one
of them.

1. ηX(x) is a prime ideal of Γ(X) : This follows from mx being a maximal (hence prime) ideal of
OX,x.

2. ηX is continuous : Working with basis and reducing to assumption thatX = Spec (S) is affine,
we reduce to showing that {p ∈ Spec (R) | fp /∈ mp} is open, which is true as it is equal to
(Spec (S))f .

3. η : idSch → Spec () ◦Γ is a natural transformation : We wish to show that commutativity of the
natural square. For a map of schemes f : X → Y , this reduces to showing that

∀x ∈ X, ηY (f(x)) = (f ♭Y )−1(ηX(x)).

This further follows from the observation that for g ∈ Γ(Y ), f ♭Y (g) ∈ mx ⇐⇒ fx(gf(x)) ∈ mx

and the latter is clearly true by the definition of maps of locally ringed spaces, where fx :
OY,f(x) → OX,x is the map on stalks.

Hence, we have obtained a map of schemes (ηX , η♭X) : X → Spec (Γ(X)). This is our candidate for
the unit of the adjunction.

Act 2 : η and ϵ satisfies the triangle identities.

It follows that we wish to show that the following two diagrams commute:

Γ(X) Γ(Spec (Γ(X))) ∼= Γ(X) Spec (R) Spec (Γ(Spec (R))) ∼= Spec (R)

Γ(X) Spec (R)
idΓ(X)

ϵΓ(X)

ΓηX

in Ring

Spec(ϵR)
idSpec(R)

ηSpec(R)

in Sch

.
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This follows from a simple unraveling of the maps involved in the diagram as defined in Act 1.

Corollary 1.3.0.6. The above adjunction restricts to the following equivalence of categories:

AfSch Ringop
Γ(−)

Spec(−)

≡

.

Corollary 1.3.0.7. LetX be a scheme over Spec (R) for a ringR. Then, for any open affine Spec (S) ⊆ X ,
S is an R-algebra. Consequently, all stalks OX,p are R-algebras.

1.3.1 Basic properties

We can now observe some more basic properties.

Local rings at non-closed points

Let X be an arbitrary scheme and p ∈ X be a non-closed point. One can show that the local ring
OX,p is obtained by localizing local rings at closed points. Indeed, we have the following simple
observation in this direction.

Lemma 1.3.1.1. Let X be a scheme and p ∈ X be a non-closed point. Then, OX,p is isomorphic to
localization of a local ring OX,x at a prime ideal, where x ∈ X is a closed point.

Proof. Let p ∈ X be a non-closed point and U = Spec (A) be an open affine containing p. Con-
sequently, p corresponds to a prime ideal p ⪇ A which is not maximal. Let m ⪇ A be a maximal
ideal containing p and let m ∈ U be the corresponding closed point in X . As OX,p ∼= Ap and
OX,m ∼= Am, and since (Am)pm ∼= Ap, therefore we have that OX,p is obtained by localizing OX,m at
a prime ideal, as required.

Using ideas similar to above, we can also prove the following simple result.

Lemma 1.3.1.2. Let X be an integral scheme and η ∈ X be a non-closed point. Then the fraction field of
OX,η ∼= K(X) where K(X) is the function field of X .

Non-vanishing locus of a global section

We next see that how a global section of a scheme defines an open set which is the set of those
points where that element, when treated as a function, is non-zero. One then finds what the ring
of functions over this open set looks like. First, for any scheme X and any f ∈ Γ(OX , X), define
the non-vanishing locus of f by

Xf := {x ∈ X | f /∈ mX,x}.

We first have the following simple result about non-vanishing locus.



1.3. SCHEMES AND BASIC PROPERTIES 23

Lemma 1.3.1.3. Let f : X → Spec (B) be a scheme over a ring B and let g ∈ B. Let ϕ : B → Γ(OX , X)
be the map induced on the global sections. Then,

f−1(D(g)) = Xϕ(g).

Proof. Observe that x ∈ Xϕ(g) if and only if ϕ(g)x /∈ mX,x. As we have the following commutative
square

B Γ(OX , X)

OSpec(B),f(x) OX,x

ϕ

f♯x

where vertical arrows are image into the stalk, therefore we deduce that ϕ(g)x /∈ mX,x if and only
if f ♯x(gx) /∈ mX,x. As f ♯x is a local ring homomorphism, therefore f ♯x(gx) /∈ mX,x if and only if
gx /∈ mSpec(B),f(x) = f(x)Bf(x). As B → OSpec(B),f(x) is just localization map B → Bf(x), therefore
gx /∈ f(x)Bf(x) if and only if g /∈ f(x), that is f(x) ∈ D(g). This completes the proof.

Proposition 1.3.1.4. 10 Let X be a scheme and f ∈ Γ(OX , X).
1. Let U = Spec (A) be an affine open subset of X and denote f̄ = ρX,U (f). Then, U ∩Xf = D(f̄).

Consequently, Xf ⊆ X is an open subscheme.
2. Let X be quasicompact and a ∈ Γ(OX , X) such that ρX,Xf (a) = 0. Then, fna = 0 in Γ(OX , X) for

some n > 0.
3. Let X admit an affine open cover Ui such that Ui ∩ Uj is quasicompact. If b ∈ OX(Xf ), then there

exists a ∈ Γ(OX , X) and n > 0 such that fnb = ρX,Xf (a) in OX(Xf ).
4. There is an isomorphism of rings Γ(OXf , Xf ) ∼= (Γ(OX , X))f .

Proof. 1. We wish to show that {x ∈ U | f̄x /∈ mX,x} = {x ∈ U | f̄ /∈ x}, where x ∈ U in latter
is treated as a prime ideal of A. The side ” ⊆ ” follows from the fact that for x ∈ U , we have
OX,x ∼= Ax, mX,x

∼= xAx and the fact that the map into stalks OX(U) → OX,x is given by the
canonical map A → Ax, a 7→ a/1. One further would need the commutativity of the following
diagram:

OX,x

OX(U) Γ(OX , X)

.

The side ” ⊇ ” also follows from the commutativity of the above triangle together with the canon-
ical isomorphisms of the local ring and its maximal ideal.

2. TODO from notebook.

Locality of isomorphism on target

We now show a rather simple result on locality of isomorphism on target, but it is quite useful in
scenarios where one understands the map well on individual opens of target but not on the global
level.

10Exercise II.2.16 of Hartshorne.
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Proposition 1.3.1.5. Let f : X → Y be a map of schemes and Y =
⋃
i∈I Ui be an open cover of Y such

that f |f−1(Ui) : f
−1(Ui)→ Ui is an isomorphism. Then, f is an isomorphism.

Proof. TODO from notes.

Criterion for affineness

We now show a useful criterion for a scheme to be affine. This also portrays the power of previous
result on locality of isomorphism.

Proposition 1.3.1.6. Let X be a scheme and denote A = Γ(OX , X). Then the following are equivalent:
1. X is affine,
2. there exists f1, . . . , fr ∈ A such that Xfi are open affine subsets of X and ⟨f1, . . . , fr⟩ = A.

Proof. TODO from notes.
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1.4 First notions on schemes

Having defined schemes, our next goal is to bring to light some of the obvious definitions that
one can make on them. In some sense, having made the general definition of schemes, we are
now trying to go back to try and find where does varieties lie in this big world of Sch. Indeed, we
will see that the definitions introduced in the following few sections are bringing us ever closer
to define varieties as certain type of schemes, which will thus enable us to bring to light the most
important geometric notions on varieties.

1.4.1 Noetherian schemes

Definition 1.4.1.1. (Noetherian schemes) A scheme X is called locally noetherian if there exists
an affine open cover X = ∪i∈IUi where each Ui = Spec (Ai) where Ai is a noetherian ring. If
moreover, X is quasicompact, then X is called noetherian.

Remark 1.4.1.2. Since X = Spec (A) is already quasi-compact (Lemma 1.2.1.6), therefore for affine
schemes X , the notion of locally noetherian and noetherian are equal.

The only immediately important result about such schemes that one needs is that an affine
scheme is noetherian if and only if the obvious thing happens.

Lemma 1.4.1.3. Let X = Spec (A) be an affine scheme. Then, the following are equivalent:
1. X is a noetherian scheme.
2. A is a noetherian ring.

Proof. (2. ⇒ 1.) This follows from Remark 1.4.1.2 and the fact that localization of noetherian rings
are noetherian (Proposition 16.3.0.7).
(1. ⇒ 2.) Let X be noetherian. Then there is an affine open cover of X by spectra of noethe-
rian rings. Pick any ideal I ≤ A. We shall show it is finitely generated. There is a finite cover
{Spec (Afi)}ni=1 of Spec (A) where Afi are noetherian and fi ∈ A. Hence we have that the ideal
IAfi of Afi is finitely generated for all i = 1, . . . , n. By Lemma 1.2.1.5, 2, we see that f1, . . . , fn
generate the whole ring A. The result then follows by Lemma 16.1.2.10.

Example 1.4.1.4. By the Lemma 1.4.1.3, we observe that any of the variety over a field is a noethe-
rian scheme (technically, we are identifying the affine variety with its associated scheme, see Sec-
tion ??, Schemes associated to varieties). So any of your favorite variety

Spec
Å

k[x, y, z]
x2 + y2 − z3 − 1

ã
, k is algebraically closed

gives a (is a) noetherian scheme.

Our next goal is to show that a noetherian scheme is a noetherian space.

Proposition 1.4.1.5. If X is a noetherian scheme, then X is a noetherian space.

Proof. As X has a finite open affine cover by spectra of noetherian rings and such spectra are
noetherian schemes by Lemma 1.4.1.3, thus by the fact that finite union of noetherian spaces is
noetherian we can complete the proof.
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Local rings of a locally noetherian scheme are noetherian.

Lemma 1.4.1.6. If X is locally noetherian, then OX,x is a noetherian ring.

Proof. Since localization of a noetherian ring at a prime is again noetherian by Proposition 16.3.0.7,
therefore OX,x is noetherian.

Being locally noetherian is a local property.

Proposition 1.4.1.7. Let X be a locally noetherian scheme. If Spec (A) ⊆ X is an open affine, then
Spec (A) is noetherian and thus A is a noetherian ring.

Proof. Let Ui = Spec (Ai) be an open cover by noetherian affine schemes (Ai are noetherian). Then,
a finitely many of Ui will cover Spec (A) by quasi-compactness of Spec (A), say U1, . . . , Un. Thus
we obtain a finite basic open cover D(fi) of Spec (A) for fi ∈ A where each D(fi) ⊆ Uj for some j
such that D(fi) is also basic in Uj (Lemma 1.4.4.3). As Uj is noetherian, therefore if we can show
that OUj (D(fi)) is noetherian, then we would have shown that Afi is noetherian, which would
complete the proof by Lemma 16.3.0.8. We thus reduce to assuming X = Spec (A) noetherian
affine and to show that U = D(f) ⊆ X is noetherian for f ∈ A.

In this case, as A is noetherian, therefore by Corollary 16.3.0.9, the ring Af is noetherian, as
required.

Another important aspect of noetherian schemes is quasi-compactness of intersection of open
affines.

Proposition 1.4.1.8. Let X be a noetherian scheme and U, V ⊆ X be two affine opens. Then U ∩ V is
quasi-compact.

Proof. TODO

One can reduce a lot of arguments from non-noetherian to the noetherian case using the fol-
lowing.

Proposition 1.4.1.9. Let X be a finitely presented scheme over A. Then there exists a noetherian ring
A0 ↪→ A and a finitely presented scheme X0 over A0 such that the base change (X0)A is isomorphic to X .

1.4.2 Reduced, integral schemes and function field

The following are the definitions required, which are clearly geometric in nature.

Definition 1.4.2.1. (Reduced and integral schemes) A scheme X is said to be reduced if local rings
OX,x for all x ∈ X is a reduced ring; have no nilpotents. A scheme X is said to be integral if it is
reduced and irreducible as a topological space.

The one basic result that must be seen about these two types of schemes is that they are char-
acterized by algebraic properties of local sections. Thus being reduced or integral, while defined
geometrically, is concretely controlled by the algebraic properties of the structure sheaf.

Lemma 1.4.2.2. Let X be a scheme. Then,
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1. X is reduced if and only if OX(U) is a reduced ring for each open set U ⊆ X 11.
2. X is integral if and only if OX(U) is an integral domain for each open set U ⊆ X .

Proof. 1. (L ⇒ R) Suppose for some open U ⊆ X there exists a section f ∈ OX(U) which is
nilpotent. Using the homomorphism OX(U) → OX,x given by s 7→ sx, we see that fx ∈ OX,x is a
nilpotent element.
(R ⇒ L) Suppose X is not reduced. Hence for some germ fx ∈ OX,x at some point x ∈ X is a
nilpotent where f ∈ OX(U) for some open x ∈ U ⊆ X . Since fnx = 0 for some n ∈ N, we get that
fn = 0 for some open W ⊆ U . Thus ρU,W (f) ∈ OX(W ) is a nilpotent element12.

2. (L ⇒ R) Pick any open U ⊆ X . We wish to show that OX(U) is an integral domain. In other
words, we wish to show the proposition for the open subscheme (U,OX|U ). Replacing X by U ,
we reduce to showing OX(X) is an integral domain. So let f, g ∈ OX(X) be such that fg = 0. We
wish to show that either f = 0 or g = 0. Suppose neither f nor g is 0 but fg = 0. It follows from
Lemma 1.2.0.1, 1, that V (f) and V (g) covers X and hence by irreducibility of X , either V (f) = 0
or V (g) = 0, that is, f = 0 or g = 0.
(R ⇒ L) We first need to show that X is reduced. Indeed, by 1. it follows immediately as inte-
gral domains are reduced. We then wish to show that X is irreducible. Indeed, if there are two
open subsets of X say U1, U2 ⊆ X such that U1 ∩ U2 = ∅, then we claim that OX(U1 ∪ U2) ∼=
OX(U1) × OX(U2). Since both OX(U1),OX(U2) have 0 and 1, thus OX(U1 ∪ U2) will have a zero-
divisor, a contradiction. Indeed, consider the following homomorphism, denoting U := U1 ∪ U2

OX(U) −→ OX(U1)×OX(U2)
s 7−→ (ρU,U1(s), ρU,U2(s)).

This is injective by locality axiom and surjective by gluing axiom of sheaves.

Corollary 1.4.2.3. Let X be a scheme. If X is integral, then all local rings OX,x are integral domains.

Proof. Use Lemma 1.4.2.2, 2 together with the fact that localization of integral domains is an inte-
gral domain.

Corollary 1.4.2.4. LetX = Spec (A) be an affine scheme. ThenX is integral if and only ifA is an integral
domain.

Proof. Use Lemma 1.4.2.2, 2 on global sections together to get one side. For the "only if" side, stalks
are reduced as they are integral (localizations ofA) andX is irreducible as for any V (a)∪V (b) = X ,
we have V (ab) = X and thus ab ⊆ n where n is the intersection of all prime ideals, the nilradical
(Lemma 16.1.2.9). Since A is integral, therefore 0 is prime as well and hence n = 0, making ab = 0.
Since A is integral, hence a = 0 or b = 0.

Remark 1.4.2.5. (Function field of an integral scheme) Let X be an integral scheme. Since X is irre-
ducible as a topological space, therefore there is a generic point η in X , i.e. a point whose closure

11Exercise II.2.3.a of Hartshorne.
12This is a very inefficient way of using the equality on stalks. Indeed, two germs are equal if and only if the repre-

sentatives are equal on some common shrinking of their domains. This is how usually people work with stalks without
being overly full of symbols.
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is the whole ofX (Lemma 1.3.0.2). Now let Spec (A) ⊆ X be an affine open such that η ∈ Spec (A).
Thus, η is a generic point of Spec (A) as well. Hence η corresponds to the zero ideal of A, which is
indeed an integral domain from Lemma 1.4.2.2, 2. Since OX,η ∼= OSpec(A),η = A0, therefore OX,η is
a field, called the function field of the integral schemeX and is in particular given by field of fractions
of any domain A such that open Spec (A) contains η. We denote the function field of X as K(X)13.

Using the fact that the generic point of an integral scheme X will be in every non-empty open
set, we can make some fascinating observations about the function fieldK(X), which thus justifies
its name.

Lemma 1.4.2.6. Let X be an integral scheme with function field K(X). Then for all x ∈ X , the local ring
OX,x is contained in K(X).

Proof. Let x ∈ X , η ∈ X be the generic point and U = Spec (A) be an open affine in X . By Lemma
1.4.2.2, 2, A is a domain. Clearly, η ∈ U and it corresponds to the zero ideal 0 ⪇ A. Further we
have OX,x ∼= Ap, p ∈ U is equal to the point x ∈ U . By definition K(X) = A0. The result follows
by observing that Ap ⊆ A0.

The following lemma shows that restriction of functions in an integral scheme is injective.

Lemma 1.4.2.7. LetX be an integral scheme and U ↪→ V be an inclusion of open sets. Then, the restriction
maps ρ : OX(V )→ OX(U) is an injective ring homomorphism.

Proof. By Lemma 20.3.0.2, we need only show that for any x ∈ V and any s ∈ OX(V ), we have
(V, s)x = 0 in OX,x. Let W = Spec (A) be an open affine containing x. As U is open in X and
X is irreducible, therefore it is dense. Consequently, U ∩W is an open non-empty set in X . We
may write ρV,W (s) = a ∈ A. Let D(f) ⊆ U ∩W be a basic open set of W . Since taking germs
commutes with restrictions, therefore we have the restriction map OX(W ) → OX(D(f)) which is
the localization map A → Af , which takes a 7→ a

1 . As s on U is 0, therefore, s is 0 on W ∩ U and
thus on D(f). Consequently, we have a

1 = 0 in Af . As A is a domain by Lemma 1.4.2.2, it follows
that a = 0 in A. Thus, ρV,W (s) = 0, hence, (V, s)x = 0 in OX,x, as required.

Example 1.4.2.8. (Spec (Z)) Since Z is an integral domain, therefore by Corollary 1.4.2.4, X =
Spec (Z) is an integral scheme. Clearly, X as a topological space consists of all prime numbers and
a generic point given by the zero ideal 0. Further, the topology is thus given by cofinite topology.
At the level of stalks, we have that for a prime p ∈ X , OX,p ∼= Zp and we can describe Zp as all
those rationals whose denominator is not a multiple of prime p where p = ⟨p⟩ as Z is a PID (it’s
ED). Clearly, localizing X at the generic point 0 would yield OX,0 ∼= Q. More fascinatingly, for
a prime p = ⟨p⟩ in X , the residue field at point p is κ(p) = Zp/pZp

∼= Fp, the finite field with p
elements!

Now for any affine scheme Spec (A), consider a map f : X → Spec (Z). By the fact that
Z is initial in category of rings, therefore Spec (Z) is terminal in the category of affine schemes
(Corollary 1.3.0.6). Since any scheme is locally affine, it further follows that Spec (Z) is terminal in
the category of schemes.

We now introduce a concept which will be used while discussing divisors.

13Exercise II.3.6 of Hartshorne.
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Definition 1.4.2.9. (Center of a valuation) Let X be an integral scheme with function field K and
v : K → G be a valuation over K with valuation ring R ⊂ K. A center of v is defined to be a point
x ∈ X such that R dominates OX,x in K (see Definition 16.10.1.5).
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1.4.3 (Locally) finite type schemes over k

This section is the beginning of a theme which we would like to understand intimately, schemes
over a field. This is because most of the schemes we will encounter in nature will be varieties
whose coordinate rings would be algebras over a field. Here we first understand in scheme lan-
guage the first thing about coordinate rings of varieties over k, the fact that they are finitely gen-
erated as an k-algebra. Indeed, this is what we seek from the following definition.

Definition 1.4.3.1. (Finite and locally finite type schemes over a field) Let k be a field and let
X → Spec (k) be a scheme over k. Then X is said to be locally finite type if there exists an affine
open covering {Spec (Ai)}i∈I of X such that each Ai is a finitely generated k-algebra. Moreover,
X is said to be finite type if X is locally finite type and quasi-compact.

Example 1.4.3.2. Our hyperboloid of one sheet (introduced in Example 1.5.1.3) has the following
coordinate ring:

k[x, y, z]
I(V (p))

where p(x, y, z) = x2 + y2 − z2 − 1, where we have chosen a = b = c = 1 for simplicity. Let
h := I(V (p)). Clearly Spec (k[x, y, z]/h) is a finite type k-scheme.

Great thing about the above definition is that it really doesn’t depend on the affine open cover
that is chosen.

Lemma 1.4.3.3. Let k be a field and X be a k-scheme. Then the following are equivalent.
1. X is of locally finite type over k.
2. For all open affine U ↪→ X , the ring OX(U) is finitely generated k-algebra.

Proof. (2. ⇒ 1.) Immediate.
(1. ⇒ 2.) We shall use Lemma 16.1.2.11 for this.Complete it’s proof,

Chapter 1.
1.4.4 Subschemes and immersions

These notions are important in what is to come next.

Definition 1.4.4.1. (Open subscheme) Let X be a scheme. An open set U ⊆ X has a canonical
scheme structure, given by (U,OX|U ). We call (U,OX|U ) an open subscheme of X .

Indeed, locally U will look affine via the open affine cover of X . We can relativize this notion
to define open immersions.

Definition 1.4.4.2. (Open immersion) A map f : X → Y of schemes is said to be an open immer-
sion if f : X → f(X) is a homeomorphism, f(X) ⊆ Y is open and f ♭|f(X) : OY |f(X) → (f∗OX)|f(X)
is an isomorphism.

We observe that for any point in an intersection of open subschemes is contained in some
special open subscheme. This is a very important result as this will be used as a technical tool
to allow passage from one open affine with certain properties to another open affine, all the time
while handling only basic open sets.
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Lemma 1.4.4.3. Let U = Spec (A), V = Spec (B) ↪→ X be two affine open subsets. For each x ∈ U ∩ V ,
there exists an affine open subset x ∈ W ↪→ U ∩ V such that W = Spec (Af ) and W = Spec (Bg) for
some f ∈ A and g ∈ B. Moreover, under the isomorphism Af ∼= Bg, the element f ∈ Af maps to g ∈ Bg.

Proof. By replacing B by Bg for some g ∈ B, we may assume that x ∈ V ⊆ U . Consequently,
let f ∈ A be such that DU (f) ⊆ V and contains x, where DU (f) = {p ∈ U | f /∈ p}. We thus
have x ∈ DU (f) ⊆ V ⊆ U . Consider the restriction h = ρU,V (f) ∈ OX(V ) = B. We claim that
DV (h) = DU (f). Denote ϕ : A→ B obtained by V ⊆ U . We then have that ρU,V = ϕ and h = ϕ(f).
Thus q ∈ DV (h) ⇐⇒ h /∈ q ⇐⇒ ϕ(f) /∈ q ⇐⇒ f /∈ ϕ−1(q). As each p ∈ DU (f) is ϕ−1(q) for
some q ∈ V , therefore we are done. The last statement is immediate from above.

Closed subschemes are defined in not that obvious way in which we have defined open sub-
schemes, but at any rate, they are natural. We motivate the need for ideal sheaves as follows.
Let X be a scheme. Suppose a closed subset C ↪→ X intersects some collection of affine opens
{Spec (Ai)} and moreover it happens that C ∩ Spec (Ai) = C ∩ Spec (Aj) for some i ̸= j. Now by
Corollary 1.4.4.14 we may write C ∩ Spec (Ai) = Spec (Ai/ai) and C ∩ Spec (Aj) = Spec (Aj/aj)
for some ideals ai ⊆ Ai and aj ⊆ Aj . Hence, we get two different structure sheaves OSpec(Ai/ai)
and OSpec(Aj/aj) on on open subset of C. Thus we have to systematically track such identifications
in order to define a unique scheme structure on the closed set C. Indeed, we take the help of the
rich amount of constructions that we can make on the category of sheaves over a space (for more
information, see Section 3.5).

We first define closed immersions.

Definition 1.4.4.4. (Closed immersions) A map f : X → Y of schemes is a closed immersion if
f : X → f(X) is a homeomorphism, f(X) ⊆ Y is closed and f ♭ : OY → f∗OX is a surjective map.

Remark 1.4.4.5. Let f : X → Y be a closed immersion, so that f ♭ : OY → f∗OX is surjective. This
is equivalent to saying that for each point x ∈ X , the map on stalks (see Theorem 20.3.0.6 and
Lemma 20.5.0.5)

f ♭f(x) : OY,f(x) −→ OX,x

is surjective. Observe that the above map is NOT the usual map on stalks f ♯x : OY,f(x) → OX,x.
Further observe that since f ♭ is surjective, therefore we have an ideal (see Section 3.5, Global alge-
bra for more details) I = Ker

Ä
f ♭
ä
≤ OY . We will later see that a closed subscheme is completely

determined by this ideal sheaf and in-fact these ideal sheaves gives us a family of good examples
of what will later be called quasicoherent modules over a scheme.

Remark 1.4.4.6. Let f : X → Y be a closed immersion. Then, the map f ♭ : OY → f∗OX is
surjective. Pick any x ∈ X . Since we have the following commutative square for any open set
V ∋ f(x) in Y

OY (V ) OX(f−1(V ))

OY,f(x) OX,x

f♭
V

f♯x

.
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It then follows from surjectivity of f ♭ and f : X → f(X) being a homeomorphism that the local
homomorphiosm f ♯x : OY,f(x) → OX,x is surjective. It is also a simple exercise to see that surjectiv-
ity of f ♯x : OY,f(x) → OX,x for all x ∈ X implies surjectivity of f ♭ : OY → f∗OX .

Consequently, f : X → Y is a closed immersion if and only if f is a topological closed immer-
sion and for all x ∈ X , the local homomorphism f ♯x : OY,f(x) → OX,x is surjective.

A closed subscheme is then defined to be an isomorphism class of closed immersions.

Definition 1.4.4.7. (Closed subscheme & ideal sheaf) Let Y be a scheme. A closed subscheme of
Y is an isomorphism class of closed immersions over Y . That is, a closed subscheme is the class
[f : X → Y ] of closed immersions where two closed immersions f : X → Y and f ′ : X ′ → Y are
identified if there is an isomorphism X

∼=→ X ′ such that the following commutes

X X ′

Y
f f ′

∼=

.

For a closed subscheme f : X → Y , we define kernel of f ♭ : OY → f∗OX to be the ideal sheaf
corresponding to the closed subscheme f .

Remark 1.4.4.8. Note that this definition is not "unnatural" as every closed immersion f : X →
Y defines a closed set f(X) ⊆ Y and a scheme structure over it. We then just define a closed
subscheme to be the data of this closed set together with its scheme structure that is given by f .
Clearly to make such a definition via immersions, we would need to identify those immersions
which give same scheme structure on f(X) ⊆ Y .

We define an immersion as follows.

Definition 1.4.4.9 (Immersion). A map f : X → Z is said to be an immersion if f is an open
immersion into a closed subscheme of Z.

We first understand closed subscheme structures in affine schemes.

Lemma 1.4.4.10. Let X = Spec (R) be an affine scheme. Then every ideal a ≤ R defines a closed sub-
scheme of X .

Proof. Consider the closed set Y = V (a) ⊆ X . We endow Y with a scheme structure given by
the isomorphism Y ∼= Spec (R/a). Now the inclusion map i : (Y,OSpec(R/a)) → X is clearly a
topological closed immersion. Further, i♭ : OSpec(R) → i∗OSpec(R/a) is given on stalks (see Lemma
20.5.0.5) at point x ∈ Y as OSpec(R),x → OSpec(R/a),x which is just Rx → (R/a)x which is surjective.
Thus, a defines a closed subscheme structure on Y .

It is important to note that any other ideal b ≤ R such that V (a) = V (b) will define a possibly
different closed subscheme structure on the underlying topological space. This is another example
of the phenomenon that algebra has much more finer control over the geometric situation at hand.
For example, for X = Spec (k[x]), we have an = ⟨xn⟩ and note that V (an) = {⟨x⟩} ⊆ X . But each
ideal an defines a new closed subscheme structure on the same point ⟨x⟩ ∈ X .
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Properties of closed immersions

We discuss some general properties of closed immersions. We begin by observing that closed
immersions are local on target.

Proposition 1.4.4.11. Let f : X → Y be a morphism of schemes. Then the following are equivalent:
1. f is a closed immersion.
2. There is an affine open cover {Vi} of Y such that f : f−1(Vi)→ Vi is a closed immersion for each i.

Proof. (1. ⇒ 2.) As f is a closed immersion, then f(X) ⊆ Y is a closed subset and f : X → f(X)
is a homeomorphism. Pick any open affine V = Spec (B) ⊆ Y . Then, we wish to show that
f : f−1(V )→ V is a closed immersion. Indeed, as f is a closed immersion, therefore f : f−1(V )→
V ∩ f(X) is a homeomorphism. As f(X) is closed in Y , therefore V ∩ f(X) is closed in V . This
shows that g := f |f−1(V ) is a topological closed immersion.

Next, we wish to show that the map g♭ : OV → g∗Of−1(V ) is a surjection. By Remark 1.4.4.6,
it suffices to show that for any x ∈ f−1(V ), the local morphism g♯x : OV,f(x) → Of−1(V ),x is a
surjection. Since g = f |f−1(V ), therefore g♯x = f ♯x because stalks commute with restrictions. Conse-

quently, we wish to show that f ♯x : OY,f(x) → OX,x is a surjection, but this is true by Remark 1.4.4.6
and the fact that f is a closed immersion.

(2. ⇒ 1.) We first wish to show that f is a topological closed immersion. We first establish that
f is a homeomorphism onto its image. Indeed, we have fi = f |f−1(Vi) : f−1(Vi) → Vi ∩ f(X) a
homeomorphism for each i. Consequently, we have a map gi : Vi ∩ f(X) → f−1(Vi) which is a
continuous inverse of fi. Clearly gi forms a matching family for f(X) =

⋃
i Vi ∩ f(X) and thus

can be glued to form a global inverse g : f(X) → X of f . Consequently, f : X → f(X) is a
homeomorphism.

We wish to show that f(X) is closed in Y . As being a closed set is a local property, therefore
we need only check that Vi ∩ f(X) is a closed set in Vi, but this is exactly what our hypothesis that
fi : f−1(Vi)→ Vi a closed immersion guarantees.

Finally, we wish to show, by Remark 1.4.4.6, that f ♯x : OY,f(x) → OX,x is a surjection for each
x ∈ X . Indeed, as taking germs commute with restrictions, therefore f ♯x is the same local homo-
morphism as (fi)♯x : OVi,f(x) → Of−1(Vi),x where f(x) ∈ Vi, which is surjective as fi is a closed
immersion.

The following shows that closed immersions are stable under base change.

Proposition 1.4.4.12. 14 Let f : X → Y be a closed immersion and g : Y ′ → Y be any other map. Then,
the map p : X ×Y Y ′ → Y ′ is a closed immersion.

Proof. As f : X → Y is a closed immersion, therefore by Proposition 1.4.4.11, there is an affine
open cover {Vi = Spec (Bi)} of Y such that f : f−1(Vi)→ Vi is a closed immersion. Consequently,
f−1(Vi) ∼= f(f−1(Vi)) ⊆ Vi is a closed subscheme, thus f−1(Vi) ∼= Spec (Bi/bi) (see Corollary
1.4.4.14). Consider g−1(Vi) ⊆ Y ′ and cover it by open affines Uij . Hence, we obtain an affine
open cover of Y ′ given by {Uij = Spec

Ä
B′ij

ä
}i,j . We claim that p−1(Uij) → Uij is a closed immer-

sion. Indeed, by Lemma 1.6.4.8, we have p−1(Uij) ∼= Uij ×Vi f−1(Vi) ∼= Spec
Ä
B′ij ⊗Bi Bi/bi

ä
∼=

14Exercise II.3.11, a of Hartshorne.
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Spec
Ä
B′ij/biB

′
ij

ä
, which thus makes p : p−1(Uij) → Uij equivalent to the scheme morphism

Spec
Ä
B′ij/biB

′
ij

ä
→ Spec

Ä
B′ij

ä
obtained by the natural quotient homomorphism (this follows

from the tensor product square obtained by the fiber product Uij ×Vi f−1(Vi)). Consequently, it is
a closed immersion by Proposition 1.2.2.8, 3, as required.

Closed subschemes and ideal sheaves

We now study closed subschemes of arbitrary schemes. To read the following results, see Section
1.9 on quasicoherent modules.

Proposition 1.4.4.13. Let X be a scheme.
1. If I ≤ OX is the ideal sheaf of a closed subscheme Y ↪→ X , then I is a quasicoherent OX -module. If

further X is Noetherian, then I is coherent.
2. If I ≤ OX is an ideal of OX such that it is quasicoherent, then I determines a unique closed subscheme
Y ↪→ X where Y is given by Supp (OX/I).

3. Consequently, we have a correspondence
Quasicoherent ideal
sheaves I ≤ OX upto
isomorphism

 ∼= {Closed subschemes Y ↪→
X

}
.

Proof. 1. This follows from the following facts; closed subschemes are quasicompact separated
maps, that direct image of quasicoherent is quasicoherent for such maps and that kernels of maps
of quasicoherent modules is quasicoherent. The second statement follows from reducing to affine
and using the fact that we know all quasicoherent modules over affine.
2. Pick an ideal sheaf I ≤ OX which is quasicoherent and let Y = Supp (OX/I) := {x ∈
X | OX,x/Ix ̸= 0}. Then consider i : (Y,OX/I) ↪→ (X,OX). It is straightforward to see that
the kernel of i♭ is exactly I. We wish to show that this is a topological closed immersion and that
the map i♭ is surjective. Clearly i is homeomorphic to its image, thus we need only show that its
image is a closed set. This is a local property, so let X = Spec (R), so that I = ã for an ideal a ≤ R.
Now Y = {p ∈ Spec (R) | (R/a)p ̸= 0} = {p ∈ Spec (R) | p ⊇ a} = V (a). Thus i is a topological
closed immersion. Now the surjectivity of the map i♭ : OX → i∗OX/I follows from going to stalks
via Lemma 20.5.0.5. The uniqueness of (Y,OX/I) w.r.t. I is clear.

Note that the main use of quasicoherence of I in statement 2 was to make sure that the support
of OX/I is indeed closed. We have a straightforward, but important corollary.

Corollary 1.4.4.14. Let X = Spec (A) be an affine scheme. We have the following bijection

{Closed subschemes Y ↪→ X} {Ideals a ≤ A}/ ∼=
I7→Γ(I,X)

(Spec(A/a),fiA/a)←[a

∼= .

Note that fiA/a ∼= OSpec(A/a).

Proof. Follows immediately from Proposition 1.4.4.13 and Corollary 1.9.1.12.
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1.5 Varieties

Most examples of schemes that we will encounter in the wild are quasi-projective/affine varieties.
Therefore, we first cover them in a semi-classical setting not involving schemes. We will then
show how to interpret them as finite type separated integral schemes over the base field. This
will enable us to use the machinery we will be developing for schemes in the study of varieties.
Indeed, by the end of this section, we will comfortably replace the definition of a variety to mean
a separated, integral finite type scheme over an algebraically closed field.

1.5.1 Varieties over an algebraically closed field-I

We define varieties as zero sets of certain polynomials over an algebraically closed field k. We
assume that the reader is aware of the Zariski topology that is present over Ank . Let us first give
the classical version of affine varieties.

Definition 1.5.1.1. (Affine algebraic variety) Let k be an algebraically closed field and let Ank be
the affine n-space. An affine algebraic variety is an irreducible closed subset of Ank .

We recall that the Hilbert Nullstellensatz further tells us that for any ideal a ≤ k[x1, . . . , xn],
the zero set of the ideal Z(a) ⊆ Ank is such that the ideal it generates is equal to the radical of the
ideal, I(Z(a)) =

√
a.

Let A ⊆ Ank be an affine algebraic set. Then, the affine coordinate ring of A is defined to be the
following finitely generated k-algebra

k[A] := k[x1, . . . , xn]
I(A)

where I(A) ≤ k[x1, . . . , xn] is the ideal generated by A. An important simple lemma to keep in
mind for future is the following.

Lemma 1.5.1.2. Let k be an algebraically closed field. Then B is a finitely generated k-algebra without
nilpotent elements if and only if B is an affine coordinate ring of an algebraic set.

Proof. One side is trivial and the other uses Nullstellensatz.

Example 1.5.1.3. (Hyperboloid of one sheet) A recurring example that we choose to study in this
notebook, amongst the others, is the hyperboloid of one sheet. This is given by the following
equation

x2

a2
+ y2

b2
− z2

c2
= 1.

In the affine space over R, A3
R, we can draw it as shown in Figure 1.1.

We may simply call it a hyperboloid. This hyperboloid determines an affine variety given by the
zero set of the polynomial

p(x, y, z) = x2/a2 + y2/b2 − z2/c2 − 1 ∈ k[x, y, z]
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Figure 1.1: A hyperboloid of one sheet as a subvariety of A3
R. The parameters are a = 1.05, b =

1.05, c = 1.

for any field k. Let X = V (p) ⊆ A3
k. The coordinate ring is given by

k[X] = k[x, y, z]
I(V (p)) .

As we shall see, we will associate to the above variety (X,OX) a scheme by considering the spec-
trum of the coordinate ring, Spec (k[X]).

We will understand this fantastic example in much more detail as we develop more tools to
handle it.

We now define projective varieties. Consider an algebraically closed field. Then the projective
n-space is defined to be the quotient Pnk := An+1

k / ∼ where (a0, . . . , an) ∼ (b0, . . . , bn) if and only if
there exists λ ∈ k× such that ai = λbi for all i = 0, 1 . . . , n. A point of Pnk is denoted by [a0 : · · · : an]
and this presentation of the point is called the homogeneous coordinates of the point. Assuming
that the reader is aware about graded rings and the natural grading of k[x0, . . . , xn], we observe
that we can talk about the zeroes of a homogeneous polynomial p(X) ∈ k[x0, ,̇xn] as follows:

Z(p) := {P ∈ Pnk | p(P ) = 0}.

Indeed, one observes that a homogeneous polynomial is zero at a point P ∈ Pnk in a manner which
is independent of the choice of representation of P in terms of the homogeneous coordinates of P .
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With this in our hand, we further define the zero set of a homogeneous ideal a ≤ k[x0, . . . , xn] as

Z(a) := {P ∈ Pnk | f(P ) = 0∀f ∈ Ta}

where Ta is the set of all homogeneous elements of a. Remember that an ideal in a graded ring is
homogeneous if and only if it is generated by the set of all of its homogeneous elements.

Lemma 1.5.1.4. Let k be a field. Then
1. For any two homogeneous ideals a, b ≤ k[x0, . . . , xn], we have Z(ab) = Z(a) ∪ Z(b).
2. For any family of homogeneous ideals {ai}{i ∈ I}, we have ∩i∈IZ(ai) = Z(

∑
i∈I ai).

Proof. Straightforward unravelling of definitions.

Therefore we obtain a topology on Pnk where a set Y ⊆ Pnk is closed if and only if Y = Z(ai) for
a homogeneous ideal ai of k[x0, . . . , xn]. This is called the Zariski topology of Pnk .

Definition 1.5.1.5. (Projective algebraic variety) Let k be an algebraically closed field. An irre-
ducible algebraic set of Pnk is said to be a projective algebraic variety in Pnk .

Let V ⊆ Pnk be a projective algebraic variety. Then the ideal generated by V in k[x0, . . . , xn]
is I(V ) which is the ideal generated by the following set of homogeneous polynomials: {f ∈
k[x0, . . . , xn] | f is homogeneous and f(P ) = 0}.

For a projective algebraic set Y ⊆ Pnk , we define its homogeneous coordinate ring to be the follow-
ing k-algebra

k[Y ] := k[x0, . . . , xn]
I(Y )

where I(Y ) is the homogeneous ideal of Y .

Definition 1.5.1.6 (Zero set and ideal of an algebraic set). Define for any set T ⊆ k[x0, ,̇xn] of ho-
mogeneous elements the zero set of T as Z(T ) = {p ∈ Pnk | f(p) = 0 ∀ f ∈ T}. For any Y ⊆ Pnk , de-
fine I(Y ) as the ideal in k[x0, . . . , xn] generated by {f ∈ k[x0, . . . , xn] | f is homogeneous & f(p) =
0 ∀p ∈ Y }.

To distinguish between affine and projective cases, we will reserve Z(a) for zero set of a homo-
geneous ideal in projective space and V (a) as the zero set of an ideal in the affine space.

We now show that how the projective space Pnk is covered by n + 1 copies of affine space Ank .
Before that we discuss few maps which allows us to treat affine case projectively.

Homogenization and dehomogenization

One way to move back and from affine to projective setting is to use to fundamental functions
between k[y1, . . . , yi, . . . , yn] and k[x0, . . . , xn]h.
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Definition 1.5.1.7. ((De)homogenization) Let k be an algebraically closed field and let A :=
k[y1, . . . , yn] and B := k[x0, . . . , xn]h, the set of all homogeneous polynomials in k[x0, . . . , xn].
Consider the following two functions

di : B −→ A

f(x0, . . . , xn) 7−→ f(x0, . . . , xi−1, 1, xi+1, . . . , xn)
hi : A −→ B

g(y1, . . . , yn) 7−→ xeig

Å
x0
xi
, . . . ,

xi−1
xi

,
xi+1
xi

, . . . ,
xn
xi

ã
where e is the degree of g and i = 0, . . . , n. The map hi is called the ith-homogenization map and
di is called the ith-dehomogenization map.

Using this, we can establish the result in question.

Proposition 1.5.1.8. Let k be an algebraically closed field and consider the projective n-space over k, Pnk .
Then, there exists n + 1 open subspaces say Ui ⊆ Pnk , such that Pnk =

⋃n
i=0 Ui and for each i, Ui is

homeomorphic to Ank .

Proof. Consider the n+ 1 open subspaces of Pnk as follows:

Ui := Pnk \Hi

where Hi = Z(⟨xi⟩) is the algebraic set obtained by all those points whose ith homogeneous coor-
dinate is zero. Now consider the map

ϕi : Ui −→ Ank

[a0 : · · · : an] 7−→
Å
a0
ai
, . . . ,

ai−1
ai

,
ai+1
ai

, . . . ,
an
ai

ã
.

One can check that this pulls closed sets to closed sets by using the ith-homogenization map.
Conversely, one can define the map

θi : Ank −→ Ui

(a1, . . . , an) 7−→ (a1, . . . , ai−1, 1, ai+1, . . . , an)

and this can again be checked to be continuous by an application of ith dehomogenization map.

Corollary 1.5.1.9. Let k be an algebraically closed field and Y ⊆ Pnk be a projective algebraic variety. Then,
in the notation of Proposition 1.5.1.8, for each i = 0, . . . , n, Y ∩ Ui is an affine algebraic variety.

Proof. This follows from the observation that Y ∩ Ui is a closed set of Ui ∼= Ank . The irreducibility
follows from the fact that open subsets of irreducible spaces are irreducible.
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Properties of algebraic sets in Pnk
We now present some basic properties of algebraic sets in Pnk .

Lemma 1.5.1.10. 15 (Homogeneous Nullstellensatz) Let k be an algebraically closed field and let a ≤
k[x0, . . . , xn] be a homogeneous ideal. Then,

I(Z(a)) =
√
a.

Proof. Denote by V (a) ⊆ An+1 to be the vanishing set of a in the affine n + 1-space. This is called
the affine cone of the ideal a in An+1. We claim that I(Z(a)) ↪→ I(V (a)) since if f ∈ I(Z(a)) is
homogeneous, then f(P ) = 0 for all P ∈ Z(a) = {P ∈ Pnk | g(P ) = 0 ∀g ∈ a}. Pick any point
Q ∈ V (a) ⊆ An+1

k . We see that g(Q) = 0 for all g ∈ a. We wish to show that f(Q) = 0. As any
point Q ∈ V (a) determines a point P ∈ Z(a) by scaling, that is P = λQ, we get by homogeneity
of f that f(Q) = f(λP ) = λdf(P ) = 0, that is, f ∈ I(V (a)), as required. By affine Nullstellensatz,
it follows that I(Z(a)) ⊆

√
a. The converse is straightforward.

The following tells us when is a projective algebraic set is empty.

Lemma 1.5.1.11. 16 Let a ≤ k[x0, . . . , xn] = S be a homogeneous ideal. Then, the following are equivalent:
1. Z(a) = ∅ in Pnk ,
2.
√
a is either S or S+,

3. a ⊇ Sd for some d > 0.

Proof. (1. ⇒ 2.) The main idea here is again to reduce to affine case by considering the affine
cone. Observe that if Z(a) = ∅, then V (a) ⊆ {0} (where V (a) is the vanishing in An+1

k as in
the proof of Lemma 1.5.1.13). Indeed, if not then there exists p = (p0, . . . , pn) ∈ V (a) such that
p ̸= 0. It follows that [p0 : · · · : pn] ∈ Z(a) since any homogeneous element f of a vanishes at p
in An+1

k . Now if V (a) = ∅, then by the affine nullstellensatz, we get
√
a = S. If V (a) = 0, then√

a = I(0) = ⟨x0, . . . , xn⟩ = S+.
(2. ⇒ 1.) As

√
a = I(V (a)) = S or S+, therefore V (

√
a) = V (a) = ∅ or 0. It follows again that

Z(a) = ∅.

(2. ⇒ 3.) TODO.

Akin to affine varieties, we also have some basic results in projective algebraic sets.

Lemma 1.5.1.12. 17 Let Pnk be the projective n-space over k and let S = k[x0, . . . , xn]
1. If Y1 ⊆ Y2 in Pnk , then I(Y1) ⊇ I(Y2).
2. If T1 ⊆ T2 in S be subsets of homegeneous elements, then Z(T1) ⊇ Z(Y2).
3. If Y1, Y2 ⊆ Pnk , then I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).
4. If Y ⊆ Pnk , then Z(I(Y )) = Y .

Proof. content...

15Exercise I.2.1 of Hartshorne.
16Exercise I.2.2 of Hartshorne.
17Exercise I.2.3 of Hartshorne.



40 CHAPTER 1. FOUNDATIONAL ALGEBRAIC GEOMETRY

Some consequences of the homogeneous nullstellensatz yields us the familiar results as in the
affine case.

Lemma 1.5.1.13. 18 Let k be an algebraically closed field and consider the projective n-space Pnk . Then,
1. There is a bijection

{
All algebraic sets Y ⊆ Pnk

}
{All homogeneous radical ideals of k[x0, . . . , xn]}

I

Z

.

2. An algebraic set Y ⊆ Pnk is irreducible if and only if I(Y ) is a prime ideal in k[x0, . . . , xn].
3. Pnk is a projective algebraic variety.

Remark 1.5.1.14. A corollary of the above lemma is that one can look at projective algebraic vari-
eties in Pnk akin to homogeneous prime ideals in k[x0, . . . , xn], thus telling us another hint at how
the idea of schemes might have looked back in the days.

Proof of Lemma 1.5.1.13. 1. This is a direct consequence of homogeneous nullstellensatz (Lemma
1.5.1.10) and the fact that Z(I(Y )) = Ȳ for any Y ⊆ Pnk .

2. (L⇒ R) Suppose Y = Z(a) is irreducible and I(Z(a)) =
√
a is not prime. Then there exists

f, g /∈ a such that fg ∈
√
a. Consider the ideals b := ⟨f,

√
a⟩ and c := ⟨g,

√
a⟩. We then observe that

Z(b), Z(c) ⊆ Z(a) and Z(b)∪Z(c) = Z(bc) = Z(
√
a) = Z(a), where we have used Lemma 1.5.1.10

in the second last equation and the fact that fg ∈
√
a in third last. This yields a contradiction to

the irreducibility of Y .
(R ⇒ L) Suppose I(Y ) is prime but Y is not irreducible. Consequently, there are proper closed
sets Y1, Y2 ⊆ Y such that Y1 ∪ Y2 = Y . Further, we obtain that I(Yi) ⪈ I(Y ) for each i = 1, 2. It
then follows that there exists fi ∈ I(Yi) \ I(Y ) such that fi /∈ I(Yj), j ̸= i. Consequently, we have
f1f2 ∈ k[x0, . . . , xn] such that f1f2(P ) = f1(P )f2(P ) = 0 for all P ∈ Y , as Y = Y1 ∪ Y2. We thus
have a contradiction to primality of I(Y ).

3. Since I(Pnk) = I(Z(0)) =
√
0 = 0, then by 2., Pnk is irreducible. Note we have used the fact

that k[x0, . . . , xn] is an integral domain.

One of the reasons that one might be interested in projective varieties is that they "compactify"
the question at hand, that is, there are no "missing points" in the ambient space. We will see more
into this when we will see projective morphisms and invertible modules, but for now, it is good to
keep in mind that reframing your question in the projective spaces/varieties may give you more
handle (and of-course, machines) to solve the question at hand. In the same vein, we now see that
every affine variety can be embedded compactly into a projective space, and this embedding is
called the projective closure of the affine variety.

Definition 1.5.1.15. (Projective closure of affine varieties) Let k be an algebraically closed field
and consider an affine variety X ⊆ Ank . For any i = 0, . . . , n, consider the homeomorphism

θi : Ank 7−→ Ui

(a1, . . . , an) 7−→ [1 : a1 : · · · : an],
18Exercise I.2.4 of Hartshorne.
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as we considered in Proposition 1.5.1.8. Then, the ith-projective closure of X into Pnk is given by
the closure θi(Y ) ⊆ Pnk as a subspace in Pnk . We will usually say the 0th projective closure of X to
be simply the projective closure of X .

Consider an affine variety X ⊆ Ank and consider X ⊆ Pnk to be the projective closure of X . Let
I(X) ≤ k[y1, . . . , yn] be the affine ideal ofX and let I(X) ≤ k[x0, . . . , xn] be the homogeneous ideal
of projective closure. A natural question is that how the homogeneous ideal I(X) is connected to
the affine ideal I(X). The following proposition answers that.

Proposition 1.5.1.16. Let k be an algebraically closed field and X ⊆ Ank be an affine variety. Let I(X) ≤
k[y1, . . . , yn] be the affine ideal of X and let I(X) ≤ k[x0, . . . , xn] be the homogeneous ideal of projective
closure. Then,

I(X) = ⟨h0(I(X))⟩

where h0 : k[y1, . . . , yn]→ k[x0, . . . , xn] is the 0th homogenization function (Definition 1.5.1.7).

Proof. Since X ⊆ Ank is irreducible and closure of irreducible is irreducible, therefore X ⊆ Pnk is
irreducible. It would thus suffice to show that

X = Z(h0(I(X))).

Indeed, this would imply that h0(I(X)) is a homogeneous prime ideal by Lemma 1.5.1.13, 1, thus
applying I(−) would yield the result. We therefore show the above equality. Consider any closed
set Y ⊇ X in Pnk . We then wish to show that Y ⊇ Z(h0(I(X))). Since Y ⊆ Pnk is closed, therefore
Y = Z(a) for some homogeneous ideal a in k[x0, . . . , xn]. It would thus suffice to show that

a ↪→ h0(I(X)).

It would further suffice to show the above inclusion only for homogeneous elements, as a is gen-
erated by homogeneous elements. Consequently, pick any homogeneous polynomial f ∈ a. We
can write

f(x0, . . . , xn) = xe0g

Å
x1
x0
, . . . ,

xn
x0

ã
for some g ∈ k[y1, . . . , yn] and e = deg f . In other words, f = h0(g). Now since Y ⊇ X , therefore
f(P ) = 0∀P ∈ X ⊆ Pnk , that is, if P = [1 : a1, . . . , an] ∈ X , then f(1, a1, . . . , an) = 0 and thus
g(a1, . . . , an) = 0. Hence g ∈ I(X) ≤ k[y1, . . . , yn]. Thus f = h0(g) where g ∈ I(X), that is,
f ∈ h0(I(X)), as required.

Dimension, hypersurfaces and complete intersections

Let us first understand how the notion of dimension plays out with the Krull dimension of homo-
geneous coordinate ring of a projective variety.

Proposition 1.5.1.17. Let k be an algebraically closed field and X ⊆ Pnk be a projective k-variety. Then,
1. dim k[X] = dimX + 1,
2. dimX = dimUi ∩ X where Ui ⊆ X is an affine open subset as in Proposition 1.5.1.8, for all
i = 0, . . . , n.
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Proof. We will prove the two statements together. The main technique here is, as usual, to reduce
the computations to one of the affine patches. Let Ui ⊆ Pnk be the hyperplane where xi ̸= 0. We
know that Uis covers Pnk and each Ui is isomorphic to Ank . DenoteXi = Ui∩X so thatXi is an open
subvariety of X . Further denote k[X]h to be the homogeneous coordinate ring of X and k[Xi]a
the affine coordinate ring of Xi. Note that k[Xi]a = k[x0, . . . , x̂i, . . . , xn]/diI(X) where di is the ith

dehomogenisation map. We would now like to note two things to move forward:
1. dimX = dimXj for some j = 0, . . . , n,
2. k[X]hxi ∼= k[Xi]a[xi, 1/xi]19.

The first statement is immediate from the fact that dimY = supi dimUi for any space Y with
Ui an open covering. The second statement is the heart of the proof. Indeed, consider the map
k[X]hxi → k[Xi]a[xi, 1/xi] which takes an element f/xni and treats it as a polynomial in xi, 1/xi
with coefficients in k[Xi]a. One immediately checks all the necessary conditions to ensure that this
is an isomorphism.

Observe that ifK/k is algebraic, thenK(x)/k(x) is algebraic. It follows that trdeg k[Xi]a[xi, 1/xi] =
1 + trdeg k[Xi]a. We now complete the proof. We may assume dimX = dimX0. Consequently,
via Proposition 1.5.3.10, 6 and Theorem 16.8.2.1, we obtain the following equalities:

dim k[X]h = trdeg k[X]h = trdeg k[X]hx0 = trdeg k[X0]a[x0, 1/x0] = 1 + trdeg k[X0]a

= 1 + dim k[X0]a = 1 + dimX0 = 1 + dimX.

The statement 2. follows from the following equalities:

dimXi = dim k[Xi]a = trdeg k[Xi]axi = trdeg k[Xi]a[xi, 1/xi]− 1 = trdeg k[X]hx0 − 1
= trdeg k[X]h − 1 = dimX + 1− 1 = dimX.

We would now like to establish the following result, which will later motivate the definition of
Weil divisors and of complete intersections.

Lemma 1.5.1.18. Let k be an algebraically closed field and X ⊆ Pnk be a projective k-variety. Then, the
following are equivalent

1. dimX = n− 1.
2. The homogeneous ideal I(X) ≤ k[x1, . . . , xn] is generated by a single irreducible homogeneous poly-

nomial.

Proof. (1.⇒ 2.) By Proposition 1.5.1.17, 1, we have dim k[X] = n, where k[X] = k[x0, . . . , xn]/I(X).
By Theorem 16.8.2.2, we have ht I(X) = 1. Since any height 1 prime ideal of a UFD is principal,
therefore I(X) is principal. Since I(X) is homogeneous, therefore the statement 2. follows.
(2. ⇒ 1.) By Proposition 1.5.1.17, 2 and Theorem 16.8.2.2, we have

dimX = dimX0 = dim k[X0]a = n− ht d0(I(X)).

We need only show that ht d0(I(X)) = 1. Since I(X) = ⟨p(x0, . . . , xn)⟩, therefore do(I(X)) =
⟨p(1, x1, . . . , xn)⟩. Since k[x0, . . . , xn] is a UFD and an easy observation about UFDs yields that
height 1 prime ideals are exactly principal prime ideals, therefore the result follows.

19This statement can be seen as a generalization of Lemma 1.5.3.11.
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Cones

d-uple embedding

Veronese surface

Segre embedding
To complete cones,
d-uple, Veronese,
Segre and quadrics,
Chapter 1.

1.5.2 Morphism of varieties

We have defined affine and projective varieties so far. One would often, however, would like to
know whether a subset of An or Pn is an open subspace of some affine or projective variety. Due
to to this need, we define the following.

Definition 1.5.2.1. (Quasi-affine/projective variety) A subset X of An or Pn is said to be quasi-
affine or quasi-projective if X is an open subset of an affine or projective variety, respectively.

Let X be a quasi-affine or projective variety. From our knowledge of geometry, we know that
in a realCα-manifoldM , the right type of functions are those which are defined on open subsets of
M as Cα-maps to R, where the latter is treated as a Cα-manifold. Consequently, we are interested
in the same type of maps to the affine line A1

k.

Definition 1.5.2.2. (Regular maps) This notion is defined differently for quasi-affine and quasi-
projective varieties.

1. Let X be a quasi-affine variety. A function

ϕ : X → A1
k

is said to be a regular function if for all P ∈ X , there exists an open subset U ⊆ X such that
ϕ|U = g/h where g, h ∈ k[x1, . . . , xn] and h(P ) ̸= 0 ∀P ∈ U .

2. Let X be a quasi-projective variety. A function

ϕ : X → A1
k

is said to be a regular function if for all P ∈ X , there exists an open subset U ⊆ X such that
ϕ|U = g/h where g, h ∈ k[x0, . . . , xn] are homogeneous polynomials of same degree and
h(P ) ̸= 0 ∀P ∈ U . Note that this defines a valid function to the affine line.

Indeed, regular maps are continuous.

Lemma 1.5.2.3. Let X be a quasi-affine or quasi-projective variety and ϕ : X → A1
k be a regular function.

Then ϕ is continuous.

Proof. The Zariski topology on A1
k is the cofinite topology, hence any closed set in A1

k is a finite
union of points of k. It thus suffices to show that for any a ∈ k, Y := ϕ−1(a) ⊆ X is closed. Since
checking a set is closed is local in X , that is, Y ⊆ X is closed if and only if there exists an open
covering ofX , say {Uα} such that Uα∩Y is closed in Uα. We may thus replaceX by an open subset
of X where ϕ is represented as g/h for g, h ∈ k[y1, . . . , yn] (in k[x0, . . . , xn], homogeneous and of
same degree in the projective case). Consequently, ϕ−1(a) ⊆ X is given by {P ∈ X | (g−ah)(P ) =
0}which in other words is Z(g − ah) (g − ah is homogeneous in the projective case). Thus ϕ−1(a)
is closed, as required.
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A simple corollary of above is the first striking result one learns in complex analysis for holo-
morphic maps (see Proposition 10.2.3.10).

Lemma 1.5.2.4. (Identity principle) Let ϕ, ξ : X → A1
k be two regular maps over a quasi-affine or quasi-

projective variety X . Then, ϕ = ξ if and only if there exists an open set U ⊆ X such that ϕ = ξ over
U .

Proof. L ⇒ R is easy. For R ⇒ L, observe that for φ := ϕ − ξ is continuous by Lemma 1.5.2.3.
Further, the set φ−1(0) ⊆ X is closed and contains U . Since φ−1(0) ⊇ U and U is an open set of
an irreducible space, therefore U is dense in X . Consequently, φ−1(0) is a closed and dense in X ,
hence is equal to X .

We now define varieties in general.

Definition 1.5.2.5. (Varieties) Let k be an algebraically closed field. A variety over k is defined to
be a quasi-affine or a quasi-projective variety in Ank or Pnk , respectively.

The notion of morphism of varieties is then given by functions which pulls regular functions
back by pre-composition.

Definition 1.5.2.6. (Map of varieties) Let k be an algebraically closed field and let X,Y be two
varieties over k. A map of varieties is a continuous function f : X → Y such that for any open set
V ⊆ Y and any regular function ϕ : Y → A1

k, the function

ϕ ◦ f : ϕ−1(V )→ A1
k

is a regular function on the open set ϕ−1(V ) of X . We may also call a map of varieties a morphism
of varieties.

We therefore obtain the category of varieties over k, whose objects are varieties over k and
arrows are maps of varieties. We will denote this category by

Vark.

Just like in topological spaces, it is not true in general that a bijective continuous map is a homeo-
morphism, similarly it is not true in general that a bijective map of varieties is an isomorphism of
varieties, as the following example shows.

Example 1.5.2.7. Consider the affine line A1
k and consider the affine variety X := Z(y2−x3) ⊆ A2

k.
The function

f : A1
k −→ X

t 7−→ (t2, t3)

is a map of varieties as for any open set U ⊆ X and regular map ϕ : X → A1
k, the composite

ϕ ◦ f : ϕ−1(U)→ A1
k is given by t 7→ ϕ(t2, t3) and then the regularity of this composite can be seen

to be a result of regularity of ϕ. Further note that f induces an inverse continuous function

f−1 : X −→ A1
k

(a, b) 7−→ ba−1.
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Thus, A1
k and X are homeomorphic as topological spaces. However, as varieties, they can not be

isomorphic. Indeed, we shall soon see that coordinate rings are invariant of affine varieties and in
our case A1

k has k[x] as its coordinate ring whereas X has k[x, y]/⟨y2 − x3⟩ as its coordinate ring.
These are not isomorphic as one is PID and the other is not.

We now construct some more algebraic gadgets on top of varieties and will prove how they
will turn out to be invariants of the varieties under question. We have already seen one, the
coordinate ring. We will now see the construction of others and we shall do it in a manner so that
it is amenable to generalization to schemes, as is studied elsewhere in this chapter.

1.5.3 Varieties as locally ringed spaces

See Chapter 3, Foundational Geometry, for background on locally ringed spaces and basic global
algebra. In this section, we would like to interpret varieties as locally ringed spaces, so that we can
understand later that how a variety can be interpreted as a scheme. Clearly, for a variety X , we
already have an underlying topological space X itself. To give X the structure of a locally ringed
space, we need to consider a sheaf over X . We shall use regular functions over open sets of X for
that.

Definition 1.5.3.1. (Structure sheaf of a variety) Let k be an algebraically closed field and X be a
variety over k. For each open set U ⊆ X , consider the following set

OX(U) := {f : U → A1
k | f is regular}.

Further, for open V ⊆ U in X , consider the function

ρU,V : OX(U) −→ OX(V )
f 7−→ f |V .

This defines a sheaf of sets, as the following lemma shows.

Lemma 1.5.3.2. The assignment OX on open sets of a k-variety X as defined in Definition 1.5.3.1 defines
a sheaf of sets over X .

Proof. The locality axiom is straightforward as OX(U) is a collection of functions, which thus can
be checked locally for equality. It thus suffices to show that OX satisfies the gluing axiom. Pick
any open set U , an open covering {Ui}i∈I of U and a matching family fi ∈ OX(Ui) for each i ∈ I ,
that is ρUi,Ui∩Uj (fi) = ρUj ,Ui∩Uj (fj) for each i, j ∈ I . Consequently, we define f : U → A1

k given
by x 7→ fi(x) if x ∈ Ui. This is a well-defined function by the matching condition and further f is
a regular function as for each point x ∈ U , f can be written as a rational function in some open
neighborhood around x (essentially by regularity of fis). Consequently, OX is a sheaf.

Further, OX is a sheaf of k-algebras if X is a k-variety.

Lemma 1.5.3.3. Let k be an algebraically closed field and consider a k-variety X . The structure sheaf OX
of X is a sheaf of k-algebras.
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Proof. Indeed, OX is a ring by point-wise addition and multiplication. Further, its a k-algebra via
the injective ring homomorphism

k ↪→ OX(U)
c 7→ c : U → A1

k

where c is treated as the constant rational map.

Hence, (X,OX) is a k-ringed space. We now show that it is locally k-ringed.

Lemma 1.5.3.4. Let k be an algebraically closed field and let X be a k-variety. Then, for all points x ∈ X ,
the stalk OX,x is a local ring.

Proof. We wish to show that OX,x has a unique maximal ideal mx ≤ OX,x. Consider the set

mx := {(U, f) ∈ OX,x | f(x) = 0}.

It then easily follows that mx an ideal and consequently is a maximal ideal because OX,x \mx is jut
the set of all units of OX,x.

Remark 1.5.3.5. We have thus established that for any k-variety X we obtain a locally k-ringed
space (X,OX). We now observe how the data of a morphism of varieties can be represented as
data of a morphism of underlying locally ringed spaces.

The notion of morphism of locally ringed spaces is elucidated in Definition 3.1.0.2.

Lemma 1.5.3.6. Let k be an algebraically closed field andX,Y be two k-varieties. Then, there is an injective
inclusion

HomVark (X,Y ) ↪→ HomLRSpace (X,Y ).

Proof. Indeed, consider the map

θ : HomVark (X,Y ) ↪→ HomLRSpace (X,Y )
f : X → Y 7−→ (f, f ♭) : (X,OX)→ (Y,OY )

where θ(f) has the underlying continuous map same as f but the map on sheaves, f ♭ : OY →
f∗OX , is given on sections as follows: let V ⊆ Y be an open set, then the map on sections over V
is

f ♭V : OY (V ) −→ OX(f−1(V ))
(V, ϕ) 7−→ (f−1(V ), ϕ ◦ f).

The fact that f ♭ as defined above is indeed a sheaf morphism is straightforward. We thus need
only show that the adjoint map f ♯ of the above defines a map on stalks which is local. For this, we
need only observe how the comorphism, f ♯x : OY,f(x) → OX,x, as defined in Definition 3.1.0.2, in
this case turns out to be the following mapping

(V, ϕ)x 7−→ (f−1(V ), ϕ ◦ f)x.

Now if (V, ϕ)x ∈ mY,f(x), then ϕ(f(x)) = 0 by definition. Thus (f−1(V ), ϕ ◦ f) ∈ mX,x. With this,
the fact that θ is injective is straightforward.
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Remark 1.5.3.7. We therefore have an inclusion

Vark ↪→ LRSpace.

Indeed, we now show that the notion of isomorphisms coincide here.

We will now define various algebraic gadgets out of the structure sheaf OX of a variety X .
Indeed, to some extent, that’s the goal of algebraic geometry in general.

We now define an important field corresponding to each variety X , called its function field.

Definition 1.5.3.8. (Function field of a variety) Let k be an algebraically closed field and X
be a k-variety. The function field of X , denoted K(X), is obtained as the quotient of the set
∪U⊇X , open ∪(U,ϕ)∈OX(U) (U, f) by the following relation

(U,ϕ) ∼ (V, φ) ⇐⇒ ∃ open W ⊆ U ∩ V s.t. ρU,W (ϕ) = ρV,W (φ).

Indeed, this has an addition and a multiplication given by restriction to the open sets where they
agree. This is further a field as any non-zero element [(U, f)] can be inverted in a small enough
open set W ⊆ U (which will be non-empty as X is irreducible) where f is non-zero (otherwise the
class [(U, f)] is identically zero).

Remark 1.5.3.9. Note that we have the following ring homomorphisms for any k-variety X and
x ∈ X

Γ(OX , X) −→ OX,x −→ K(X)
(X,ϕ) 7−→ (X,ϕ)x 7−→ [(X,ϕ)].

In-fact, both these are injective by a simple use of the identity principle (Lemma 1.5.2.4). In this
way, algebraic gadgets start taking a hold onto the geometry of varieties, which we will see further
in this chapter.

We now give two results; one for affine and one for projective; which shows how the three
algebraic gadgets introduced in Remark 1.5.3.9 can be realized more algebraically.

Proposition 1.5.3.10. Let k be an algebraically closed field and letX be an affine k-variety. Let mp = {f ∈
k[X] | f(p) = 0 as a regular function}. Then,

1. mp is a maximal ideal of k[X] for every point p ∈ X ,
2. mSpec (k[X]) ∼= X as sets,
3. k[X]mp ∼= OX,p,
4. k[X]⟨0⟩ ∼= K(X),
5. Γ(OX , X) ∼= k[X],
6. dimX = trdeg K(X)/k20,
7. dimX = dimOX,p for all p ∈ X21.

20Thus the function field K(X)/k holds important global information about the algebra and geometry of X .
21Thus the notion of dimension of varieties is detectable at the level of stalks. This is because, as the proof and the

statement 3 shows, the local ring OX,p holds almost all relevant information about the coordinate ring.
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Proof. We give the main ideas of each. The main idea in the latter parts is to embed all the relevant
rings inside the function field and do the relevant algebra there.

1. Since there is a correspondence between radical ideals of k[X] and algebraic sets of X and
since the correspondence is antitone, therefore minimal algebraic sets (point p ∈ X) of X
correspond to maximal ideals of k[X] vanishing at p. The result then follows.

2. This follows from 1. Explicitly, one considers the mapping p ∈ X 7→ mp.
3. Consider the canonical mapping

k[X]mp −→ OX,p

f

g
7−→ (X \ Z(g), f/g)p

where g(p) ̸= 0 (so g /∈ mp). This is a homomorphism by the fact that Z(f) ∪ Z(g) = Z(fg).
This is injective because if f/g = 0, then f = 0 on some open subset W ⊆ X \ Z(g). By
an application of identity principle (Lemma 1.5.2.4), the injectivity follows. For surjectivity,
observe that for any (U, f)p ∈ OX,p, we can represent it by the rational function that f looks
like around p, so (U, f)p = (W, g/h)p where g/h is a rational function. Consequently, g/h 7→
(X \ Z(h), g/h)p = (W, g/h)p. The result follows.

4. Observe first that if R is a domain and p ≤ R is an prime ideal of R, then (R/p)⟨0⟩ is isomor-
phic to R⟨0⟩. Now, by 3, we obtain that k[X]⟨0⟩ ∼= (k[X]mp)⟨0⟩ ∼= (OX,p)⟨0⟩. The map

(OX,p)⟨0⟩ −→ K(X)
(U, f/g)p
(V, h/l)p

7−→ [(U ∩ V, fl/gh)]

can be seen to be a well-defined (use Lemma 1.5.2.4) isomorphism.
5. By Lemma 16.1.2.12, we have that

⋂
m<k[X] k[X]m ∼= k[X]. By Remark 1.5.3.9, we have

Γ(OX , X) ↪→ OX,p (in K(X)). We further have k[X] ↪→ Γ(OX , X). Consequently, we ob-
tain via 3. the following

k[X] ↪→ Γ(OX , X) ↪→
⋂
p∈X

OX,p ∼=
⋂
p∈X

k[X]mp ↪→
⋂

m<k[X]
k[X]m ∼= k[X].

The result then follows.
6. We have dimX = dim k[X] as any irreducible closed subset of X corresponds in a con-

travariant manner to a prime ideal of k[X]. By Theorem 16.8.2.1, we have dim k[X] =
trdeg K(X)/k.

7. By 3, dimOX,p = ht mp. By Theorem 16.8.2.2, we have ht mp + dim k[X]/mp = dim k[X].
But since k[X]/mp

∼= k by Nullstellensatz, therefore the above equation reduces to ht mp =
dim k[X] and the right side is just dimX .

We next do the projective case. See Chapter 16, Section 16.1.2 for homogeneous localization of
graded rings.

Lemma 1.5.3.11. Let k be an algebraically closed field and X be a projective k-variety in Pnk . Let Ui =
Pnk \ Z(xi) and Xi := X ∩ Ui. Then

ϕi : k[Xi]a ∼= k[X]h(xi)
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where k[Xi]a denotes the affine coordinate ring of Xi ⊆ Ank and k[X]h denotes the homogeneous coordinate
ring of X ⊆ Pnk . Further the localization above is homogeneous.

Proof. Consider the map k[y1, . . . , yn]→ k[x0, . . . , xn] mapping as f(y1, . . . , yn) 7→ f
Ä
x0
xi
, . . . , x̂ixi , . . . ,

xn
xi

ä
.

This can easily be seen to be a well-defined ring isomorphism mapping the ideal I(Xi) 7→ I(Xi)h =
I(X)h(xi). The result follows by quotienting.

Proposition 1.5.3.12. Let k be an algebraically closed field and X be a projective k-variety. Let mp =
⟨{f ∈ k[X] | f is homogeneous & f(p) = 0}⟩ for any p ∈ X and k[X] be the homogeneous coordinate
ring of X . Then,

1. mp is a maximal ideal of k[X] for every element p ∈ X ,
2. k[X](mp) ∼= OX,p,
3. k[X](⟨0⟩) ∼= K(X),
4. Γ(OX , X) ∼= k.

Proof. Denote by k[X]h the homogeneous coordinate ring andXi := X∩Ui where Ui = Pnk \Z(xi).
By Lemma ??, Ui ∼= Ank as varieties, therefore denote Xa

i to be the affine variety corresponding to
Xi ⊆ Ui. We thus denote k[Xi]h for the homogeneous coordinate ring when Xi ⊆ Ui and k[Xi]a to
be the affine coordinate ring when Xi ⊆ Ank . Let R := k[X]h. The main idea of the last part is to
use the theory of integral dependence together with algebraic closure of k.

1. Let P ∈ X , so P ∈ Xi for some i = 0, . . . , n. Thus, let P a ∈ Xa
i and by Lemma 1.5.3.11

and Proposition 1.5.3.10, we obtain that mPa is a maximal ideal of k[Xi]a. Thus, ϕi(mPa) =
mPk[X]hxi is a maximal ideal of k[X]hxi .

2. We simply have the following for any p ∈ X by irreducibility of X , by Lemma 1.5.3.11 and
by Proposition 1.5.3.10:

OX,p ∼= OXi,p
∼= OXa

i
,pa
∼= k[Xi]ampa ∼=

Ä
k[X]hxi

ä
mpa
∼= k[X]hmpa .

3. By irreducibility ofX , by Lemma 1.5.3.11 and by Proposition 1.5.3.10, we have the following
identifications

K(X) ∼= K(Xi) ∼= K(Xa
i ) ∼= k[Xi]a⟨0⟩ ∼=

Ä
k[X]hxi

ä
⟨0⟩
∼= k[X]h⟨0⟩.

4. First note that k ↪→ Γ(OX , X). It would thus suffice to show that Γ(OX , X) ↪→ k. Pick any
f ∈ Γ(OX , X). We wish to show that f ∈ k. Let R = k[X]h. Note that we can embed
Γ(X,OX) inside the (non-homogeneous) fraction field L = k[X]h⟨0⟩. Consequently, by alge-
braic closure of k, it would suffice to show that f ∈ L satisfies a polynomial with coefficients
in k. Since f is a regular function on each of the Xi, therefore f ∈ k[Xi]a ∼= k[X]hxi . Conse-
quently, f = gi/x

ni
i in L where deg gi = ni and thus xnii f ∈ Rni for each i = 0, . . . , n. It thus

follows that deg f = 0 in L. Consequently, it would suffice to show that f ∈ L is integral
over R (as we can then obtain a polynomial in k[x] whose zero is f by restricting to 0 degree
coefficients). By Corollary ??, it would thus suffice to show that R[f ] is a finitely generated
R-module.

It would thus suffice if we show that ∃M ∈ N such that ∀N ≥M , RNfm ⊆ RN for all m ≥ 0.
Indeed, for M =

∑
i ni, we see that RNf ⊆ RN as for any g ∈ RN , we have that each term
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of g will have to have one xi whose power is ≥ ni. Repeatedly applying RNf ⊆ RN yields
RNf

m ⊆ RN for all m ≥ 0, as needed.

Remark 1.5.3.13. Note that in Proposition 1.5.3.12, 1, the maximal ideal mP does not contain
all of non-constant polynomials in k[X] because mp is generated by homogeneous polynomi-
als vanishing at p ∈ X and a polynomial with non-zero constant terms cannot be in such an
ideal, thus such an mp will exactly be the ideal of all non-constant polynomials in k[X], but then
p ∈

⋂
f∈k[X],f(0)=0 Z(f) = ∅.

We now show that affine varieties are completely determined by their coordinate rings in the
following sense

Theorem 1.5.3.14. Let k be a algebraically closed field. Then the following

k[−] : AfVarop
k −→ FGIAlgk
X 7−→ k[X]

X
ϕ→ Y 7−→ k[Y ] k[ϕ]→ k[X]

is a functor22 which induces an equivalence between the opposite category of affine varieties over k and
finitely generated integral domains over k.

Proof. TODO.

We now show some examples of the machinery developed so far. We first show that any affine
plane conic is isomorphic as a variety to either the parabola y−x2 or the hyperbola xy−1. Indeed,
we use here the familiar high-school topic that one classifies conics on the basis of discriminant(!)
This will further show that the usual substitutions that we so used to do in school days to reduce
an algebraic equation into a simpler form can equivalently be stated in algebraic language as
finding a correct automorphism of the corresponding ring in question.Type up the solu-

tions from notebook,
Chapter 1. Subvarieties

22Note that by Proposition 1.5.3.10, this is just the global sections functor.
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1.5.4 Varieties as schemes

In this section we show how to realize a k-variety (see Definition 1.5.2.5) as a scheme. This will be
essential as it fulfill all the reasons to work with schemes as they generalize the concept of varieties
to just the right level where all algebro-geometric questions can be asked and be attempted to be
solved.

We first show a fully-faithful functor which embeds the category of k-varieties into the cate-
gory of k-schemes (that is, schemes over k). This will hence show how to obtain a scheme from a
variety because, as the following construction of the relevant functor will show, it is not straight-
forward how should one begin defining it23.

Definition 1.5.4.1. (Spectral space of X) For every topological space X , we can associate a topo-
logical space

t(X) := {All non-empty closed irreducible subsets of X}

where any closed set is given by t(Y ) ⊆ t(X) for a closed set Y ⊆ X . The following lemma shows
that this indeed defines a topology on t(X). We will call t(X) the spectral space of X .

Lemma 1.5.4.2. Let X be a space and Y,Z, Yi ⊆ X be closed subsets of X . Then,
1. t(Y ) ⊆ t(X),
2. t(Y ∪ Z) = t(Y ) ∪ t(Z),
3. t (

⋂
i Yi) =

⋂
i t(Yi).

Proof. 1. Any closed irreducible subset of Y , where Y is closed in X , will again be closed and
irreducible in X .
2. Any irreducible subset of Y ∪ Z cannot have non-empty intersection with both of them.
3. Follows from 1.

Indeed, our main idea is to show that for a variety V , the space t(V ) will eventually become a
scheme. We have few observations about spectral spaces, before we realize that idea.

Lemma 1.5.4.3. Let X,X1, X2 be spaces and f : X1 → X2 be a continuous map. Then,
1. there is a one-to-one correspondence between closed subsets of X and closed subsets of t(X),
2. the following is a continuous map

t(f) : t(X1) −→ t(X2)
Y1 7−→ f(Y1),

3. the following is a functor

t : Top −→ Top
X 7−→ t(X),

4. the following is a continuous map

α : X −→ t(X)
x 7−→ {x}.

23However, one may take a hint (albeit quite vague) from Lemma 1.3.0.2 in the following construction.
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Proof. 1. Follows from the definition of topology on the spectral space.
2. Let Y2 ⊆ X2 be closed so that t(Y2) ⊆ t(X2) is closed. We wish to show that (t(f))−1(t(Y2)) ⊆
t(X1) is closed. This follows from the observation that for Y1 ∈ t(X1), we have f(Y1) ∈ t(Y2) ⇐⇒
Y1 ∈ t(f−1(Y2)).
3. Follows from 2.
4. Pick any closed Y ⊆ X to thus obtain a closed t(Y ) ⊆ t(X). Then α−1(t(Y )) = {x ∈ X | {x} ∈
t(Y )} = {x ∈ X | x ∈ Y } = Y .

We now give scheme structure to the space t(X). But first, we need a small lemma.

Lemma 1.5.4.4. Let A = k[V ] be the coordinate ring of an affine k-variety V over an algebraically closed
field k. Then, for any open set U ⊆ Spec (A), the set of all closed points of U are dense in U .

Proof. Since all closed points of Spec (A) are its maximal ideals by Nullstellensatz, thus, any closed
point of U is a maximal ideal of A as well. Consequently, we may assume U = D(f) is a basic
open set for f ∈ A. But since D(f) ∼= Spec (Af ) and closed points of any affine scheme are always
dense, the result follows.

Theorem 1.5.4.5. Let k be an algebraically closed field and (V,OV ) be a k-variety. Let α : V → t(V ) be
the continuous map as defined in Lemma 1.5.4.3, 4. Then, (t(V ), α∗OV ) is a scheme over k which admits
an affine open cover by Spec (A) for A = k[W ] where W is an affine open subvariety of V .

Proof. For better clarity of this important proof, we break it in multiple acts.

Act 1 : We may assume V is an affine k-variety.

Since we wish to show that t(V ) is a scheme, hence we need to produce an open cover of t(V )
by affine schemes. Since V is covered by open affine k-varieties, thus if we can show that for an
affine k-variety W , the space t(W ) is a scheme, then we would be done. Hence we may assume V
is affine with coordinate ring k[V ] =: A.

Act 2 : t(V ) ∼= Spec (A) as topological spaces.

Consider the usual maps that we know from our study of varieties:

t(V ) Spec (A)
I(−)

Z(−)

These are easily seen to be continuous inverses of each other by the correspondence between
closed irreducible subsets of an affine variety and prime ideals of its coordinate ring (Lemma
1.2.1.1).

Act 3 : The closed points of Spec (A) are points of V .

We first construct the following map

ϕ : V −→ Spec (A)
p 7−→ mp
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where mp is defined together with some properties in Proposition 1.5.3.10. This is continuous by a
small check on closed sets. Moreover, this is injective. Now, we claim that ϕ(V ) ⊆ Spec (A) are all
closed points of Spec (A). Indeed, this follows from the correspondence between closed points of
Spec (A) and maximal prime ideals of A (Lemma 1.2.1.3). We will thus denote ϕ(V ) as the set of
closed points of Spec (A).

Act 4 : It is enough to show that ϕ∗OV ∼= OSpec(A).

Since we have the following commutative triangle

V

Spec (A) t(V )

ϕ α

Z(−)

I(−)

∼=

,

thus α∗OV ∼= (Z ◦ ϕ)∗OV = Z∗ϕ∗OV . Since Z is an isomorphism, thus the reduction is justified.

Act 5 : ϕ∗OV ∼= OSpec(A).

Let U ⊆ Spec (A) be an open set. We will construct an isomorphism between OSpec(A)(U) and
OV (ϕ−1(U)). Consider the map

ηU : OSpec(A)(U) −→ OV (ϕ−1(U))
s : U → ⨿p∈UAp 7−→ ηU (s) : ϕ−1(U)→ k

where for any q ∈ ϕ−1(U), we define ηU (s)(q) = s(mq)(q). It clearly is a ring homomorphism
which commutes with appropriate restriction maps. Thus, we need to show the following three
statements in order to conclude.

1. ηU (s) is regular,
2. ηU has zero kernel,
3. ηU is surjective.

In-fact, the above three statements are at the technical heart of the proof. The main driving force
behind this is the density of closed points of open sets in Spec (A) (Lemma 1.5.4.4) and the identity
principle of regular maps on a variety (Lemma 1.5.2.4).

Statement 1. is immediate as s is regular. For statement 2., suppose that ηU (s) = 0 over
ϕ−1(U). Thus s(mq)(q) = fq(q)/gq(q) = 0 for all q ∈ ϕ−1(U). Thus, ηU (s) around q is represented
by rational function fq/gq. By Lemma 1.5.2.4 on ηU (s), we obtain that fq = 0 for all q ∈ ϕ−1(U).
Thus s is zero at all closed points of U , which are exactly ϕ(ϕ−1(U)). But since closed points of U
are dense by Lemma 1.5.4.4 and s is a locally constant function, hence s = 0.
Finally, to see statement 3., pick any f ∈ OV (ϕ−1(U)) and notice that W := ϕ(ϕ−1(U)) is a dense
subset of U (set of all closed points, Lemma 1.5.4.4). Thus, it is enough to define a locally constant
function s over W whose extension s̃ over U is such that ηU (s̃) = f . Indeed, consider

s :W −→
∐
p∈U

Ap

mq 7−→ gq/hq
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where gq/hq is the rational function representing f at the point q ∈ V . Clearly, the extension s̃ is
in OSpec(A)(U) and it is mapped by ηU to f .

Act 6 : (t(V ), α∗OV ) is a scheme over k.

Now let V be a k-variety. We wish to show that t(V ) is a scheme over Spec (k). Thus we need to
produce a map t(V )→ Spec (k), which is equivalent to a map k → Γ(α∗OV , t(V )) via the Theorem
1.3.0.5. Since Γ(α∗OV , t(V )) = Γ(OV , V ) = A via Proposition 1.5.3.10, 5, the result follows.

This completes the proof.

Remark 1.5.4.6. Theorem 1.5.4.5 yields that the functor t restricts to the following

t : Vark −→ Schk
(V,OV ) 7−→ (t(V ), α∗OV ).

We will now show that this is a fully-faithful embedding. In other words, any map of t(V1)→ t(V2)
as of schemes over k is equivalent to a map V1 → V2 of k-varieties.

Let us begin with some elementary properties of the residue fields of the k-scheme t(V ) at-
tached to a k-variety V .

Lemma 1.5.4.7. Let k be an algebraically closed field and let V be a k-variety. A point p ∈ t(V ) is closed
if and only if κ(p) = k.

Proof. (L⇒ R) Since p ∈ t(V ) is closed and closed points of t(V ) are exactly points of V , therefore
p ∈ V ⊆ t(V ). Consequently, for an affine k-variety X ⊆ V containing p, we obtain the following
by Proposition 1.5.3.10, 3 and Nullstellensatz:

κ(p) = Ot(V ),p/mt(V ),p ∼= OV,p/mV,p
∼= OX,p/mX,p

∼= k[X]mp/mpk[X]mp ∼= (k[X]/mpk[X])0 ∼= k.

(R⇒ L) By Theorem 1.5.4.5, we have that for some open affine k-variety X ⊆ V , p ∈ Spec (k)[X].
Consequently, κ(p) = (k[X]/pk[X])0 = k where p is treated as a prime ideal of k[X]. Conse-
quently, we have that the domain k[X]/pk[X] = k as we have inclusions k ↪→ k[X]/pk[X] ↪→
(k[X]/pk[X])0. Thus p ⪇ k[X] is maximal.

Proposition 1.5.4.8. Let k be an algebraically closed field. Then there is a natural bijection

HomVark (V1, V2) ∼= HomSchk (t(V1), t(V2)).

That is, the functor t is a fully-faithful embedding of k-varieties into schemes over k.

Proof. Exercise 2.15 of Hartshorne Chapter 2.Complete the proof
of embedding vari-
eties into schemes,
Chapter 1.

Let us now spell out all the properties that the scheme t(V ) satisfies for a k-variety V .

Proposition 1.5.4.9. Let k be an algebraically closed field and V be a k-variety. Then, the scheme t(V )
over k is (for ∗ properties, see Section 1.12)

1. integral,
2. noetherian,
3. finite type over k,
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4. quasi-projective∗,
5. separated∗.

Proof. 1. to 3. are immediate from the open covering by Spec (k[W ]) of t(V ) where W ⊆ V is an
open affine subvariety (Theorem 1.5.4.5). Consequently t(V ) is covered by spectrum of finite type
k-algebras.
4. is also immediate as any k-variety is an open subset of an affine or a projective k-variety by
definition. Since any affine k-variety can be seen as a projective k-variety, consequently, we have
an open immersion of V into a closed subvariety of some projective space over k. This extends to
an open immersion of t(V ) into a closed subscheme of Pnk .
5. Follows from 4. and Theorem 1.12.8.2.

We now state an important rectification result which precisely shows what type of schemes are
those which are in the image of functor t as in Remark 1.5.4.6.

Corollary 1.5.4.10. Let k be an algebraically closed field. Then, the functor of Remark 1.5.4.6

t : Vark −→ QPISchk

establishes an equivalence between varieties over k and quasi-projective integral schemes over k. Further,
the image of projective varieties under this functor is exactly the projective integral schemes over k.

Proof. By Proposition 1.5.4.8, we reduce to showing that t lands into quasi-projective schemes
and is essentially surjective. Indeed, for a k-variety V , the scheme t(V ) is quasi-projective by
Proposition 1.5.4.9, 4. Now, to show essential surjection, we first observe that open subschemes of
t(V ) is in one-to-one bijection with open subsets of V . Consequently, it would suffice to show that
any projective integral k-scheme X is in the essential image of t. Indeed, let V denote the closed
points of X as a closed subscheme of some Pnk . Consequently, as closed points of a finite type
k-scheme is dense (Lemma 1.12.2.6), therefore V is irreducible (note we are using irreducibility
of X here), thus a projective variety in Pnk . Now, t(V ) and X have same underlying space. As a
subspace of Pnk , t(V ) and X have both have the structure of a reduced scheme over the common
underlying space. By uniqueness of reduced induced closed subscheme structure on a closed
subset, we have that t(V ) ∼= X (see Section 1.6.3).

We now redefine varieties as schemes and use them as such for the remainder of the sections.

Definition 1.5.4.11. (Abstract and classical varieties) Let k be an algebraically closed field. An
abstract variety or simply a variety, is a separated, integral finite type k-scheme. Those varieties
which are furthermore quasi-projective are exactly the varieties we defined earlier by Corollary
1.5.4.10. We will further call the notion of varieties we defined earlier in Definition 1.5.2.5 by
referring to them as classical varieties.
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1.6 Fundamental constructions on schemes

In this section, we would like to understand some of the basic constructions which one can per-
form with a collection of schemes.

1.6.1 Points of a scheme

Let X be a scheme. Pick any point x ∈ X . We then have the residue field κ(x) = OX,x/mx. Hence
we have a projection map

OX,x → κ(x).

Consider now an open affine x ∈ Spec (A) ⊆ X . Consequently, we have OX,x ∼= OSpec(A),x ∼= Ax.
Thus, denoting the inclusion jx : Spec (Ax) ↪→ Spec (A), we obtain the following composition:

ix : Spec (κ(x))→ Spec (OX,x) = Spec (Ax)
jx
↪→ Spec (A) ↪→ X.

Remember that Spec (Ax) can be interpreted as the affine subset in Spec (A) which is "very close"
to x ∈ Spec (A). The map jx takes the singleton point in Spec (κ(x)) to x ∈ X . This map is usually
called the canonical map of point x ∈ X . The map on stalks that ix yields is the natural projection
OX,x → κ(x). This map is quite unique as it is universal amongst all those maps Spec (K) → X
which maps to x. Indeed, we have the following.

Lemma 1.6.1.1. Let X be a scheme and let x ∈ X be a point. If K is a field and f : Spec (K) → X is a
map, then

1. If f(⋆) = x, then κ(x) ↪→ K.
2. If f(⋆) = x, then f factors via the canonical map ix at point x ∈ X

Spec (κ(x)) X

Spec (K)
f

ix

.

3. HomSch (Spec (K), X) ∼= {x ∈ X | κ(x) ↪→ K}.

Proof. 1. At the stalk, we have a local ring homomorphism ϕ : OX,x → K. Consequently,
Ker (ϕ) = mX,x. It then follows that κ(x) = OX,x/mX,x ↪→ K.
2. Clearly f factors as above as a continuous map. To check the commutativity of sheaf maps,
we need only check at stalks (Theorem 20.3.0.7). This is straightforward, as we get on stalks the
following commutative diagram:

κ(x) OX,x

K
f♯⋆

.

3. It suffices to show that a morphism f : Spec (K) → X is equivalent to the data of a point
x ∈ X such that κ(x) ↪→ K. By 1, one side is immediate. Now consider a point x ∈ X and a
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field extension κ(x) ↪→ K. We wish to construct a map f : Spec (K) → X such that the above
data is obtained via the construction in 1 applied on f . Indeed, the map f on topological spaces
is straightforward, f(⋆) = x. On sheaves, it reduces to define a natural local ring homomorphism
OX,x → K. This is immediate, as we need only define this as OX,x → κ(x) ↪→ K.

The above lemma shows that defining a map Spec (K) → X is equivalent to taking a point
x ∈ X such thatK extends κ(x). There is another similar important characterization of maps from
Spec

Ä
k[x]
x2

ä
into X , which characterizes all rational points of X together with "direction" (that is,

together with an element of the tangent space). We first define a rational point of a k-scheme.
Recall that by Corollary 1.3.0.7, κ(x) is a field extension of k. Further observe the definition of
Zariski tangent space TxX of a scheme as defined in Definition 1.11.1.10.

Definition 1.6.1.2. (Rational points) LetX be a k-scheme. Then a point x ∈ X is said to be rational
if κ(x) = k.

Let us denote k[ϵ] = k[x]/x2. The ring k[ϵ] is usually called the ring of dual numbers.

Proposition 1.6.1.3. 24 Let X be a scheme over a field k. Then, we have a bijection

HomSch/k (Spec (k[ϵ]), X) ∼= {(x, ξ) | x ∈ X is a rational point & ξ ∈ TxX}

Proof. (⇒) Take a scheme homomorphism f : Spec (k[ϵ])→ X . Note that we have a map

k[ϵ]→ k[ϵ]/ϵ ∼= k.

Consequently, we get a map g : Spec (k)→ Spec (k[ϵ]) which by composing by f , we get

Spec (k) g→ Spec (k[ϵ]) f→ X.

Observe that Spec (k[ϵ]) is a one point scheme, therefore f(pt.) = f ◦ g(pt.) =: x. We wish to show
that x is a rational point. By Lemma 1.6.1.1, 3, we have κ(x) ↪→ k. But since X is a scheme over k,
therefore k ↪→ κ(x). We further deduce from the fact that X is a k-scheme that we have a triangle

κ(x) k

k

∼=
.

This shows that horizontal arrow above is an isomorphism. Thus, κ(x) = k. We now wish to
obtain an element of TxX .

At the point x ∈ X , we have a map f : Spec (k[ϵ])→ X . This yields a map on stalks given by

ϕ : A→ k[ϵ]

where A = OX,x is the local ring at point x ∈ X and ϕ is furthermore a local k-algebra homo-
morphism. Let m be the maximal ideal of the local ring A. Then, A/m = κ(x), which is equal
to k as x is a rational point. Thus, A is a rational local k-algebra (Definition 16.1.2.17). It follows
from Proposition 16.1.2.18 that ϕ is equivalent to an element of the tangent space ξ ∈ TA and by
definition, TA = TxX . This completes the proof.

24Exercise II.2.8 of Hartshorne.
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We now see that closed points of a finite-type k-scheme are those whose residue extension of
k is algebraic.

Proposition 1.6.1.4. Let X be a finite-type k-scheme. Then the following are equivalent:
1. x ∈ X is a closed point.
2. x ∈ X is such that κ(x)/k is an algebraic (equivalently, finite).

Proof. (1. ⇒ 2.) Clearly, κ(x) is a finitely type field extension of k. By essential Nullstellensatz,
κ(x)/k is algebraic.

(2. ⇒ 1.) Pick an affine open Spec (A) containing x so that p ∈ Spec (A) corresponds to x. We
wish to show that p is maximal. As κ(x) = Q(A/p) and

k ↪→ A↠ A/p ↪→ Q(A/p) = κ(x),

thus, as κ(x)/k is algebra, we deduce that κ(x) is integral overA/p. LetB be a finite type k-domain
such that Q(B) is integral over B. One can check by writing down the relevant polynomials that
this implies for any element b ∈ B, the inverse b−1 ∈ Q(B) is in B by integrality. Using this for
B = A/p, we deduce that A/p is a filed, so p is maximal, as required.

1.6.2 Gluing schemes & strongly local constructions

We now show how to obtain new schemes from old by the gluing construction. Indeed, the idea
is simple, glue the underlying topological spaces of a certain collection of schemes and identifica-
tions and define a new structure sheaf over the resultant space which canonically makes it into a
scheme. We will further see that there is a universal property that is satisfied by such a glue. We
suggest that the reader make a diagram of blobs and draw the corresponding maps in order to see
the naturality of the following.

Definition 1.6.2.1. (Gluing datum) A tuple of data (I, {Xi}i∈I , {Uij}i,j∈I , {ϕij}i,j∈I) of an index set
I , schemesXi for each i ∈ I , open subschemesUij ⊆ Xi for each i, j ∈ I and scheme isomorphisms
ϕij : Uij → Uji for each i, j ∈ I is a gluing datum if it satisfies the following:

1. Uii = Xi for all i ∈ I ,
2. ϕji = ϕ−1ij ,
3. ϕii = idUii = idXi ,
4. the cocycle condition,

ϕjk ◦ ϕij = ϕik on Uij ∩ Uik ∀i, j, k ∈ I.

We then have that there is a unique glue of the above.

Proposition 1.6.2.2. For a gluing datum (I, {Xi}i∈I , {Uij}i,j∈I , {ϕij}i,j∈I) of schemes, there exists a
unique scheme X with the following properties:

1. there exists an open embedding of schemes

φi : Xi → X for each i ∈ I,

2. φj ◦ ϕij = φi on Uij for all i, j ∈ I ,
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3. X =
⋃
i∈I φi(Xi),

4. φi(Xi) ∩ φj(Xj) = φi(Uij) = φj(Uji) for all i, j ∈ I .

Proof. The underlying space of X is obtained by gluing the underlying spaces of Xi in the usual
manner;

X :=
∐
i∈I

Xi/ ∼

where xi ∼ ϕij(xi) for all xi ∈ Uij and i, j ∈ I . Let φi : Xi → X be the canonical inclusion map.
The topology is given on X via the quotient topology; U ⊆ X is open if and only if φ−1i (U) ⊆ Xi

is open for each i ∈ I . Then to define the sheaf OX , pick any open U ⊆ X and define the sections
over it as follows (let us write ϕij : OUij

∼=→ OUji as well):

OX(U) =
{
[(φ−1i (U), si)] | ∀i, si ∈ OXi(φ−1i (U)) s.t. ϕij(ρφ−1

i
(U),φ−1

i
(U)∩Uij (si)) = ρφ−1

j
(U),φ−1

j
(U)∩Uji(sj)

}
.

By local nature, this is again a sheaf (also called the glued sheaf). Now, φi is an open embedding
as for any open U ⊆ X , it follows that OX(ϕi(Xi)∩U) ∼= OXi(φ−1i (U)). Thus, X is a scheme as for
each x ∈ X , x ∈ φi(Xi) which is a scheme.

A lot of times we have the situation that a certain construction on a ring A leads to a map
ϕ : A → Ã. Consequently, we obtain maps f : Spec

(
Ã
)
→ Spec (A). If X is a scheme, then

for each open affine Vi = Spec (Ai), we get a map Xi → Vi given by Spec
(
Ãi
)
→ Spec (Ai).

Consequently, we are interested in the conditions that the construction A→ Ã must satisfy so that
Xi glue together to give a scheme X̃ which represents the construction globally.

Definition 1.6.2.3 (Construction on rings). A construction on rings is a collection of maps {ϕA :
A→ Ã} one for each ringA such that for any isomorphism ηAB : A

∼=→ B, we have an isomorphism
η̃AB : Ã→ B̃ which is id if η is id, the diagram

A Ã

B B̃

ϕA

ϕB

ηAB ∼= η̃AB ∼=

commutes and if ηBC ◦ ηAB = ηAC , then η̃BC ◦ η̃AB = η̃AC . That is, constructions are functorial on
isomorphisms.

Definition 1.6.2.4 (Strongly local constructions). A construction on rings {ϕA : A→ Ã} is said to
be strongly local if it naturally commutes with localization. That is, for each g ∈ A not in nilradical,
there exists an isomorphism Ãg ∼= Ãg such that

A Ag

Ã Ãg Ãg

(ϕA)gϕA
ϕAg

∼=

commutes where (ϕA)g : Ag → Ãg is the localization of map ϕA : A→ Ã at the element g ∈ A and
the horizontal arrows of the square are localization maps.
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Remark 1.6.2.5. Let η : Af ∼= Bg be an isomorhism where f ∈ A and g ∈ B. Then we get an
isomorphism η̂ : Ãf ∼= B̃g as in the following commutative diagram:

Ãf B̃g›Af B̃g

Af Bgη

∼=

ϕAf ϕBg

η̃

η̂

∼= ∼=

∼=(ϕA)f (ϕB)g .

Let X be a scheme. Our main goal is to show that strongly local constructions done on each
affine open subset of X can be glued to give a scheme X̃ admitting a map X̃ → X .

We will achieve this in steps. We first translate strongly local property more geometrically.

Lemma 1.6.2.6. Let {ϕA : A → Ã} be a strongly local construction on rings. For any ring A denote
φA : Spec

(
Ã
)
→ Spec (A) to be the map corresponding to ϕA. Then, for any f ∈ A, the following

diagram commutes:

Spec (Af ) Spec
(
Ãf
)

Spec
Ä›Afä

φA|Spec(Ãf)

φAf
∼=

.

Proof. This is the translation of Definition 1.6.2.3 in Spec (−) where localization amounts to re-
stricting to the corresponding open subscheme.

The following is an important observation which will help in checking the cocycle condition.

Lemma 1.6.2.7. Let {ϕA : A → Ã} be a strongly local construction on rings and the following be a
commutative triangle of isomorphisms

Rf Sg

Th

for f ∈ R, g ∈ S and h ∈ T . Then, the following triangle of isomorphisms as constructed in Remark
1.6.2.5 also commutes

R̃f S̃g

T̃h

.
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Proof. By definition of a construction, we get that the following triangle commutes›Rf S̃g

T̃h

.

By the construction of isomorphism R̃f → S̃g and others as in Remark 1.6.2.5, we immediately get
that the required triangle commutes.

Lemma 1.6.2.8. Let X = Spec (A) and Y = Spec (B) be two affine schemes. Let R be a ring with
isomorphismsAf ∼= R ∼= Bg for some f ∈ A and g ∈ B. Let {ϕS : S → S̃} be a strongly local construction
on rings. Then there are open immersions Spec

(
R̃
)
↪→ Spec

(
Ã
)

and Spec
(
R̃
)
↪→ Spec

(
B̃
)

so that the
following commutes

Spec
(
Ã
)

Spec
(
R̃
)

Spec
(
B̃
)

Spec (A) Spec (R) Spec (B)

φA φR φB
.

Proof. This follows from the following diagram

Spec
(
Ã
)

Spec
(
Ãf
) ∼= Spec

Ä›Afä Spec
(
R̃
)

Spec
Ä
B̃g
ä
∼= Spec

(
B̃g
)

Spec
(
B̃
)

Spec (A) Spec (Af ) Spec (R) Spec (Bg) Spec (B)

φA φB

∼=

φR

∼=

∼=

φA|Spec(Ãf) φB |Spec(B̃g)

∼=

the commutativity of which follows from Lemma 1.6.2.6 and the definition of a construction.

Let X be a scheme and U = Spec (A) and V = Spec (B) be two open affines. We can now glue
Spec

(
Ã
)

and Spec
(
B̃
)

along the intersection U ∩ V as follows.

Proposition 1.6.2.9. Let X be a scheme and U = Spec (A) and V = Spec (B) be two open affines.
Let {ϕS : S → S̃} be a strongly local construction on rings. Let φA : Ũ = Spec

(
Ã
)
→ Spec (A)

and φB : Ṽ = Spec
(
B̃
)
→ Spec (B) be the maps corresponding to ϕA and ϕB . Then, there exists an

isomorphism of schemes

Θ : φ−1A (U ∩ V )
∼=−→ φ−1B (U ∩ V )

such that the following commutes for any affine open Spec (R) ⊆ U ∩ V which is basic in both U and V by
the isomorphisms Af ∼= R ∼= Bg (see Lemma 1.4.4.3)

φ−1A (U ∩ V ) φ−1B (U ∩ V )

Spec
(
Ãf
)

Spec
(
B̃g
)

∼=
Θ

Θf

∼=

where Θf is obtained from θ : Af ∼= Bg via˜construction (Remark 1.6.2.5).
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Proof. Cover U ∩ V by open affines which are basic in both U and V (Lemma 1.4.4.3) and write
U ∩ V =

⋃
i∈I Spec (Afi) =

⋃
i∈I Spec (Bgi) where fi ∈ A and gi ∈ B. Consequently we may write

φ−1A (U ∩ V ) =
⋃
i∈I

φ−1A (Spec (Afi)) =
⋃
i∈I

Spec
(
Ãfi
)

and thus similarly,

φ−1B (U ∩ V ) =
⋃
i∈I

Spec
(
B̃gi
)
.

For each i ∈ I , Lemma 1.6.2.8 provides us with an isomorphism

Θi : Spec
(
Ãfi
) ∼=−→ Spec

(
B̃gi
)
↪→ Ṽ .

We claim that Θi can be glued. Indeed, for i ̸= j, we have Spec
(
Ãfi
)
∩ Spec

(
Ãfj
)
= Spec

(
Ãfifj

)
,

therefore we reduce to showing that Θi and Θj are equal when restricted to Spec
(
Ãfifj

)
. Observe

from Lemma 1.4.4.3 that for each i ∈ I , the isomorphism Afi
∼= Bgi takes fi 7→ gi. The above is

now equivalent to showing that the isomorphisms θi : Ãfi ∼= B̃gi and θj : Ãfj ∼= B̃gj obtained from
Afi
∼= Bgi and Afj ∼= Bgj fit in the following commutative diagram

Ãfifj B̃gifj

Ãfjfi B̃gjfi

id

(θi)fj

(θj)fi

id .

But θi(fj) = gj and θj(fi) = gi, as mentioned above. Therefore B̃gifj = B̃gigj = B̃gjgi = B̃gjfi and
the above square commutes, showing that Θi glues to give a map Θ : φ−1A (U ∩ V )→ φ−1B (U ∩ V ),
which is an isomorphism as locally it is an isomorphism (Proposition 1.3.1.5).

Using Proposition 1.6.2.9, we can now globalize a strongly local construction.

Theorem 1.6.2.10. Let X be a scheme and {ϕS : S → S̃} be a strongly local construction on rings. Then
there exists a scheme α : X̃ → X such that for any affine open Spec (A) ↪→ X , the following square
commutes

Spec
(
Ã
)

X̃

Spec (A) X

αφA
.

Proof. We first construct X̃ by gluing each Spec
(
Ã
)
. Indeed, let {Vi = Spec (Ai)}i∈I be the

collection of affine opens in X and let {X̃i = Spec
(
Ãi
)
} be the collection of corresponding -̃

constructions. Let φi : X̃i → Vi be the maps corresponding to ϕAi .
For each i ̸= j ∈ I we wish to construct open subschemes Uij ⊆ X̃i and isomorphisms

ϕij : Uij → Uji satisfying the gluing conditions of Definition 1.6.2.1. We let

Uij = φ−1i (Vi ∩ Vj).
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Then Proposition 1.6.2.9 provides us with an isomorphism

ϕij : Uij
∼=−→ Uji.

It is immediate that Uii = X̃i and ϕii = idUii . Moreover, ϕji = ϕ−1ij by construction. We now check
the cocycle condition. Indeed, pick i, j, k ∈ I and pick an open affine Spec (R) ⊆ Vi ∩ Vj ∩ Vk in
X which is basic open in Vi, Vj and Vk (Lemma 1.4.4.3 such that we have isomorphisms Ai,fi ∼=
Aj,fj

∼= Ak,fk
∼= R so that the following triangle commutes

Ai,fi Aj,fj

Ak,fk

∼=∼=

∼=

. (∗)

By taking inverse images under φi, it follows that Spec
(
Ãi,fi

)
⊆ Uij ∩ Uik is basic open in both

X̃i and X̃j . We wish to show that ϕik restricted to Spec
(
Ãi,fi

)
is the composition ϕjk ◦ ϕij . By

Proposition 1.6.2.9, we get that ϕik on this open affine is an isomorphism to Spec
(
Ãk,fk

)
and ϕij

is an isomorphism to Spec
(
Ãj,fj

)
. Consequently, we wish to show that the following triangle of

isomorphisms commute

Spec
(
Ãi,fi

)
Spec

(
Ãj,fj

)
Spec

(
Ãk,fk

)
ϕij

ϕjk
ϕik

.

But these isomorphisms are obtained by the following isomorphisms on the localizations (Propo-
sition 1.6.2.9):

Ãi,fi Ãj,fj

Ãk,fk

∼=∼=

∼=

.

Hence it suffices to show that the above triangle commutes. The Lemma 1.6.2.7 applied on (∗)
yields the required commutativity.

Definition 1.6.2.11 (̃-fication). Let {ϕS : S → S̃} be a strongly local construction of rings and let
X be a scheme. The scheme X̃ → X obtained in Theorem 1.6.2.10 is called the -̃fication of X .

1.6.3 Reduced scheme of a scheme

For any scheme X , we can obtain a scheme with the same underlying space but with reduced
structure sheaf. This procedure is called reducing a scheme to a reduced scheme.

Construction 1.6.3.1. Let X be a scheme. Consider the sheaf associated to the presheaf U 7→
OX(U)/nU where nU is the nilradical of OX(U) and denote this sheaf by Ored

X . The pair (X,Ored
X )

will be called the associated reduced scheme of the scheme (X,OX), usually denoted byXred. Indeed,
(X,Ored

X ) is a scheme as the following result shows.
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Remark 1.6.3.2 (Reducing a ring is a strongly local construction). It is easy to see that A → A/n for
each ring A defines a strongly local construction on rings as in Definition 1.6.2.4. Consequently,
by Theorem 1.6.2.10, we immediately get a scheme X̃ obtained by reducing each open affine by
dividing by nilradical. Indeed, one checks that we get the same scheme as (X,Ored

X ). However, we
still give a proof of (X,Ored

X ) being a scheme without appealing to Theorem 1.6.2.10.

Lemma 1.6.3.3. 25 Let X be a scheme. Then,
1. the pair (X,Ored

X ) is a scheme,
2. there exists a map of schemes ϕ : (X,Ored

X )→ (X,OX) which is a homeomorphism on the spaces.

Proof. 1. Let (Spec (A),OSpec(A)) be an open affine of X . We shall show that (Spec (A),Ored
Spec(A))

is isomorphic to (Spec (Ared),OSpec(Ared)). First, the isomorphism on spaces is straightforward as
every prime ideal contains nilradical (nilradical is the intersection of all prime ideals, Lemma
16.1.2.9). We thus need to produce a sheaf morphism Ored

Spec(A) → OSpec(Ared) which is an isomor-
phism. Let us denote the presheaf U 7→ OX(U)/nU by F . We first immediately reduce to showing
the existence of a map F → OSpec(Ared) which is an isomorphism on basic open sets, as we then ob-
tain a map of sheaves Ored

Spec(A) → OSpec(Ared) by the universal property of sheafification (Theorem
20.2.0.1) which is an isomorphism on stalks (Theorem 20.3.0.6, 4).

Since sheaves and sheaf morphisms are uniquely determined by defining them on a basis, thus
we further reduce to defining a presheaf map F → OSpec(Ared) with above properties on a basis.
Since Spec (A) has a canonical basis, namely, B = {Spec (A)f}f∈A, consequently one sees that iso-
morphism Af/nf ∼= (A/n)f can be naturally extended to a presheaf map F → OSpec(Ared), which is
an isomorphism on the basis B.

2. Consider the map f : (X,Ored
X ) → (X,OX) which is given by idX on spaces but by the

following quotient map OX(U)→ OX(U)/nU → Ored
X (U).

There is a universal property of reduced schemes which says that a map out of a reduced
scheme necessarily has to factor through the reduction of the codomain.

Proposition 1.6.3.4. 26 Let f : X → Y be a map of schemes with X being a reduced scheme. Then there
exists a unique map of schemes g : X → Yred such that the triangle commutes:

Y Yred

X

g
f

ϕ

.

Proof. The map g on spaces is immediate; it shoould be identical to f as ϕ is identity on spaces.
The map g♭ on the other hand can be constructed as follows. First observe that ifA andB are rings
with B being reduced, then any ring map η : A→ B extends to a unique map η̃ : Ared → B given

25Exercise II.2.3.b of Hartshorne.
26Exercise II.2.3.c of Hartshorne.
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by a+ n 7→ η(a) which makes the triangle commute:

A B

Ared

η

η̃
.

In our case, we therefore get a unique map f̃ ♭U as below for any U ⊆ Y , which further gives
us the required unique map g♭U : Ored

Y (U) → OX(f−1(U)) which we need (by universality of
sheafification, Theorem 20.2.0.1):

OY (U) Ored
Y (U) OX(f−1(U))

OY (U)/nU
f̃♭
U

=:g♭
UϕU

f♭
U

.

One can then easily check that g as given above makes the triangle commute.

For each closed set Z ⊆ X of a scheme, we construct a unique closed reduced subscheme
structure over it.

Construction 1.6.3.5 (Reduced induced subscheme). Let X be a scheme and Z ⊆ X be a closed set.
We wish to define a natural scheme structure on the subspace Z. Indeed, if X = Spec (A) is affine
and Z ⊆ X is closed, then let a =

⋂
p∈Z p so that Z = V (a). Then we define the reduced induced

subscheme structure on Z as that of Spec (A/a). Observe that (Z,OSpec(A/a)) is a reduced scheme
as a ⊇ n where n ≤ A is the nilradical.

For an arbitrary scheme X and a closed subset Z ⊆ X , we proceed as follows. Let {Ui}i∈I be
the collection of all open affines in X . Consider the intersections Zi = Ui ∩ Z for each i ∈ I . As
Zi ⊆ Ui are closed subsets in an affine scheme Ui, so by definition they carry the reduced induced
subscheme structure on Zi. We claim that the sheaves on each Zi can be glued. Indeed, by usual
argument involving Lemma 1.4.4.3, we reduce to checking that if U = Spec (A) is an open affine,
V = D(f) ⊆ U a basic open subset, RU and RV denote the sheaves obtained by reduced induced
subscheme structures on Z ∩ U and Z ∩ V respectively, then

(RU )|Z∩V ∼= RV .

Let a =
⋂

p∈Z∩U p which gives the required structure on Z ∩ U . Similarly, we have b =
⋂

p∈Z∩V p.
We claim that b = aAf . This would establish the required isomorphism between A/a and Af/b.
Indeed, by definition, it is clear that b ⊇ aAf . Conversely, pick x/fn ∈ aAf where x ∈ a. We wish
to show that x/fn ∈ b. Pick any prime ideal q ∈ Z ∩ V . We wish to show that x/fn ∈ q. As x ∈ a,
therefore x ∈ p for each p ∈ Z ∩ U . Thus, for p ∈ D(f), x ∈ p. As each q ∈ Z ∩ V comes from
p ∈ Z ∩D(f), therefore x/1 ∈ b and thus x/fn ∈ b.

This completes the gluing procedure, to yield a subscheme structure on Z which we call the
reduced induced subscheme structure on Z.

We now show the universal property of the above construction.

Proposition 1.6.3.6 (Universal property of reduced induced subscheme). TODO.
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1.6.4 Fiber product of schemes

One of the most important tool in scheme theory is that of fiber product of schemes. This is es-
sential as this is exactly the right notion using which one can define intersection of subschemes,
which is one of the fundamental goals of this book.

Existence of fiber products is equivalent to saying that the category of schemes Sch have all
pullbacks. In particular, it is equivalent to saying that for any two S-schemesX and Y , their prod-
uct in Sch/S exists, called the fiber product denoted X ×S Y .

However, we need to be more explicit than this abstract definition; we have to show that
X ×S Y actually exists. Since we know how pushouts are constructed in the category of rings,
their tensor products, therefore we can define it for affine schemes without much effort using the
functor Spec (−) : Ringop → Sch of Theorem 1.3.0.5.

Definition 1.6.4.1. (Fiber product of affine schemes) Let the following be a coCartesian27 diagram
of rings (or of R-algebras)

A⊗R B B

A R
f

g .

Since the Spec (−) : Ringop → Sch of Theorem 1.3.0.5 is right adjoint to global sections, therefore
it preserves all limits of Ringop, and thus, takes the above pushout diagram of R-algebras to a
pullback diagram of affine schemes over Spec (R):

Spec (A⊗R B) Spec (B)

Spec (A) Spec (R)
Spec(f)

Spec(g) .

We hence define Spec (A⊗R B) to be the fiber product of affine schemes Spec (A) and Spec (B)
over Spec (R).

Definition 1.6.4.2 (Fiber product of schemes). Fiber product of S-schemesX andY is an S-scheme
X ×S Y such that for any other S-scheme Z with map f : Z → X and g : Z → Y over S, there
exists a unique map u : Z → X ×S Y such that the diagram commutes

Z

X ×S Y Y

X S

f

g
u

.

27another name for pushout diagrams.
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The most important part in this construction is the description of the structure sheaf ofX×S Y .
We now show how to construct fiber products of arbitrary S-schemes. In the process, we give a
rather explicit description of fiber products and its structure sheaf, which we may think of as an
explicit definition of fiber product. We begin with the affine case. Recall the notion of compositum
of fields in Definition ??.

Proposition 1.6.4.3. Let A,B be two R-algebras and let X = Spec (A), Y = Spec (B) and S =
Spec (R). Then, as a set, we have the following bijection

X ×S Y ∼=


Tuples (pA, pB, L, α, β) where pA ∈ X , pB ∈ Y
such that both have same inverse image pR in S
and (L,α, β) is the compositum of fields κ(pA)
and κ(pB) over κ(pR).


Proof. Pick any prime ideal p ∈ X ×S Y = Spec (A⊗R B). We wish to construct the datum
(pA, pB, L, α, β). TODO.

We now construct the fiber product of two schemes. This is more of an exercise in gluing
techniques rather than anything else, so is ommited.

Theorem 1.6.4.4. Let X,Y be two S-schemes. The fiber product X ×S Y exists.

Remark 1.6.4.5. While working with fiber products, one of the most important tool is its universal
property. Most of the results about fiber products rarely uses the point-set construction as laid out
above, just like the construction of tensor product is rarely used. Consequently, one should/must
prove results about fiber products only using universal properties.

We now portray some easy applications of the universal property of fiber products.

Lemma 1.6.4.6. Let f : X → Y and g : Z → Y be scheme morphisms and U ⊆ X be an open subscheme.
If p : X ×Y Z → X is the scheme over X obtained by base change under f , then p−1(U) ∼= U ×Y Z.

Proof. We claim that the open subscheme p−1(U) of X ×Y Z is isomorphic to U ×Y Z by showing
that it satisfies the same universal property. Indeed, suppose we have the following diagram

T

p−1(U) Z

U Y

g

f

p

q

h

k

where f ◦ h = g ◦ k. By the universal property of fiber product X ×Y Z, we get a unique map
ϕ : T → X ×Y Z such that p ◦ ϕ = h and q ◦ ϕ = k. As Im (h) ⊆ U , therefore Im (p ◦ ϕ) ⊆ U .
Consequently, we have Im (ϕ) ⊆ p−1(U), hence we may write ϕ : T → p−1(U), where p−1(U) is an
open subscheme of X ×Y Z. Thus, we get a unique map ϕ : T → p−1(U) which makes the above
diagram a fiber product diagram, thus completing the proof.
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The following is an important technical result.

Lemma 1.6.4.7. Let X =
⋃
α Uα be an open cover of the scheme X . Let f : X → Y and g : Z → Y be

scheme morphisms. Then,

X ×Y Z ∼=
⋃
α

Uα ×Y Z.

Proof. Let p : X ×Y Z → X be the fiber product scheme over X obtained by base change along f .
Then,

p−1
Ç⋃

α

Uα

å
=

⋃
α

p−1(Uα).

By Lemma 1.6.4.6, we see that p−1(Uα) ∼= Uα ×Y Z. It follows that

X ×Y Z = p−1(X) =
⋃
α

p−1(Uα) ∼=
⋃
α

Uα ×Y Z,

as needed.

Lemma 1.6.4.8. Let f : X → Y and g : Z → Y be scheme morphisms and U ⊆ X be an open subscheme
such that f(U) ⊆ V for some open subscheme V ⊆ Y and let W = g−1(V ) be an open subscheme in Z. If
p : X ×Y Z → X is the fiber product over X obtained by base change along f , then p−1(U) ∼= U ×Y Z ∼=
U ×V W .

Proof. The first isomorphism is the content of Lemma 1.6.4.6. The second isomorphism follows
from the simple observation that U ×Y Z satisfies the same universal property as that of U ×V
W .

We portray some pathologies of fiber product in the following examples.

Example 1.6.4.9. We show that fiber product of one point schemes may have more than one
point(!) Indeed, consider the schemes X = Y = Spec (C) over Spec (R). Observe that X ×Spec(R)
Y ∼= Spec (C⊗R C). But since we have

C⊗R C ∼=
R[x]
x2 + 1 ⊗R C

∼=
C[x]
x2 + 1

∼= C× C

by Chinese remainder theorem. Consequently, Spec (C× C) ∼= Spec (C) ⨿ Spec (C) which has 2
points.

1.6.5 Applications of fiber product

We would now like to portray some of the applications of fiber products, especially in endowing
the fibers of a morphism with a scheme structure.
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Inverse image of a closed subscheme

TODO.

Fibers of a map

Keep in mind the Lemma 20.5.0.3 and the surrounding remarks about stalks of sheaves for the
remainder of this discussion. Let f : X → Y be a map and y ∈ Y be a point. We endow f−1(y) ↪→
X with a scheme structure. Define the fiber of f at y to be the following fiber product:

Xy := X ×Y Spec (κ(y)).

We at times denote it byX×Y y. Note that by natural map onto second factor, Xy is a scheme over
κ(y).

We now show that fiber of a scheme morphism as defined above matches with the usual notion
of fiber in the sense that both spaces are homeomorphic. We first do this for affine schemes.

Proposition 1.6.5.1. Let X = Spec (S), Y = Spec (R) and f : X → Y be the map associated to a ring
homomorphism ϕ : R → S. Let y = p ∈ Y be a prime ideal of R. Then, Xy is homeomorphic to the
subspace f−1(y) of Y .

Proof. We have that Xy = Spec (S ⊗R κ(p)), that is, the fiber of ϕ at prime ideal p (Definition
16.5.1.5). We now calculate S ⊗R κ(p). Indeed, we have

S ⊗R κ(p) = S ⊗R F (R/p) ∼= S ⊗R (R/p⊗R Rp)
∼= S/pS ⊗R Rp

∼= (S/pS)ϕ(R\p) .

It follows from Lemma 16.1.2.3 that Spec (S ⊗R κ(p)) is exactly the subspace of X consisting of
those primes q such that q ⊇ ϕ(p) and does not intersects ϕ(R \ p). This is equivalent to saying
that ϕ−1(q) ⊇ p and ϕ−1(q) ⊆ p, that is, ϕ−1(q) = p, as needed.

We now do the general case. The main idea is just to reduce to the affine case as above.

Lemma 1.6.5.2. Let f : X → Y be a scheme morphism and y ∈ Y . Then, f−1(y) as a subspace of X is
homeomorphic to Xy.

Proof. Let V = Spec (B) be an open affine of Y containing y. Then, by definition of fiber products,
we immediately see that f−1(V ) ∼= X ×Y V . Clearly, f−1(y) ⊆ f−1(V ). Cover f−1(V ) by open
affines {Uα = Spec (Rα)}. By Proposition 1.6.5.1, we see that f−1(y) ∩ Uα ∼= Spec (Rα ⊗B κ(y)) =
Uα ×V Spec (κ(y)). Since

Xy = X ×Y Spec (κ(y)) ∼= f−1(V )×V Spec (κ(y))

=
Ç⋃

α

Uα

å
×V Spec (κ(y))

∼=
⋃
α

(Uα ×V Spec (κ(y)))

∼=
⋃
α

f−1(y) ∩ Uα

= f−1(y),
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as needed.

Example 1.6.5.3. We calculate explicit fibers of a map at every point of a familiar map. Write
solution of Exercise 3.10 of Hartshorne Chapter 2, written in notebook.

The fibers of Spec (Z[x])→ Spec (Z)

We know that Spec (Z) is the final object in the category of schemes Sch. We also know that there
is the canonical inclusion Z ↪→ Z[x]. This induces a map

ϕ : Spec (Z[x]) −→ Spec (Z).

Understanding the fibers of this map will allow us to understand the affine arithmetic surface
Spec (Z) (as Z[x] is a 2-dimensional ring). Note that we can already understand Spec (Z[x]) by
the results surrounding Gauss’ lemma as done in Theorem 16.1.5.3, but the following is a more
geometric way of understadning this.

Proposition 1.6.5.4. The prime ideals of Z[x] can be categorized into following three types.
1. ⟨p⟩ where p ∈ Z is a prime,
2. ⟨f(x)⟩ where f(x) ∈ Z[x] is an irreducible polynomial,
3. ⟨p, f(x)⟩ where p ∈ Z is a prime and f(x) ∈ Z[x] irreducible in Z[x] which remains irreducible in

Z/pZ,

Proof. We will prove this by analyzing the fibers of f : Spec (Z[x])→ Spec (Z). Pick a prime p ∈ Z
and denote X = Spec (Z[x]). The fiber Xp = Spec (Z[x]) ×Spec(Z) Spec (κ(p)). As κ(p) = Fp, finite
field with p elements, therefore we have that Xp = Spec (Z[x]⊗Z Fp) = Spec (Fp[x]). Note that for
same reasons we have X0 = Spec (Q[x]).

As fibers of f covers the whole scheme, it follows that any point in Z[x] looks like one of the
following:

1. a prime ideal in Q[x],
2. a prime ideal in Fp[x].

Moreover, we have the following diagrams

Spec (Fp[x]) Spec (Z[x]) Fp[x] Z[x]

Spec (Fp) Spec (Z) Fp Z

Spec (Q[x]) Spec (Z[x]) Q[x] Z[x]

Spec (Q) Spec (Z) Q Z

⌟ ⌜

⌟ ⌜

.

Observe that Z[x] → Fp[x] is the mod-p map. Since every prime ideal of Z[x] now is a inverse
image of a prime ideal by Z[x]→ Fp[x] and Z[x]→ Q[x], we get the desired result.
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Geometric properties

Cover geometric reducibility and etc etc from Hartshorne exercises.

1.6.6 Normal schemes and normalization

Do mainly Exercise 3.7, 3.8 of Chapter 2 of Hartshorne. Also do Exercise 3.17, 3.18 of Chapter 1 of
Hartshorne.
We now study a class of schemes which globalizes the notion of integral closure from algebra (Def-
inition 16.7.1.11). These will find its main use in arithmetic where normal domains fundamental.

Definition 1.6.6.1 (Normal schemes). A scheme X is said to be normal if for all x ∈ X , the local
ring OX,x is a normal domain.

The following is immediate from local nature of normal domains (Proposition 16.7.2.10).

Lemma 1.6.6.2. Let X be an integral scheme. Then the following are equivalent:
1. X is a normal scheme.
2. For all open affine Spec (A) ⊆ X , the ring A is a normal domain.

Proof. As X is integral, therefore for every open affine Spec (A) of X , A is a domain by Lemma
1.4.2.2. As X is normal iff OX,x is a normal domain for all x ∈ X , the result follows from Proposi-
tion 16.7.2.10.

The main result in normal schemes is that any integral scheme induces a unique normal
scheme obtained by normalizing each open affine.

Theorem 1.6.6.3. 28 Let X be an integral scheme. Then there exists a scheme X̃ → X over X where X̃
is a normal integral scheme such that for any normal integral scheme Z and a dominant map f : Z → X ,
there exists a unique map f̃ : Z → X̃ such that the following commutes

X̃ Z

X
f

f̃

.

The scheme X̃ → X is called the normalization of X and is unique upto isomorphism.

We first see this for affine domains.

Lemma 1.6.6.4. Let X = Spec (A) be an integral affine scheme and Z = Spec (B) be a normal integral
affine scheme. Let X̃ = Spec

(
Ã
)

be the normalization of X and denote the natural map π : X̃ → X . If
f : Z → X is any dominant map, then there exists a map f̃ : Z → X̃ such that π ◦ f̃ = f .

Spec
(
Ã
)

Spec (B)

Spec (A)

π
f

f̃

.

28Exercise II.3.8 of Hartshorne.
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Proof. Indeed, by Proposition 16.7.2.12, this follows immediately.

Remark 1.6.6.5. By Remark 16.7.2.11, it follows that normalization is a strongly local property.
Thus Theorem 1.6.6.3 holds.

Proof of Theorem 1.6.6.3. By Remark 16.7.2.11, it follows that normalization is a strongly local con-
struction for domains. Let A ↪→ Ã be the normalization map for any domain A. Therefore by
Theorem 1.6.2.10, we have a scheme α : X̃ → X such that for any open affine Spec (A) ↪→ X , the
following diagram commutes

Spec
(
Ã
)

X̃

Spec (A) X

α

where the left vertical map is the map corresponding to normalization A ↪→ Ã. This shows the
construction of α : X̃ → X .

Now let Z be an arbitrary normal integral scheme and f : Z → X be a dominant map. Pick any
open affine Spec (A) ⊆ X and consider the non-empty (f is dominant) open subset f−1(Spec (A)).
Write

f−1(Spec (A)) =
⋃
i∈I

Spec (Bi)

where Spec (Bi) ⊆ Z are open affine. As Z is normal integral, therefore Bi are normal domains
from Lemma 1.6.6.2. By restriction we thus have the map

f |Spec(Bi) : Spec (Bi)→ Spec (A)

for each i ∈ I . Observe that α−1(Spec (A)) ⊇ Spec
(
Ã
)
. By Lemma 1.6.6.4, it follows that we have

a unique map f̃i : Spec (Bi)→ Spec
(
Ã
)

such that the following commutes

Spec
(
Ã
)

Spec (Bi)

Spec (A)

α|Spec(Ã)
f |Spec(Bi)

f̃i

.

It thus follows that for every open affine Spec (Bij) ⊆ Spec (Bi), we have a map f̃i : Spec (Bi) →
Spec

(
Ã
)

by restriction. Hence by Lemma 1.6.6.4, we have that this is unique. As Spec (A) ⊆ X
is arbitrary open affine, therefore we have an open affine covering {Spec (Ai)}i∈I of X which by
inverse image gives an open affine covering {Spec (Bij)} of Z and a collection of open affines
{Spec

(
Ãi
)
} of X̃ such that for each i, we have a unique map f̃ij : Spec (Bij)→ X̃ such that

X̃ Spec
(
Ãi
)

Spec (Bij)

X Spec (Ai)

α
f

f̃ij

α
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commutes. We claim that f̃ij can be glued to a unique map f̃ : Z → X̃ , which would complete
the proof. First, for a fixed i, we glue f̃ij and f̃il. Indeed, covering the intersection Spec (Bij) ∩
Spec (B)il by open affines Spec (Cp), we immediately by restriction get maps f̃ij : Spec (Cp) →
Spec

(
Ãi
)

and f̃il : Spec (Cp) → Spec
(
Ãi
)

which are thus equal by uniqueness. Hence, for each i,
we may glue the maps {f̃ij}j to obtain a unique map f̃i : Zi = f−1(Spec (Ai))→ Spec

(
Ãi
)

as in

Spec
(
Ãi
)

Zi

Spec (Ai)
f

α

f̃i

.

We now wish to glue these f̃i. To this end, pick an affine open Spec (C) ⊆ Zi∩Zk = f−1(Spec (Ai)∩
Spec (Ak)) and observe α−1(Spec (Ai) ∩ Spec (Ak)) ⊇ Spec

(
Ãi
)
∩ Spec

(
Ãk
)
. We thus have the

following diagram

Spec
(
Ãi
)

Spec (C) Spec
(
Ãk
)

Spec (Ai) Spec (Ai) ∩ Spec (Ak) Spec (Ak)

α α

f̃i f̃k

f .

By Lemma 1.6.6.4, it then suffices to show that f̃i(Spec (C)), f̃k(Spec (C)) ⊆ Spec
(
Ãi
)
∩Spec

(
Ãk
)
,

as then uniqueness would imply f̃i and f̃k are equal over Spec (C). By symmetry, it suffices
to show this for f̃i. Since α ◦ f̃i(Spec (C)) ⊆ Spec (Ai) ∩ Spec (Ak), therefore f̃i(Spec (C)) ⊆
α−1(Spec (Ai) ∩ Spec (Ak)) ∩ Spec

(
Ãi
)
⊆ Spec

(
Ãi
)
∩ Spec

(
Ãk
)
, as required. Hence f̃i can be

glued to a unique map f̃ : Z → X̃ , thus completing the proof.

The following is the globalization of the fact that normalization of a finite type algebra is again
a finite type algebra, over a field (Noether’s Theorem ??).

Corollary 1.6.6.6. If X is a finite type integral scheme, then the the normalization X̃ → X is a finite map.

Proof. TODO.
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1.7 Dimension & components of a scheme

Do from Vakil, Hartshorne Exercise 3.20, 3.21, 3.22 of Chapter 2.
The notion of dimension of a geometric object serves as an essential tool for any attempt at its
understanding. Schemes are no different and we have a notion of dimension for them. However,
we also have a notion of dimension of rings. This section explores how these two interrelates and
thus facilitate understanding of geometry of schemes.

1.7.1 General properties

Before moving to schemes that we will encounter the most, let us first give a general review of the
notion of dimension of topological spaces and some general properties of dimension of schemes.
Recall that the dimension of a topological space is the supremum of the length of the strictly
decreasing chains of finite length of closed irreducible subsets of the space. Further for a space X
and a closed irreducible subset Z ⊆ X , the codimension of Z in X is defined to be the supremum
of the length of strictly increasing chains of closed irreducible subsets starting from Z. For an
arbitrary closed subset Y ⊆ X , we define codim (Y,X) = infZ⊆Y codim (Z,X) where Z varies
over all closed irreducible subsets of Y . For any closed set Y ⊆ X , if dimX <∞, we always have
codim (Y,X) ≤ dimX .

Proposition 1.7.1.1. Let X be a topological space. Then,
1. If Y ⊆ X is a subspace, then dimY ≤ dimX .
2. If {Ui}i∈I is an open covering of X , then dimX = supi dimUi.
3. Let Y ⊆ X be a closed subspace andX be of finite dimension. IfX is irreducible and dimY = dimX ,

then Y = X .

Proof. The main tool in all of them is just a clear understanding of the definition of dimension
and of closed irreducible sets. We establish some terminologies to work with in this proof. For
any space X a strictly decreasing chain of finite length of closed irreducible subsets will be called
a finite chain of X and set of all finite chains will be denoted by FC(X). We denote a chain by
Z• ∈ FC(X) and its length by l(Z•). Consequently, dimX = supZ•∈FC(X) l(Z•).

1. First observe that if Y is closed then the result is immediate as any finite chain of Y will be a
finite chain ofX . Consequently, we reduce to showing that dimY ≤ dim Ȳ . In particular, we
reduce to showing that if Y is dense in X , then dimY ≤ dimX . It further suffices to show
existence of a length preserving map FC(Y ) → FC(X). Indeed, for any Z• ∈ FC(Y ), one
observes that ClX(Zi) is a closed subset ofX which is further irreducible inX . Consequently,
Cl(Z•) is a finite chain of X of same length as of Z•29.

2. By 1. we already have supi dimUi ≤ dimX so we need only show that dimX ≤ supi dimUi.
It suffices to show that for each Z• ∈ FC(X), there exists i ∈ I and W• ∈ FC(Ui) such that
l(Z•) ≤ l(W•). Let r = l(Z•) and i ∈ I be such that Ui ∩ Zr ̸= ∅. Then, W• = Ui ∩ Z• forms
a finite chain of Ui of same length as Z•. To see this, observe that if Ui ∩ Za = Ui ∩ Zb where
we may assume Za ⊋ Zb, then the open set Ui ∩ Za of Za is contained in the closed set Zb of
Za, hence the closure of Ui ∩Za in Za is inside Zb. But since Za is irreducible so Ui ∩Za must
be dense in Za, a contradiction.

29Actually we didn’t needed the reduction to Y being dense in X .
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3. Let r = dimX = dimY . Suppose Y ⊊ X . Let Z0 ⊋ Z1 ⊋ · · · ⊋ Zr be a maximal finite chain
of Y . Then the chain X ⊋ Z0 ⊋ Z1 ⊋ · · · ⊋ Zr is a finite chain in X as Y is closed. Thus
dimX ≥ 1 + r, therefore r = dimY ≥ r + 1, a contradiction.

The following technical lemma was employed in proving the statement 2 of above, but is good
to keep in handy.

Lemma 1.7.1.2. Let X be a topological space and Z• ∈ FC(X) a finite chain (in the terminology of
Proposition 1.7.1.1) of length l(Z•) = r. If U ⊆ X is an open set such that U ∩ Zr ̸= ∅, then U ∩ Z• is a
finite chain of length r in U .

The following result gives a connection between all closed irreducible containing a given point
and prime ideals of the local ring at that point.

Proposition 1.7.1.3. Let X be a scheme and x ∈ X be a point. We obtain an order reversing bijection

{Closed irreducibles Y of X containing x} ∼= Spec (OX,x).

Proof. Denote the collection of all closed irreducibles of X containing x as I . Let U = Spec (A) be
an affine open containing x ∈ X so that OX,x ∼= Ax. Consequently, we wish to show a bijection
I ∼= Spec (Ax), which is further equivalent to showing that I is bijective to all prime ideals of A
contained in x. As all prime ideals of A contained in x is further bijective to all closed irreducible
of U containing x by Lemma 1.2.1.1, we thus reduce to showing existence of a bijection between I
and closed irreducibles of U containing x, denoted J .

Consider the following function

ϕ : I −→ J

Y 7−→ Y ∩ U.

Indeed, this map is well-defined as for any Y ∈ I , ϕ(Y ) = Y ∩ U is first irreducible as any open
subset of an irreducible set is irreducible. Further, it is closed in U as Y is closed. In order to show
injectivity, we need only recall that any open subset of an irreducible set is dense. Finally, for
surjectivity, take any Z ∈ J so that Z is a closed irreducible in U containing x. Now let Y to be the
closure of Z in X . We thus need only show that Y is irreducible in X . That follows immediately
from the fact that closure of irreducible is again an irreducible, which in turn follows immediately
from a simple observation on open subsets of the closure.

One then observes the following general result which will be used heavily in the future.

Lemma 1.7.1.4. Let X be a scheme and Y be an irreducible closed subscheme of X with η ∈ Y being its
generic point. Then,

codim (Y,X) = dimOX,η.

Proof. This is immediate from Proposition 1.7.1.3 as Y is the smallest closed irreducible containing
η.
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1.7.2 Dimension of finite type k-schemes

In this section, we prove various results surrounding the relationship between dimension of a
given integral finite type k-scheme as a topological space and Krull dimension of various local
rings.

Theorem 1.7.2.1. 30 Let k be a field and X be a finite type integral k-scheme.
1. If U, V ⊆ X are two open affines which are spectra of finite type k-domains, then dimU = dimV .
2. If {Ui}ni=1 is any finite open affine covering by spectra of finite type k-domains, then dimUi = dimX

for all i = 1, . . . , n.
3. If p ∈ X is a closed point, then dimX = dimOX,p.
4. Let K(X) be the function field of X . Then dimX = trdeg K(X)/k.
5. If Y is a closed subset of X , then codim (Y,X) = infp∈Y dimOX,p.
6. If Y is a closed subset of X , then dimY + codim (Y,X) = dimX .

Proof. The main tools are the Theorems 16.8.2.1 and 16.8.2.2.
1. Observe that since X is irreducible, therefore U and V are dense open subsets of X , so
U∩V ̸= ∅. Consequently, it will suffice to show that any dense affine open subsetW ⊆ U has
same dimension as U . Indeed, U is spectra of finite type k-domain, so it is a separated finite
type integral affine scheme, that is, an abstract affine variety. Consequently, by Proposition
I.1.10 of cite[Hartshorne], dimW = dimW = dimU .

2. Follows from Proposition 1.7.1.1, 2 and statement 1.
3. AsX is finite type, it admits a finite open affine covering by spectra of finite type k-domains.

Let U = Spec (A) be one such open affine such that p ∈ U . Consequently, p = m ∈ Spec (A)
represents a maximal ideal of R (Lemma 1.2.1.3). Thus, OX,p ∼= Am and so dimOX,p =
dimAm. Note that A is a finite type k-algebra which is an integral domain. It thus follows by
Theorem 16.8.2.2 that we have ht m + dimA/m = dimA and since dimA/m = 0, therefore
ht m = dimA. Further, since dimAm = ht m, therefore we have dimOX,p = dimAm =
dimA = dimU . By statement 2, dimU = dimX and the result follows.

4. Function field is defined to be the local ring at the generic point of X , say η ∈ X (Remark
1.4.2.5). Let η ∈ Spec (A) where Spec (A) is a member of an open affine cover of X by
spectra of finite type k-domains. Observe that Spec (A) has η as its generic point as well.
Consequently, dim Spec (A) = dimA = trdeg K(A)/k and sinceK(A) = OSpec(A),η ∼= OX,η =
K(X), therefore dim Spec (A) = trdeg K(X)/k. By statement 2, dim Spec (A) = dimX and
the result follows.

5. First observe that for any closed irreducible Z ⊆ X , we have codim (Z,X) ≤ dimX . By
statement 3, therefore, we have infp∈Y dimOX,p = infp∈Y non-closed OX,p. We will now show
that for any closed irreducible subset Z ⊆ X with η ∈ Z its generic paint (schemes are
sober31), we have dimOX,η = codim (Z,X). By taking infimum, the result would then fol-
low, so it would suffice to show the above claim.
Let {Spec (Aα)} be a finite open affine cover of X where Aα is a finite type k-domain. Ob-
serve that if Z ∩ Spec (Aα) ̸= ∅, then η ∈ Spec (Aα). Now, η ∈ Spec (Aα) is a point whose
closure in Spec (Aα) is Z ∩ Spec (Aα) so Z ∩ Spec (Aα) is a closed irreducible subspace of
Spec (Aα) whose generic point is η and thus Z ∩ Spec (Aα) ∼= Spec (Aα/η), where we treat

30Exercise II.3.20 of Hartshorne.
31a space where all closed irreducibles have a unique generic point.
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η ⪇ Aα as a prime ideal of Aα. Consequently, dimOX,η = dimOSpec(Aα),η = dim(Aα)η =
ht η. Since Aα is a finite type k-domain, therefore by Theorem 16.8.2.2, we obtain that
ht η + dimAα/η = dimAα, which thus yields ht η = dimX − dimAα/η by statement 2.
It thus suffices to show that for some index α we get dimAα/η = dimZ as then we would
obtain dimOX,η = dimX − dimZ = codim (Z,X).
Indeed, since {Spec (Aα/η)} forms a finite open affine cover of Z, therefore by Proposition
1.7.1.1, 2 we get such an index α.

6. Observe that since codim (Y,X) < ∞, therefore there exists a maximal closed irreducible
Z ⊆ Y such that codim (Y,X) = codim (Z,X). Consequently, we have a finite chain of X ,
say Z•, ending at Z such that l(Z•) = codim (Y,X).
Let U = Spec (A) be an open affine where A is a finite type k-domain such that U ∩ Z ̸= ∅.
Further, dimU ∩ Y = dim Y . Consequently, by Lemma 1.7.1.2, we have codim (Y,X) =
codim (Z ∩ U,U). Since U ∩ Y is a closed subscheme of U , therefore we may write U ∩ Y =
Spec (A/I) for an ideal I ≤ A. Consequently, codim (Y,X) = codim (Spec (A/I), Spec (A)).
It is immediate from first definitions that

codim (Spec (A/I), Spec (A)) = inf
p⊇I

codim (Spec (A/p), Spec (A))

= inf
p⊇I

ht p.

Now by Theorem 16.8.2.2 and above, we further obtain that

codim (Spec (A/I), Spec (A)) = inf
p⊇I

(dimA− dimA/p)

= dimA− sup
p⊇I

dimA/p

= dimX − dimU ∩ Y
= dimX − dimY

where dimA = dimX because of statement 2.

Corollary 1.7.2.2. Let X be a variety over a field k. Then dimX <∞.

Proof. As X is a finite type integral k-scheme, therefore by Theorem 1.7.2.1, 3, dimX = dimOX,p
for any closed point p ∈ X . Fixing a closed point p ∈ X in an open affine Spec (A) of X , we first
deduce that A is a finite type k-domain. Let p be the maximal ideal m ≤ A. Hence, OX,p ∼= Am.
Hence dimOX,p = ht m in ring A. By Theorem 16.8.2.2, ht m = dimA− dimA/m = dimA as A/m
is a field. As A is a finite type k-domain, therefore its dimension is finite, as required.

Corollary 1.7.2.3. Let k be a field Ank be the affine n-space over k. Let H be a hyperplane in Ank , that is
H = V (f) where f ∈ k[x1, . . . , xn] is a linear polynomial. Then dimH = n− 1.

Proof. As H = Spec (A/⟨f⟩), and ⟨f⟩ is a prime ideal as any linear polynomial is irreducible in
k[x1, . . . , xn] and since the latter is a UFD, therefore f prime as well. By Theorem 16.8.2.2, we have
dimH = dim k[x1, . . . , xn]− ht ⟨f⟩ = n− 1, as required.

An important observation about varieties is as follows.
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Remark 1.7.2.4 (Dimension of scheme theoretic image). Let f : X → Y be a dominant morphism
of varieties. Consequently, there is an induced map on function fields as generic point maps to
generic point by dominance. Let f ♭ : K(Y ) → K(X) be this map. As f ♭ is an injection, we thus
have the inequality

trdeg K(Y )/k ≤ trdeg K(X)/k.

Consequently, we deduce that

dimY ≤ dimX.

1.7.3 Dimension of fibers

In this section, we discuss the question of how the dimension of fibers of a morphism varies. We’ll
see that certain nice geometric situations are encoded in the maps for which the dimension of
fibers is not too erratic.

1.7.4 Irreducible components

In this short section, we describe the decomposition of a closed subscheme of a locally noetherian
scheme into finitely many irreducible components. Let us begin by the following basic observa-
tion.

Remark 1.7.4.1 (Integral closed subschemes by points). Let X be a scheme and x ∈ X be a point
and Z = {x} to be the closed irreducible subspace ofX . Giving Z the reduced induced subscheme
structure on Z, thus making Z ↪→ X an integral closed subscheme of X .

The following proposition shows that a minimal prime in an affine open subset gives an irre-
ducible component of the whole scheme!

Proposition 1.7.4.2. Let X be a scheme, U = Spec (A) ⊆ X an open affine and p ∈ U . Denote Y = {p}
to be the closed irreducible subspace of X . Then the following are equivalent:

1. p is a minimal prime of A.
2. Y is an irreducible component of X .

Proof. (L ⇒ R) Suppose Y ⊊ Z is a closed irreducible set of X properly containing Y . Denote
η ∈ Z to be its unique generic point. As U ∩ Z is a non-empty open subset of Z, therefore it is
dense in Z. Consequently, η = q ∈ U . If Y ∩U ⊊ Z ∩U , then Z ∩U = V (q) ⊆ U properly contains
Y ∩ U = V (p). By Lemma 1.2.0.1, we get

√
q ⊊
√
p, so that q ⊊ p, contradicting the minimality of

p.

(R ⇒ L) Let Y be a maximal closed irreducible set. If q ⊊ p, then V (q) ⊇ V (p) in U . Denote
Z = {q}. If V (p) = V (q), then Z ∩ U = Y ∩ U and hence Y = Z. Hence we may assume
Y ∩U ⊊ Z ∩U . As p ∈ Y ∩U ⊆ Z ∩U , therefore {p} = Y ⊆ Z. But since Y ∩U ̸= Z ∩U , therefore
Y ⊊ Z, a contradiction to maximality of Y .

Construction 1.7.4.3 (Irreducible & embedded components of a subscheme). Let X be a locally
noetherian scheme and Y ↪→ X be a closed subscheme. Cover X by open affines {Uα}α∈I where
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Uα = Spec (Aα), Aα is a noetherian ring. Fixing α ∈ I , we see that Y ∩ Uα ⊆ Uα is a closed
subscheme. It follows that Y ∩ Uα = Spec (Aα/aα) = V (aα) for some ideal aα ≤ Aα.

By primary decomposition theorem (Theorem 16.1.7.7 or Corollary 16.4.0.10), it follows that
there are distinct primes pα,i, i = 1, . . . , Nα of Aα such that

aα =
⋂

i=1,...,Nα
qα,i.

where qα,i is a pα,i-primary ideal. Moreover, by Theorem 16.1.7.7, 2, we also get

V (aα) =
⋃

i=1,...,Nα
V (qα,i) =

⋃
i=1,...,Nα

V (pα,i).

We thus get points S = {pα,i}α,i of X which we relabel by S = {pβ}β∈J and remove repeated
points. By above remark, we thus get closed integral subschemes {Yβ}β∈J of X , which we call
components. Moreover, as each pβ ∈ Y and Y is closed, therefore each Yβ is a closed integral sub-
scheme of Y itself. The minimal/isolated primes amongst S correspond to irreducible components
of Y via Proposition 1.7.4.2. The others correspond to embedded components of Y .

If X is moreover noetherian, then indexing set I is finite and thus Y has finitely many irre-
ducible and embedded components.
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1.8 Projective schemes

The most important type of examples that we will encounter in our study of algebraic geometry
are subvarieties of projective space Pnk . Indeed, this is a construction which is fundamental be-
cause of the many nice properties enjoyed by realizing familiar constructions in it. One of them
being this classical observation that any two straight lines are bound to intersect at atleast one
point in the projective space. We shall see more equally nice results, not to mention the quadrics
with which we wish to spend some considerable time as the main motivating example for us (Ex-
ample 1.5.1.3) is itself realized as a quadric in projective space.

We recall that the notion of projective varieties, whose generalization we shall embark now on,
has been covered in Section 1.5.

We first begin by defining the space Proj(S) of a graded ring S =
⊕

d≥0 Sd.

Definition 1.8.0.1. (Projective spectrum of a graded ring) Let S =
⊕

d≥0 Sd be a graded ring and
let S+ =

⊕
d>0 Sd be the ideal generated by non-zero degree elements. Denote

Proj(S) := {p ⪇ S | p is homogeneous prime ideal & p ̸⊇ S+}.

The set Proj(S) is called the projective spectrum of the graded ring S.

Note that the latter condition is motivated by Remark 1.5.3.13. This is also used in a technical
manner to show existence of a nice basis over Proj(S) in Lemma 1.8.1.3 and in other proofs as well.
We now show that there is a natural topology over Proj(S), akin to the affine case.

Lemma 1.8.0.2. Let S be a graded ring and denote for a homogeneous ideal a ≤ S, the following subset of
Proj(S):

V (a) = {p ∈ Proj(S) | p ⊇ a}.

Then, for any homogeneous ideals a, b, ai of S, we obtain
1. V (a) ∪ V (b) = V (ab),
2.

⋂
i V (ai) = V (

∑
i ai).

Proof. Same as Lemma 1.2.0.1.

We thus obtain a topological space Proj(S) where a set is closed if and only if it is of the form
V (a) for a homogeneous ideal a ≤ S. This is called the Zariski topology over the Proj(S).

We now give some more topological properties of Proj(S).

1.8.1 Topological properties of Proj(S)
The first obvious question is how does the inclusion Proj(S) ↪→ Spec (S) looks topologically?

Lemma 1.8.1.1. Let S be a graded ring. The topology of Proj(S) is obtained by subspace topology of
Spec (S). Thus, there is a continuous inclusion

Proj(S) ↪→ Spec (S).
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Proof. Immediate from definitions.

We further note that for a graded ring S, the degree zero elements S0 form a subring of S by
the virtue of the fact that Sd ·Se ⊆ Sd+e. Thus, we obtain a continuous map as the following shows.

Lemma 1.8.1.2. Let S be a graded ring. Then the following is a continuous map

ϕ : Proj(S) −→ Spec (S0)
p 7−→ p ∩ S0.

Proof. Pick any ideal a ≤ S0 and notice that it is already homogeneous in S. Consequently,
ϕ−1(V (a)a) = V (a)h where V (a)a ⊆ Spec (S0) and V (a)h ⊆ Proj(S).

We now find a collection of open sets which forms a basis for Proj(S). This is akin to Lemma
1.2.1.4.

Lemma 1.8.1.3. Let S be a graded ring and f, g ∈ Sd for some d > 0 be homogeneous elements. Denote

D+(f) := {p ∈ Proj(S) | f /∈ p}.

Then,
1. D+(f) is an open subset of Proj(S),
2. D+(f) ∩D+(g) = D+(fg),
3. {D+(f)}f∈Sd,d>0 forms a basis of Proj(S).

Proof. 1. Since D+(f) = Proj(S) \ V (f), thus D+(f) is open.
2. Straightforward.
3. Since for any p ∈ Proj(S), there exists f ∈ Sd for some d > 0 such that f /∈ p as p does not
contain all of S+, thus

⋃
f∈Sd,d>0D+(f) = Proj(S). The rest follows by 2.

Remark 1.8.1.4. As tempting as it might be to think, but not all projective schemes are quasi-
compact. An example is given by the graded ring S = Z[x1, x2, . . . ], the polynomial ring over Z
with countably infinitely many indeterminates. Then one observes that Proj(S) =

⋃∞
n=1D+(xn).

Moreover, as for any p ∈ Proj(S) can not contain S+, therefore p necessarily has to not contain
some xi, otherwise it contains S+. Consequently, we cannot form a finite subcover of the above
cover, showing that Proj(S) is not quasi-compact.

However, the following lemma might be helpful in checking when a projective scheme has a
finite cover by basic open sets.

Lemma 1.8.1.5. Let S be a graded ring and considerX = Proj(S). Let f = f0+· · ·+fn be a decomposition
of f ∈ S into homogeneous elements fd ∈ Sd. Then,

D(f) ∩X = (D(f0) ∩X) ∪
n⋃
d=1

D+(fd)

where we view X ⊆ Spec (S) and D(f), D(f0) ⊆ Spec (S).
Proof. This is a rather straightforward proof. To show (⊆), consider a point p ∈ D(f) ∩X so that
f /∈ p. It follows from f = f0 + · · · + fn that for some d = 0, . . . , n, fd /∈ p, which is in turn
equivalent to stating that p ∈ D+(fi) if i ≥ 1 or p ∈ D(f0) ∩X if d = 0.

Conversely, pick p ∈ (D(f0) ∩X) ∪
⋃n
d=1D+(fd). We obtain that for some d = 0, . . . , n, fd /∈ p.

It follows from p =
⊕

i≥0 p ∩ Si that if f ∈ p, then we get by uniqueness of representatives of the
direct sum that fd ∈ p, a contradiction.
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1.8.2 The structure sheaf OProj(S) and projective schemes

We have studied some basic properties of the topological space Proj(S) so far, we now construct a
structure sheaf over it and make it, first, into a locally ringed space and, second, into a scheme. We
first define the structure sheaf of projective spectrum, in which there is nothing new in comparison
to projective varieties (see Definition 1.5.3.1).

Definition 1.8.2.1. (The structure sheaf OProj(S)) Let S be a graded ring. Let U ⊆ Proj(S) be an
open set of the projective spectrum of S. Define the following set

OProj(S)(U):=
¶
s:U→

∐
p∈U S(p) | ∀p∈U,s(p)∈S(p) & ∃ open p∈V⊆U & f,g∈Sd, d≥0 s.t. ∀q∈V, g/∈q & s(q)=f/g

©
.

From the fact that its elements are functions locally defined, one immediately obtains that OProj(S)
is a sheaf with obvious restriction maps. By appropriate restrictions on the domain, one further
sees that under pointwise addition and multiplication, OX(U) forms a commutative ring with 1.

Let us now show that Proj(S) is a scheme over Spec (S0) in a natural manner.

Lemma 1.8.2.2. Let S be a graded ring. Then Proj(S) is a scheme over Spec (S0).

Proof. We need only define a map Proj(S) → Spec (S0). By Theorem 1.3.0.5, we need only con-
struct a homomorphism S0 → Γ(Proj(S),OProj(S)). This is straightforward, as we can interpret
each a ∈ S0 as a homogeneous regular function s : Proj(S) → ⨿p∈Proj(S)S(p) mapping as p 7→
a/1.

Thus, (Proj(S),OProj(S)) is a ringed space. We now see that the stalk of this sheaf is isomorphic
to the homogeneous localization. This will thus show that (Proj(S),OProj(S)) is a locally ringed
space (Lemma 16.2.1.3).

Lemma 1.8.2.3. Let S be a graded ring and consider the ringed space (Proj(S),OProj(S)). For each p ∈
Proj(S), we have

OProj(S),p ∼= S(p).

Proof. Consider the following map

ϕ : OProj(S),p −→ S(p)

(U, s)p 7−→ s(p).

It is straightforward to see that ϕ is a well-defined ring homomorphism. To see injectivity, suppose
(U, s)p 7→ 0. Thus s(p) = 0. Consequently, for some open V ⊆ U containing p where s is given
by f/g for f, g ∈ Sd, d ≥ 0, we obtain s(q) = f/g = 0 for all q ∈ V . Thus s = 0 on V and hence
(U, s)p = (V, ρU,V (s))p = 0. To see surjectivity, pick any f/g ∈ S(p). Observe that g /∈ p. Thus
consider (D+(g), f/g)p ∈ OProj(S),p.

We now show that the locally ringed space (Proj(S),OProj(S)) is a scheme. For this purpose
we would need to show that Proj(S) is covered by affine opens. Indeed, we have the following
lemma.
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Lemma 1.8.2.4. Let S be a graded ring and consider the locally ringed space (Proj(S),OProj(S)). For each
f ∈ Sd, d > 0, we have the following isomorphism of locally ringed spacesÄ

D+(f),OProj(S)|D+(f)
ä
∼=
(

Spec
(
S(f)

)
,OSpec(S(f))

)
.

Proof. Consider the map

ϕ : D+(f) −→ Spec
(
S(f)

)
p 7−→ (p · Sf )0.

By Lemma 16.2.1.8, it follows that ϕ is a bijection. To show that ϕ is an isomorphism it is sufficient
to show that ϕ is a closed map. This is immediate as p ⊇ a inD+(f) if and only if (p·Sf )0 ⊇ (a·Sf )0
in Spec

(
S(f)

)
.

We now wish to show isomorphism of corresponding sheaves. For this, we construct a map

ϕ♭ : OSpec(S(f)) −→ ϕ∗OD+(f)

and show that this is an isomorphism. Indeed, we first observe a canonical isomorphism on stalks

OD+(f),p ∼= S(p)
ηp−→ (S(f))(p·Sf )0 ∼= OSpec(S(f)),ϕ(p).

Then one can construct the above isomorphism ϕ♭ by observing the following square for sections
of the relevant sheaves over open U ⊆ Spec

(
S(f)

)
and the corresponding ϕ−1(U) ⊆ D+(f):

U ϕ−1(U)

∐
p∈ϕ−1(U)((S(f))ϕ(p))

∐
p∈ϕ−1(U) Sp

s t

∼=
⨿pηp

ϕ

∼=
,

where s ∈ OSpec(S(f))(U) and t ∈ OD+(f)(ϕ−1(U)) its image under ϕ♭ (which is defined by the

above square). One can indeed check that ϕ♭ as defined is natural w.r.t restrictions.

Remark 1.8.2.5. Thus, for a graded ring S, we obtain a scheme (Proj(S),OProj(S)), which is called
the projective scheme associated to a graded ring S.

We now give some more properties of Proj(S).

Proposition 1.8.2.6. 32 Let S be a graded ring. Then,
1. Proj(S) = ∅ if and only if ∀s ∈ S+, s is a nilpotent element of S.
2. Let ϕ : S → T be a graded map of graded rings. Then U = {q ∈ Proj(T ) | q ̸⊇ ϕ(S+)} is an open

set and the natural map

f : U −→ Proj(S)
q 7−→ ϕ−1(q)

defines a map of schemes.
32Exercise II.2.14 of Hartshorne.
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3. Let ϕ : S → T be a graded map of graded rings for which there exists d0 ∈ N such that ϕd : Sd → Td
is an isomorphism for all d ≥ d0. Then, U = Proj(T ) and f : Proj(T )→ Proj(S) is an isomorphism.

Proof. 1. The R =⇒ L is immediate. Otherwise take an element s ∈ Sd. By Lemmas 1.8.1.3, 3
and 1.8.2.4, we obtain that Spec

(
S(s)

)
= ∅. Consequently, any prime ideal of Spec (Ss) has no zero

degree terms, which can be seen to be not true. Consequently, D(s) = Spec (Ss) = ∅. It follows
from Lemma 1.2.2.7 that s is nilpotent.

2. The fact that U is open depends on ϕ being graded, i.e. ϕ(Sd) ⊆ Td for all d ≥ 0. The con-
tinuity of f follows from the same observation. The map on sheaves is given by extending the
natural map on stalks ϕ(q) : S(ϕ−1(q)) → T(q), whose well-definedness, again, uses the fact that ϕ is
graded.

3. The main trick here is to observe that if s ∈ Sd for d < d0, then raising some high enough
power of s will make sn ∈ Se where deg sn ≥ d0. For showing isomorphism on stalks ϕ(q) :
S(ϕ−1(q)) → T(q), it comes down to observing the following: let s/t ∈ S(ϕ−1(q)), then s/t = stn/tn+1

for any n ∈ N. Then use the trick above.

Remark 1.8.2.7. The above Proposition 1.8.2.6 shows that the mapping S 7→ Proj(S) is NOT func-
torial! However the statement 3. might give some hint how to fix this.

Next, we understand all closed subschemes of Proj(S) in the following two results (Corollary
1.8.2.10)

Proposition 1.8.2.8. Let S, T be a graded rings.
1. If ϕ : S → T is a surjective graded map, then the open set U = Proj(T ) and f : Proj(T )→ Proj(S)

is a closed immersion (see Proposition 1.8.2.6, 2).
2. Let I ≤ S be a homogeneous ideal and consider the ideal I ′ =

⊕
d≥d0 Id. Then, I, I ′ defines the same

closed subscheme of Proj(S).
3. Let I ≤ S be a homogeneous ideal and let π : S → S/I be the natural projection. Then the closed

subscheme f : Proj(S/I)→ Proj(S) (as in 1.) has the ideal sheaf given by Ĩ ≤ OProj(S).

Proof. 1. U = Proj(T ) because ϕ(S+) = T+. The fact that f is a topological immersion follows
from the observations that f(Proj(T )) = V (Ker (ϕ)) where Ker (ϕ) is homogeneous and that for
any ideal q ≤ T , it follows from surjectivity that ϕ(ϕ−1(q)) = q. To show surjectivity of sheaves,

it reduces to showing surjectivity of localization maps Sϕ−1(q)
ϕ(q)−→ T(q), which is immediate from

surjectivity of ϕ.
2. We wish to show an isomorphism as in the following commutative diagram:

Proj(S/I) Proj(S/I ′)

Proj(S)

∼=

.

Now since (S/I)d = Sd/Id for all d ≥ 0, therefore we have an isomorphism ϕ : (S/I)d → (S/I ′)d
given by sd + Id 7→ sd + I ′d. The result follows from Proposition 1.8.2.6, 3.
3. We wish to show that Ker

Ä
f ♭ : OProj(S) → f∗OProj(S/I)

ä
is given by Ĩ . It suffices to check this
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on basic open sets D+(g), g ∈ Sd, d > 0, by uniqueness of the sheaf defined on a basis. Indeed
it follows that f ♭ on D+(g) is given by the localisation map S(g) → S(g)/I(g), whose kernel is
I(g) = Ĩ(D+(g)).

Proposition 1.8.2.9. Let S = A[x0, . . . , xr] for a ring A and let X = Proj(S).
1. Let I ≤ S be a homogeneous ideal and denote Ī = {s ∈ S | ∀i = 0, . . . , r, ∃ni s.t. xnii s ∈ I} to be

the saturation of I . Then, Ī is homogeneous.
2. Let I, J ≤ S be two homogeneous ideals. Then Proj(S/I) ∼= Proj(S/J) if and only if Ī = J̄ .
3. Let Y ↪→ Proj(S) be a closed subscheme. Then, Γ∗(IY ) is a saturated ideal of S.

Proof. 1. This follows from a simple consideration of the uniqueness of homogeneous decomposi-
tion of each element in a graded ring.
2. We may reduce to showing that I and Ī defines the same closed subscheme. We already have
I ↪→ Ī which translates to V (Ī) ↪→ V (I). Conversely, pick p ∈ V (I) ⊆ Proj(S). We wish to show
p ⊇ Ī . Pick any s ∈ Ī . Assume that s /∈ p. It then follows that p = ⟨x0, . . . , xr⟩ which is a prime
ideal which contains S+, thus p /∈ Proj(S), a contradiction.
We then wish to show isomorphism of sheaves. Going to basic opens, this reduces to showing
surjection is an injection:

(S/I)(f) −→ (S/Ī)(f)
s+ I

fn
7−→ s+ Ī

fn
.

This follows from the fact that Ī is saturated33.
3. Pick a homogeneous element s ∈ Sd such that for each i = 0, . . . , r, there exists ni ∈ N such that
xnii s ∈ Γ(IY (d+ni), X). We wish to show that s ∈ Γ∗(IY ). Note that s ∈ Γ(OX(d), X). Cover X by
D+(xi) and consider the restrictions xnii s ∈ IY (d+ ni)(D+(xi)). Multiplying (tensoring) xnii s with
x−nii ∈ OX(−ni)(D+(xi)) yields s ∈ IY (d + ni) ⊗OX OX(−ni) ∼= IY (d) over D+(xi). Thus, gluing
these sections up from each D+(xi), we get s ∈ Γ(IY (d), X) ⊆ Γ∗(IY ), as required.

Using the above result, it is possible to find a characterization of closed subschemes of Proj(S)
in terms of algebraic data.

Corollary 1.8.2.10. Let S = A[x0, . . . , xr] be a graded ring for a ring A. Then there is a correspondence:

{All closed subschemes of Proj(S)} {All saturated ideals of S}∼= .

Proof. Follows from Proposition 1.8.2.9.

Next, let us show how projective n-spaces over a ring changes with extension of scalars.

Definition 1.8.2.11. (Projective n-space over a ring) Let A be a ring. The projective n-space over
A is defined to be PnA := Proj(A[x0, . . . , n]). By Lemma 1.8.2.2, PnA is a scheme over Spec (A).

We now see how PnA behaves under extension of scalars.

33In-fact, this step shows exactly why the definition of saturation would’ve been made!
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Lemma 1.8.2.12. Let A → B be a map of rings and Spec (B) → Spec (A) be the corresponding map of
affine schemes. Then,

PnB ∼= PnA ×Spec(A) Spec (B).

Proof. Observe that D+(xi) ⊆ PnA for i = 0, . . . , n covers PnA as A[x0, . . . , xn] is finitely generated
by xi as an A-algebra. By Lemma 1.6.4.7 together with Lemma 1.8.2.4 we obtain the following:

PnA ×Spec(A) Spec (B) =
Ç

n⋃
i=0

D+(xi)
å
×Spec(A) Spec (B)

∼=
n⋃
i=0

D+(xi)×Spec(A) Spec (B)

∼=
n⋃
i=0

Spec
(
A[x0, . . . , xn](xi) ⊗A B

)
∼=

n⋃
i=0

Spec
(
A[x0/i, . . . ,’xi/xi, . . . , xn/xi]⊗A B)

∼=
n⋃
i=0

Spec
(
B[x0, . . . , xn](xi)

)
∼= PnB.

Remark 1.8.2.13. Since any ring A is a Z-algebra and PnA is naturally a Z-scheme, therefore PnA ∼=
PnZ ×Spec(Z) Spec (A), where the projection map PnA → Spec (A) is the usual structure map. This
further motivates the construction of a projective space over any scheme.

Definition 1.8.2.14. (Projective n-space over a scheme) LetX be a scheme. The projective n-space
over X is defined to be

PnX := PnZ ×Spec(Z) X.

The natural projection map thus makes PnX a scheme over X .

1.8.3 Blowups

Do from Chapter 3 of Mumford and Hartshorne.
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1.9 OX-modules

We will now cover certain types of important OX -modules that we will need in our study. Note
that we defined OX -modules and various other algebraic constructions on them in Chapter 3,
thus we assume the basic notion of OX -modules and its global algebra being known and we will
thus specialize to the case of X being a scheme. The main goal is to define and study coherent
and quasi-coherent modules over a scheme X . Its importance will manifest later in our study
of projective schemes and their cohomology, the latter of which is an extremely powerful and
versatile tool for doing geometry over schemes.

1.9.1 Coherent and quasi-coherent modules on schemes

Quasi-coherent sheaves form an integral part of the backbone of an attempt at doing geometry on
schemes. Even though the definitions here makes sense in the setting of locally ringed spaces, but
this theory is much more better behaved in the setting of schemes; for schemes, such sheaves have
nice description on affine opens. This is the reason it is not included in Foundational Geometry,
Chapter 3.

We first define the notion of quasicoherent modules on schemes.

Definition 1.9.1.1. (Quasicoherent and coherent OX -modules) Let X be a scheme. Then an OX -
module F is called quasicoherent if there exists an affine open cover {Ui := Spec (Ri)}i∈I ofX and
{Mi}i∈I where Mi is an Ri-module such that F|Ui ∼= ›Mi for all i ∈ I . Further, F is said to be a
coherent module if each Mi is a finitely generated Ri-module for each i ∈ I .

Remark 1.9.1.2. There are five basic properties of quasi-coherent sheaves on a scheme, which we
point out now.

1. Quasicoherence of a module can be checked locally.
2. The global sections functor of a quasicoherent module over an affine scheme is exact34.
3. The image of the functor (̃−) : Mod(R)→Mod(OSpec(R)) (see Definition 1.2.3.1 and remarks

surrounding it) is precisely all quasicoherent modules over Spec (R).
4. Quasicoherence is preserved under inverse image. It is further preserved under direct image

if domain is a Noetherian scheme or if the map is quasi-compact and separated.
5. The category of all quasicoherent modules

QCoh(OX)

is a Grothendieck-abelian category.

We will come to these results one by one. We first discuss some basic properties and examples.

Examples of quasicoherent modules

Lemma 1.9.1.3. Let X = Spec (A) be an affine scheme and a ≤ A be an ideal. Consider the corresponding
closed immersion

i : Spec (A/a) = Y ↪→ Spec (A) = X.

34This in cohomological language means that the first cohomology group H1(X,F) = 0, as we shall see after few
sections.
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Then,
1. i∗OY is a coherent OX -module,
2. i∗OY ∼=fiA/a.

Proof. 1. Consider the following

ϕ : OX × i∗OY −→ i∗OY

which on a basic open D(f) ⊆ X for f ∈ A is given by

ϕD(f) : Af × (A/a)f̄ → (A/a)f̄

as the usual Af -module structure over (A/a)f̄ . Indeed, as the above maps are natural w.r.t. re-
strictions, this suffices by Theorem 20.6.1.3. Thus, i∗OY is an OX -module. Further, i∗OY is a
coherent OX -module as the open cover {D(f)}f∈A of X is such that i∗OY (D(f)) ∼= (A/a)f̄ is an
OX(D(f)) ∼= Af -module generated by 1̄ (in the case when f ∈ A, we have i∗OY (D(f)) = 0 and so
trivially a finitely generated Af -module).

2. Again, by the use of above mentioned lemma, we may reduce to working over a basis of
X . Choosing {D(f)}f∈A to be such a basis, we see that i∗OY (D(f)) ∼= (A/a)f and fiA/a(D(f)) ∼=
(A/a)f . Hence, we may define a map i∗OY →fiA/a which on basic opens is identity. Consequently,
this map on stalks is identity. This by above used lemma again yields a unique sheaf morphism
ϕ : i∗OY →fiA/a which is an isomorphism as at stalks it is an isomorphism.

Example 1.9.1.4. Let X be an integral noetherian scheme and let K be its function field. Let K be
the constant sheaf of field K over X . Then K is a quasi-coherent OX -module.

As X is noetherian, therefore let X =
⋃n
i=1 Spec (Ai) where Ai are noetherian rings. As X

is integral, therefore by Lemma 1.4.2.2, each Ai is a noetherian domain. Thus we deduce that
K ∼= Q(Ai) for each i, where Q(Ai) is the fraction field of Ai. This is because Spec (Ai) are open
and X irreducible. We now show that K is an OX -module.

Pick any open U ⊆ X . Recall from Chapter 20 that a section of K(U) is a continuous map
U → K with K in discrete topology. For any point p ∈ Spec (Ai), as Ai is a domain, we see that
(Ai)p ↪→ Q(Ai) ∼= K for each i. We thus deduce that K is an OX,x-algebra for each x ∈ X in a
natural way and OX,x ⊆ K. So we may now define

OX(U)×K(U)→ K(U)
(c, s) 7→ c · s

where c · s : U → K is defined by c(x)s(x) ∈ K, c(x) ∈ OX,x ⊆ K. This is continuous as each
c ∈ OX(U) is seen to be a continuous map c : U →

∐
x∈U OX,x ⊆ K as it is locally constant

(Remark 20.2.0.4 and that locally around each point we have an affine open inside every open).
This is automatically compatible with restrictions. Consequently, K is an OX -module.

Next, to see this is quasi-coherent, we claim that the affine open cover {Ui = Spec (Ai)}i=1,...,n
is such that K|Ui is isomorphic to ‹K. Consequently, we reduce to proving the following claim :
Let X = Spec (A) be an affine scheme where A is a noetherian domain and let K = Q(A) be its
fraction field. Then, the constant sheaf K associated to K is isomorphic to the OX -module ‹K.
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It suffices to construct a map ϕ : K → ‹K defined only on a basis such that on basics it is
an isomorphism. For this, we notice that since localization of a domain at an element is again a
domain, therefore for each g ∈ R, the open D(g) ⊆ X is connected. Hence, K(D(g)) = K and‹K(D(g)) ∼= Kg = K. Thus, we may define ϕD(g) : K → K to be identity which is then easily seen
to be a sheaf morphism. Hence, these sheaves are isomorphic as OX -modules.

Example 1.9.1.5. We now discuss a specific example of quasi-coherent modules over Spec (Z),
which brings to light the constraints put on by quasi-coherence on an OX -module. We ask the
following question : What are all quasicoherent skyscraper OZ-modules over Spec (Z) supported at non-
zero prime p ∈ Z? We claim that these are in bijection with all p∞-torsion Z-modules, that is, every
element of the module is annihilated by some power of p:ß

Quasicoherent OZ−modules F

skyscraper at p ∈ Z

™
∼=
{Abelian groups M which are p∞-

torsion.

}
Indeed, let F be a quasicoherent skyscraper module at prime p ∈ Z. Let us invoke the Corollary
1.9.1.12, to conclude that F = M̃ for some Z-module M . As it is skyscraper, therefore for any open
U ∋ p in Spec (Z), we have F(U) = G where G is a fixed abelian group and F(U) = 0 if p /∈ U .
Consequently, we have that Fx = 0 if x ̸= p and Fp = G. As F = M̃ , therefore we have

Γ(F, X) = G ∼=M.

Further, for any basic open D(f) ⊆ Spec (Z) containing prime p, we deduce that F(D(f)) ∼=Mf
∼=

G ∼= M . This, when unravelled, yields that for any integer f ∈ Z such that f /∈ ⟨p⟩ ⇐⇒ p ̸ |f ,
we have Mf

∼= M . Further, if ⟨p⟩ /∈ D(f) ⇐⇒ p|f , then Mf = 0. Now fix any m ∈ M . We claim
that some power of p annihilates m. Indeed, consider D(p) which does not contain ⟨p⟩ as p ∈ ⟨p⟩.
Thus, by above, we have that m

1 = 0 in Mp. Consequently, for some k ∈ N, we have pkm = 0, as
required. Hence, Tp∞(M) =M .

Conversely, consider a p∞-torsion abelian group M . We wish to show that the quasicoherent
module associated to M , M̃ , is skyscraper at p ∈ Z. Let D(f) ⊆ Spec (Z) be a basic open not
containing ⟨p⟩, equivalently, p|f . Then, we see that M̃(D(f)) ∼= Mf . Now pick any m

fk
∈ Mf . Let

pnm = 0. Thus, fnm = 0 as p|f . Consequently, we may write m
fk

= 1
fk

m
1 = 1

fk
fnm
fn = 1

fk
0
fn = 0.

Thus, Mf = 0.
Let D(f) now be a basic open set which contains ⟨p⟩, equivalently, p ̸ |f . Then, M̃(D(f)) ∼=Mf

and we wish to show that Mf
∼= M . Indeed, observe that since p ̸ |f , therefore gcd(pk, f l) = 1 for

all k, l ≥ 1. It follows that there exists ak, bl ∈ Z such that

akp
k + blf

l = 1.

Thus, for any m
fn ∈Mf , where pkm = 0, we obtain ak, bn ∈ Z such that akpk+ bnfn = 1. Using this

on module M , we yield akpkm+ bnf
nm = m, that is, bnfnm = m. Consequently, we may write

m

fn
= bnf

nm

fn
= bnm

1
in Mf . It follows that the localization map ϕ : M →Mf is surjective. We thus need only establish
the injectivity of ϕ. Indeed, if ϕ(m) = m

1 = 0 in Mf , then fnm = 0 for some n ∈ N. By above,
we have bn ∈ Z such that bnfnm = m. Consequently, m = bnf

nm = 0, that is, Ker (ϕ) = 0, as
required. Thus, ϕ :M →Mf is the required isomorphism. This completes the proof.
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Locality of quasicoherence

We now discuss some more results which would culminate in the proofs of statement 1 in Remark
1.9.1.2.

Lemma 1.9.1.6. Let F be a quasicoherent module over an affine scheme X = Spec (R). Then X admits a
finite open affine cover {D(gi)}ni=1 such that F|D(gi)

∼=›Mi where Mi is an Rgi-module.

Proof. Since F is quasicoherent, therefore there exists an open affine cover {Ui = Spec (Si)}i of X
such that F|Ui ∼= ›Mi where Mi is an Si-module. Since subsets of the form D(g) forms a basis of

X therefore for D(g) ⊆ Ui we obtain via Lemma 1.2.3.4, 2, that F|D(g) ∼= ‰�Rg ⊗Si Mi as D(g) ∼=
Spec (Rg). Since Ni := Rg⊗SiMi is an Rg-module, so we have a cover of X by finitely many D(gi)
by Lemma 1.2.1.6 such that F|D(gi)

∼= Ñi where Ni is an Rgi-module.

Using the above, we first show a technical lemma, which will be generalized later on, which
will be used to show locality of quasi-coherent modules35.

Lemma 1.9.1.7. Let X = Spec (A) be an affine scheme and F ∈ QCoh(X) be a quasi-coherent module.
Let D(f) ⊆ X be a basic open set for some f ∈ A.

1. If s ∈ Γ(F, X) is a global section of the module F such that s restricted on D(f) is 0, then there
exists n > 0 such that fns = 0 over X .

2. If t ∈ F(D(f)), then there exists n > 0 such that fnt ∈ F(D(f)) extends to a global section of the
module F.

Proof. 1. By Lemma 1.9.1.6, there exists a finite open cover D(gi) of X such that F|D(gi)
∼= ›Mi.

Denoting the restriction of s to D(gi) as si ∈Mi, we see that the image of si is zero in (Mi)f when
restricted to D(fgi) = D(f)∩D(gi). Consequently, for some ni > 0, we have fnisi = 0 over D(gi).
As gi are finitely many, taking large enough n, we obtain fnsi = 0 over each D(gi). It follows that
the global section fns of the module F is such that it’s restriction to each open set of an open cover
of X is 0. By sheaf axioms, it follows that fns = 0 over X .

2. Fix the finite open affine cover {D(gi)}ni=1 of X coming from Lemma 1.9.1.6. Consider all the
finitely many intersections D(g) ∩ D(gi) = D(fgi). Restricting t from D(f) to D(fgi), we obtain
ti ∈ (Mi)f for each i. Hence, for each i, there is some ni > 0 such that fniti ∈ Mi = F(D(gi)).
By multiplying by large fk to each fniti which are finitely many, we may arrange that fnti ∈
F(D(gi)).

We now form a matching family for the module F over the open cover {D(gi)} which would
glue up to give the required global section. Indeed, fix two D(gi) and D(gj). Restrict fnti and
fntj to D(gi) ∩ D(gj) = D(gigj). Observe that over the even smaller open D(fgigj), the section
fnti − fntj is zero as ti = tj = t over D(fgigj) ⊆ D(f). Hence by item 1 applied over D(gigj),
there exists mij > 0 such that fmij (fnti − fntj) = 0, hence fn+mij (ti − tj) = 0 over D(fgigj). As i
and j are finitely many, so taking m large enough, we obtain fn+mti = fn+mtj over F(D(gigj)) for
each i and j. Thus, the family {fn+mti} is a matching family which glues up to give s ∈ Γ(F, X)
such that its restriction over D(f) is fn+mt36.

35The result is similar in flavour to Proposition 1.3.1.4.
36Note that we have implicitly used the fact the restriction maps of F preserves the respective module structures (see

remarks surrounding Definition 3.5.0.1)
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Remark 1.9.1.8. Let X = Spec (R) be an affine scheme and F be a quasicoherent OX -module over
X . Then, we obtain a map

α :‚�Γ(F, X) −→ F

which on a basic open set D(f) ⊆ X, f ∈ R is given by Γ(F, X)f → F(D(f)) mapping as
m/fn 7→ ρX,D(f)(m)/fn. Indeed, this is a OX -linear homomorphism which on stalks yields the
Rp-linear map

Γ(F, X)p −→ Fp

which is given by

Γ(F, X)⊗R Rp
∼= Γ(F, X)⊗R lim−→

f /∈p
Rf ∼= lim−→

f /∈p
Γ(F, X)⊗R Rf = lim−→

D(f)∋p

‚�Γ(F, X)(D(f))→ lim−→
D(f)∋p

F(D(f)).

We will see that this map α would become an isomorphism, especially due to the fact that qua-
sicoherent modules behave very nicely on open affines of the form D(f), as the Lemma 1.9.1.6
shows.

Corollary 1.9.1.9. Let F be a quasicoherent sheaf over an affine scheme X = Spec (A). Then, there is a
natural isomorphism of Af -modules for each f ∈ A

Γ(F, X)f
∼=−→ F(D(f))

given by m/fn 7→ ρ(m)/fn where ρ is the restriction map of F from X to D(f)

Proof. Follows from Lemma 1.9.1.7.

Using the above, one proves the local nature of quasicoherence.

Proposition 1.9.1.10. Let F be an OX -module over a scheme X . Then the following are equivalent:
1. F is quasicoherent.
2. For all open affine U = Spec (A) ⊆ X we have F|U ∼= M̃ where M is an A-module.

Proof. We need to only show 2 ⇒ 1. Let F be quasicoherent and U = Spec (A) open affine. We
may assume X = Spec (A). Thus we need to show F ∼= M̃ for an A-module M . By Lemma
1.9.1.6, we obtain an open affine cover D(gi) of X where F|D(gi)

∼= ›Mi for an Agi-module Mi.
Let M = Γ(F, X), which is an A-module. By Corollary 1.9.1.9, we obtain a natural isomorphism
Mi
∼=Mgi . Thus we have the required result.

A similar result is true for coherent modules.

Proposition 1.9.1.11. Let F be an OX -module over a Noetherian scheme X . Then the following are equiv-
alent:

1. F is coherent.
2. For all open affine U = Spec (A) ⊆ X we have F|U ∼= M̃ where M is a finitely generated A-module.

Proof. See Proposition 5.4, Chapter 2 [Hartshorne].

Corollary 1.9.1.12. The image of the functor (̃−) of Definition 1.2.3.1 is exactly all quasicoherent mod-
ules over Spec (R). In other words, Mod(R) ≡ flMod(OSpec(R)) = QCoh(OSpec(R)). Further, if R is
noetherian, then this restricts to Mod(R)f.g. ≡ Coh(OSpec(R)).
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Quasicoherence and exactness of global sections

We next see the exactness of global sections functor.

Proposition 1.9.1.13. Let X be an affine scheme and 0 → F′ → F → F′′ → 0 be an exact sequence of
OX -modules. If F′ is quasicoherent, then

0→ Γ(X,F′)→ Γ(X,F)→ Γ(X,F′′)→ 0

is exact.

Proof. Proposition 5.6, Chapter 2 [Hartshorne].

The category QCoh(X)

The category of quasicoherent modules is further a Grothendieck-abelian category.

Theorem 1.9.1.14. Let X be a scheme. The category QCoh(OX) is a Grothendieck-abelian category.
Consequently, it is an abelian category which has all coproducts.

Proof. Tag 077P, [Stacksproject].

Apart from QCoh(OX) being abelian in its own right, it is also an exact category, where the
underlying abelian category is Mod(OX).

Proposition 1.9.1.15. Let X be a scheme. If 0 → F → G → H → 0 is an exact sequence of OX -modules
where F and H are quasicoherent, then so is G. Consequently, quasicoherence is preserved under extensions
of modules.

Quasicoherence, direct and inverse images

We now see behavior of quasicoherence and coherence under inverse and direct images.

Lemma 1.9.1.16. Let f : X → Y be a morphism of schemes and let G be a quasicoherent OY -module. Then
f∗G is a quasicoherent OX -module. If X,Y are noetherian schemes and G is coherent, then f∗G is coherent.

Proof. The first question is local in both X and Y by Proposition 1.9.1.10. Indeed, pick x ∈ X and
an open affine V ∋ f(x) in Y . Then by continuity there is an open affine U ∋ x in X such that
f(U) ⊂ V . This shows that we may assume X and Y to be affine. The result is now immediate by
Corollary 1.9.1.12 and Lemma 1.2.3.4, 2. The same technique works for coherent case.

For stability under direct image, we need some conditions on the map if noetherian conditions
need to be dropped.

Lemma 1.9.1.17. Let f : X → Y be a morphism of schemes and F be a quasicoherent OX -module. Then
f∗F is a quasicoherent OY -module if any of the following holds:

1. X is noetherian,
2. f is quasi-compact and separated.
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Proof. By Proposition 1.9.1.10, we may assume that Y is affine. First, if X is noetherian, then
X =

⋃n
i=1 Ui, Ui = Spec (Ai) and Ai noetherian. By Proposition 1.4.1.8, Ui ∩ Uj is quasi-compact

and thus can be covered by finitely many open affines, say Uijk. On the other hand if f is q.c.s.
then again X =

⋃n
i=1 Ui and by separatedness Ui∩Uj is affine, in which case we let Uijk = Ui∩Uj .

By sheaf axioms of f∗F, we have an exact sequence as in

0 f∗F
⊕

i f∗
(
F|Ui

) ⊕
i,j,k f∗

Ä
F|Uijk

ä
where all maps are induced by restrictions. As F ∈ QCoh(OX), thus by local criterion of Propo-
sition 1.9.1.10, we get that F|Ui = ›Mi for some Ai-module Mi. By Lemma 1.2.3.4, 1, f∗F|Ui and
f∗F|Uijk are quasicoherent. By Theorem 1.9.1.14, the middle and the right term in the above exact
sequence are quasicoherent. By the same theorem again, the left term, f∗F is quasicoherent, as
required.

More properties

As promised earlier, we state a general result about invertible modules and quasicoherent mod-
ules over schemes. This is a fundamental result and will be used to portray the simplicity of the
techniques developed so far. Moreover, its proof showcases the simplicity of the sheaf language
and is thus a good exercise.

Lemma 1.9.1.18. Let X be a scheme, L ∈ Pic(X), F ∈ QCoh(X), f ∈ Γ(L, X) and s ∈ Γ(X,F).
Denote by Xf ⊆ X the open subset Xf := {x ∈ X | fx /∈ mxLx}.

1. If X is quasicompact and s is such that s|Xf = 0, then there exists n ∈ N such that fns = 0 in
Γ(L⊗n ⊗ F, X).

2. If X admits a finite affine open cover {Ui} where L|Ui is free (of rank 1) and Ui ∩Uj is quasicompact,
then for any t ∈ F(Xf ), there exists n ∈ N such that fnt ∈ (L⊗n ⊗ F)(Xf ) extends to a global
section s ∈ Γ(L⊗n ⊗ F, X).

Proof. 1. CoverX by finitely many affine open sets U = Spec (A) which satisfies ϕ : L|U ∼= OX|U ∼=
OSpec(A). Further, denote F|U = M̃ where M is an A-module (Corollary 1.9.1.12). By restricting f
to U , we may write g = ϕU (f) ∈ A and by restricting s to U , we may write s ∈M . Since s|Xf = 0
and Xf ∩ U = D(g), therefore s/1 = 0 in Mg. Consequently, there exists n ∈ N such that gns = 0
in M = Γ(U,F|U ). We then observe the following isomorphisms (see Lemma 20.2.0.5):

(L⊗n ⊗ F)|U ∼= O⊗n
X|U ⊗ F|U ∼= O⊗nSpec(A) ⊗ M̃ ∼= M̃.

Consequently, we get isomorphisms in sections over U which yields that f⊗n ⊗ s 7→ gns = 0.
hence f⊗n⊗ s = 0 in L⊗n⊗F over U . Since this happens for all finitely many Us, therefore taking
large enough n, we observe that f⊗n ⊗ s = 0 in L⊗n ⊗ F over X .

2. Pick t ∈ F(Xf ). For each of the finitely many i, let Ui = Spec (Ai). As L|Ui ∼= OX|Ui , therefore
Xf∩Ui = {p ∈ Spec (Ai) | fp /∈ pAp} = D(f) where we interpret f ∈ L(Ui) by restricting the global
section f . By locality of quasicoherence (Proposition 1.9.1.10), we have anAi-moduleMi such that
F|Ui

∼= ›Mi. As t ∈ F(Xf ), therefore by restriction, we have ti ∈ F(Ui ∩ Xf ) = F(D(f)) ∼= Mf
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(Proposition 1.2.3.3). It follows that for some ni, we have fnit ∈ Mi = F(Ui). Since Ui are atmost
finite, so we may take a large enough n so that fnt ∈Mi = F(Ui).

Observe that

(L⊗n ⊗ F)|Ui ∼= O⊗nSpec(Ai) ⊗ F|Ui
∼= F|Ui

∼=›Mi

where fnt ∈ F(Ui) corresponds to f⊗n⊗t ∈ L⊗n⊗F(Ui). As ti = t = tj ∈ F(Ui∩Uj∩Xf ), therefore
fn(ti − tj) = 0 in F(Ui ∩ Uj ∩Xf ). Our hypothesis that Ui ∩ Uj is quasicompact ensures by item 1
that there exists k > 0 such that fn+k(ti − tj) = 0 in F(Ui ∩ Uj), for all i, j. It follows that fn+kti ∈
F(Ui) = L⊗n+k ⊗ F(Ui) is a matching family. It follows that there exists s ∈ Γ(L⊗n+k ⊗ F, X)
which on Xf is fn+kt, as required.

These were some of the basic results on quasicoherent modules. We now do perhaps the most
important application of OX -modules, that when X is a projective scheme.
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1.9.2 Modules over projective schemes

Let S be a graded ring and M a graded S-module. We attach a sheaf M̃ to M over ProjS.

Definition 1.9.2.1. (M̃ ) Let S be a graded ring and M be a graded S-module. Then we define a
sheaf M̃ over Proj(S) given on an open set U ⊆ Proj(S) by

M̃(U):=
¶
s:U→

∐
p∈U M(p) | ∀p∈U, s(p)∈M(p)&∃ open p∈V⊆U & m∈Md,f∈Sd s.t. f /∈q & s(q)=m/f∀q∈V

©
.

The restrictions are the obvious ones. It is clear that if we treat S as a graded S-module, then
S̃ ∼= OProj(S) where we treat OProj(S) as an OProj(S)-module.

Remark 1.9.2.2. Over a projective scheme X = Proj(S), the theory of quasi-coherent modules is
the most useful. In particular, we will have the following observations to make about them:

1. Any graded S-module gives an OX -module M̃ which is furthermore quasicoherent.
2. Any OX -module F gives a graded S-module Γ∗(F).
3. For X being the projective n-space over a ring A, we have Γ∗(OX) ∼= A[x0, . . . , xn].
4. Assume S is furthermore finitely generated by degree 1 elements. If F is a quasicoherent

OX -module, then flΓ∗(F) ∼= F.
5. All projective schemes over Spec (A) is of the form Proj(S) where S0 = A and S is finitely

generated as by S1 as an S0-algebra.
These are the main takeaways from the general theory of quasicoherent OProj(S)-modules.

We now attend to these results one-by-one. We first have analogous results to the affine case
on the behaviour of M̃ on basis, on stalks and its quasicoherence.

Proposition 1.9.2.3. Let S be a graded ring, M be a graded S-module, X = Proj(S) be the projective
scheme over S and M̃ to be the associated sheaf of M over X . Then,

1. for any p ∈ X ,

(M̃)p ∼=M(p),

2. for any f ∈ Sd, d > 0 and basic open D+(f),

M̃|D+(f) ∼= fiM(f),

3. the sheaf M̃ is an OX -module which is furthermore quasicoherent,
4. if S is a noetherian ring and M is finitely generated, then M̃ is coherent.

Proof. 1. and 2. follows from repeating Lemma 1.8.2.4. Statement 3. follows from local property of
quasicoherence (Proposition 1.9.1.10), the fact that sets of the form D+(f) for f ∈ Sd, d > 0 forms
a basis of X (Lemma 1.8.1.3) and statement 2 above. Statement 4 follows from coherence being a
local property for Noetherian schemes (Proposition 1.9.1.11) and statement 2 above.

Remark 1.9.2.4. The theory of OProj(S)-modules is rich because of various constructions which
interrelates the category grMod(S) of graded S-modules and graded maps and the category
Mod(OProj(S)). Indeed, these constructions is what we will study now, and these will be abso-
lutely indispensable to do geometry in projective spaces Proj(k[x0, . . . , xn]/f) for a homogeneous
polynomial f .
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Remark 1.9.2.5. The construction of OX -modules is functorial (X = Proj(S)):

(̃−) : grMod(S) −→ QCoh(OX)

M 7−→ M̃

M
ϕ→ N 7−→ M̃

η→ ‹N
where η on a basic open D+(f) is given by the localization maps ηD+(f) :M(f) → N(f).

We first begin by twisting each OProj(S)-module.

Twists and Serre twists

Definition 1.9.2.6. (Twists) Let S be a graded ring and X = Proj(S). For each n ∈ Z, we define
the nth-Serre twist to be OX(n) which is defined to be fiS(n), the sheaf associated to the n-th twisted
graded S-module S(n) (Definition 16.2.1.7). For each OX -module F, we then define the nth-twist
of F to be F(n) = F ⊗OX OX(n).

Some obvious questions are: what happens to nth-twist of M̃ for a graded S-module M , what
is so special about OX(n) in relation to OX? We answer these in the following result.

Proposition 1.9.2.7. Let S be a graded ring generated by S1 as an S0-algebra and X = Proj(S). Then,
1. OX(n) is an invertible module for all n ∈ Z,
2. for any graded S-modules M,N and n ∈ Z,

(a) ‚�M ⊗S N ∼= M̃ ⊗OX
‹N ,

(b) M̃(n) ∼= flM(n).
3. Let T be a graded ring generated by T1 as a T0-algebra. Let M be a graded S-module and N a

graded T -module. Let ϕ : S → T be a graded map and f : U → Proj(S) be the corresponding map
(Proposition 1.8.2.6). Then,

(a) f∗(‹N|U ) ∼= S̃N ,

(b) f∗(M̃) ∼=‰�(M ⊗S T )|U ,
(c) f∗(OProj(T )|U ) ∼= T̃ , where T is treated to be an S-module via ϕ.

4. Let ϕ and f as in 3 and let Y = Proj(T ). Then,
(a) f∗(OY (n)|U ) ∼= f∗(OY |U )(n),
(b) f∗(OX(n)) ∼= OY (n)|U .

5. For all n,m ∈ Z,

OX(n)⊗OX OX(m) ∼= OX(n+m).

Proof. 1. Cover X by basic open sets of the form D+(f) for f ∈ S1. One then easily reduces
to showing that S(n)(f) is a free S(f)-module of rank 1. Indeed, one shows that the following
map is an S(f)-linear map which is an isomorphism as S(f)-modules: S(f) → S(n)(f) given by
s/fk 7→ sfn/fk. One really needs f to be of degree 1 to be able to show that this is an isomor-
phism.
2. This reduces to finding natural isomorphism M(f) ⊗S(f) N(f) ∼= (M ⊗S N)(f) which one can do
constructing two sided inverses. One of these maps well-definedness will use the fact that degree
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of f is 1.
3. See Lemma 1.2.3.4 for a) and b) and observe that f−1(D+(g)) = D+(ϕ(g)) for g ∈ S homo-
geneous by a simple unravelling of definition of U ⊆ Proj(T ). The statement c) is immediate by
looking the respective sections on a basic open set D+(g).
4. Statement a) follows from 3.a) and 3.c) is immediate from 3.b).
5. Follows from 2.a).

Remark 1.9.2.8. The twisting functor given by

Mod(OX) −→Mod(OX)

F
f→ G 7−→ F(n) f⊗id→ G(n)

is exact. This is immediate as F(n) = F ⊗OX OX(n) and thus localizing at a point x, we get
Fx ⊗OX,x OX(n)x ∼= Fx ⊗OX,x OX,x where the latter isomorphism follows from Proposition 1.9.2.7,
1.
In general this tells us also that the stalks of all twisted sheaves F(n) is identical to that of F.

Remark 1.9.2.9. Let S be a graded ring and X = Proj(S) be the corresponding projective scheme
with F ∈ QCoh(X). Our goal in the next few pages is to understand how we can recover F by
the global sections of all the twisted sheaves F(n). This is recorded in Propositions 1.9.2.12 and
1.9.2.13.

Associated graded S-module

We now associate to each OX -module F a graded S-module, where X = Proj(S).

Definition 1.9.2.10. (Associated graded S-module) Let S be a graded ring, X = Proj(S) and F an
OX -module. Define the associated graded S-module to be

Γ∗(F) :=
⊕
n∈Z

Γ(F(n), X)

where the S-module structure is given as follows: we need only define the scalar multiplication
for homogeneous elements, so let sd ∈ Sd and tn ∈ Γ(F(n), X). Then define sd · tn to be the
image of sd⊗ tn ∈ Γ(OX(d)⊗OX F(n), X) under the isomorphism OX(d)⊗OX F(n) ∼= F(n+ d) via
Proposition 1.9.2.7, 5, in order to obtain an element of Γ(F(n+ d), X), as needed.

Remark 1.9.2.11. There are two main results about associated graded S-modules.
1. Let S = A[x0, . . . , xr] for a ring A and r ≥ 1. Then Γ∗(OX) ∼= S for X = Proj(S). The

relevance of this result is as follows. We know that the global sections of the structure sheaf
over a projective scheme doesn’t recover the homogeneous coordinate ring back. This result
tells us that looking only at global sections of structure sheaf won’t suffice (hopefully obvi-
ous by now), we need to instead look at global sections of all twists of the structure sheaf in
order to recover the coordinate ring. For example, consider the quadric xy − wz in P5

k. The
corresponding coordinate ring is S = k[w, x, y, z, a, b]/xy−wz ∼= k[w,x,y,z]

xy−wz [a, b] and the corre-

sponding scheme is X = Proj (S). Consequently, we can write S = A[a, b] for A = k[w,x,y,z]
xy−wz

and thus this result would yield that S is isomorphic to Γ∗(OX). Note that to use this result,
we have to force ourselves to go 2 dimensions up.
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2. Let S be a graded ring which is finitely generated by S1 as an S0-algebra and letX = Proj(S).
Then, for any quasicoherent OX -module F, we obtain a natural isomorphism flΓ∗(F) ∼= F.
This result therefore tells us that the functor M 7→ M̃ of Remark 1.9.2.5 from graded S-
modules to quasicoherent OX -modules is essentially surjective.

We’ll later see that these results will allow us to obtain an equivalent criterion of when is a scheme
over an affine scheme projective.

We now state these results and sketch their proofs.

Proposition 1.9.2.12. Let S = A[x0, . . . , xr] for a ring A and r ≥ 1 and denote X = Proj(S). Then
Γ∗(OX) ∼= S.

Proof. The main idea is to keep reducing the problem to a problem about graded ring S. Since
S is generated by xis as an A-algebra, therefore D+(xi) for i = 0, . . . , r covers X . An element in
Γ∗(OX) is given by a sum of elements tn ∈ Γ(OX(n), X). Let tn ∈ Γ(OX(n), X). The data of tn
is equivalently represented by the (tn,0, . . . , tn,r) where tn,i ∈ OX(n)(D+(xi)) = S(n)(xi) are the
corresponding restrictions. Thus, tn,i ∈ Sxi is a homogeneous element of degree n. Thus, t =

∑
n tn

is equivalently represented by the tuple (t0, . . . , tr) where ti =
∑
n tn,i such that the image of ti

under Sxi → Sxi,xj is same as the image of tj under Sxj → Sxj ,xi for all i, j = 0, . . . , r. Note each of
these Sxi,xj for varying i, j are contained inR = Sx0,...,xr . Now, we have injective maps S → Sxi →
Sxi,xj → R and thus t = (t0, . . . , tr) as above is contained in

⋂r
i=0 Sxi ↪→ R. In fact, any element

of this intersection also corresponds to an element of Γ∗(OX). Consequently, Γ∗(OX) =
⋂r
i=0 Sxi .

It is straightforward to see that this intersection is exactly S by writing a general homogeneous
element of R and observing what it needs to satisfy to be in the intersection.

We now show the essential surjectivity of (̃−). The proof of this result nicely shows the ele-
gance of the techniques developed so far.

Proposition 1.9.2.13. Let S be a graded ring which is finitely generated by S1 as an S0-algebra and
X = ProjS.

1. For each OX -module F, there is a natural map

β : flΓ∗(F) −→ F.

2. For each quasicoherent OX -module F, the above map β is an isomorphism, that is,

β : flΓ∗(F) ∼=−→ F.

Proof. 1. Since D+(f) for f ∈ S1 covers X , we may define β naturally only on D+(f). This is done
as follows:

Γ∗(F)(f) F(D+(f))

Γ(F(d)|D+(f) ⊗OX(−d), X)

∼=

βD+(f)

ϕ

where the diagonal map is given by

m

fd
7→ m⊗ 1

fd
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and the isomorphism ϕ is given by restrictions.
2. In the above, we need to show that the diagonal map is an isomorphism. Suppose for some
m/fd ∈ Γ∗(F)(f), we have that m ⊗ 1/fd = 0 in Γ(F(d)|D+(f) ⊗ OX(−d), X). Denote G = F(d) ⊗
OX(−d), which is quasicoherent. Note that m⊗ 1/fd = 0 as an element in G(D+(f)) and also note
thatD+(f) = Xf . Consequently from Lemma 1.9.1.18, 1, there exists n ∈ N such that fn⊗m⊗1/fd
is zero as a global section of OX(1)⊗n ⊗G ∼= F(n). Hence, fn−dm = 0 in Γ(F(n), X) and thus m

fd
=

fn−dm
fn is zero in Γ∗(F)(f). This shows injectivity. We now show surjectivity. Pick t ∈ F(D+(f)). By

Lemma 1.9.1.18, 2, (which applies here as D+(f)s are affine and finitely many whose intersection
is again affine), we obtain a section fnt of OX(1)⊗n ⊗ F ∼= OX(n) ⊗ F ∼= F(n) over D+(f) which
extends to a global section of F(n), say s. Consider s/fn in Γ∗(F)(f), which maps to s ⊗ 1/fn = t
in F(D+(f)), as needed.

Closed subschemes of PnA
We can use these results to obtain a nice characterization of closed subschemes of projective
schemes and an equivalent characterization of projective schemes over affine schemes. Denote
by PrA = Proj(A[x0, . . . , xr]) for a ring A.

Proposition 1.9.2.14. Let Y ↪→ PrA be a closed subscheme with ideal sheaf IY of the projective r-space over
a ring A. Then I = Γ∗(IY ) is a homogeneous ideal of A[x0, . . . , xr] and we have

Y ∼= Proj (A[x0, . . . , xr]/I) .

Proof. Let S = A[x0, . . . , xr]. The fact that I is a homogeneous ideal of S follows from exactness
twisting functor (Remark 1.9.2.8), left exactness of global sections and Γ∗(OX) = S of Proposition
1.9.2.12. In order to show that Y ∼= Proj(S/I), it is enough to show that they both define isomor-
phic ideal sheaves (Proposition 1.4.4.13, 3). The ideal sheaf of Proj(S/I) is Ĩ by Proposition 1.8.2.8,
3 and the ideal sheaf of Y is IY . Since I = Γ∗(IY ), therefore the result follows from Proposition
1.9.2.13, 2.

Proposition 1.9.2.15. Let A be a ring. A scheme Y → Spec (A) is projective if and only if Y ∼= Proj(S)
for a graded ring S with S0 = A and which is finitely generated by S1 as an S0-algebra.

Proof. (L ⇒ R) We have a closed immersion Y → PrA. From Proposition 1.9.2.14, it follows that
Y ∼= Proj(S) where S = A[x0, . . . , xr]/I , but S0 might not be A. By Proposition 1.8.2.8, 2, we
may assume I to not have any degree 0 component. Thus, S as defined will satisfy the necessary
criterion.
(R ⇒ L) We have S ∼= A[x0, . . . , xr]/I , so by Proposition 1.8.2.8, 1, we have a closed immersion
Proj(S)→ PrA.

Very ample invertible modules

We now study modules which determine when a scheme is projective.

Definition 1.9.2.16 (Twisting modules). Let X be a scheme and consider PnX → X to be the pro-
jective n-scheme over X . Consider the projection p : PnX → PnZ. The kth-Serre twist sheaf over PnX
are defined to be p∗(O(k)) where O(k) is the kth-Serre twist sheaf over the projective scheme PnZ.
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What we have defined above is indeed a generalization of usual twisted sheaves available on
projective schemes, as the following lemma shows.

Lemma 1.9.2.17. Let X = Spec (A). Denote p : PnX → PnZ the projection map. Then,
1. PnX ∼= PnA,
2. The twisting module p∗(O(k)) ∼= OPn

A
(k) under the above isomorphism.

Proof. Item 1 follows from Lemma 1.8.2.12. For item 2, observe that the map p is obtained by
composing with the isomorphism PnX ∼= PnA the canonical map q : PnA → PnZ, which is induced
from the canonical map ϕ : Z[x0, . . . , xn] → A[x0, . . . , xn] (see Proposition 1.8.2.6). Thus we wish
to show that q∗(O(k)) ∼= OPn

A
(k). Denote S = Z[x0, . . . , xn] so that O(k) = fiS(k). Hence, by

Proposition 1.9.2.7, 4, we have

q∗(O(k)) ∼= OPn
A
(k),

as needed.

Definition 1.9.2.18 (Very ample invertible module). Let X → Y be a scheme over Y . An invert-
ible module L over X is said to be very ample over Y if there is an immersion (Definition 1.4.4.9)
i : X → PnY such that i∗(O(1)) ∼= L.

Proposition 1.9.2.19. Let Y be a Noetherian scheme. Then the following are equivalent:
1. Scheme f : X → Y is projective.
2. Scheme f : X → Y is proper and there exists a very ample invertible sheaf over X relative to Y .
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1.10 Divisors

The notion of divisors is one of the central tools for understanding the geometrical properties of
a given scheme. Indeed, in the special case of curves in projective plane, a (Weil) divisor is just
a formal linear combination of points of the curve. From this data, one can in-fact recover the
embedding of the curve in the projective plane. Hence the data that divisors of a scheme stores is
rich in geometric information.

We will first define the notion of Weil divisors in those schemes in which the points lying on
codimension 1 subset of the scheme are regular (see Lemma 1.7.1.4 for a motivation behind the
definition).

Definition 1.10.0.1. (Regular in codimension 1) A scheme X is said to be regular in codimension
1 if the local rings OX,p which are of dimension 1 are regular.

Remark 1.10.0.2. All non-singular abstract varieties are regular in codimension 1 as all local rings
are regular. In this section, we will be working with schemes which are noetherian integral sepa-
rated and regular in codimension 1. We call them Weil schemes. All non-singular abstract varieties
are Weil schemes.

1.10.1 Weil divisors & Weil divisor class group

We will define the notion of Weil divisors and divisor class group on Weil schemes.

Definition 1.10.1.1. (Weil divisors) Let X be a Weil scheme. A prime divisor is an integral closed
subscheme of codimension 1. A Weil divisor is an element of the free abelian group generated by
the set of all prime divisors, denoted Div (X). A Weil divisor is denoted

∑k
i=1 niYi ∈ Div X . A

Weil divisor
∑
i niYi is effective if ni ≥ 0 for all i.

Example 1.10.1.2 (Prime divisors of Spec (Z)). Consider X = Spec (Z). One can check imme-
diately that a prime divisor Y ↪→ X is equivalent to the data of a non-zero prime p, where
Y = V (⟨p⟩). Indeed, as X is of dimension 1, therefore any codimension 1 integral closed sub-
scheme is just the closure of a non-generic point, which are all of the closed points of X .

We now look at a foundational result which will guide the further development. Its proof is
important as it combines a lot of our previous knowledge.

Proposition 1.10.1.3. Let X be a Weil scheme and Y ⊆ X be a prime divisor with η ∈ Y be its generic
point. Then there is an injective map

PDiv(X)→ DVal(K(X))

where PDiv is the set of all prime divisors of X , K(X) is the function field of X and DVal(K(X)) is the
set of all discrete valuations over K(X).

Proof. Note that if Y is a prime divisor, then there is a generic point η ∈ Y . Since codim (Y,X) =
dimOX,η by Lemma 1.7.1.4, therefore we obtain that OX,η is a regular local ring of dimension 1.
Now there is a special result for such rings, which in particular establishes equivalences of such
rings with a lot of other type of rings. Indeed, by Theorem 16.10.1.8 we obtain that in our case
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OX,η is a DVR. As the fraction field of OX,η (it is a domain as X is integral) is K(X), the function
field of X (Lemma 1.3.1.2), therefore we have a valuation v : K(X) → Z whose valuation ring
is OX,η. By Lemma 1.12.4.8 (which holds for Y as Y is separated by Corollary 1.12.4.5, 2), the
valuation v uniquely determines the point η ∈ X as v has center η because the valuation ring OX,η
of v dominates the local ring OX,η. As the information of point η ∈ X yields the closed set Y ⊆ X ,
therefore the valuation v : K(X)→ Z uniquely determines the prime divisor Y .

Remark 1.10.1.4. As a consequence, we can study a prime divisor via the valuation that comes
through the Proposition 1.10.1.3. Indeed, for a prime divisor Y ⊆ X and the associated discrete
valuation vY : K(X)→ Z, we can think of the value vY (f) for some f/g ∈ K(X)\{0} to be telling
us the number of poles that f/g has along Y . We can justify this via the proof of Proposition
1.10.1.3 as follows. For a prime divisor Y ⊆ X with generic point η ∈ Y , the corresponding
valuation is obtained by the fact that OX,η is a DVR in our case. For a DVR R with fraction field
K, the corresponding discrete valuation v : K → Z can be thought of as an abstraction of the idea
that we want to know how many poles a fraction f/g ∈ K has and v provides that data to us. In
particular, we think that if v(f/g) is positive, then that tells us f/g has that many zeros in Y and if
v(f/g) is negative then that many poles in Y . We mostly have only this idea in mind when dealing
with valuations.

Our next goal is to assign a divisor to any regular function in the function field of a Weil scheme
X . To this end, the following proposition is essential for its well-definedness. We begin with the
following observation.

Lemma 1.10.1.5. Let X be a noetherian integral scheme. If Z ⊊ X is a proper closed subset, then there are
finitely many prime divisors of X in Z.

Proof. Let Y ⊆ Z be a prime divisor ofX . As Z ⊊ X , therefore codim Z ≥ 1. Thus 1 = codim Y ≥
codim Z ≥ 1, from which it follows that codim Y = codim Z = 1. Thus by Proposition 1.7.1.1,
Y = Zα where Zα is an irreducible component of Z. As X is noetherian, then so is Z. It follows
that Z has finitely many irreducible components and hence prime divisors in Z are also finite, as
required.

The following shows that a regular function can only have zeroes at finitely many prime divi-
sors on an affine Weil scheme.

Lemma 1.10.1.6. Let X = Spec (A) be an affine Weil scheme. If f ∈ A is a regular function on X , then
vY (f) ̸= 0 only for finitely many prime divisors Y ⊆ X .

Proof. Let K = Q(A) be the fraction field of A. Pick a prime divisor Y = V (p) ⊆ X with generic
point p ∈ X and vY : K → Z be the corresponding discrete valuation. As f ∈ A, therefore
vY (f) ≥ 0. Note from definition of valuation ring that vY (f) > 0 if and only if f/1 ∈ pAp. The
latter condition is equivalent to f ∈ p. Hence, vY (f) > 0 if and only if V (f) ⊇ V (p). By Lemma
1.10.1.5, it follows that V (f) contains only finitely many prime divisors. Consequently, vY (f) > 0
only for finitely many primes Y , as required.

Proposition 1.10.1.7. Let X be a Weil scheme. Denote by vY : K(X) → Z the associated discrete
valuation corresponding to a prime divisor Y ⊆ X . Then for each f ∈ K(X)×, the integer vY (f) is
non-zero only for finitely many prime divisors Y ⊆ X .
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Proof. Pick f ∈ K(X)× to be a rational function. Let η ∈ X be the generic point and U = Spec (A)
be an open affine of X , which will thus contain η. As K(X) ∼= K(U), therefore f = g

h in K(U).
Consider D(h) ⊆ U , where h doesn’t vanish. We deduce that f ∈ OX(D(h)) = Ah is a regular
function, that is, f is regular over an affine open D(h) ⊆ X . Replace U by D(h) to assume that f
is regular over U .

Next, consider a prime divisor Y ↪→ X . It suffices to show there are finitely many prime
divisors contained in X − U and finitely prime divisors intersecting U . The former follows from
Lemma 1.10.1.5. For the latter, first observe that prime divisors of X intersecting U corresponds
to η ∈ U which are non-closed points whose local rings are regular in codimension 1. Thus, they
correspond to prime divisors of U , and since f is a regular function on U , it follows by Lemma
1.10.1.6 that there are finitely many prime divisors of U , as required.

Having deduced the above results, we can now define a fundamental equivalence relation on
Div (X).

Definition 1.10.1.8 (Principal divisors, linear equivalence & class group). LetX be a Weil scheme
and f ∈ K(X)× be a non-zero rational function. Define the following effective divisor onX which
is well-defined by Proposition 1.10.1.7:

⟨f⟩ :=
∑

Y ∈PDiv(X)
vY (f) · Y.

We call ⟨f⟩ the principal divisor generated by f . This defines a group homomorphism

r1 : K(X)× −→ Div (X)
f 7−→ ⟨f⟩.

Indeed, ⟨fg⟩ = ⟨f⟩ + ⟨g⟩ follows from definition of valuations. Any principal divisor is said to
be linearly equivalent to 0. We then define class group of X to be the cokernel of r1 : K(X)× →
Div (X):

Cl(X) := Div (X)/Im
(
r1
)
.

The abelian group Cl(X) is also called Weil divisor class group.

1.10.2 Weil divisors on affine schemes

We will study Weil divisors over affine Weil schemes (see Remark 1.10.0.2), to portray the type
of information that they contain. However, we will introduce something more general (Krull
domains) but will show later that with noetherian hypothesis, we have done no extra work (see
Corollary 1.10.2.5).

Definition 1.10.2.1 (Weil & Krull domains). Let R be a domain. We call R to be a Weil domain
if Rp is a DVR (equivalently regular, or Dedekind by Theorem 16.10.1.8) for all p ∈ Spec (R) such
that ht (p) = 1 (equivalently, dimRp = 1 by Lemma 16.8.1.4). A Weil domain is a Krull domain if
moreover R =

⋂
ht (p)=1Rp = 1 in F = Q(R) and every non-zero r ∈ R is in only finitely many

prime ideals of height 1. Hence any Krull domain is in particular a Weil domain.
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The first observation is that noetherian normal domains are Krull domains.

Proposition 1.10.2.2. Let R be a ring.
1. If R is a noetherian normal domain, then R is a Weil domain.
2. If R is a noetherian Weil domain, then R is a Krull domain.

Proof. 1. Let p ∈ Spec (R) be a height 1 prime ideal. As localization of normal domains is normal
(Proposition 16.7.2.8), therefore Rp is a noetherian local domain of dimension 1 which is normal.
By Theorem 16.10.1.8, we deduce that Rp is a DVR, as required.

2. We first wish to show that R =
⋂

ht (p)=1Rp. We need only show (⊇). Indeed, let r
s ∈ Rp

for all p of height 1. It follows that s /∈ p for all height 1 prime ideals. We claim that any non-zero
element of R is contained in a height 1 prime ideal. Indeed, this is the content of Krull’s principal
ideal theorem (Theorem 16.8.3.2). Thus s ∈ R is a unit, hence r

s = rs−1 ∈ R.
Finally, we wish to show that any non-zero element r ∈ R is in only finitely many height 1

primes. By going modulo rR and recalling that R is a domain, we need only show that there are
finitely many height 0 primes in S = R/rR. As S is noetherian and minimal primes are equiva-
lent to height 0 primes, so we reduce to showing that a noetherian ring has finitely many minimal
primes. Indeed, this is the content of Lemma 1.2.1.8.

Example 1.10.2.3. A Dedekind domain is therefore a Krull domain of dimension 1.

Any Krull domain is normal.

Lemma 1.10.2.4. If R is a Krull domain, then R is a normal domain.

Proof. As R =
⋂

ht (p)=1Rp where each Rp is a normal domain in particular, therefore the integral
closure of R in F = Q(R) is contained in each Rp, thus is contained in

⋂
ht (p)=1Rp which is R, as

required.

In summary, we have now shown the following important equivalences.

Corollary 1.10.2.5. Let R be a ring. Then the following are equivalent:
1. R is a noetherian normal domain.
2. R is a noetherian Weil domain.
3. R is a noetherian Krull domain.

Proof. Follows from Proposition 1.10.2.2 and Lemma 1.10.2.4

Remark 1.10.2.6. Consequently, a Krull domain can be thought of as an abstraction of all the nice
"divisorial properties" that we expect from noetherian normal domains, so that we can talk about
it in non-noetherian settings.

The following is what we expect and the following is indeed true.

Proposition 1.10.2.7. Let X = Spec (R) be an affine scheme. Then the following are equivalent:
1. X is an affine Weil scheme.
2. R is a noetherian Weil domain.
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Proof. Suppose X is an affine Weil scheme. Then X is in particular noetherian and integral. By
Lemmas 1.4.1.3 and 1.4.2.2, we deduce that R is a noetherian domain. As X is regular in codimen-
sion 1, Rp is regular if ht (p) = 1. Consequently, Rp is a noetherian local domain of dimension 1.
Hence by Theorem 16.10.1.8 we deduce that Rp is a DVR, as required.

Now if R is a noetherian Weil domain, then X is a noetherian integral scheme regular in codi-
mension 1. As affine schemes are separated, so we conclude the proof.

As for most purposes we do enforce noetherian hypothesis, thus by above result it is noethe-
rian normal domains, i.e. noetherian Weil domains, which are most important for us. We now
define Weil divisors on Weil domains just as we did in Definition 1.10.1.1.

Definition 1.10.2.8 (Weil divisors on Weil domains). Let R be a Weil domain. A prime divisor is a
height 1 prime ideal. A Weil divisor is an element of the free abelian group generated by all prime
divisors. A Weil divisor is denoted by D =

∑
i ni[pi]. The group of all Weil divisors over R is

denoted by Div (R). An effective Weil divisor is D =
∑
i ni[pi] where ni ≥ 0 for all i. We denote by

PDiv(R) the set of prime divisors, that is, the generating set of Div (R).

Every Weil domain comes equipped with a discrete valuation at height 1 prime.

Definition 1.10.2.9 (p-adic valuation). Let R be a Weil domain and p be any height 1 prime ideal
of R. Then Rp is a DVR and thus has a function

νp : Cart(R) −→ Z
I 7−→ νp(I)

where since Rp is a PID in particular (Proposition 16.10.1.9), so we can write the invertible ideal Ip
as Ip = pνp(I)Rp. We call νp as the p-adic valuation of R for height 1 prime ideal p.

Remark 1.10.2.10. Indeed, the name is justified by the simple observation that if we consider the
usual valuation ν : Q(Rp) → Z given by f 7→ ν(f) such that utν(f) = f where t ∈ Rp is the local
parameter of the DVR, then νp is the function Cart(R)→ Cart(Rp) = Q(Rp)×

ν→ Z which is given
by I 7→ Ip = fRp 7→ ν(f).

Construction 1.10.2.11 (The Cart-Div homomorphism). Let R be a Krull domain. We define a
group homomorphism

ν : Cart(R) −→ Div (R)
I 7−→

∑
ht (p)=1

νp(I)[p]

which is well defined as νp(I) ̸= 0 only for finitely many p of height 1 by the third axiom of Krull
domains37. This is a group homomorphism as ν(IJ) =

∑
νp(IJ)[p] =

∑
(νp(I) + νp(J))[p] =

ν(I)+ν(J). We call this the Cart-Div homomorphism. We also call the divisor ν(I) corresponding
to an invertible ideal to be the associated divisor of I .

37One may see this as follows. As I ⊆ a
b
R, a ̸= b, therefore for any height 1 prime p, we get Ip = t

νp
p Rp ⊆ a

b
Rp where

tp ∈ Rp is the local parameter of the DVR. Consequently, a
b
t
µp
p = t

νp
p . Note that νp = 0 if and only if a

b
·Rp = Rp which

in turn happens if and only if a /∈ p and b /∈ p, i.e. if and only if a
b

is a unit of Rp. Hence, νp ̸= 0 if and only if a
b

or b
a

is a
non-unit of Rp. As a

b
is a non-unit of Rp if and only if a /∈ p and there are only finitely many height 1 primes containing

a, thus there are only finitely many height 1 primes p such that a
b ∈ Rp is non-unit. Similarly for b

a . This shows that
only for finitely many height 1 primes do we have that νp(I) ̸= 0.
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Definition 1.10.2.12 (Principal divisors). Let R be a Krull domain. For any invertible ideal I ∈
Cart(R), the divisor ν(I) =

∑
νp(I)[p] is called the principal divisor of I . Any divisor in the image

of ν will be called a principal divisor.

An immediate question will be to see what do effective principal divisors correspond to. In-
deed, they exactly correspond to ideals of R.

Lemma 1.10.2.13. Let R be a Krull domain. Then there is a bijection

{Effective principal divisors on R}↭ {Ideals of R}.

Proof. Indeed, if D = ν(I) is an effective principal divisor, then νp(I) ≥ 0 for each p of height 1.
Consequently, Ip is an ideal of Rp for each p of height 1. Thus, I ⊆

⋂
ht (p)=1 Ip ⊆

⋂
ht (p)=1Rp = R,

as required. For the converse, repeat the same in reverse.

Lemma 1.10.2.14. Let R be a Krull domain. Then the Cart-Div homomorphism

ν : Cart(R)→ Div (R)

is injective.

Proof. Indeed, if ν(I) = 0, then Ip = Rp for all height 1 primes p. As there is an invertible ideal
J such that IJ = R, therefore ν(I) + ν(J) = 0, from which it follows that ν(J) = 0 as well. As
I ⊆

⋂
ht (p)=1 Ip =

⋂
ht (p)=1Rp = R and similarly for J , thus, I, J are ideals of R such that IJ = R.

Consequently, as R = IJ ⊆ I ∩ J ⊆ I, J , thus we get that I = J = R, as required.

We now define the divisor class group of a Krull domain.

Definition 1.10.2.15 (Divisor class group & Pic-Cl map). Let R be a Krull domain. The Weil
divisor class group Cl(R) of R is defined to be the cokernel of the composite

F×
div−→ Cart(R) ν−→ Div (R).

That is,

Cl(R) = Div (R)
Im (ν ◦ div) .

We write ν ◦ div : F× → Div (R) as div as well.
As Pic(R) = CoKer (div : F× → Cart(R)), Cl(R) = CoKer (div : F× → Div (R)) and we have

a map ν : Cart(R)→ Div (R), thus by universal property of cokernels, we get a map

ν̃ : Pic(R) −→ Cl(R)

which we call the Pic-Cl map.

Remark 1.10.2.16 (Div-Cl sequence). We summarize the whole discussion by observing the fol-
lowing exact sequence:

1→ R× → F×
div→ Div (R)→ Cl(R)→ 0.

The exactness at F× follows from the second axiom of Krull domains.
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Its an easy observation by 4-lemma that the Pic-Cl map is injective as well.

Lemma 1.10.2.17 (Cart-Pic to Div-Cl). Let R be a Krull domain. Then the Pic-Cl map ν̃ : Pic(R) →
Cl(R) is injective. Moreover, the following is commutative:

1 R× F× Cart(R) Pic(R) 0

1 R× F× Div (R) Cl(R) 0

id

div

id ν ν̃

div

.

Proof. Commutativity is clear. Injectivity of ν̃ is from 4-lemma.

A simple corollary yields when Picard group and Weil divisor class groups are same.

Corollary 1.10.2.18. Let R be a Krull domain. Then the following are equivalent:
1. ν : Cart(R)→ Div (R) is an isomorphism.
2. ν̃ : Pic(R)→ Cl(R) is an isomorphism.

Proof. Both sides are immediate from 5-lemma.

Relative Weil divisors

As in homology, it is necessary at times to study relative invariants. Indeed, same is true for Weil
divisors, as some results mentioned later will show.

Definition 1.10.2.19 (Relative Weil divisors). Let R be a Krull domain and S ⊆ R be a multiplica-
tive set. Define Div (R,S−1R) to be the free abelian group generated by height 1 primes p such
that p ∩ S ̸= ∅. We call Div (R,S−1R) Weil divisors on R relative to S.

Remark 1.10.2.20. It is immediate that

Div (R) = Div (S−1R)⊕Div (R,S−1R).

Furthermore, we may define the map div as usual (F = Q(R)):

div : F× −→ Div (R,S−1R)
f 7−→

∑
ht p=1,p∩S ̸=∅

νp(fR)[p].

The main result here is the following relative version of Div-Cl exact sequence.

Proposition 1.10.2.21. Let R be a Krull domain and S ⊆ R be a multiplicative set. Then, the following
sequence is exact:

1→ R× → (S−1R)× div→ Div (R,S−1R)→ Cl(R)→ Cl(S−1R)→ 0.
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Proof. To check exactness at (S−1R)×, we see that if div(f) = 0 for some f ∈ S−1R, then νp(fR) =
0 for all p of height 1 and p ∩ S ̸= ∅. Thus, fRp = Rp for all such primes. As f ∈ (S−1R)×,
consequently if f = a

b , then a, b ∈ S. Hence if p ∩ S = ∅, then S ⊆ R \ p and thus a, b ∈ R \ p so
that f ∈ Rp is a unit. It follows that

fR =
⋂

ht (p)=1
fRp =

⋂
ht (p)=1,p∩S=∅

fRp ∩
⋂

ht (p)=1,p∩S ̸=∅
fRp.

By above,
⋂

ht (p)=1,p∩S=∅ fRp =
⋂

ht (p)=1,p∩S=∅Rp and since f ∈ (S−1R)×, so
⋂

ht (p)=1,p∩S ̸=∅ fRp =⋂
ht (p)=1,p∩S ̸=∅Rp. Finally, we get fR =

⋂
ht (p)=1Rp = R, so that f ∈ R×, as required. Conversely,

if u ∈ R×, then div(u) = 0.
To see exactness at Div (R,S−1R), observe that ifDS ∈ Div (R,S−1R) is a relative divisor such

that [DS ] = 0 in Cl(R), then DS = ν(fR) for some f ∈ F×, i.e. DS is a principal divisor. Then,
since DS = ν(fR) ∈ Div (R,S−1R) and is a principal divisor as a divisor on R, thus we deduce
that νp(fR) = 0 for all p of height 1 such that p∩S = ∅, that is, f ∈ Rp is a unit for all such primes.
Consequently, fRp = Rp for all p ∩ S = ∅ of height 1. Now, as S−1R is a Krull domain, we get

f · (S−1R) = f ·
⋂

ht (p)=1,p∩S=∅
S−1Rp =

⋂
ht (p)=1,p∩S=∅

S−1fRp =
⋂

ht (p)=1,p∩S=∅
S−1Rp = S−1R,

as required. Conversely, if f ∈ (S−1R)×, then div(f) is by construction a principal divisor on R,
so that its image in Cl(R) will be 0.

Exactness at Cl(R) is clear as if [D] is 0 in Cl(S−1R), then D can be written as a sum of two
divisors, one on S−1R, say D1, and other a relative on R, say D2, where D1 is principal. Hence,
[D] = [D2] and since D2 is a relative divisor on R, thus its in image of Div (R,S−1R)→ Cl(R).

Finally, exactness at Cl(S−1R) is clear as any [DS ] ∈ Cl(S−1R) such thatDS =
∑

ht (p)=1,p∩S ̸=∅ np[p]
is also a divisor on R, so that DS ∈ Div (R) and thus defines the class [DS ] ∈ Cl(R), whose image
in Cl(S−1R) is [DS ]. This completes the proof.

We can now prove an important result.

Proposition 1.10.2.22. Let R be a Krull domain and f ∈ R be a prime element (that is, fR is a prime
ideal). Then

Cl(R) ∼= Cl(Rf ).

Proof. By relative Weil divisors exact sequence of Propsosition 1.10.2.21, we get that the map

Div (R,Rf )→ Cl(R)→ Cl(Rf )→ 0

is exact. We need only show that the image of Div (R,Rf ) in Cl(R) is 0. Indeed, letD ∈ Div (R,Rf )
be a relative divisor. Thus

D =
∑

ht (p)=1,p∋f
np[p].

Now fR ⊆ p and fR is prime by hypothesis. As ht (p) = 1 and R is a domain, thus fR = p.
Hence, only height 1 prime containing f is fR. Hence Div (R,Rf ) = Z([fR]) ∼= Z. As fR is a
principal ideal, thus it can be shown that its image in Cl(R) is 0 as [fR] = ν(fR) (fR is prime),
and thus the image of Div (R,Rf )→ Cl(R) is 0, as required.
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1.10.3 Cartier divisors & Cartier divisor class group

Definition 1.10.3.1 (Cartier divisor and CaCl(X)). Let X be a scheme. By K, denote the sheaf
associated to the presheaf

K : U 7→ Q(OX(U))

where Q(A) for a ring A is the total quotient ring, obtained by localizing A at the multiplicative
set S of all non zero-divisors of A. Note that the resulting map A → S−1A is injective. If A is a
domain then it is the usual quotient field. We call K the total quotient sheaf. Note that the map
O×X → K× induced by localization as above is injective. Thus we have the short exact sequence

0→ O×X → K× → K×/O×X → 0.

Applying global sections, we get a map

π : Γ(K×)→ Γ(K×/O×X).

A Cartier divisor on X is a global section of K×/O×X . The group of Cartier divisors of X , denoted
Cart(X), is defined to be Γ(K×/O×X). A Cartier divisor is principal if it is in the image of π. The
cokernel of the map π is defined to be the Cartier class group

CaCl(X) := CoKer (π) =
Γ(K×/O×X)

Im (π) .

Here are some first observations.

Lemma 1.10.3.2. IfX is integral, then the total quotient sheaf K is isomorphic to the constant sheafK(X).

Proof. As the total quotient presheaf is given byK : U 7→ Q(OX(U)) since each OX(U) is a domain
(Lemma 1.4.2.2), therefore there is a map of presheaves ϕ : K → K(X) as there is an isomorphism
of K(U) ∼= K(X) for any open affine. Consequently, ϕ is an isomorphism on stalks. By universal
property, there is a map ϕ̃ : K → K(X) which is isomorphism on stalks. It follows that ϕ̃ is an
isomorphism, as required.

Lemma 1.10.3.3. Let X be a scheme. Then the following are equivalent:
1. D is a Cartier divisor on X .
2. There is an open cover {Ui} of X and non-zero rational functions fi ∈ K×(Ui) such that on Ui ∩Uj ,

there exists cij ∈ O×X(Ui ∩ Uj) and

fi = cijfj in K×(Ui ∩ Uj).

Proof. We have a short exact sequence of sheaves

0→ O×X → K× → K×/O×X → 0.

Hence by definition of surjectivity of the map π : K× → K×/O×X , we get that a Cartier divisor D
is gives an open cover {Ui} together with fi ∈ K×(Ui) such that πUi(fi) = D|Ui . It follows that
on Ui ∩ Uj , we have πUi∩Uj (fi) = πUi∩Uj (fj) and thus fif−1j ∈ Ker (πUi) = Ker (π)(Ui) = O×X(Ui),
as required. Conversely, such a data gives rise to a matching family for the sheaf K×/O×X , as
required.
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1.10.4 Cartier divisors on affine schemes

We discuss Cartier divisors first on affine schemes. Here, we will see that a Cartier divisor is
nothing but an invertible ideal.

Definition 1.10.4.1 (Fractional & invertible ideals). Let R be a domain and F = Q(R). A frac-
tional ideal is a non-zero R-module I ⊆ F such that there exists f ∈ F for which I ⊆ f · R in
F . That is, I consists of some R-multiples of a fraction f ∈ F . Note that if I and J are fractional,
then so is IJ . A fractional ideal I is said to be invertible, if there exists a fractional ideal J such
that IJ = R. The set of all fractional ideals form an abelian group with identity being R which we
denote by Cart(R) defined to be the abelian group of Cartier divisors on Spec (R) (or just R).

Remark 1.10.4.2. An invertible ideal over domain R can equivalently be defined to be an R-
module I ⊆ F such that there exists b ∈ R for which bI ≤ ⟨a⟩ for some a ∈ R. That is, bI is
an ideal of R which is contained in some principal ideal.

Example 1.10.4.3. Let R be a domain and n ∈ Z \ {0} with char(R) ̸= n. Denote ( 1n) =
1
nR ⊆ F

and (n) = nR ⊆ F be two fractional ideals (where n = 1 + · · ·+ 1, n-times). Clearly ( 1n) · (n) = R.
Thus, ( 1n) is a Cartier divisor on R.

Remark 1.10.4.4 (Divisor map). For any domain R with fraction field F , we have a group homo-
morphism

div : F× −→ Cart(R)
f 7−→ fR.

It is interesting to note when is this an isomorphism. An immediate calculation shows that it is so
when R is a PID. Thus, Cart(R) has information about factorization in R.

By analyzing kernel and cokernel of the divisor map, we get a useful exact sequence.

Theorem 1.10.4.5 (Cart-Pic sequence). Let R be a domain.
1. The map

Cart(R) −→ Pic(R)
I 7−→ [I]

is a group homomorphism. That is, I ⊗R J ∼= IJ , for any two I, J ∈ Cart(R). This is also true for
any two line bundles I, J ∈ Pic(R) such that I, J ⊆ F .

2. We have Ker (div : F× → Cart(R)) = R×.
3. The following is an exact sequence

1→ R× → F×
div→ Cart(R)→ Pic(R)→ 0.

Proof. 1. We first show well-definedness of Cart(R) → Pic(R). To this end, we need to show that
any invertible ideal is a rank 1 projective module. Indeed, as there is an invertible ideal J such
that IJ = R, thus there exists {xi} ⊆ I and {yi} ⊆ I finitely many such that 1 = x1y1 + · · ·+ xnyn.
Using this, we immediately get maps I → Rn → I whose composite is identity. Consequently, we
get that I is a direct summand of Rn, as required.
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As R is a domain, so Spec (R) is in particular connected. Consequently, we need only find
dimF (I ⊗R F ). As I ⊗R F = I ⊗R R0 = I0 = F , thus, rank0(F ) = 1 and by connectedness, rank(I)
is a constant map to 1. This shows that I is a line bundle, hence [I] ∈ Pic(R).

Next, we wish to show that for any I, J ∈ Cart(R), we get I ⊗R J ∼= IJ . This will show that
the above map is a group homomorphism, as required. To this end, observe that we have a map

ϕ : I ⊗R J −→ IJ

x⊗ y 7−→ xy.

We claim that ϕ is an isomorphism. Indeed, as I is a line bundle, therefore I is a projective R-
module. Consequently it is flat and thus I⊗R− is exact. As J ↪→ F is the inclusion map, therefore
I ⊗R J ↪→ I ⊗R F ∼= F is also an inclusion. Note that I ⊗R F ∼= F is the map given by x⊗ y 7→ xy.
Hence, we have shown that ϕ is injective. Surjectivity of ϕ is immediate, so that ϕ is an isomor-
phism.

2. Let f ∈ F× be such that div(f) = fR = R, then f is a unit of R, as required.

3. We need only show exactness at Cart(R) and surjectivity of Cart(R) → Pic(R). We first show
the former. An invertible ideal I ∈ Cart(R) is in the kernel iff I ∼= R as an R-module. If ϕ : R→ I
is the isomorphism, then I ∼= fR where f = ϕ(1), as required.

Next we show surjectivity of Cart(R) → Pic(R). To this end, we have to show that any line
bundle L over R is isomorphic to an invertible module I on R. Indeed, as L is rank 1, therefore
L⊗RF ∼= F . AsR ↪→ F and L is projective hence flat, thus L ∼= L⊗RR→ L⊗RF ∼= F is injective.
Let the image of L in F be I . We claim that I ⊆ F is an invertible module. Indeed, as I is finitely
generated, therefore I = f1R + · · · + fnR for ai

bi
= fi ∈ F , which we may write as I ⊆ 1

b1...bn
R, so

I is fractional. To see that I is invertible, let J ⊆ F be the fractional ideal corresponding to Ľ. As
L⊗R Ľ ∼= R in Pic(R), it follows that L⊗R Ľ ∼= I⊗RJ ∼= IJ where the last isomorphism is obtained
from item 1. Hence IJ ∼= R, where I, J ⊆ F so that IJ ⊆ F . Consequently, IJ is a free R-module
of rank 1 in F . It follows that IJ = uR for some u ∈ R×, so that I(u−1J) = R, as required.

To end this section, we show that the two notions of Cartier divisors and Cartier class group
of a scheme specializes to the notions introduced in this section.

Theorem 1.10.4.6. Let A be a domain. Then the Cartier divisor group as defined in Definitions 1.10.4.1
and 1.10.3.1 are isomorphic.

1.10.5 Divisors and invertible modules

1.10.6 Divisors on curves
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1.11 Smoothness & differential forms

In this section, we would like to understand the notion of smoothness in algebraic geometry. We
will first begin by defining a non-singular point of a variety over an algebraically closed field,
which would be an extrinsic definition. However, by a fundamental observation of Zariski, we
can have an intrinsic definition of non-singular points, which would be in terms of regular local
rings. The main thrust behind this latter definition will be the expectation that over non-signular
points, the dimension of the tangent space is equal to the dimension of the variety (which is true
in the case of, say manifolds). We would further see that for a variety over an algebraically closed
field, the set of singular points is closed and proper.

We would then introduce the important notion of sheaf of differentials over a scheme. This
will again allow us to characterize non-singular points of a variety, and much more.

1.11.1 Non-singular varieties

To start investigating the notion of non-singularity, we first investigate it in the setting of classical
affine varieties (Definition 1.5.4.11). We will then proceed to abstract varieties.

Definition 1.11.1.1. (Non-singular points of a classical affine variety) Let k be an algebraically
closed field and X be a classical affine k-variety with I(X) = ⟨f1, . . . , fm⟩ ⪇ k[x1, . . . , xn]. A point
p ∈ X is said to be non-singular if the n×m Jacobian matrix

[Jp]n×m =
Å
∂fi
∂xj

(p)
ã
ij

is of rank n− dimX .

The first obvious question is whether the above definition is independent of the choice of the
generators of prime ideal I(X). The following lemma says yes.

Lemma 1.11.1.2. Let k be an algebraically closed field and X be a classical affine k-variety. The definition
of a non-singular point p ∈ X is independent of the choice of the generating set of I(X).

Proof. Let I(X) = ⟨f1, . . . , fm⟩ = ⟨g1, . . . , gl⟩. We wish to show that

rank
ï
∂fi
∂xj

(p)
ò
ij

= rank
ï
∂gi
∂xj

(p)
ò
ij

.

This follows immediately after writing fi =
∑l
a=1 ciaga, cia ∈ k[x1, . . . , xn], differentiating it and

observing that ga(p) = 0 for all a = 1, . . . , l.

Remark 1.11.1.3. In geometry, one notes that at a smooth point, the dimension of tangent space
equals the dimension of the manifold itself. We would like to do a similar construction here.
Indeed, if f : Rn → R is a smooth map and 0 is regular for f , then we know by implicit function
theorem that M = Z(f) ⊆ Rn is a smooth manifold with normal vector field (∇f) : Rn → Rn.
Consequently, one can define the tangent space TxM for x ∈ M to be the set of all those vectors
which are normal to (∇f)x. We mimic this definition for classical affine varieties.
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Definition 1.11.1.4. (Tangent space of a classical affine variety) Let k be an algebraically closed
field and let X be a classical affine k-variety in Ank with I(X) = ⟨f1, . . . , fm⟩. Denote for each
f ∈ k[x1, . . . , xn] and p ∈ Ank the following linear functional

(df)p : kn −→ k

v 7−→
n∑
i=1

∂f

∂xi
(p)vi.

For a point p ∈ X , we define the tangent space TpX as the following k-vector space

TpX := {v ∈ kn | (dfi)p(v) = 0 i = 1, . . . ,m}
= {v ∈ kn | (df)p(v) = 0 ∀f ∈ I(X)}.

We now show that this definition of tangent space is intrinsic. Indeed, we will show that the
TpX = TOX,p := Homk

(
m/m2, k

)
, where (OX,p,m) is the local ring at p ∈ X and κ(p) = k in this

case (see Definition 16.1.2.14). Let us begin with a series of observations.

Lemma 1.11.1.5. Let k be an algebraically closed field and p ∈ Ank . Then the k-linear map

θp : k[x1, . . . , xn] −→ kn

f 7−→
Å
∂f

∂x1
(p), . . . , ∂f

∂xn
(p)
ã

induces a k-linear isomorphism

mp/m
2
p
∼= kn

where mp = ⟨x1 − p1, . . . , xn − pn⟩ is the maximal ideal of k[x1, . . . , xn] corresponding to the point p.

Proof. Let p = (p1, . . . , pn). Observe that {θp(xi − pi)}i=1,...,n forms a basis of kn. Consequently, θp
restricts to a surjective k-linear map θ̂p : mp → kn. Now one observes that f ∈ Ker (θ)p if and only
if f ∈ m2

p. Thus we have by first isomorphism theorem that mp/m
2
p
∼= kn.

Lemma 1.11.1.6. Let k be an algebraically closed field and X be a classical affine k-variety in Ank with
p ∈ X . Let (OX,p,m) denote the local ring of X at p and I ≤ k[x1, . . . , xn] be the ideal of X . Then,

m/m2 ∼= mp/(m2
p + I).

Proof. Let A = k[x1, . . . , xn]. By Proposition 1.5.3.10, 3, we have m = (mp)mp/Imp and m2 =(
(m2

p)mp + Imp
)
/Imp . By quotienting, we obtain

m/m2 ∼=
(mp)mp

(m2
p + I)mp

∼=
Ç

mp

m2
p + I

å
mp/(m2

p+I)

∼=
mp

m2
p + I

.
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Recall the notion of regular local ring from Definition 16.1.2.16. We now see that non-singular
points are classified by the local ring being regular.

Theorem 1.11.1.7. Let k be an algebraically closed field andX be a classical affine k-variety and let p ∈ X .
The following are equivalent:

1. The point p ∈ X is non-singular.
2. The local ring OX,p is regular.

Proof. Let m be the maximal ideal of the local ring OX,p. By definition, we have OX,p is regular if
and only if dimk m/m

2 = dimOX,p. By Proposition 1.5.3.10, 7, we further have that OX,p is regular
if and only if dimk m/m

2 = dimX . Whereas by Lemmas 1.11.1.6 and 1.11.1.5, we observe

dimk m/m
2 = dimk

mp

m2
p + I

= dimk

Ö
mp
m2
p

m2
p+I
m2
p

è
= dimk

mp

m2
p

− dimk

m2
p + I

m2
p

= n− dimk

m2
p + I

m2
p

.

With these two observations, we thus reduce to proving that

dimk

m2
p + I

m2
p

= rank Jp

where Jp =
î
∂fi
∂xj

ó
for I = ⟨f1, . . . , fm⟩. This now follows by the following two rather straightfor-

ward observations; in the notations of Lemma 1.11.1.5 and its proof, one observes
1. θ̂−1p (θp(I)) is isomorphic as k-vector space to I +m2

p,
2. dimk θp(I) = rank Jp.

The result now follows.

With the above result, we formulate the following definition of non-singular abstract varieties.

Definition 1.11.1.8. (Non-singular abstract variety) Let k be an algebraically closed field. A va-
riety X over k is said to be non-singular if for all x ∈ X , the local ring OX,x is a regular local
ring.

Remark 1.11.1.9. Note that in the definition of non-singular varieties, it is sufficient to demand
that OX,x is a regular local ring for all closed points x ∈ X only. Indeed, by Lemma 1.3.1.1, local
ring at a non-closed point is obtained by localizing the local ring at a closed point at a prime ideal.
As the localization of a regular local ring at a prime ideal is again a regular local ring by Theorem
??, the result follows.

We now define the Zariski (co)tangent space of a scheme at a point.
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Definition 1.11.1.10. (Zariski (co)tangent space) Let X be a scheme and x ∈ X be a point and let
κ be the residue field at point x. Then

1. the Zariski cotangent space at x is defined to be the κ-vector space

T ∗xX := mX,x/m
2
X,x,

2. the Zariski tangent space at x is defined to be the κ-vector space

TxX := Homκ

Ä
mX,x/m

2
X,x, κ

ä
.

These are the analogues to the case in algebra (see Definition 16.1.2.14).

TODO : State how this is related to usual definition of tangent spaces

1.11.2 Regular schemes

".... Of what use is it to know the definition of a scheme if one does not realize that a ring of integers in an
algebraic number field, an algebraic curve, and a compact Riemann surface are all examples of a ’regular
scheme of dimension 1’?"- Hartshorne.

Definition 1.11.2.1 (Regular schemes). A locally noetherian scheme X is said to be regular if the
local rings OX,x for all x ∈ X is a regular local ring.

Observe that any smooth affine curve over a field is spectrum of a Dedekind domain, so is in
particular a regular scheme (as local rings of Dedekind domains are regular, as noted in Theorem
16.10.1.8).

Proposition 1.11.2.2. Let C be a smooth affine plane curve over a field k. Then the coordinate ring of C is
a Dedekind domain.

Proof. LetC = Spec (R). AsC is a curve, thereforeC is an integral finite type scheme of dimension
1 over k. We thus deduce thatR is a finite type k-domain of dimension 1. By Hilbert basis theorem
(Theorem 16.3.0.6), we deduce that R is noetherian. Smoothness of C yields that Rp is a regular
local ring for all p ∈ C. As dimR = 1, we deduce thatRp is a noetherian local domain of dimension
1 which is also regular. By Theorem 16.10.1.8, we deduce that Rp is normal for all p ∈ C. By local
criterion of normal domains (Proposition 16.7.2.10), we deduce that R is normal. Hence R is
noetherian normal domain of dimension 1, as required.

1.11.3 Cotangent bundle on affine schemes

We next study the analogues of tangent and cotangent bundles on affine schemes, before moving
to general schemes. We begin by contemplating the following two constructions.

Construction 1.11.3.1 (Algebraic differential of a map). Let f : B → C be a map of A-algebras so
that we have a map ψ : Spec (C) → Spec (B). Let ΩB/A and ΩC/A be the module of differentials
over B and C relative to A, respectively. We wish to construct a map ϕ : Spec

(
SymC ΩC/A

)
→

Spec
(
SymB ΩB/A

)
, which we will later show is equivalent to the derivative of the map ψ;

Spec
(
SymC ΩC/A

)
Spec

(
SymB ΩB/A

)
Spec (C) Spec (B)

ϕ

ψ
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where the vertical maps are induced from inclusions into degree 0-term of the respective symmet-
ric algebras.

Indeed, we need only define a map of A-algebras SymB ΩB/A → SymC ΩC/A. To this end, by
the cotangent sequence (Proposition 16.15.0.7), we have a map of C-modules induced by f given

ΩB/A ⊗B C → ΩC/A.

By composing with B-linear map ΩB/A → ΩB/A ⊗B C, we get the A-linear map

g : ΩB/A → ΩC/A.

This gives the required map Sym g : SymB ΩB/A → SymC ΩC/A. Applying Spec (−) gives the
required map ϕ in the diagram above. We call the map ϕ the algebraic differential of the map ψ.

On the other hand, we have the following construction.

Construction 1.11.3.2 (Geometric differential at a point). Let f : B → C be a map of A-algebras so
that we have a map ψ : Spec (C) → Spec (B). Assume that A = k is a field and B,C are rational
k-algebras38. Let p ∈ Spec (C) be a fixed point, q = ψ(p) and mp ≤ Cp, mq ≤ Bq be the maximal
ideals of the corresponding local rings. Note that by Proposition ??, we have

ΩC/A ⊗C C/mp
∼= mp/m

2
p

ΩB/A ⊗B B/mq
∼= mq/m

2
q

That is, the fiber of Spec
(
SymC ΩC/A

)
→ Spec (C) at p is the cotangent space T ∗p Spec (C), similarly

for B at q. Using ψ we now wish to construct a map dψp : T ∗q Spec (B) → T ∗p Spec (C) as follows.
We have the canonical localization map

ψ♯p : OSpec(B),q = Bq → Cp = OSpec(C),p

induced by ψ which is local homomorphism. As B and C are rational local, therefore Bq = k⊕mq

and Cp = k ⊕mp (Lemma 16.23.0.7). As the map is k-linear, so going modulo k, we get a map

ψ♯p : mq → mp.

By standard algebra, this descends to a map

dψp := ψ̄♯p : T ∗q Spec (B)→ T ∗p Spec (C)

38that is, every local ring of B and C have residue field k again (see Definition 16.1.2.17).
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1.12 Morphism of schemes

The main use of schemes to answer geometric questions begin with defining various types of
situations that one usually finds himself/herself in algebraic geometry. We discuss them here one
by one by giving examples.

We begin by elucidating some basic facts about the maps induced on local rings. First, the
behaviour of maps with respect to schemes over k and residue fields.

Lemma 1.12.0.1. Let f : X → Y be a map of schemes over k. If p ∈ X is such that κ(p) = k, then
κ(f(p)) = k.

Proof. By the map induced on stalks, if we mod out the maximal ideal (using the fact that the map
is local) we get the following diagram

κ(f(p)) k

k

∼=
.

The result then follows.

The following in particular says that a map of varieties induces a finite extension of function
fields.

Proposition 1.12.0.2. Let k be a field and f : X → Y be a dominant map of integral finite type k-schemes
where dimX = dimY . Then the induced map on function fields f ♭ : K(Y )→ K(X) is a finite extension.

Proof. Note that as X and Y are finite type k-schemes, therefore K(X) and K(Y ) are fraction
fields of finite type k-algebras so they are finitely generated field extensions of k. As dimX =
trdeg K(X)/k = trdeg K(Y )/k = dimY , therefore by Lemma 16.6.9.8, we deduce that

trdeg K(X)/K(Y ) = 0.

It follows that K(X)/K(Y ) is an algebraic extension. As K(X) and K(Y ) are finitely generated
extensions of k, therefore by tower law, K(X)/K(Y ) is a finitely generated extension. By alge-
braicity of K(X)/K(Y ), we deduce that K(X)/K(Y ) is finite, as required.

1.12.1 Elementary types of morphism

We first cover some basic type of maps between schemes.

Definition 1.12.1.1. (Quasi-compact & maps) A map f : X → Y of schemes is said to be quasi-
compact if there exists an affine open cover {Vi} of Y such that the space f−1(Vi) ⊆ X is quasi-
compact for each i.

Remark 1.12.1.2. Observe that a scheme X over k has a quasi-compact structure map X →
Spec (k) if and only if X is quasi-compact.

We now see that quasi-compact maps are local on target.
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Proposition 1.12.1.3. 39 A map f : X → Y is quasi-compact if and only if for each open affine V ⊆ Y ,
the space f−1(V ) ⊆ X is quasi-compact.

Proof. The (⇐) is immediate. For (⇒), pick any open affine V ⊆ Y . We wish to show that f−1(V )
is quasi-compact. Let Vi = Spec (Bi) be the collection of open affines covering Y such that f−1(Vi)
is quasi-compact. We now obtain a finite covering of V by affine opens which are affine open in
Vi for some i as well. Indeed, by Lemma 1.4.4.3, we may cover V ∩ Vi by open affines which are
basic open in both V and Vi. Doing this for each i, we obtain a cover of V by basic opens. As V is
affine, so by Lemma 1.2.1.6 we obtain a finite collection of basic opens {D(gi)}ni=1 where gi ∈ Bi
such that D(gi) is a basic open in V as well.

We now have that f−1(V ) =
⋃n
i=1 f

−1(D(gi)). Hence it suffices to show that f−1(D(gi)) is a
quasi-compact subspace. To this end, we first immediately reduce to assuming that X is quasi-
compact (by replacing X by f−1(Vi)) and Y = Spec (B) is affine (by replacing Y by Vi). We now
wish to prove that for any g ∈ B, f−1(D(g)) is quasi-compact.

As X is quasi-compact, therefore there exists a finite affine open cover of X by Spec (Ai). It
suffices to show that Spec (Ai) ∩ f−1(D(g)) is a quasicompact space. Observe that f |Spec(Ai) :
Spec (Ai) → Spec (B) is a morphism of affine schemes. It follows from Corollary 1.3.0.6 that
f |Spec(Ai) is induced from a ring mapϕi : B → Ai. As Spec (Ai)∩f−1(D(g)) = (f |Spec(Ai))

−1(D(g)) =
D(ϕi(g)), which is an affine open, therefore by Lemma 1.2.1.6, we deduce that Spec (Ai)∩f−1(D(g))
is quasi-compact, as required.

Example 1.12.1.4 (A non quasi-compact scheme). Let A = k[x1, x2, . . . ] and X = Spec (A) be
the infinite affine space over k. Consider the open subscheme obtained by removing the origin;
U = X − 0 where 0 is the maximal ideal m0 = xi | i ≥ 1. We claim that this is not quasi-compact.
Indeed, each of the opens D(xi) is in U . Moreover, they cover whole of U as any prime of A not
equal to m0 will necessarily not contain some xi, hence is in D(xi). Moreovoer, no finite subcover
of {D(xi)}i covers U .

Definition 1.12.1.5. (Quasi-finite maps) A map f : X → Y of schemes is quasi-finite if for each
y ∈ Y , the fiber Xy is a finite set.

Example 1.12.1.6. Let k be an algebraically closed field. Consider the map

f : X = Spec
Å
k[x, y]
y2 − x3

ã
−→ A1

k

obtained by the map k[x] → k[x,y]
y2−x3 given by x 7→ x + ⟨y2 − x3⟩. Take any point p = ⟨p(x)⟩ ∈ A1

k.
Hence the fiber is

Xp = Spec
Å
k[x, y]
y2 − x3

⊗k κ(p)
ã

= Spec
Å
k[x, y]
y2 − x3

⊗k
k[x]p
pk[x]p

ã
∼= Spec

Ç
k[x, y]
y2 − x3

⊗k
Å
k[x]
p

ã
p

å
.

39Exercise II.3.2 of Hartshorne.
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Let p ̸= 0. As k[x] is a PID, therefore p is a maximal ideal. Consequently, we have κ(p) = k[x]/p.
Hence,

Xp
∼= Spec

Å
k[x, y]
y2 − x3

⊗k
k[x]
p(x)

ã
∼= Spec

Å
k[x, y]

y2 − x3, p(x)

ã
.

As k is algebraically closed, therefore by weak Nullstellensatz, we obtain that p(x) = x − a for
some a ∈ k. Consequently, if we have a ̸= 0 then

Xp
∼= Spec

Å
k[x, y]

y2 − x3, x− a

ã
∼= Spec

Å
k[y]

y2 − a3

ã
∼= Spec

Å
k[y]

(y + a3/2)(y − a3/2)

ã
∼= Spec (k × k)
∼= Spec (k)⨿ Spec (k).

If a = 0, then

Xp
∼= Spec

Å
k[y]
y2

ã
and we know that k[y]/y2 has only one prime ideal, the one generated by y+⟨y2⟩ ∈ k[y]/y2. Hence
Xp consists of two points at all non-zero closed points and of a single point at the origin, showing
that f has finite fibers at all closed points. However, at the generic point p = 0, we have a more
complicated story:

X0
∼= Spec

Å
k[x, y]
y2 − x3

⊗k k(x)
ã

∼= Spec
Å
k(x)[x, y]
y2 − x3

ã
∼= Spec

Å
k(x)[y]
y2 − x3

ã
.

As k(x)[y] is a PID, therefore points ofX0 are thus in bijective correspondence with prime ideals of
k(x)[y] containing y2−x3, which in turn is in bijection with the set of irreducible factors of y2−x3
in k(x)[y]. As k(x)[y] is a UFD, therefore there can atmost be finitely many such irreducible factors.
Hence, X0 is finite.

Hence all fibers are finite, making f quasi-finite.

1.12.2 Finite type

We already considered one example of such maps in the case of schemes over a field in Section
1.4.3
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Definition 1.12.2.1. (Locally finite type) Let f : X → Y be a map of schemes. Then f is said to
be locally of finite type if there is an affine open cover Vi = Spec (Bi), i ∈ I of Y such that for each
i ∈ I , f−1(Vi) has an open affine cover Uij = Spec (Aij), j ∈ J such that for each j, the ring Aij is
finite type40 Bi-algebra.

Definition 1.12.2.2. (Finite type) Let f : X → Y be a map of schemes. Then f is said to be of finite
type if there is an open affine cover Vi = Spec (Bi), i ∈ I of Y such that for each i ∈ I , f−1(Vi)
has a finite open affine cover Uij = Spec (Aij), j = 1, . . . , n such that for each j, Aij is a finite type
Bi-algebra.

It is an important observation that both the above definitions are local on target.

Proposition 1.12.2.3. 41 A map f : X → Y is locally of finite type if and only if for all open affine
V = Spec (B) in Y , there is an open affine cover Ui = Spec (Ai) of f−1(V ) in X such that each Ai is a
finite type B-algebra.

Proof. The R⇒ L follows immediately. Let Vi = Spec (Bi) be an open affine cover of Y such that
f−1(Vi) is covered by open affines Uij = Spec (Aij) where each Aij is a finite type Bi-algebra.
Pick any affine open V = Spec (B) in Y and a point x ∈ f−1(V ). We wish to find an open affine
x ∈ U = Spec (A) inside f−1(V ) such that A is a finite type B-algebra.

Consider f(x) ∈ V and let f(x) ∈ V ∩ Vi. Consequently, x ∈ f−1(V ) will be contained in
some Uij , so x ∈ f−1(V ) ∩ Uij . By continuity of f , there exists a basic open D(g) ⊆ V ∩ Vi
for some g ∈ Bi which contains f(x) such that f−1(D(g)) ⊆ f−1(V ) ∩ Uij is open. Restricting
f to Uij , we have f : Uij → Vi which induces a map ϕ : Bi → Aij which is of finite type.
Denote U = f−1(D(g)) = D(ϕ(g)) = Spec

(
(Aij)ϕ(g)

)
⊆ f−1(V ) ∩ Uij . We therefore get that the

restriction of f on U , which is given by f : U → D(g), induces the localization map on algebras
ϕg : (Bi)g → (Aij)ϕ(g). As localization of algebras are finite type, therefore ϕg makes (Aij)ϕ(g) a
finite type (Bi)g-algebra.

By Lemma 1.4.4.3, we have an isomorphism Bh → (Bi)g. Thus, we have

B → Bh
∼=→ (Bi)g → (Aij)ϕ(g)

where each map is of finite type. Since composite of finite type maps is of finite type, therefore
(Aij)ϕ(g) is a finite type B-algebra, as required.

We next see that finite type maps are also local on target and a nice property that they satisfy
which says that finite type property descends to every open affine inside the inverse image of an
open affine.

Theorem 1.12.2.4. 42 Let f : X → Y be a map of schemes. Then,
1. f is of finite type if and only if f is locally of finite type and quasi-compact,
2. f is of finite type if and only if for every open affine V = Spec (B), the space f−1(V ) can be covered

by finitely many open affines Ui = Spec (Ai) where each Ai is a finite type B-algebra,

40finite type algebra := finitely generated as an algebra.
41Exercise II.3.1 of Hartshorne.
42Exercise II.3.3 of Hartshorne.
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Figure 1.2: Sketch of the proof of Proposition 1.12.2.3

3. if f is of finite type, then for any open affine V = Spec (B) ⊆ Y and any open affineU = Spec (A) ⊆
f−1(V ), A is a finite type B-algebra.

Proof. 1. (L⇒ R) As f is of finite type, therefore there exists an open affine cover {Vi = Spec (Bi)}
of Y such that f−1(V ) can be covered by finitely many Uij = Spec (Aij) where Aij is a finite
type Bi-algebra. Consequently, f is locally finite type. As each affine scheme is quasi-compact
(Lemma 1.2.1.6) and finite union of quasi-compact spaces is quasi-compact, therefore we deduce
that f−1(V ) is quasi-compact.

(R⇒ L) As f is locally of finite type, therefore there exists an open affine cover {Vi = Spec (Bi)}
of Y such that f−1(Vi) is covered by open affinesUij = Spec (Aij) where eachAij is a finite typeBi-
algebra. As f is quasicompact, therefore we have a finite sub-cover Ui1, . . . , Uin covering f−1(V ),
as required.

2. (R⇒ L) Immediate from definition.
(L ⇒ R) Pick an open affine V = Spec (B) in Y . We wish to show that f−1(V ) is covered

by finitely many open affines each of which is spectrum of a finite type B-algebra. Indeed, as
f is quasi-compact by statement 1 above, therefore by Proposition 1.12.1.3, we see that f−1(V )
is quasi-compact. Also by statement 1, f is of locally finite type. Hence by Proposition 1.12.2.3,
f−1(V ) is covered by spectra of finite typeB-algebras. As f−1(V ) is quasi-compact, we get a finite
subcover, as required.

3. Pick any open affine V = Spec (B) in Y and an open affine U = Spec (A) ⊆ f−1(V ). As f
is of finite type, therefore by statement 2 above, we obtain a finite collection Ui = Spec (Ai) of
open affines covering f−1(V ). Observe that U ∩Ui is an open set of Ui. By virtue of Lemma 1.4.4.3,
we may cover U ∩ Ui by basic open sets of Ui which are basic open in U as well. Doing this for
each i furnishes us with an open cover of U . As U is quasi-compact as it is affine (Lemma 1.2.1.6),
consequently we get a finitely many elements h1, . . . , hn ∈ A such that D(hi) ⊆ U covers U and
furthermore for each i = 1, . . . , n, D(hi) ∼= D(gi) where D(gi) ⊆ Ui and gi ∈ Ai. In particular, we
have Ahi ∼= (Ai)gi . Now for each i = 1, . . . , n, we have

B → Ai → (Ai)gi ∼= Ahi
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Figure 1.3: Sketch of the proof of Theorem 1.12.2.4, 3.

where each of the arrows makes the codomain a finite type algebra over the domain. Hence, Ahi
is a finite type B-algebra. Consequently, we have h1, . . . , hn ∈ A such that ∪ni=1D(hi) = U (which
is equivalent to saying that his generate the unit ideal of A by Lemma 1.2.1.5, 2) and Ahi is a finite
type B-algebra. It follows from Lemma 16.1.2.11 that A is a finite type B-algebra. This completes
the proof.

We now list out some properties of finite type maps as we shall encounter them quite fre-
quently.

Proposition 1.12.2.5. 43 Properties of finite type maps.
1. A closed immersion X → Y is of finite type.
2. A quasicompact open immersion X → Y is of finite type.
3. Composition of finite type maps X → Y → Z is of finite type.
4. Product of finite type schemes X → S and Y → S in Sch/S denoted X ×S Y → S is of finite type.
5. Maps of finite type are stable under base extensions.
6. If X → Y is quasicompact and the composite X → Y → Z is of finite type, then X → Y is of finite

type.
7. If X → Y is of finite type and Y is noetherian, then X is noetherian.

Proof. TODO!

The following is something we all expect, which indeed holds true for finite type schemes.

Lemma 1.12.2.6. Let k be a field and X be a finite type k-scheme. The set of all closed points of X is dense
in X .

Proof. TODO.

Example 1.12.2.7. We give a number of examples of finite type maps.
1. Let k be a field. Consider the projection map π : A2

k → A1
k defined by the k-algebra map

k[x] → k[x, y] mapping as x 7→ x. Note that π is a finite type map of schemes as the open
covering of A1

k as itself yields that π−1(A1
k) = A2

k and A2
k is spectra of k[x, y] which is a finite

type k[x] algebra via the above map. Indeed, k[x, y] is generated by {y} as a k[x]-algebra.
We deduce that projection maps Ank → A1

k are finite type maps for any n ∈ N.
43Exercise II.3.13 of Hartshorne.



1.12. MORPHISM OF SCHEMES 123

2. We next consider a family of curves parameterized by a parameter t. Consider the map

C[t] −→ C[t][x, y]⟨y2 − x3 − t⟩.

This yields the following map at the level of schemes

X := Spec
Å

C[t][x, y]
⟨y2 − x3 − t⟩

ã
→ Spec (C[t]).

Pick the closed point corresponding to a ∈ C in Spec (C[t]). As C[t][x, y]/⟨y2 − x3 − t⟩ is a
finite type C[t]-algebra, therefore the above map of schemes is of finite type.
Observe that the fiber of X at a ∈ Spec (C[t]) (by abuse of notation) is given by

Xa = X ×Spec(C[t]) Spec (κ(a)).

As κ(a) is the fraction field of C[t]/⟨t− a⟩, which is C[a] = C, therefore we get the following

Xa = Spec
Å

C[t][x, y]
⟨y2 − x3 − t⟩

⊗C[t] C[a]
ã

∼= Spec
Å

C[x, y]
⟨y2 − x3 − a⟩

ã
.

Hence, we get the curve y2 − x3 − a back as the fiber at the point a ∈ Spec (C[t]).
3. Consider the map

k[t] −→ k[t][w, x, y, z]
⟨(w − y)2 + (x− z)2 − t2⟩

which yields the map on geometric level as

X := Spec
Å

k[t][w, x, y, z]
⟨(w − y)2 + (x− z)2 − t2⟩

ã
−→ Spec (k[t]).

Again, this is a finite type map and for a closed point a ∈ k corresponding to the ideal
⟨t− a⟩ ⪇ k[t], the fiber is

Xa
∼= Spec

Å
k[t][w, x, y, z]

⟨(w − y)2 + (x− z)2 − t2⟩ ⊗k[t] k[a]
ã

∼= Spec
Å

k[w, x, y, z]
⟨(w − y)2 + (x− z)2 − a2⟩

ã
on A2

R).
4. Any projective variety X → Pnk will by definition be finite type over k (Theorem 1.12.8.2,

1). For example, the projective parabola X = Proj
Ä
k[x,y,z]
y2−xz

ä
is a finite type scheme over k.

Indeed, by Proposition 1.8.2.8, 1, we get that the natural map X → Proj(k[x, y, z]) = P3
k

coming from the quotient k[x, y, z] ↠ k[x,y,z]
y2−xz (which is a graded map) is a closed immersion.

Hence, it defines a closed subscheme of projective 3-space P3
k over k.
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Over non-noetherian rings, we rather use finite "presentation" rather than finite type.

Definition 1.12.2.8 (Finite presentation). A map of schemes f : X → Y is of locally finite presen-
tation if there exists an open affine cover Vα = Spec (A) of Y such that f−1(Vα) is covered by open
affine Uβ = Spec (Bβ) where each Bβ is finitely presented A-algebra via f . If f is quasi-compact,
quasi-separated and locally finitely presented, then we say f is of finite presentation.

Clearly, over noetherian schemes, finite presentation and finite type are same.

1.12.3 Finite

This is a more stronger version of finite type maps discussed in previous section.

Definition 1.12.3.1. (Finite) Let f : X → Y be a map of schemes. Then f is said to be finite if there
is an open affine covering Vi = Spec (Bi), i ∈ I of Y such that f−1(Vi) is equal to an open affine
Spec (Ai) where Ai is a finite Bi-algebra44.

We see that finite maps are local on target.

Proposition 1.12.3.2. A map f : X → Y of schemes is finite if and only if for each open affine V =
Spec (B), we have f−1(V ) is an open affine Spec (A) in X such that B → A makes A a finite B-algebra.

Proof. (R⇒ L) is immediate from definitions.
(L ⇒ R) Pick any open affine V = Spec (B) in Y . We first wish to show that U = f−1(V ) is

an affine scheme. We may employ criterion for affineness, Proposition 1.3.1.6, for this purpose.
Hence for showing that U is affine, we reduce to finding g1, . . . , gn ∈ Γ(OX|U , U) = OX(U) such
that Ugi is affine and ⟨g1, . . . , gn⟩ = OX(U).

As f is finite, therefore there exists an open affine covering Vi = Spec (Bi) of Y such that
f−1(Vi) = Spec (Ai) = Ui is affine and Ai is a finite Bi-algebra. Observe that V ∩ Vi forms an open
covering of V . As V is affine, so it is quasi-compact (Lemma 1.2.1.6). Consequeently, we obtain a
finite cover of V by Vis. Now cover each V ∩ Vi by basic opens which are basic in both V and Vi
(Lemma 1.4.4.3). Doing this for each of the finitely many i, we obtain a cover of V by basic open
sets. As V is quasi-compact (Lemma 1.2.1.6), therefore we have obtained a cover of V by finitely
many basics D(ki) for ki ∈ B such that D(ki) ∼= D(li) where D(li) ⊆ Vi and li ∈ Bi for i = 1, . . . , n.
Consequently by Lemma 1.2.1.5, the ideal generated by k1, . . . , kn in B is the unit ideal.

As we have

U = f−1(V ) = f−1
Ç

n⋃
i=1

D(ki)
å

=
n⋃
i=1

f−1(D(ki)),

therefore by Lemma 1.3.1.3, we may write

U =
n⋃
i=1

Uϕ(ki)

where ϕ : B → OX(U) is the map induced by the restricted map f : U → V on the global sections.
Furthermore, as

∑n
i=1 kiB = B, therefore

∑n
i=1 ϕ(ki)OX(U) = OX(U). Hence, it now suffices to

44finite algebra := finitely generated as a module.
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show that each Uϕ(ki) is affine.
We have Uϕ(ki) = f−1(D(ki)) ∼= f−1(D(li)) = D(ϕi(li)) where ϕi : Bi → Ai is the map on

global sections obtained by the restriction f : Ui → Vi. As D(ϕi(li)) is affine, thus, so is Uϕ(ki).
This shows that indeed, f−1(V ) is an open affine.

We may now write U = Spec (A). We reduce now to showing that A is a finite B-algebra. For
this observe that in the above, we obtained a finite open cover of U given by Uϕ(ki) ∼= D(ϕi(li))
where D(ϕi(li)) ⊆ Ui. As U = Spec (A), therefore OX(U) = A, so we may let ϕ(ki) = gi for
i = 1, . . . , n. Now, since Uϕ(ki) = Ugi = D(gi) ∼= D(ϕi(li)), therefore we have Agi ∼= (Ai)ϕi(li). As
Ai is a finite Bi-algebra, therefore by Lemma 16.1.2.10, (Ai)ϕi(li) is a finite (Bi)li-algebra. Further,
as we saw in the beginning that D(ki) ∼= D(li), hence we get Bki ∼= Bli . We thus obtain a map
Bki → Agi as in

(Ai)ϕi(li) (Bi)li

Agi Bki

∼= ∼=
(ϕi)li

which thus makes Agi a finite Bki-algebra, in particular, a finitely generated Bki-module. This is
for each of the i = 1, . . . , n, and since we have that k1, . . . , kn generates the unit ideal in B, hence
by another application of Lemma 16.1.2.10, we deduce thatA is a finiteB-algebra, as required.

Base change preserves finiteness.

Proposition 1.12.3.3. Let f : X → S be a finite map of schemes. If g : S′ → S is any map, then the map
f ′ : X ′ → S′ as in the base change

X ′ X

S′ S

f ′
⌟

f

g

is finite.

One important property of finite maps is that their fibers are finite.

Proposition 1.12.3.4. 45 Let f : X → Y be a finite morphism. Then f is quasi-finite.

Proof. Pick any point y ∈ Y and an affine open V = Spec (B) ∋ y in Y . As f is finite, therefore
by restriction we have map f : f−1(V ) → V where f−1(V ) = U = Spec (A) and A is a finite B-
algebra. Thus f−1(y) ⊆ U and hence we reduce to the affine case X = Spec (A) and Y = Spec (B).

Fix q ∈ Y . As the fiber Xq is the base change of f : X → Y under the inclusion Spec (κ(q)) ↪→
Y , thus by Proposition 1.12.3.3 we deduce that Xq = Spec (A⊗B κ(q)) is finite over Spec (κ(q)).
In particular, C = A ⊗B κ(q) is a finite κ(q)-algebra. By cite[AMD], Exercise 8.3, C is an Artinian
ring, as required.

Another nice property enjoyed by finite maps is that they are closed.

Proposition 1.12.3.5. 46 Let f : X → Y be a finite morphism. Then f is a closed map.
45Exercise II.3.5, a) of Hartshorne.
46Exercise II.3.5, b) of Hartshorne.
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Proof. Our goal is to reduce to the affine case as much as possible, where we have many algebraic
results to use. Let Z ⊆ X be a closed subset of X . We wish to show that f(Z) is closed in Y . It
first suffices to show that for every open affine V ⊆ Y , V ∩ f(Z) is closed in V . By definition,
U = f−1(V ) is an open affine. Consider then the restricted map

f : U ∩ Z −→ V ∩ f(Z).

As U ∩ Z is closed in U and f(U ∩ Z) = V ∩ f(Z), we hence reduce to the assumption that
X = Spec (A) and Y = Spec (B) are affine. Let Z ⊆ X be a closed subscheme. Then Z = V (a)
for some ideal a ≤ A. Considering the restriction f : V (I) ∼= Spec (A/I) → Y and the fact that
A↠ A/I is a finite map, we immediate reduce to the further assumption that Z = X .

Consider X = Spec (A) and Y = Spec (B) and f : X → Y a finite map corresponding to
ϕ : B → A. As required, we claim that f has a closed image. Indeed, consider I = AnnB(A) to be
the annihilator ideal of B-module A. We claim that Im (f) = V (I). For (⊆), pick any p ∈ Spec (A).
We wish to show that ϕ−1p ⊇ I . It suffices to show that p ⊇ ϕ(I). Indeed, for any b ∈ I , we must
show ϕ(b) ∈ p. As ϕ(b) · A = 0, therefore ϕ(b) · ϕ(b) = 0 ∈ p and thus ϕ(b) ∈ p, as required.
Conversely for (⊇), fix a prime q ∈ V (I). We wish to find p ∈ X such that q = ϕ−1p. Indeed,
consider the map

B
ϕ
↠ Im (ϕ) =: B′ ⊆ A.

Note that as ϕ is finite, therefore ϕ is integral (Proposition 16.7.1.9). Note that B′ ∼= B/Ker (ϕ),
induced by B ↠ B/Ker (ϕ). Observe that as Ker (ϕ) ⊆ I , therefore q̄ ≤ B′ is a prime containing
Ī ≤ B′. It follows by Cohen-Seidenberg theorems (Theorem ??) that there exists p ∈ Spec (A) such
that p ∩B′ = q̄. Hence it follows at once that ϕ−1(p) = q, as required.

Remark 1.12.3.6. 47 As tempting it might be to say that, but it is not true that a surjective, finite
type, quasi-finite map is finite.

Indeed, let k be an algebraically closed field. Consider the map

f : Spec
Å
k[x, y]
xy − 1

ã
⨿ Spec (k) −→ A1

k

induced by k[x]→ k[x,y]
xy−1 × k given by x 7→ (x+ ⟨xy− 1⟩, 0). As a nice exercise, one checks that (we

write a ∈ A1
k to mean ⟨x− a⟩ ∈ A1

k)
1. f−1(0) is a singleton (Spec (k)),
2. f−1(a) is a singleton, given by point (a, a−1) (in particular, the point ⟨x− a, xy − 1⟩),
3. the generic fiber f−1(0) is isomorphic to Spec (k(x)) in Spec

Ä
k[x,y]
xy−1

ä
, hence a singleton.

Consequently, f is surjective, quasi-finite and furthermore of finite type. But still, k[x,y]xy−1 × k is not
a finite k[x]-algebra.

Remark 1.12.3.7. Let k be a field. Observe that A1
k ×k A

1
k
∼= A2

k. However, the underlying set in A2
k

is not the product of underlying set of A1
k with itself. Indeed, this is essentially due to the fact that

every prime ideal of k[x, y] is not of form p1 × p2 where p1 ∈ k[x] and p2 ∈ k[y], as the prime ideal
xy − 1 in k[x, y] shows.

47Exercise II.3.5, c) of Hartshorne.
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Example 1.12.3.8. Consider the canonical map k[t] → k[t,x]
xn−t and the corresponding map X =

Spec
Ä
k[t,x]
xn−t

ä
→ Spec (k[t]) = A1

k. As k[t,x]
xn−t is a finite k[t]-algebra of rank n, therefore X → A1

k is a

finite map. Note that for each closed point a ∈ A1
k, the fiber Xa

∼= Spec
Ä
k[x]
xn−a

ä
, which has n closed

points if k is algebraically closed and a ̸= 0.

Any closed immersion is a finite map.

Proposition 1.12.3.9. Let i : Z ↪→ X be a closed immersion. Then i is a finite map.

Proof. By Proposition 1.4.4.11, we have an open affine cover {Vk} ofX such that i : i−1(Vk)→ Vk is
a closed immersion. Write Vk = Spec (Ak). Since i−1(Vk) = Z∩Vk and Z∩Vk is a closed subscheme
of Vk, therefore Z ∩ Vk = Spec (Ak/Ik) and the map Spec (Ak/Ik)→ Spec (Ak) is induced from the
quotient map π : Ak ↠ Ak/Ik, which is finite. Hence i is a finite map, as required.

Generic finiteness

Definition 1.12.3.10 (Generically finite map). Let f : X → Y be a map of schemes such that Y
is irreducible. The map f is said to be generically finite if f−1(η) for η ∈ Y the generic point is a
finite set.

The following is an important result in this regard, which says, like many statements about
generic points, that a generically finite dominant map is almost like a finite map.

Theorem 1.12.3.11. 48 Let X,Y be integral schemes and f : X → Y be a dominant, generically finite and
finite type map. Then there exists a dense open V ⊆ Y such that f |f−1(V ) : f−1(V )→ V is a finite map.

Proof. We first prove this forX and Y affine integral schemes. We will later reduce to this case. Let
X = Spec (A) and Y = Spec (B) be affine schemes where A,B are domains. Let f : Spec (A) →
Spec (B) be a finite type, dominant, generically finite map so that A is a finite type B-algebra. Let
this be induced by a finite type ring homomotphism ϕ : B → A. Our first goal is to show that the
generic point of X is mapped to generic point of Y and that the induced map of function fields
K(Y ) ↪→ K(X) is a finite extension.

Indeed, let ξ ∈ X and η ∈ Y be the generic point of X and Y respectively. By continuity of
f , we have f(ξ̄) ⊆ f(ξ). As ξ̄ = X , we have f(X) ⊆ f(ξ). As f(X) is dense in Y by dominance
of f , we deduce that Y ⊆ f(ξ), that is, f(ξ) is a generic point of Y . As schemes are sober and
in our case Y is irreducible, therefore Y has a unique generic point which is η. It follows that
f(ξ) = η. Dominance of f further shows that ϕ is injective since ξ = 0 ∈ f−1(η) = f−1(0). As
f−1(0) = {p ∈ Spec (A) | ϕ−1(p) = 0} therefore if 0 ∈ f−1(0), then it follows that Ker (ϕ) = 0, that
is, ϕ is injective.

Thus, by considering the comorphism at stalks, we get a map

ϕ0 = f ♯ξ : OY,f(ξ) = K(Y ) = Q(B) −→ OX,η = K(X) = Q(A).

Note that this map is the field homomorphism induced by ϕ : B ↪→ A on the fraction fields. As
this is a map of fields, therefore ϕ : K(Y )→ K(X) is injective. By replacing K(Y ) by the image of
ϕ, we may assume ϕ is an inclusion. We wish to show that K(X)/K(Y ) is a finite extension.

48Exercise II.3.7 of Hartshorne.
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To this end, we first observe the following by generic finiteness. Let A = B[α1, . . . , αn]. The
fiber at η is

f−1(η) = Spec (A⊗B κ(η))
= Spec (A⊗B Q(B))
= Spec (B[α1, . . . , αn]⊗B Q(B))
= Spec (Q(B)[α1, . . . , αn])

Thus by generic finiteness, Spec (Q(B)[α1, . . . , αn]) is a finite set. We wish to show that it is dis-
crete so that f−1(η) is a finite discrete affine scheme, that is, Q(B)[α1, . . . , αn] is an artinian ring.
It would thus follow that Q(B)[α1, . . . , αn] is an artinian finite type Q(B)-algebra and is thus a
finite Q(B)-algebra. Now, finiteness is preserved under going to fraction fields (Lemma 16.6.1.4)
thus Q(Q(B)[α1, . . . , αn]) is a finite extension of Q(B). But Q(Q(B)[α1, . . . , αn]) = Q(A). Hence,
Q(A) is a finite extension of Q(B), as required. We thus reduce to proving that the finite spectrum
Spec (Q(B)[α1, . . . , αn]) is discrete. We wish to show that all finitely many points of it are open.
To this end it suffices to show that all finitely many primes of Q(B)[α1, . . . , αn] are incomparable.
TODO.

Thus we have shown that K(X)/K(Y ) is a finite extension. Using this, we now find the re-
quired open subset V ⊆ Y . Indeed, we find a basic open V = D(b) ⊆ Y where b ∈ B ⊆ A and
f−1(D(b)) = D(b) ⊆ X is such that f : f−1(D(b))→ D(b) is a finite map. That is, we wish to show
that there exists b ∈ B such that ϕb : Bb ↪→ Ab is a finite map, using the fact that Q(B) ↪→ Q(A) is
a finite extension. Indeed, let a1

a′1
, . . . , an

a′n
be a Q(B)-basis of Q(A). Observe that we have

Q(A) = Q(B)a1
a′1

+ · · ·+Q(B)an
a′n
.

Thus, multiplying both sides by a′i, we get that there exists a1, . . . , aN ∈ A such that Q(A) is
a Q(B)-span of a1, . . . , aN . Denote A = B[α1, . . . , αn]. Observe that for any αi ∈ A, the set
{1, αi, . . . , αN−1i , αNi } is linearly dependent as its size is greater than the degreeN = [Q(A) : Q(B)].
Consequently, we see that every αki for k ≥ N is a linear combination of {1, αi, . . . , αN−1i }. Now
consider any 0 ≤ i1, . . . , in and the term αi11 . . . α

in
n . Then this can be written as linear combination

of various αj11 . . . αjnn where 0 ≤ j1, . . . , jn ≤ N .
Thus we have a finite collection of terms {αi11 . . . αinn }0≤i1,...,in≤N−1 in A. In Q(A), we thus get

the following expression for each of them:

αi11 . . . α
in
n =

N∑
k=1

bi1...iN ,k
b′i1...iN ,k

ak

where bi1...iN ,k, b
′
i1...iN ,k

∈ B. Collect all the finitely many denominators {b′i1...iN ,k}i1,...,iN ,k and
consider their product b ∈ B. We claim that the induced map ϕb : Bb ↪→ Ab is a finite map.
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Indeed, pick any a
bp ∈ Ab. Then, a =

∑
ci1...inα

i1
1 . . . α

in
n for ci1...in ∈ B. Consequently, we have

a =
∑

i1,...,in

ci1...inα
i1
1 . . . α

in
n

=
∑

i1,...,in

ci1...in

(
N∑
k=1

bi1...iN ,k
b′i1...iN ,k

ak

)

=
N∑
k=1

( ∑
i1,...,in

ci1...in
bi1...iN ,k
b′i1...iN ,k

)
︸ ︷︷ ︸

dk

ak

=
N∑
k=1

dkak

where dk ∈ Q(B). Observe that denominator of dk is some product of elements of {b′i1...iN ,k}i1,...,iN ,k.
Consequently, we get that in Ab, we will have

a

bp
=

N∑
k=1

dk
bp
ak

where dk/bp is an element of Bb since dk ∈ Bb. Hence, we have shown that there exists elements
a1, . . . , aN ∈ A such that Ab is finite over Bb. This completes the proof for affine case.

TODO : General case.
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1.12.4 Separated

This notion corresponds to the Hausdorff property for topological spaces. Recall that a space X is
Hausdorff if and only if the diagonal ∆ : X → X×X is closed. We shall mimic this in the category
of schemes.

Definition 1.12.4.1. (Separated) A map f : X → Y of schemes is said to be separated if the
diagonal ∆ : X → X ×Y X is a closed immersion. A scheme X is said to be separated if X →
Spec (Z) is separated.

It follows that any map of affine schemes is separated.

Lemma 1.12.4.2. Let f : Spec (A)→ Spec (B) be a map of affine schemes. Then f is separated.

Proof. By Corollary 1.3.0.6, f corresponds to a map of rings ϕ : B → A. Similarly, the diagonal
map ∆ : Spec (A) → Spec (A) ×Spec(B) Spec (A) corresponds to the B-algebra structure map over
A, given by m : A ⊗B A → A, which is surjective. Consequently, by Corollary 1.4.4.14, ∆ is a
closed immersion.

Since any scheme locally is affine, we get a nice consequence of the above lemma.

Lemma 1.12.4.3. Let f : X → Y be a map of schemes. Then the following are equivalent.
1. f is separated.
2. The diagonal ∆ : X → X ×Y X has closed image.

Proof. (1. ⇒ 2.) Immediate.
(2. ⇒ 1.) By the definition of diagonal, it is immediate that ∆ : X → X×Y X is a homeomorphism
onto its image, which is further closed by the given hypothesis. Thus, we need only show that ∆♭ :
OX×YX → ∆∗OX is a surjective map. By Theorem 20.3.0.6, 3, this is a local property. Consequently,
we further reduce to showing that for any point x ∈ X there is an open set f(x) ∈ V ⊆ X ×Y X
such that ∆♭

|V : OV,f(x) → (∆∗O∆−1(V ))f(x) is surjective. Now we may choose by continuity of f
a small affine open x ∈ U such that f(U) is contained in an affine open V in Y . Consequently,
U ×V U is an affine open subset of X ×Y X containing f(x). We thus reduce to showing that
OU×V U,f(x) → (∆∗OU )x is surjective, which follows immediately from Lemma 1.12.4.2.

Next, we state an important characterization of separatedness which allows us to derive some
very important and convenient results about it.

Theorem 1.12.4.4. (Valuative criterion of separatedness) Let f : X → Y be a map of schemes where X is
noetherian. Then the following are equivalent,

1. f is separated.
2. Pick any field K and any valuation ring R with fraction field K (see Section 16.10). Let i :

Spec (K) → Spec (R) be the map corresponding to R ↪→ K. For all g : Spec (R) → Y and
h : Spec (K) → X such that the square commutes, there exists atmost one lift of g along f as to
make the following diagram commute:

Spec (K) X

Spec (R) Y

fi

g

h

.
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Proof. See Theorem 4.3, Chapter 2 of cite[Hartshorne].

The following important corollaries can now easily be derived from this characterization.

Corollary 1.12.4.5. Let us work in the category of noetherian schemes. Then,
1. separated maps are stable under base extension,
2. open and closed immersions are separated49,
3. composition of separated maps is separated,
4. for a base scheme S, product of any two separated maps is separated in Sch/S,
5. if the composite X → Y → Z is separated, then X → Y is separated,
6. a map f : X → Y is separated if and only if there is an open cover Vi of Y such that the restricted

maps f |f−1(Vi) : f
−1(Vi)→ Vi is separated50.

Proof. TODO: From notebook.

An important result about separate schemes is that the intersection of any two open affines is
again an open affine.

Lemma 1.12.4.6. 51 Let X be a separated scheme. If U, V ⊆ X are two open affines then U ∩ V is again
an open affine.

Proof. Let U = Spec (A) and V = Spec (B). We may replace X by U ∪ V and X would still be
separated by Corollary 1.12.4.5, 6. Now let W = U ∩ V . Then again by Corollary 1.12.4.5, 6, we
have that W is separated. Consequently, we get that ∆ :W →W ×ZW is a closed immersion. We
now claim that W ×ZW ∼= U ×Z V . Indeed, this follows immediately from the universal property
of fiber product. It follows that ∆ : W → Spec (A⊗Z B) is a closed immersion. By Corollary
1.4.4.14, W is spectrum of a quotient of A⊗Z B. Consequently, W is affine, as needed.

Separatedness of projective schemes

We next see that any projective scheme is separated.

Lemma 1.12.4.7. Let S be a graded ring. Then, Proj(S)→ Spec (Z) is separated.

Proof. We need only check that the diagonal ∆ : Proj(S)→ Proj(S)×Spec(Z) Proj(S) has closed im-
age (Lemma 1.12.4.3). Since one can check a closed set locally and sets of the form D+(f)×D+(g)
forms an open cover of Proj(S)×Spec(Z) Proj(S) for f, g ∈ S+ homogeneous, therefore we reduce to
checking that for C = ∆−1(D+(f)×D+(g)), the restriction ∆|C : C → D+(f)×D+(g) has closed
image.

Since C = D+(fg) ∼= Spec
(
S(fg)

)
and D+(f) × D+(g) ∼= Spec

(
S(f) ⊗Z S(g)

)
, therefore we

reduce to showing that the induced map S(f) ⊗Z S(g) → S(fg) is surjective. This is clear, as for
any u/fngn ∈ S(fg) where let us denote k = deg f, l = deg g, for any m large enough such that all
exponents in the below are positive, we obtain that

ugmk−n

fml+n
⊗ fml

gmk
7→ u

fngn
.

49in-fact, any topological immersion is separated, as is clear from the proof.
50This doesn’t require the noetherian hypothesis.
51Exercise II.4.3 of Hartshorne.
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Thus, the image of ∆ is closed52.

Uniqueness of centers of valuations for varieties

We show a curious property for abstract varieties that any valuation defined over its function field
has a unique center, if it exists53. See Definition 1.4.2.9 for definition of center points of a valuation
over function field of an integral scheme.

Lemma 1.12.4.8. 54 Let X be an integral scheme of finite type over k with function field K. If X is
separated, then any valuation over K has a unique center if it exists.

Proof. We will use the valuative criterion for this. Let v : K → G be a valuation over K with
valuation ring R ⊆ K. Let x, y ∈ X be two centers of v. As K ⊆ K, therefore by Lemma 1.6.1.1,
3, there exists a unique map Spec (K) → X mapping ⋆ 7→ η, where η is the generic point of X . It
follows that we have the following commutative square

Spec (K) X

Spec (R) Spec (Z)

. (*)

As R is a local ring, therefore by Lemma 01J6 of StacksProject, we have a bijection between
maps Spec (R) → X and tuples (z, ϕ) where z ∈ X and ϕ : OX,z → R is a local ring homomor-
phism. Consequently, as OX,x and OX,y are dominated by R, we obtain two tuples (x, ιx) and
(y, ιy) where ιx : OX,x ↪→ R and ιy : OX,y ↪→ R are the two domination maps. Note that by
the definition of domination, these two maps are local ring homomorphisms. Consequently, we
get two maps Spec (R) → X which makes the (*) commute. By the valuative crieterion of Theo-
rem 1.12.4.4, the two maps Spec (R) → X are same, and thus so are the tuples (x, ιx) and (y, ιy),
proving that x = y.

52in-fact we have also shown in the process that ∆ is a closed immersion, thus we may not use Lemma 1.12.4.3
53It will always exist (and thus be unique) if the variety is proper, as is shown in the next section.
54Exericse II.4.5 a) of Hartshorne.

https://stacks.math.columbia.edu/tag/01J6
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1.12.5 Affine morphisms and global Spec

In this section, we cover important global generalization of Spec (−). In particular, let X be a
scheme and F be a quasicoherent OX -algebra, that is, an OX -module which is a sheaf of rings as
well. Then we will construct a scheme Spec(F) over X which will behave as if it is constructed
out of open affine subschemes U of X and the corresponding algebras F(U).

This construction will be used to show how locally free sheaf of constant rank actually corre-
sponds to vector bundles. They are used elsewhere as well.

Definition 1.12.5.1 (Affine morphism). A map f : X → Y of schemes is called an affine morphism
if there is an affine open cover {Vα} of Y such that f−1(Vα) is an open affine scheme.

Remark 1.12.5.2. It follows from definition that any finite morphism is affine.

The first major property of affine maps is that they are local on target.

Proposition 1.12.5.3. Let f : X → Y be a map. Then the following are equivalent.
1. f is affine.
2. For any open affine V ⊆ Y , f−1(V ) is an open affine in X .

Proof. We need only do 1⇒ 2. This has been done in the proof of Proposition 1.12.3.2.

Lemma 1.12.5.4. Let f : X → Y be an affine morphism. Then f is quasicompact and separated.

Proof. The fact that f is quasicompact is immediate by definition. Separatedness follows from
Corollary 1.12.4.5, 6 and Lemma 1.12.4.2.

The main theorem for affine maps is that they all come from quasicoherent algebras over the
structure sheaf. Indeed, we have the following construction to obtain a scheme over Y by a quasi-
coherent OY -algebra.

Theorem 1.12.5.5. 55 Let Y be a scheme and A be a quasicoherent OY -algebra over Y . Then there exists a
scheme

f : Spec(A)→ Y

unique with respect to the property that for any open affine V ⊆ Y , we have f−1(V ) ∼= Spec (A(V )) and
for any inclusion U ↪→ V of open affines, the map f−1(U) → f−1(V ) is induced by the restriction map
ρ : A(V )→ A(U).

Proof. Let V = Spec (B) ⊆ Y be an open affine in Y . Then we have a ring homomorphism
B → A(V ) as A(V ) is a B-algebra. Consequently, we get the map πV : Spec (A(V ))→ Y factoring
through V . Observe that for any open affine U ↪→ V , we have the following commutative triangle

A(V )

B A(U)

ρ .

55Exercise II.5.17, c) of Harthsorne.
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We now wish to glue the affine schemes πi : Spec (A(Vi)) → Y where Vi varies over open affines
of Y . Indeed, let Xi = Spec (A(Vi)) and Uij = π−1i (Vi ∩ Vj) an open subscheme of Xi. We claim
that there is a natural isomorphism ϕij : Uij → Uji which satisfies the cocycle condition, so that
we can glue these schemes together by Proposition 1.6.2.2 to get the desired scheme unique with
the given properties. Indeed, to find ϕij , we first observe that for πV : Spec (A(V ))→ Y , we have
that πV ∗OSpec(A(V )) ∼= A|V . This is where quasicoherence is used and follows from checking on
basis and using globalized restriction of scalars (Lemma 1.2.3.4). Using this isomorphism, we see
that OXi(π−1i (Vi ∩ Vj)) ∼= A(Vi ∩ Vj) ∼= OXj (π−1j (Vj ∩ Vi)). Consequently, we have a commutative
triangle where Vi = Spec (Bi)

A(Vi)

Bi OXj (π−1j (Vi ∩ Vj))

ρ
.

By Theorem 1.3.0.5, we get the following commutative triangle

Xi

Vi π−1j (Vi ∩ Vj)

πi
ϕji

By commutativity of this triangle, it follows that the unique morphism ϕji factors through π−1i (Vi∩
Vj). Interchanging i and j we get that ϕji is an isomorphism. By uniqueness of ϕij , we further get
the cocycle condition, as required.

We see from the proof the following.

Corollary 1.12.5.6. Let Y be a scheme, A a quasicoherent OY -algebra and f : Spec(A) → Y the global
spec. Then, f∗OSpec(A) ∼= A.

Proof. In the proof, we showed that for any open affine V ⊆ Y , we have f∗OSpec(A)|f−1(V )
∼=

πV ∗OSpec(A(V )) ∼= A|V and this isomorphism is compatible with restrictions. Consequently, we
have an isomorphism between f∗OSpec(A) and A over a base, which gives the required isomor-
phism as sheaves over Y .

It is immediate to see by above theorem that global spec is always affine over the base.

Corollary 1.12.5.7. Let Y be a scheme and A a quasicoherent OY -algebra. Then the morphism

f : Spec(A)→ Y

is affine.

We now prove the converse of the above corollary.

Proposition 1.12.5.8. Let f : X → Y be an affine morphism. Then,
1. f∗OX is a quasicoherent OY -algebra,
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2. there is an isomorphism

X ∼= Spec(f∗OX).

Proof. 1. This is immediate from the fact that the morphism f is quasicompact and separated by
Lemma 1.12.5.4 (Lemma 1.9.1.17).

2. Let {Vα} be a basis consisting of open affines of Y . Then, {f−1(Vα)} is an open affine basis of X
by Proposition 1.12.5.3. Then, we have a canonical isomorphism f−1(Vα) ∼= Spec

(
OX(f−1(Vα))

)
.

Moreover, for Vα ↪→ Vβ , we have f−1(Vα) ↪→ f−1(Vβ) obtained by restriction ρ : OX(f−1(Vβ)) →
OX(f−1(Vα)). Hence by uniqueness of Theorem 1.12.5.5, we conclude the proof.

We may sum this up in the following bijection.

Corollary 1.12.5.9. 56 Let Y be a scheme. We have the following bijection¶
Affine morphisms X f→ Y

©
∼=
ß

Quasicoherent OY -
algebras A

™
established by f 7→ f∗OX and Spec(A)←[ A.

We see that any closed immersion is an affine map.

Proposition 1.12.5.10. Let i : Z → X be a closed immersion. Then i is an affine map.

Proof. By Proposition 1.4.4.11, there is an open affine cover {Vk} of X such that i : Z ∩ Vk ↪→ Vk
is a closed immersion. Denote Vk = Spec (Ak). Thus, Z ∩ Vk = Spec (Ak/Ik) and hence i−1(Vk) =
Spec (Ak/Ik), as required. Alternatively, it follows from the fact that any closed immersion is a
finite map (Proposition 1.12.3.9).

Example 1.12.5.11 (A non-affine map). Consider the map A2 \ {0} ↪→ A2. We claim that this
is not an affine map. Indeed, assuming to the contrary, there is a basic open affine U = D(f)
for f ∈ k[x, y] of A2 containing 0 such that U \ 0 is open affine. But as can be checked, the
coordinate rings of U and U \ 0 are isomorphic. It follows at once that U ∼= Spec (k[x, y]f ) ∼= U \ 0,
a contradiction to the fact that U ̸∼= U \ 0.

Remark 1.12.5.12. There is a canonical way of constructing quasi-coherent algebras out of quasi-
coherent modules, that is, by using symmetric algebra. Thus for any quasi-coherent OX -module
E, we get an algebra Sym(E). Denote V(E) := Spec(Sym(E)). Thus by Theorem 1.12.5.5, we have
an affine map

f : V(E)→ X

such that f∗OV(E) = Sym(E), a graded OX -algebra, where the first graded piece is E.

Here is the universal property of Spec.

Theorem 1.12.5.13. Let X be a scheme and A be a quasi-coherent OX -algebra. For any X-scheme f :
T → X , there is a natural isomorphism:

HomSch/X (T,Spec(A)) −→ HomQCohAlg(OX) (A, f∗OT ).
56Exercise II.5.17, d) of Hartshorne.
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1.12.6 Vector bundles

We study vector bundles over schemes.

Definition 1.12.6.1 (Geometric vector bundles). Let X be a scheme. A geometric vector bundle
of rank n over X is a map p : E → X such that there is a cover Ui of X and isomorphisms
ϕi : p−1(Ui)→ AnZ × Ui such that

p−1(Ui) Ui × AnZ

Ui

ϕi

p
π1

commutes and for any open affine V = Spec (A) ⊆ Ui ∩ Uj , the composite

AnA ∼= V × AnZ p−1(V ) V × AnZ ∼= AnA
ϕi ϕj

is a linear isomorphism of AnA, i.e. ϕj ◦ϕ−1i : AnA → AnA is given by θ : A[x1, . . . , xn]→ A[x1, . . . , xn]
which is A-linear and θ(xi) =

∑
j aijxj for some aij ∈ A.

If p : E → X and p′ : E′ → X are two vector bundles of rank n and m over X , then a
map of vector bundles is an X-morphism f : E → E′ such that if ϕ : p−1(U) → U × AnZ and
ψ : p′−1(U ′)→ U ′ × AmZ are local trivializations of E and E′, then the horizontal composite

(U ∩ U ′)× AnZ p−1(U ∩ U ′) p′−1(U ∩ U ′) (U ∩ U ′)× AmZ
ϕ

∼=
f ψ

∼=

is a linear map of affine spaces AnU∩U ′ → AmU∩U ′ . We denote the category of geometric vector
bundles on X by VB(X).

The following is the main theorem. Denote the category of locally free modules of finite rank
on a scheme X by LocFree(X).

Theorem 1.12.6.2. Let X be a scheme. There is an equivalence of categories

LocFree(X) ≡−→ VB(X).

We construct functors which are essential inverse of each other as follows.

Construction 1.12.6.3 (Vector bundle from a locally free module). Consider the assignment

V : LocFree(X) −→ VB(X)
E 7−→ Spec(Sym(E)).

If E is locally free of rank n, then we now show that V (E) is a indeed a geometric vector bundle
of rank n. Let U ⊆ X be an open such that E|U is a free OX|U -module of rank n. We wish to show
that V (E) on U is trivial. Indeed,

Construction 1.12.6.4 (Locally free module from a vector bundle).
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1.12.7 Proper

This and the next section brings us closer to detecting when a scheme is projective (i.e. is a sub-
scheme of projective scheme). Proper maps corresponds roughly to the intuition that the scheme
X → Y should not have any missing points.

Definition 1.12.7.1. (Universally closed and proper maps) A map f : X → Y is said to be uni-
versally closed if f is closed and for any base extension Y ′ → Y , the base extension of X , denoted
f ′ : X ′ → Y ′ is also closed as in the diagram below:

X ′ X

Y ′ Y

ff ′
⌟ .

Consequently, f is said to be proper if it is separated, finite type and is universally closed.

The main result here is again a valuative criterion which allows a lot of properties of such maps
to be derived quite easily.

Theorem 1.12.7.2. (Valuative criterion of properness) Let f : X → Y be a finite type map of schemes
where X is noetherian. Then the following are equivalent.

1. f is proper.
2. Pick any field K and any valuation ring R with fraction field K (see Section 16.10). Let i :

Spec (K) → Spec (R) be the map corresponding to R ↪→ K. For all g : Spec (R) → Y and
h : Spec (K) → X such that the square commutes, there exists a unique lift of g along f as to make
the following diagram commute:

Spec (K) X

Spec (R) Y

fi

g

h

! .

Note that whereas in Theorem 1.12.4.4 we had that there exists atmost one lift, here we have
that there exists unique lift (it exists and there is only one).

Corollary 1.12.7.3. Let us work in the category of noetherian schemes. Then,
1. if X → Y → Z is proper and Y → Z is separated, then X → Y is proper,
2. closed immersion are proper,
3. proper maps are stable under base extensions,
4. composite of proper maps is proper,
5. for two proper schemes X → S, Y → S in Sch/S, their product X ×S Y → S is proper,
6. a map f : X → Y is proper if and only if there exists an open cover Vi of Y such that the restriction

f |f−1(Vi) : f
−1(Vi)→ Vi is proper.

Proof. TODO : From notebook.

Remark 1.12.7.4 (Serre’s GAGA-1). Let f : X → Y be a map between C-varieties. Then Serre
proved the following equivalence:

1. f : X → Y is proper,
2. f : X(C)→ Y (C) is a proper map of topological spaces,

where recall that a map of spaces is proper if inverse image of any compact is compact.
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1.12.8 Projective

We now define maps of schemes which factors through a projective space over the target. This
will be fundamental, as the most natural type of schemes we find in nature are projective varieties
appearing as closed subschemes of the projective space over a field. Though we will work more
generally, but this will pay off in some of the later discussions. See Definition 1.8.2.14 for projective
spaces over a scheme.

Definition 1.12.8.1. (Projective and quasi-projective maps) Let f : X → Y be a map of schemes.
We say f is projective if there exists an n ∈ N such that f factors as a closed immersion X → PnY
followed by the struture map PnY → Y as in

X PnY

Y

f

cl. imm.

.

Further, a map f : X → Y is said to be quasi-projective if f factors first into an open immersion
X → X ′ and then a projective map X ′ → Y as in

X ′ PnY

X Y

op. imm.

cl. imm.

f

.

Thus quasi-projective maps corresponds to the usual notion of quasi-projective varieties (open
subsets of projective varieties in a projective n-space).

The important point to keep in mind about projective maps is that they are proper.

Theorem 1.12.8.2. Let X and Y be noetherian schemes.
1. If f : X → Y is projective, then f is proper.
2. If f : X → Y is quasi-projective, then f is finite type and separated.

Proof. 1. Since closed immersions are proper and proper maps are stable under base change
(Corollary 1.12.7.3), we may reduce to showing that for each n ∈ N, the scheme PnZ → Spec (Z)
is proper. It is clear that PnZ is finite type Z-scheme which is furthermore separated by Corollary
1.12.4.7.

In order to show that PnZ is proper, we will proceed by induction over n. For n = 0, we
have P0

Z
∼= Spec (Z), which is trivially proper over Spec (Z). Now suppose Pn−1Z is proper over

Spec (Z). We wish to show that PnZ is proper. We will use valuative criterion for this (Theorem
1.12.7.2). Consider a valuation ring R with fraction field K such that we have maps g, h making
the following commute:

Spec (K) PnZ

Spec (R) Spec (Z)g

h

.
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Consequently, we wish to define a unique map Spec (R)→ PnZ which makes everything commute.

Denote Spec (K) = {⋆} and ξ = h(⋆) ∈ PnZ. We now observe that if ξ ∈ V (xi0) for any
i0 = 0, . . . , n, then by the natural isomorphism V (xi0) ∼= Pn−1Z and obvious restrictions, we get the
following commutative diagram:

Spec (K) Pn−1Z

Spec (R) Spec (Z)g

h

.

Consequently, by inductive hypothesis, we have a unique lift Spec (R) → Pn−1Z and thus a map
Spec (R)→ PnZ making the diagram commutative. This is sufficient by the fact that PnZ is separated
(Lemma 1.12.4.7) and by valuative criterion (Theorem 1.12.4.4).

We next need to cover the case when ξ is not in any hyperplane V (xi), that is, when ξ ∈⋂n
i=0D+(xi). We will construct a map Spec (R) → PnZ which makes everything commute and

we will be done by separatedness of PnZ (Lemma 1.12.4.7). In this case, we obtain that OPnZ ,ξ
∼=

Z[x0/xi, . . . ,’xi/xi, . . . , xn/xi] for all i = 0, . . . , n as D+(xi) ∼= Spec
(
Z[x0, . . . , xn](xi)

)
, (Lemma

1.8.2.4). Consequently, xi/xj ∈ OPnZ ,ξ is invertible for all i, j = 0, . . . , n, hence xi/xj /∈ mPnZ ,ξ. De-
note further fij ∈ κ(ξ) to be the image of xi/xj under the map OPnZ ,ξ → OPnZ ,ξ/mPnZ ,ξ = κ(ξ).

The map h : Spec (K)→ PnZ is equivalent to the data of the point ξ ∈ PnZ and κ(ξ) ↪→ K (Lemma
1.6.1.1). Thus we have fij ∈ K for all i, j = 0, . . . , n. In order to define the map j : Spec (R)→ PnZ in

this case, it is sufficient to obtain a map Z[x0/xi, . . . ,’xi/xi, . . . , xn/xi]→ R such that the following
commutes:

K Z[x0/xi, . . . ,’xi/xi, . . . , xn/xi]
R Z

.

We will now construct such a map. Let v : K → G be the valuation corresponding to the valuation
ring R (so that R is the value ring of v), where G is a totally ordered abelian group. Consider the
collection of elements f10, . . . , fn0 ∈ K and denote gi = v(fi0) ∈ G. Let gm = mini gi. Conse-
quently, for each i = 0, . . . , n we obtain 0 ≤ gi − gm = v(fi0)− v(fm0) = v(fi0f0m) = v(fim). Thus,
fim ∈ R. Hence, we can construct the following map:

Z[x0/xi, . . . ,’xi/xi, . . . , xn/xi] −→ R
xi
xm
7−→ fim.

It is immediate that the above map makes the above diagram commute.
2. Since open immersions are separated (Corollary 1.12.4.5) and an open immersion X → X ′

where X is noetherian is immediately quasicompact, so by Proposition 1.12.2.5, 2, the result fol-
lows.
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1.12.9 Flat

Look at the following MO post for more clarifications. Flat maps of schemes capture the notion of
a "continuous family of schemes parameterized by points of a base scheme". However, the notion
of flatness is very algebraic, as we shall soon see. We collect the properties of flat modules in the
Special Topics, Chapter 16.

https://mathoverflow.net/questions/6789/why-are-flat-morphisms-flat
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1.12.10 Rational

We discuss rationality questions for varieties. We fix an algebraically closed field k for this section
and all schemes are over k.

Definition 1.12.10.1 (Rational & birational maps). Let X , Y be varieties and U, V ⊆ X be open
subsets. Note they are dense and so is U ∩V . Two maps fU : U → Y and fV : V → Y are equivalent
if fU |W = fV |W for some open W ⊆ U ∩ V . A rational map f : X 99K Y is an equivalence class
of maps fU : U → Y , denoted ⟨fU , U⟩, as defined above. Composition of two rational maps
f : X 99K Y and g : Y 99K Z is given as follows: one has fU : U → Y and gV : V → Z where
U ⊆ X and V ⊆ Y are open subsets, then gV ◦ fU : U → Z is the required map which gives the
rational composite g ◦ f : X 99K Z. One easily checks that this is well-defined. A rational map
f : X 99K Y is birational if there is an inverse rational map g : Y 99K X , that is, f ◦ g = idY and
g ◦f = idX as rational maps. We get the category of varieties with rational maps, denoted VarR

k . A
rational map f : X 99K Y is dominant if some representative fU : U → Y is dominant, that is, has
dense image. It follows that every representative is dominant and composite of dominant rational
maps is again rational. We denote the category of varieties and dominant rational maps as VarDR

k .
Clearly, there is an inclusion VarDR

k ↪→ VarR
k .

Remark 1.12.10.2 (Faithful embedding of varieties). For any map f : X → Y of varieties, we get
a rational map f : X 99K Y , which is given by the class ⟨f,X⟩. One immediately checks that this
gives a functor

⟨−,−⟩ : Vark −→ VarR
k .

We claim that the above functor is faithful. Indeed, if ⟨f,X⟩ = ⟨g,X⟩ for two map of varieties
f, g : X → Y , then f |U = g|U for some open dense U ⊆ X . We wish to show that f = g.
This follows from the following result (Lemma 1.12.10.3). Hence, varieties embed faithfully into
varieties with rational maps.

Lemma 1.12.10.3. Let f, g : X → Y be two map of schemes such that there exists a dense open U ⊆ X on
which f |U = g|U . If X is reduced and Y is separated, then f = g.

Proof. Denote C = {x ∈ X | f(x) = g(x)}. Observe that C = h−1(∆(Y )) where h = (f, g) : X →
Y × Y mapping x 7→ (f(x), g(x)) and ∆ : Y → Y × Y is the diagonal map. As Y is separated,
thus ∆(Y ) is closed and hence C ⊆ X is closed and contains U . As Ū = X , therefore C = X
as sets. We wish to show that this equality is of schemes. To this end, we need only show that
the only closed subscheme of a reduced scheme containing a dense open is X itself. Indeed, let
Spec (A) ⊆ X be any affine open. We wish to show that the closed subscheme of Spec (A) given
by C ∩ Spec (A) is Spec (A) itself. Let C ∩ Spec (A) = Spec (A/I). Suffices to show that I = 0. As
Spec (A/I) = Spec (A) since C = X as sets, therefore I ⊆ n, the nilradical of A. As A is reduced,
therefore n = 0 and hene I = 0, as required.

Remark 1.12.10.4. We really do require reduced domain in the above lemma, as the following
example shows. For the two maps ϕ,ψ : k → k[ϵ] mapping ϕ : cc and ψ : c 7→ cϵ, we get two maps
f, g : Spec (k[ϵ])→ Spec (k). Both maps are equal on the whole space (both sets are singleton). Yet
the maps are not the same, as they are induced by different functions. The conclusion is, maps on
an unreduced scheme are not determined by their mapping on points.
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To state the main theorem of this section, we have to promote the construction of function
fields to a functor.

Construction 1.12.10.5. Let f : X 99K Y be a dominant rational map of varieties. Take any element
(V, ϕ) ∈ K(Y ). We define an element of K(X) as follows. By shrinking U = f−1(V ) which is
possible as f is dominant, we may assume that fU : U → Y is a representative of the rational
map f . Then we define the class (U, f ♭V (ϕ)) in K(X). One checks easily that this is a well-defined
homomorphism of fields, denoted

K(f) : K(Y ) −→ K(X).

Hence, K is a contravariant functor from category of varieties and dominant rational maps to
category of fields over k.

The main theorem here is the following.

Theorem 1.12.10.6. The function field functor is an equivalence between category of varieties over k with
dominant rational map and category of finitely generated field extensions of k:

K : VarDR
k −→ Fldfg

k .

One reason to discuss rational maps is that they give a geometric meaning to function fields of
varieties.

Proposition 1.12.10.7. Let X be a variety. Then there is a natural isomorphism

K(X) ∼= HomVarDR
k

(
X,P1).

Proof. By Theorem 1.12.10.6, we have a natural isomorphism

HomVarDR
k

(
X,P1) ∼= Hom

Fldfg
k

(
K(P1),K(X)

)
.

As K(P1) = k(T ) where T is the coordinate of an open affine patch Spec (k[T ]) and since any
k-linear field homomorphism α : k(T ) → K(X) equivalently is determined by any non-constant
function in K(X), hence we have the natural isomorphism

Hom
Fldfg

k

(k(T ),K(X)) ∼= K(X).

This completes the proof.
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1.12.11 Smooth

1.12.12 Unramified

1.12.13 Étale

Étale maps is the place from where one enters the land of algebraic topology via algebraic geom-
etry. Indeed, the fundamental goal here is to capture the notion of local isomorphism but in an
algebraic context. The simplest place where one can understand them is a restricted version of
this called finite étale maps. This is where we begin from as we shall need this in our discussion
of Galois theory of schemes.

Finite étale

We refer to Algebra, Chapter 16 for background on separable algebras, in particular, to Definition
16.22.2.2 for free separable algebras.

We now define finite étale maps.

Definition 1.12.13.1. (Finite étale scheme) Let X be a base scheme. An X-scheme p : Y → X
is said to be finite étale if there is an open affine covering of X given by {Spec (Ai)}i∈I such that
p−1(Spec (Ai)) is an open affine subscheme of Y given by Spec (Bi) such that the induced map
Ai → Bi makes Bi a free separable Ai-algebra, for all i ∈ I . In such a situation, one calls Y a finite
étale covering of X . Denote the category Etfin(X) to be the full subcategory of Sch/X consisting
of finite étale coverings of X .

Let us now give an example of finite étale scheme.

Example 1.12.13.2.
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1.13 Coherent and quasicoherent sheaf cohomology

All schemes in this section are Noetherian. Cohomology will serve as an important tool to derive
invariants on a given scheme. We would need the cohomology of abelian sheaves over a space
(Chapter 20) and the notion of Noetherian schemes (Section 1.4) in this section. Apart from Mum-
ford, you may like to give Hida a visit.

We refer to Topics in Sheaf Theory, Chapter 20 for classical Čech cohomology, derived functor
cohomology and relations between them on topological spaces.

Since we are only dealing with noetherian schemes and the most important such schemes
would be those which are closed subvarieties of projective space, so finite dimensional, therefore
the following theorem of Grothendieck is of particular importance.

Theorem 1.13.0.1 (Grothendieck). Let X be a noetherian topological space of dimension n and F be an
abelian sheaf over X . Then

H i(X;F) = 0

for all i > n.

We now show some basic theorems in cohomology of sheaves over schemes which allows us
to use Čech-cohomology for calculations instead of derived functor cohomology, because both
becomes isomorphic.

1.13.1 Quasicoherent sheaf cohomology

Do from Hartshorne and Bruzzo.

As a corollary of Theorem 1.13.0.1, we have the following.

Corollary 1.13.1.1. LetX be a noetherian scheme of dimension n. Then for anyOX -moduleM,H i(X;M) =
0 for i > n.

Theorem 1.13.1.2 (Serre). Let X be a projective scheme over a noetherian ring A. Then for any coherent
OX -module M, the H i(X;M) is a finitely generated A-module.

Remark 1.13.1.3 (Euler characteristic). If X is a projective variety over a noetherian ring A and M

is any coherent OX -module M, we have that H i(X;M) are finitely generated A-modules concen-
trated in 0 ≤ i ≤ n. We may thus define the Euler-characteristic of M if A = k as

χ(M) =
∑
i≥0

(−1)i dimkH
i(X;M).

Theorem 1.13.1.4 (Serre). If X is a noetherian scheme then the following are equivalent:
1. X is affine.
2. H i(X;F) = 0 for all i ≥ 1 and all quasicoherent OX -modules F.
3. H i(X;F) = 0 for all i ≥ 1 and all coherent OX -modules F.

Proposition 1.13.1.5 (Künneth). LetX be a noetherian separated scheme over k and L/k be an extension.
Then for any coherent sheaf F over X

H i(X ×k L;FL) ∼= H i(X;F)⊗k L.
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Corollary 1.13.1.6. The arithmetic genus of a curve is invariant under change of base field.

Remark 1.13.1.7. To see the importance of arithmetic genus, one may look at Falting’s theorem;
any curve of arithmetic genus ga ≥ 2 has finitely many rational points.

GAGA

Serre proved the following famous equivalence in the mid 1950s.

Theorem 1.13.1.8 (Serre’s GAGA). Let X be a projective scheme over C. Then there is an equivalence of
categories

Coh(X) ≡ Coh(X(C)).

1.13.2 Application : Serre-Grothendieck duality

Do from Hida and Hartshorne.

1.13.3 Application : Riemann-Roch theorem for curves

Do from Hida and Hartshorne.

We denote by ℓ(D) := dimkH
0(X;L(D)) for a Cartier divisor D on X .

Theorem 1.13.3.1. Let X be a regular, projective, geometrically integral variety of pure dimension 1. If D
be a Cartier divisor on X , then

ℓ(D) + ℓ(K \D) = deg(D) + 1− ga

where K is the canonical divisor and ga = dimkH
1(X;OX) is the arithmetic genus of X .
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In this foundational chapter, we will discuss some topics in classical number theory.

2.1 Fundamental properties of Z

We wish to see the following list of properties of integers, all of which are immediate, but good to
keep in mind.

Theorem 2.1.0.1. Consider the ring of integers Z. Then, Z is
1. an Euclidean domain,
2. a gcd domain,
3. a principal ideal domain,
4. a unique factorization domain,
5. a noetherian ring,
6. a normal domain,
7. a dimension 1 ring.

2.2 Algebraic number fields

The main objects of study in number theory are number fields. We will define them and will
discuss some of their basic properties, before doing a more involved study of real and imaginary
quadratic number fields.

Definition 2.2.0.1 (Algebraic number fields and ring of integers). A field K is an algebraic num-
ber field if it is a finite extension of Q. The ring of integers or the integral ring of an algebraic
number field K is the integral closure of the inclusion Z ↪→ K, and is denoted by OK .

149
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Remark 2.2.0.2. The Proposition 16.7.1.10 guarantees thatOK is indeed a ring. Observe thatOQ =
Z as Z is a normal domain. Indeed, this can be generalized.

It is clear that every algebraic number field is of characteristic 0, as it contains Q. Some of the
first (but important) properties of OK are as follows.

Proposition 2.2.0.3. Let K be an algebraic number field.
1. The integral ring OK is a domain.
2. Let R be a normal domain and K be its fraction field. Then OK is a subring of R.
3. The fraction field of OK is K.
4. We have K = Q · OK .
5. The integral ring OK is a normal domain.
6. The integral ring OK is of dimension 1.
7. The integral ring OK is noetherian.

Proof. 1. As OK ⊆ K, therefore it has no zero-divisors.
2. As R is a normal domain, therefore its integral closure in K is R itself. Thus, OK ⊆ R.
3. Pick any s ∈ K. As K is algebraic over Q, therefore there exists p(x) ∈ Q[x] such that p(s) = 0
in K. Multiplying by common denominators of coefficients of p, it follows that

dns
n + dn−1s

n−1 + · · ·+ d1s+ d0 = 0

in K where di ∈ Z. Multiplying this by dn−1n and writing t = sdn, we get

tn + cn−1t
n−1 + · · ·+ c1t+ c0 = 0

where ci ∈ Z. It follows that t ∈ OK and thus s = a/m where a ∈ OK and m ∈ Z. Thus, s ∈ L
where L is the fraction field of OK .
4. Follows from the proof of item 3.
5. Let C ⊆ K be normalization of OK in K. Thus we have Z ↪→ OK ↪→ C where both are integral
maps. It follows from Lemma 16.7.1.12 that the composite Z ↪→ C is integral. Consequently,
C ⊆ OK , yielding that OK is a normal domain.
6. This follows from the corollary of Cohen-Seidenberg theorems (Corollary ??) and that OK is
integral over Z.
7. TODO.

A direct corollary of this is that OK is a very special type of ring.

Corollary 2.2.0.4. LetK be an algebraic number field andOK be its integral ring. ThenOK is a Dedekind
domain (see Definition 16.11.0.1).

Proof. From Proposition 2.2.0.3, 5,6,7, the result follows.

The following is an important example of ring of integers.

Theorem 2.2.0.5. Let L = Q(
√
d) where d ∈ Z is a square-free integer (i.e. product of distinct primes).

Then, OL is given as follows:

OL =
{
Z[
√
d] if d = 2, 3 mod 4

Z
î
1+
√
d

2

ó
if d = 1 mod 4.
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Proof.

We now wish to study units and irreducibles in OL. To this end we require norm and trace of
a finite extension as discussed in §??.

2.2.1 Quadratic number fields

We study imaginary quadratic number fields obtained by taking square root of some integer. A
key tool for studying the relation between arithmetic and algebra of the situation is that of the
norm and trace. We will also state for which quadratic number fields is the ring of integers a UFD,
thus solving the fundamental problem of algebraic number theory in this restricted case; when is
a ring of integers of a number field a UFD?
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Complete this chapter from Wedhorn’s manifolds, sheaves and cohomology, and by Bredon’s topology
and geometry.
We will define the notion of a real and complex manifold. Some foundational constructions are
made on them. We will take a rather modern viewpoint on the matter. We will further discuss ....

3.1 Locally ringed spaces and manifolds

We will make very fluid use of sheaves (see Chapter 20). Let us begin by the foundational structure
in all of geometry, a (locally)ringed space.

Definition 3.1.0.1. (Ringed and locally ringed spaces) A ringed space is a pair (X,OX) where X
is a topological space and OX is a sheaf of commutative R-algebras. The space (X,OX) is locally
ringed if the stalk OX,x at each point x ∈ X is a local ring. The sheaf OX is called the structure
sheaf of X .
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In order to understand the relation between two such spaces, we next have to understand the
morphism of (locally)ringed spaces. For a motivation, see Example 1.2.2.1.

Definition 3.1.0.2. (Morphism of ringed and locally ringed spaces) Let (X,OX) and (Y,OY ) be
two ringed spaces. A morphism (f, f ♯) : (X,OX) → (Y,OY ) is given by a continuous map f :
X → Y and a map of sheaves over X denoted f ♯ : f−1OY → OX . If (X,OX) and (Y,OY ) are
locally ringed, then for (f, f ♯) to be morphism of locally ringed spaces has to satisfy an additional
condition that the induced map on stalks is a map of local rings. That is, for each x ∈ X , the
induced map on stalks

f ♯x : OY,f(x) −→ OX,x

is such that (f ♯x)−1(mX,x) = mY,f(x) (see Special Topics, Remark 20.5.0.6). We call this map the
comorphism at x ∈ X . In particular, this map is given by the unique map obtained by universality
of direct limits under question: consider any open V ∋ f(x) in Y , we then obtain the following
diagram:

OX,x OY,f(x)

OX(f−1(V )) OY (V )

ιf−1(V )

f♭
V

ιVιf−1(V )◦f
♭
V

=:f♯x

.

In most of our purposes, the map f ♭ will be given on sections by composing with f . In such sit-
uations, the map on stalks being local corresponds to the geometric intuition that all non-invertible
functions around some open subset of f(x) comes from non-invertible maps around x. This in
some sense makes sure that the local data around f(x) is completely available via f .

Definition 3.1.0.3. (Composition) Composition of two maps of locally ringed spaces is defined in

the obvious manner. For X g→ Y
f→ Z, we get maps g♭ : OY → g∗OX and f ♯ : f−1OZ → OY . Then,

the map f ◦ g : X → Z is defined on space level by just the composite f ◦ g of the continuous maps
and on the sheaf level as the corresponding flat and sharp maps of f ◦ g : X → Z:

h♭ : OZ −→ (f ◦ g)∗OX
h♯ : (f ◦ g)−1OZ −→ OX .

In particular, for an open set U ⊆ Z, the corresponding map on local sections h♭U is given by the
following composite:

OZ(U) (f∗g∗OX)(U) OX(g−1f−1(U))

(f∗OY )(U) OY (f−1(U))

f♭
U

g♭
f−1(U)

h♭
U

.

Similarly, the corresponding morphism of stalks given by h♯x is given by the usual

h♯x : (g−1f−1OZ)x ∼= OZ,f(g(x)) −→ OX,x
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which is the composite
OZ,h(x) OZ(W )

OY,g(x) OY (f−1(W ))

OX,x OX(g−1(f−1(W )))

f♭
W

g♭
f−1(W )

f♯
g(x)

g♯x

.

Lemma 3.1.0.4. Let h : X g→ Y
f→ Z be a morphism of ringed spaces. Consider the base change functors

corresponding to maps g and f :

g−1 : Sh(Y ) −→ Sh(X)
f∗ : Sh(Y ) −→ Sh(Z).

and consider the following composite in Sh(Y )

f−1OZ OY g∗OX
f♯ g♭

.

Then,
1. g−1(g♭ ◦ f ♯) ∼= h♯,
2. f∗(g♭ ◦ f ♯) ∼= h♭.

Proof. These are cumbersome but straightforward identities. For example, one has to observe that
f∗(f ♯) ∼= f ♭ and that for an open set U ⊆ Z, we have (f∗(g♭))U = g♭

f−1(U).

We have a simple lemma for isomorphism of ringed spaces.

Lemma 3.1.0.5. Let f : X → Y be a morphism of ringed spaces. Then, f is an isomorphism if and only if
f : X → Y is a homeomorphism and f ♭ : OY → f∗OX is an isomorphism.

Proof. (L⇒ R) Use Theorem 20.3.0.6, 3 and 4.
(R⇒ L) One can explicitly construct a map of sheaves in the other direction in a straightforward
manner.

An open subspace of a ringed space also inherits the structure of a ringed space.

Definition 3.1.0.6. (Open subspace and embedding) Let (X,OX) be a (locally) ringed space. An
open subspace of (X,OX) is an open subset i : U ↪→ X together with the inverse image sheaf
i−1OX = OX|U

1. The pair (U,OX|U ) is called an open subspace, (U,OX|U ) ↪→ (X,OX). A map
(j, j♯) : (Z,OZ)→ (X,OX) is an open embedding if U := j(Z) ↪→ X is open and (j, j♯) : (Z,OZ)→
(U,OX|U ) is an isomorphism of ringed spaces.

An important concept is of local isomorphism of ringed spaces, which will prove it’s worth
while defining manifolds.

Definition 3.1.0.7. (Local isomorphism) Let f : X → Y be a morphism of ringed spaces. One
calls f to be a local isomorphism if there exists an open cover {Ui}i∈I of X such that f |Ui : Ui → Y
is an open embedding for all i ∈ I .

1It’s a trivial matter to observe that inverse image of a sheaf to an open inclusion will be the restriction sheaf (see
Lemma 20.5.0.3).
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3.1.1 Local models and manifolds

Before we proceed further, we have to clearly state some of our local model spaces that we are
going to use while defining the manifolds. Therefore the following example of ringed spaces are
foundational.

Example 3.1.1.1. (Sheaf of Cα-maps) Let X ⊆ Rn be an open set and α ∈ N∞. One defines the
following presheaf

CαX;Rm := {f : X → Rm | f is Cα}

where the restriction maps are usual functional restrictions. Then, CαX;Rm forms a sheaf, called the
sheaf of Cα maps on X . This sheaf has stalks as local rings which can be seen quite easily (set
of all functions defined in some neighborhood of x ∈ X has a ring structure with maximal ideal
being all those functions taking value 0 at x). Hence, (X,CαRm) is a locally ringed space, where we
dropped the subscript X for notational convenience.

Example 3.1.1.2. (Sheaf of holomorphic maps) Let X ⊆ Cn be an open set. One defines the following
presheaf

Chol
X;Cm := {f : X → Cm | f is holomorphic}

where the restriction maps are the usual functional restriction. This is easily seen to be a sheaf,
called the sheaf of holomorphic functions over X . This endows (X,Chol

Cm) with the structure of a
locally ringed space.

With these two examples, we can come to the notion of real and complex manifolds as follows.

Definition 3.1.1.3. (Real and complex manifolds) Let X be a Hausdorff and second-countable
topological space. Then,

1. A locally R-ringed space (X,OX) is a real Cα-manifold if there exists an open covering
{Ui}i∈I of X and for each i ∈ I , there exists a positive integer ni ∈ N and an isomorphism
of locally R-ringed spaces ϕi : (Ui,OX|Ui)

∼=−→ (Yi,CαR) for some open Yi ⊆ Rni . Hence a real
Cα-manifold structure on X is the following tuple of data:(

X,OX , {Ui}i∈I , {Yi ⊆ Rni}i∈I , {ϕi : (Ui,OX|Ui)
∼=→ (Yi,CαR)}i∈I

)
2. A locally C-ringed space (X,OX) is a complex manifold if there exists an open covering
{Ui}i∈I of X and for each i ∈ I there exists ni ∈ N and an isomorphism of locally C-ringed
spaces ϕi : (Ui,OX|Ui)

∼=−→ (Yi,Chol
C ) for some open Yi ⊆ Cni . Hence a complex manifold

structure on X is the following tuple of data:(
X,OX , {Ui}i∈I , {Yi ⊆ Cni}i∈I , {ϕi : (Ui,OX|Ui)

∼=→ (Yi,Chol
C )}i∈I

)
In both of these, the isomorphisms {ϕi} are called charts of the manifold and the sheaf OX the
structure sheaf of the manifold. Also, we can rather consider {ϕi}i∈I to be open embeddings.
A map of manifolds is just defined to be a map of locally ringed spaces. Let MfdR

α and MfdC

denote the category of real Cα and complex manifolds respectively. A map of manifolds are just
locally ringed maps between them. Isomorphisms in them are called Cα-diffeomorphism and
biholomorphic maps respectively.
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Let us now dwell into some of the immediate observations and remarks coming out of this
definition. Let us first ease some notations. Let (X,OX) be a real or complex manifold. The local
chart (Ui, ϕi) is usually denoted by (Ui, x) where x : Ui → Rn is a local embedding of locally
(R or C)-ringed spaces, where n depends on Ui. We usually suppress all the sheaves and their
morphisms unless necessary (we will soon see why that’s the case). For a local chart (Ui, x), the n
component maps πj ◦ x : Ui → R are denoted by xj . Moreover, since x : U → x(U) is an isomor-
phism, therefore we denote x−1 : x(U) → U to be its inverse. All this will come in handy when
we will start doing geometry over (X,OX).

Let (X,OX) be a real or complex manifold. We call an open subspace (U,OX|U ) ↪→ (X,OX) an
open submanifold.

One now sees that any morphism of manifolds as locally ringed spaces is completely deter-
mined by what happens at the level of points. In-fact, the sheaf allowed on X is also restricted if
its a manifold. This is why we usually completely suppress the map of sheaves from our notation
as that will be vacuous as long as we are working with map of manifolds. Let (M,OM ), (N,ON )
be two manifolds (R or C, but both of same type). We can define a sheaf OM ;N on M given by
following sections: for some open U ⊆M , we have a sheaf

OM ;N (U) := {f : (U,OX|U )→ (N,ON ) | f is a map of manifolds}.

Now we show a foundational result which says that the notion of morphism of locally ringed
spaces are nothing new in the classical world of Rn or Cn. We place high importance on the
following result as it becomes our point of departure (and thus a point of motivation) as to why
the notion of a morphism of locally ringed spaces is defined as what it is; because it is the right
notion of a "geometric map" in more abstract situations.

Theorem 3.1.1.4. Let K be either R or C, X ⊆ Kn and Y ⊆ Km be two open subsets of the standard
spaces. If f : (X,CαX)→ (Y,CαY ) is a map of locally ringed spaces, then

1. f ♭ : CαY → f∗C
α
X is given on an open set V ⊆ Y by the standard composition map

f ♭V : CαY (V ) −→ CαX(f−1(V ))

V
t→ K 7−→ f−1(V ) f→ V

t→ K,

2. f is a Cα-map.

Remark 3.1.1.5. As a slogan, we may remember the above theorem as the following principle:

In Rn or Cn, locally ringed maps are exactly real Cα or holomorphic maps.

As a consequence of this, whenever we would like to consider Cα maps from, say Rn to Rm, we
might as well ask to produce a map of locally ringed spaces (Rn,CαRn) to (Rm,CαRm), which again
shows how much geometric information is hidden in the notion of sheaves.

Proof of Theorem 3.1.1.4. 2 Pick any open V ⊆ Y and any t ∈ CαY (V ). We wish to show that f ♭V (t) =
t ◦ f as a map f−1(V ) → K. Consequently, pick any point p ∈ f−1(V ). We wish to show that

2First proof in my new creator of meaning!
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f ♭V (t)(p) = t(f(p)). To this end, we consider the evaluation homomorphism which are available at
stalks. Observe that we have the following commutative square of K-algebras:

CαY (V ) CαX(f−1(V ))

CαY,f(p) CαX,p
f♯p

f♭
V

.

In order to show f ♭V (t)(p) = t(f(p)), it is sufficient to show that the following triangle commutes:

CαY,f(p) CαX,p

K

evf(p) evp

f♯p

.

But this is immediate from the fact that the K-algebra homomorphism f ♯p is a local ring homo-
morphism and the kernels of the evaluation maps are exactly the corresponding unique maximal
ideals, so by quotienting by the maximal ideals, we obtain a K-algebra homomorphism K → K
which necessarily is identity as it is a K-algebra homomorphism. Hence the triangle indeed com-
mutes.

In order to show that the map f is a Cα-map, we need only show that the m projection maps
πi : Km → K when composed with f yields Cα maps given by X → K, but that is immediate
from 1.

Using the above result, one can show that any manifold essentially has a unique structure
sheaf of the form OX;R or OX;C.

Proposition 3.1.1.6. Let (X,OX) be a locally ringed space. If (X,OX) is a real or complex manifold, then
OX ∼= OX;R or OX ∼= OX;C.

Proof. We wish to show that there is an isomorphism of sheaves ϕ : OX;R → OX . For an open set
U ⊆ X , we define ϕU as follows:

ϕU : OX;R(U) −→ OX(U)
t : (U,OX|U )→ (R,CαR) 7−→ t♭R(idR).

We claim that this map of sheaves is an isomorphism. We need only show that the map on stalks
ϕx : OX;R,x → OX,x is an isomorphism. So we may assume that X has a global chart η : (X,OX) ∼=
(W,CαW ;R) where W ⊆ Rn is an open subset. Consequently, we have η♯x : CαW ;R,η(x)

∼= OX,x.
Furthermore, OX;R,x ∼= CαW ;R,η(x). Consequently, we wish to show that ϕx : CαW ;R,η(x) → CαW ;R,η(x)
given by (W, t : W → R)η(x) 7→ (W, t♭R(idR))η(x) is an isomorphism. Since by Theorem 3.1.1.4, 1,
the map t♭R is given by precomposition by t, therefore t♭R(idR) is just t. Consequently, ϕx is identity,
which proves the result.

Remark 3.1.1.7. By virtue of Proposition 3.1.1.6, we can assume that any Cα-manifold is a locally
ringed space of the form (X,OX;R) (similarly for C-manifolds).
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3.1.2 Sheaves & atlases

We have defined a manifold to be a space with an open covering by a model locally ringed spaces.
There is a traditional definition, whereas, which is used heavily in traditional geometry because
we really care about the charts (which is usually not done in algebraic geometry). This elucidates
how one has to undertake a different viewpoint of geometry in algebraic geometry.

We wish to show that giving a manifold structure on a second countable Hausdorff space X
as defined above is equivalent to giving an atlas in the classical sense. Indeed, for each atlas on X ,
we first define a sheaf on X .

Definition 3.1.2.1 (Atlas sheaf). Let X be a second countable Hausdorff space andA = (Ui, xi)i∈I
be aCα-atlas onX where xi : Ui → Cni is an open embedding. Consider the following assignment
for each open V ⊆ X :

OA(V ) := {f : V → K | f ◦ x−1i : xi(Ui ∩ V )→ K is Cα-map}.

Then OA is a sheaf of R-algebras, called the sheaf of atlas A. Similarly for the holomorphic case.

We first observe that equivalent atlases give same atlas sheaves.

Lemma 3.1.2.2. Let X be a second-countable Hausdorff space with A = (Ui, xi)i and B = (Vi, yi)i being
two equivalent Cα or holomorphic atlases on X . Then the atlas sheaves OA and OB are isomorphic.

Proof. Indeed, for each open W ⊆ X , define the map

ϕW : OA(W ) −→ OB(W )
f :W → K 7−→ f :W → K.

To show that this is well-defined, we have to show that f ∈ OB(W ). Indeed, pick any chart
yi : Vi → K of B. We wish to show that f ◦ y−1i : yi(Vi ∩ W ) → K is Cα or holomorphic. As
either condition is local on domain, so pick any point in yi(Vi ∩W ). Pick a chart xi : Ui → xi(Ui)
containing that point. Note that it is sufficent to show f ◦ y−1i : yi(Vi ∩ Ui ∩W ) → K is Cα or
holomorphic. Indeed, we can write this as

f ◦ y−1i = (f ◦ x−1i ) ◦ (xi ◦ y−1i ) : yi(Ui ∩ Vi ∩W )→ K.

Since A and B are equivalent and f ∈ OA, it follows repsectively that (xi ◦ y−1i ) and (f ◦ x−1i ) are
Cα or holomorphic, as required.

Thus ϕ : OA → OB is a sheaf map, which is identity, hence both sheaves are same.

We next see that a Cα or holomorphic atlas sheaf on a space X gives a Cα or C manifold
structure on X .

Proposition 3.1.2.3. Let (X,OX;C) be a locally ringed space and Y ⊆ Cn be open. If ϕ : (X,OX;C) →
(Y,Chol

Y ;C) is a map of locally ringed spaces, then ϕ♭ on open V ⊆ Y is given by

ϕ♭V : Chol
Y ;C(V ) −→ OX;C(ϕ−1(V ))

t : V → C 7−→ t ◦ ϕ : ϕ−1(V )→ C.

Moreover, the following are equivalent:
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1. ϕ : (X,OX;C)→ (Y,Chol
Y ;C) is an isomorphism of locally ringed spaces.

2. ϕ : X → Y is a homeomorphism such that for any open U ⊆ X and any f : U → C in OX(U),
f ◦ ϕ−1 : ϕ(U)→ C is a holomorphic map.

The same conclusions hold true for Cα-manifolds as well.

Proof. The proof of the first statement is exactly same as that of Theorem 3.1.1.4, hence is omitted.
We now show the equivalence of items 1 and 2.

(1. ⇒ 2.) This is immediate as the map ϕ♭ is an isomorphism, so in particular a bijection on
sections.

(2.⇒ 1.) Pick any open V ⊆ Y . Then ϕ♭V is injective as ϕ is an isomorphism. It is also surjective
by the given hypothesis and homeomorphism ϕ. This shows that ϕ♭ is an isomorphism.

Theorem 3.1.2.4. Let X be a second-countable Hausdorff space and (X,OX) be a locally ringed space.
Then the following are equivalent.

1. (X,OX) is a Cα/complex manifold.
2. OX is a Cα/complex atlas sheaf.

To avoid repetitions, we will do the complex case only, as there is no change in the proof for
the real case.

Proof. (1. ⇒ 2.) By Proposition 3.1.1.6, we may assume that OX is just OX;C, the sheaf of locally
ringed maps fromX to C. We have an open cover {Ui}i∈I ofX and isomorphisms of locally ringed
spaces ϕi : (Ui,OUi;C) → (Yi,Chol

C ). This makes (Ui, ϕi) into an usual atlas as follows. For any i, j
such that Ui ∩ Uj ̸= ∅, we obtain that the map

ϕj ◦ ϕ−1i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj).

This is holomorphic since ϕj : Ui ∩ Uj → C is a map of locally ringed spaces in OX;C(Ui ∩ Uj).
Now, ϕi : (Ui,OUi;C) → (Yi,Chol

Yi;C) is an isomorphism, therefore by Proposition 3.1.2.3, it follows
that ϕj ◦ ϕ−1i is a holomorphic map, as required.

We claim that this makes OX into an atlas sheaf. Indeed, observe that f ∈ OX(V ) is a locally
ringed map f : (V,OV ;C) → (Y,Chol

C ). We claim that the data of f is equivalent to saying that
f ◦ ϕ−1i : ϕi(V ∩ Ui)→ C is holomorphic. Indeed, this is the content of Proposition 3.1.2.3.

(2. ⇒ 1.) Let A = (Ui, ϕi) be a complex atlas where ϕi : Ui → Yi for open Yi ⊆ Cni is a homeo-
morphism with holomorphic transitions. We need only show the item 2 of Proposition 3.1.2.3 for
ϕi as then it would follow that ϕi : (Ui,OUi;C) → (Yi,Chol

Yi;C) is an isomorphism of locally ringed
spaces, completing the proof. Indeed, pick any open U ⊆ X and any f : U → C in OX(U). As OX
is the atlas sheaf of A, therefore for ϕi in particular, we have that f ◦ ϕ−1i : ϕi(U ∩ Ui) → C is a
holomorphic map, as required. This completes the proof.
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3.2 Linearization
Write till fiber prod-
ucts, Chapter 3.

3.3 Constructions on manifolds

3.4 Lie groups
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3.5 Global algebra

Let (X,OX) be a locally ringed space. We will discuss here the operations on and properties of
Mod(OX), the category of OX -modules 3. An OX -module is a sheaf M on X such that M(U) is an
OX(U)-module and the restriction maps of M are given as module homomorphism w.r.t the corre-
sponding restriction map of OX (more precisely below). There are several important constructions
and properties that one can make with these. In-fact, just like one understands a ring R by under-
standing R-modules, one can understand OX by understanding OX -modules. The similarity runs
deeper as we can also define in certain cases the very same constructions we do in module, but in
the case of OX -modules, and these constructions and operations becomes indispensable in doing
geometry over locally ringed spaces of special kind, like schemes. A lot of such phenomenon is
merely due to the fact that Mod(OX) is an abelian category. In-fact, notice that for each singleton
space X = {pt.}, a ring R can be seen as the structure sheaf OX over X and any R-module as
a OX -module. Hence one may also think of the concept of OX -modules as the global version of
classical commutative algebra.

Needless to say, this is an indispensable section for the purposes of geometry in general.

Let us first observe that over any topological space X , the product of two sheaves F,G over X
defined by (F × G)(U) = F(U) × G(U) is indeed a sheaf with restriction maps as products of the
restrictions. This allows us to define OX -modules very naturally.

For the rest of this section, we fix a ringed space (X,OX).

Definition 3.5.0.1. (OX -modules) An abelian sheaf F over X is an OX -module if there is a map of
sheaves

OX × F −→ F

(c, s) 7−→ cs

where c ∈ OX(U), s ∈ F(U) for all open U ⊆ X which endows F(U) an OX(U)-module structure.
An OX -linear map of OX -modules is defined as a sheaf map ϕ : F → G between OX -modules

such that for each open U ⊆ X , the map ϕU : F(U) → G(U) is an OX(U)-linear map and that the
restrictions preserves the respective module structures.

The above definition, when unravelled, yields that the scalar multiplication of each OX(U)-
module F(U) commutes with restrictions; for c ∈ OX(U), s ∈ F(U) and an open subset V ⊆ U ,
we have (c · s)|V = c|V · s|V .

Remark 3.5.0.2. For an OX -module F we have the following easy observations:
1. Fx is an OX,x-module for all x ∈ X . Indeed, this follows from the universal property of

direct limits and the fact that direct limits commutes with product; we have the following

3we will give some general constructions for arbitrary sheaves over a topological case at times, before specializing
to OX -module case.
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diagram

OX,x × Fx

lim−→x∈V OX(V )× F(V )

OX(U)× F(U) F(U) Fx
mU

∼=

m̃ .

Explicitly, the OX,x-module structure on Fx is given by

OX,x × Fx −→ Fx

((U, c)x, (U, s)x) 7−→ (U, c · s)x

where we may assume c and s are defined on same open neighborhood of x by appropriately
restricting.

2. For a homomorphism f : F → G of OX -modules, we get a OX,x-module homomorphism
fx : Fx → Gx mapping as (U, s)x 7→ (U, fU (s))x for each x ∈ X ,

3. Let X be locally ringed space. Then, Fx/mX,xFx ∼= Fx ⊗OX,x OX,x/mX,x
∼= Fx ⊗OX,x κ(x) is

a κ(x)-vector space. This is called the fiber of module F over x, denoted by F(x). Recall this is
how the fiber of a module over a prime ideal of the ring is defined.

We first give few basic constructions, which is useful to keep in mind.

Definition 3.5.0.3. (Support of a sheaf) Let X be a topological space and F be an abelian sheaf
over X . Let U ⊆ X be an open set. For s ∈ F(U), we define the support of s as the subset

Supp (s) := {x ∈ U | (U, s)x ̸= 0 in Fx}.

We further define the support of the sheaf as

Supp (F) := {x ∈ X | Fx ̸= 0}.

Support of a section is always a closed subset, but the support of a sheaf may not be closed.

Lemma 3.5.0.4. 4 Let X be a space and F be a sheaf over X with s ∈ F(U) for an open set U ⊆ X . Then
Supp (s) ⊆ U is a closed subset of U .

Proof. Take any point y ∈ U \ Supp (s). We will find an open set W ⊆ U \ Supp (s) with W ∋ y.
Indeed, as (U, s)y = 0, therefore we get a W ⊆ U with s|W = 0. For any z ∈W , one further checks
that (U, s)z = (W, s|W )z = 0. Thus, z /∈ Supp (s) and consequently, W ⊆ U \ Supp (s).

Do skyscraper and subsheaf with support (Exercises 1.17 and 1.20 in Hartshorne.)

4Exercise II.1.14 of Hartshorne.
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3.5.1 Global algebra : The algebra of OX-modules

In our quest to do geometry over schemes, we will make heavy use of the algebra of sheaves,
especially that of exact sequences, so we give a lot of constructions that we may have to make
out in the wild. We will make heavy use of sheafification (Theorem 20.2.0.1) in the sequel. An
important question that arises is whether sheafification of an algebraic construction over collection
of OX -modules actually is again an OX -module or not? The answer is yes, as can be easily checked
by explicitly looking at sections of sheafification directly (see Remark 20.2.0.4 to observe that its
not difficult, anyways we will show the explicit checks consistently).

Caution 3.5.1.1. The following pages might seem to be filled with unnecessary details about check-
ing whether a given construction on OX -modules results in an OX -module or not. While for some
this might be unnecessary, but working this out in experience has been satisfying and tends to give
a deeper understanding of the various module structures that gets associated with an OX -module
F and how they interrelate. Indeed, we will see that with more elaborate constructions, we get
more and more module structures to handle with. Thus it is necessary to work some details out
of this. At any rate, we will be using notions presented in the sequel quite frequently in algebraic
geometry and in particular while doing cohomology (Cěch cohomology in particular!) so we need
a good knowledge of the OX -modules and their internal technicalities.

Remark 3.5.1.2. Since there are a lot of constructions in the sequel, so to have a sense of mental
clarity, let us list them here:

• Submodules and ideals of OX .✓
• Quotient of modules.✓
• Image and kernel modules.✓
• Exact sequences of modules.✓
• The Γ(OX , X)-module HomOX (F,G).✓
• HomOX module.✓
• Direct sum of modules.✓
• Direct product of modules.✓
• Tensor product of modules.✓
• Free, locally free & finite locally free OX -modules.✓
• Invertible modules and the Picard group.✓
• Direct and inverse image modules.✓
• Sums & intersections of submodules.
• Modules generated by sections.
• Inverse limit.
• Direct limit.
• Tensor, symmetric & exterior algebras.
• Ext module.
• Tor module.

Remark 3.5.1.3. Let V be the category of abelian groups andX be a locally ringed space. Consider
a functor F : V × · · · × V → V. Given abelian sheaves F1, . . . ,Fk over X , we obtain a sheaf
FF := F (F1, . . . ,Fk) by the following procedure: first define the presheaf F−F on X given by
U 7→ F (F1(U), . . . ,Fk(U)), then define the sheaf FF = (F−F )

++ to be the sheafification of F−F . We
will follow this general strategy in all the constructions in the following.
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Submodules and ideals of OX

Definition 3.5.1.4. (Submodules and ideals) Let F be an OX -module. A submodule of F is an
OX -module which is a subsheaf G ⊆ F such that for all open U ⊆ X , the inclusion

G(U) ↪→ F(U)

is an OX(U)-module homomorphism. Since OX is an OX -module, thus, to be in line with usual
terminology, we define submodules of OX as ideals of OX .

Remark 3.5.1.5. Note that for any OX submodule G ⊆ F, we get a submodule Gx ⊆ Fx of the
OX,x-module Fx.

Quotient of modules

Definition 3.5.1.6. (Quotient modules) Let F be an OX -module and G be a submodule of F. The
quotient module is the sheafification of the presheaf U 7→ F(U)/G(U), denoted by F/G (see Defini-
tion 20.3.0.4). Indeed, F/G is an OX -module by the following lemma.

Lemma 3.5.1.7. F/G is an OX -module.

Proof. We will use the definition of sheafification as given in Remark 20.2.0.4. For each open set
U ⊆ X , consider the following map:

ηU : OX(U)× (F/G)(U) −→ (F/G)(U)
(c, s) 7−→ ηU (c, s) : U → ⨿x∈UFx/Gx

where ηU (c, s)(x) := cx · s(x) where cx ∈ OX,x and s(x) ∈ Fx/Gx and the multiplication cx · s(x)
is coming from the OX,x-module structure that Fx/Gx has. We now need to show following two
statements:

1. ηU (c, s) is indeed in (F/G)(U),
2. η : OX × F/G→ F/G is a sheaf map.

For statement 1, we need to show that for each x ∈ U , there exists an open set x ∈ V ⊆ U and there
exists r ∈ F(U)/G(U) such that for all y ∈ V we have the equality cy · s(y) = ry in Fy/Gy. Indeed,
this can easily be seen via the fact that s ∈ (F/G)(U). Statement 2 is immediate after drawing the
relevant square whose commutativity is under investigation.

Remark 3.5.1.8. Note further that we get a natural map

F → F/G

which factors through the inclusion of the presheaf U 7→ F(U)/G(U) into the sheaf F/G.

Image and kernel modules

Definition 3.5.1.9. (Image and kernel modules) Let f : F → G be a OX -module homomorphism.
We then get the image sheaf Im (f) and the kernel sheaf Ker (f) by Definition 20.3.0.5. Indeed,
both of these are OX -modules as the following lemma shows.

Lemma 3.5.1.10. Im (f) and Ker (f) are OX -modules.
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Proof. Ker (f) is straightforward. For Im (f), we first observe that if we denote Im (f) = (im (f))++,
then (im (f))x = fx(Fx). We thus define the OX -module structure on Im (f) as follows:

ηU : OX(U)× Im (f)(U) −→ Im (f)(U)
(c, s : U → ⨿x∈Ufx(Fx)) 7−→ ηU (c, s)

where ηU (c, s)(x) = cx · s(x) where s(x) ∈ fx(Fx) ⊆ Gx. One checks like for quotient modules that
this defines an OX -module structure on Im (f). Further, it is clear that Im (f) ⊆ G.

Corollary 3.5.1.11. For a OX -module homomorphism f : F → G, we have Ker (f) ≤ F and Im (f) ≤ G

are submodules.

Proof. Use Remark 20.2.0.4 to get this immediately.

We have a "first isomorphism theorem" for modules then.

Lemma 3.5.1.12. For a map f : F → G of OX -modules, we obtain an isomorphism

F/Ker (f) ∼= Im (f).

Proof. For each x ∈ X let ϕx : Fx/ ker fx
∼=−→ im (fx). Then we define the following for any U ⊆ X

open

(F/Ker (f))(U) −→ Im (f)(U)
s : U → ⨿x∈UFx/ ker fx 7→ ϕ ◦ s

where (ϕ ◦ s)(x) = ϕx(s(x)). This is immediately an isomorphism by going to stalks (Theorem
20.3.0.6, 3).

Exact sequences of modules

Definition 3.5.1.13. (Exact sequences) A sequence of OX -modules

F′
f→ F

g→ F′′

is said to be exact if Ker (g) = Im (f).

Remark 3.5.1.14. By Lemma 20.3.0.8, F′ f→ F
g→ F′′ is exact if and only if Ker (gx) = Im (fx) at all

points x ∈ X .

The Γ(OX , X)-module HomOX (F,G)

We now consider the set of all OX -module homomorphisms f : F → G and observe very easily
that it has a Γ(OX , X)-module structure. This generalizes the fact that under point-wise addition
and scalar multiplication, the set HomR (M,N) for two R-modules M,N is again an R-module.

Definition 3.5.1.15. (Γ(OX , X)-module HomOX (F,G)) Let F,G be two OX -modules. Then the
collection of all OX -module homomorphisms HomOX (F,G) is a Γ(X,OX)-module. Indeed, for
two f, g ∈ HomOX (F,G) and c ∈ Γ(OX , X), we define f + g : F → G by s 7→ f(s) + g(s) and we
define c · f : F → G by s 7→ ρX,U (s) · f(s) for any open set U ⊆ X and s ∈ F(U).

We will now globalize the construction of HomOX (F,G) to obtain an OX -module out of it.
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HomOX module

Definition 3.5.1.16. (Hom module HomOX (F,G)) Let F,G be two OX -modules. Then the follow-
ing presheaf

U 7→HomOX|U (F|U ,G|U )

with restriction given by restriction of sheaf maps, is an OX -module denoted by HomOX (F,G), as
the following lemma shows.

Lemma 3.5.1.17. HomOX (F,G) is an OX -module

Proof. The fact that Hom(F,G) is a sheaf can be seen immediately. The OX -module structure is
defined as follows: pick any open U ⊆ X

ηU : OX(U)×HomOU

(
F|U ,G|U

)
−→ HomOU

(
F|U ,G|U

)
(c, f) 7−→ cf

where cf : F|U → G|U is given on an open set V ⊆ U by

(cf)V : F(V ) 7−→ G(V )
s 7−→ ρU,V (c) · fV (s).

One easily check that η is a well-defined natural map of sheaves, thus making HomOX (F,G) into
an OX -module.

Remark 3.5.1.18. It is in general NOT true that HomOX (F,G)x ∼= HomOX,x (Fx,Gx).

We now define the dual of a module in the obvious manner.

Definition 3.5.1.19. (Dual module) Let F be an OX -module. The dual of F is defined to be the
module HomOX (F,OX). We denote the dual by F∨.

There are some isomorphisms regarding Hom that is akin to their usual algebraic counterparts.
We outline them in the following lemma.

Lemma 3.5.1.20. Let F be an OX -module. Then,
1. Hom(OnX ,F) ∼= Hom(OX ,F)n,
2. Hom(OX ,F) ∼= F.

Proof. In both cases we construct a map and its inverses and it is straightforward to see that they
are well-defined, natural and indeed inverses of each other.
1. Consider the map

Hom(OnX ,F) −→Hom(OX ,F)n

which on an open set U ⊆ X maps as

HomOX|U

Ä
OnX|U ,F|U

ä
−→ HomOX|U

(
OX|U ,F|U

)n
f : OnX|U → F|U 7−→ (fi)i=1,...,n
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where for V ⊆ U , we have that fi,V : OX(V )→ F(V ) maps as s 7→ s · fV (ei) = fV (s · ei) where ei
is ith standard vector in OX(V )n. Conversely, define the map

Hom(OX ,F)n −→Hom(OnX ,F)

which on U ⊆ X open maps as(
gi : OX|U → F|U

)
i=1,...,n 7−→ g : OnX|U → F|U

where on V ⊆ U open, we define gV : OX(V )n → F(V ) as (s1, . . . , sn) 7→
∑n
i=1 gi,V (si) =

∑n
i=1 si ·

gi,V (ei).
2. Define the map

Hom(OX ,F) −→ F

on open U ⊆ X by

HomOX|U

(
OX|U ,F|U

)
−→ F(U)

f : OX|U → F|U 7−→ fU (1).

Define the inverse

F −→Hom(OX ,F)

on an open set U ⊆ X by

F(U) −→ HomOX|U

(
OX|U ,F|U

)
s 7−→ f : OX|U → F|U

where for an open set V ⊆ U , we define fV (t) = fV (t · 1) := t · s.

The following the usual adjunction from algebra.

Proposition 3.5.1.21 (⊗-hom adjunction). For any OX -modules E, F and G, we have

HomOX (E⊗ F,G) ∼= HomOX

(
F,HomOX (E,G)

)
.

Proof. LetR = Γ(OX , X). We construct anR-linear mapϕ : HomOX (E⊗ F,G)→ HomOX

(
F,HomOX (E,G)

)
as follows: for any f ∈ HomOX (E⊗ F,G), define ϕ(f) : F → HomOX (E,G) by the following on
open U ⊆ X :

ϕ(f) : s 7→ ϕ(f)(s) : t 7→ f(s⊗ t).

This is R-linear by construction. To show its a bijection, we construct an inverse as follows: for
any f : F → Hom(E,G), define θ(f) : E⊗ F → G as the unique map corresponding to the map on
presheaves:

(E⊗ F)− −→ G

s⊗ t 7→ f(t)(s).

It is easy to see that this is an inverse of ϕ, as required.
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Direct sum of modules

Definition 3.5.1.22. (Direct sum of modules) Let {Fi}i∈I be a family of OX -modules. The direct
sum of Fi is the sheafification of the presheaf

U 7→
⊕
i∈I

Fi(U)

whose restriction is the direct sum of the corresponding restrictions. We denote this sheaf by⊕
i∈I Fi and it is an OX -module by the following lemma. If for all i ∈ I , we have Fi = F, then we

write ⊕
i∈I

F = F⊕I = F(I)

as usually is done in algebra.

Lemma 3.5.1.23.
⊕

i∈I Fi is an OX -module and (
⊕

i∈I Fi)x ∼=
⊕

i∈I Fi,x for all x ∈ X .

Proof. Since stalks functor is left adjoint (to skyscraper, we didn’t covered this but this is a basic
known fact), therefore it preserves all colimits and thus (

⊕
i∈I Fi)x ∼=

⊕
i∈I Fi,x. Now, the OX -

module structure over
⊕

i∈I Fi is obtained as follows: pick any U ⊆ X open and consider the
map

ηU : OX(U)×
(⊕
i∈I

Fi

)
(U) −→

(⊕
i∈I

Fi

)
(U)

(c, s : U → ⨿x∈U ⊕i∈I Fi,x) 7−→ cs

where cs(x) = cx · s(x) where s(x) ∈
⊕

i∈I Fi,x and
⊕

i∈I Fi,x is an OX,x-module. By exactly same
techniques employed in proving them in earlier cases, it can be observed that the above defines a
map η : OX ×⊕i∈IFi → ⊕i∈IFi which is a sheaf map.

We now cover the other construction we know from algebra.

Direct product of modules

Definition 3.5.1.24. (Direct product of modules) Let {F}i∈I be a family of OX -modules. The direct
product of them is defined to be the sheaf

U 7→
∏
i∈I

Fi(U)

with product of restrictions as its restriction. Indeed, it is immediate it is a sheaf and that the
canonical map ηU : OX(U)×

∏
i∈I Fi(U)→

∏
i∈I Fi(U) mapping as (c, (si)i∈I) 7→ (c · si)i∈I makes∏

i∈I Fi an OX -module. If Fi = F for all i ∈ I , then we denote∏
i∈I

F = F
∏
I = FI

as is usually done in algebra.

We now define tensor product of two OX -modules.
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Tensor product of modules

Definition 3.5.1.25. (Tensor product of modules) Let F,G be two OX -modules. The tensor prod-
uct of F and G is given by the sheafification of the presheaf

U 7→ F(U)⊗OX(U) G(U),

denoted by F ⊗OX G, as the following lemma shows.

Lemma 3.5.1.26. F ⊗OX G is an OX -module and (F ⊗OX G)x ∼= Fx ⊗OX,x Gx for each x ∈ X .

Proof. The second statement is immediate from Lemma 16.5.1.2. The OX -module structure is the
obvious one: pick any open U ⊆ X and then consider the map

ηU : OX(U)× (F ⊗OX G)(U) −→ (F ⊗OX G)(U)
(a, s : U → ⨿x∈UFx ⊗OX,x Gx) 7−→ as

where as(x) = axs(x). One easily checks that this defines a well-defined natural sheaf map.

A simple observation also yields the usual identity we know from modules.

Lemma 3.5.1.27. Let F be an OX -module. Then,

F ⊗OX OX ∼= F.

Proof. Consider the map

η : F ⊗OX OX −→ F

given on an open U ⊆ X by the map corresponding to the following natural isomorphism (Theo-
rem 20.2.0.1)

ηU : F(U)⊗OX(U) OX(U)
∼=→ F(U).

This yields the similar isomorphic map on stalks via Lemma 3.5.1.26 to yield the result via Theo-
rem 20.3.0.6, 3.

Tensor product of modules is obviously commutative.

Lemma 3.5.1.28. Let F,G be two OX -modules. Then, F ⊗ G ∼= G⊗ F.

Proof. Construct the map η̃ : F ⊗ G→ G⊗ F as the unique map corresponding to the following

F(U)⊗OX(U) G(U) G(U)⊗OX(U) F(U)

(G⊗ F)(U)

ηU
∼=

jU
jUηU

.

This map on the stalks gives the usual twist isomorphism Fx ⊗OX,x Gx
∼= Gx ⊗OX,x Fx.
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Free, locally free & finite locally free OX -modules

Definition 3.5.1.29. (Free, locally free and finite locally free modules) Let F be an OX -module.
Then,

1. F is called free if F ∼= O
(I)
X for some index set I ,

2. F is called locally free if for all x ∈ X , there exists open U ∋ x such that F|U ∼= O
(Ix)
X|U where Ix

is an indexing set depending on x,
3. F is called finite locally free if F is locally free and the indexing set Ix is finite for each x ∈ X .

If Ix = I and I has size n, then we say that F is locally free of rank n.

We now observe that the hom sheaf of two locally free modules of finite rank is again locally
free of finite rank.

Lemma 3.5.1.30. LetF,E be two locally freeOX -modules of ranks n andm respectively. ThenHomOX (F,E)
and F ⊗OX E are both locally free module of rank nm.

Proof. For each x ∈ X , there exists an open set U ∋ x such that F|U ∼= OnX|U and E|U ∼= OmX|U . We
then observe the following

HomOX (F,E)(U) = HomOX|U

(
F|U ,E|U

) ∼= HomOX|U

Ä
OnX|U ,O

m
X|U

ä
∼= OnmX|U

where the last isomorphism can be established easily by reducing to the usual module case (HomR (Rn, Rm) ∼=
Rnm).

For tensor, we proceed similarly as above. By replacing X by U , we need only show that
OnX ⊗OmX

∼= OnmX . Indeed, by universal property of sheafification, it is sufficient to describe a map
of presheaves (OnX ⊗ OmX)− → OnmX which is an isomorphism on stalks. The usual isomorphism
Rn ⊗Rm → Rnm gives such a map of presheaves, as required.

An important corollary of the above lemma is as follows.

Corollary 3.5.1.31. Let F be be a locally free module of rank n. Then the dual F∨ is locally free of rank n.

Proof. By Lemma 3.5.1.30, F∨ is locally free of rank n.

One may think of finite locally free modules as those modules which are locally free in the
usual sense. Consequently, these modules satisfy global version of the properties enjoyed by the
usual notion of free modules, as the following result shows.

Proposition 3.5.1.32. 5 Let E be a finite locally free of rank n. Then,
1. E∨∨ ∼= E.
2. For any OX -module F, we have

HomOX (E,F) ∼= E∨ ⊗OX F.

Proof. As E is locally of free of rank n, therefore there is an open cover {Ui} of X such that
E|Ui

∼= OnX|Ui . Let {Bj} be a basis of X where each Bj is in some Ui. Consequently, we reduce
to constructing an isomorphism in each case only as sheaves over the basis {Bj}.

5Exercise II.5.1 of Hartshorne.
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1. Indeed, as each Bj is in some Ui, therefore E|Bj
∼= OnX|Bj . Consequently, we get the follow-

ing isomorphisms for any U ∈ {Bj}

E∨∨(U) = HomOX|U (HomOX (E,OX)
∣∣
U
,OX|U )

∼= HomOX|U (HomOX (O
n
X ,OX)

∣∣
U
,OX|U )

∼= HomOX|U ((HomOX (OX ,OX))
n
∣∣
U
,OX|U )

∼= HomOX|U (O
n
X|U ,OX|U )

∼= HomOX|U

(
OX|U ,OX|U

)n
∼= HomOX (OX ,OX)(U)n
∼= OX(U)n
∼= E(U),

and its naturality with resepect to restrictions is evident.

2. Pick any U ∈ {Bj}. We then have

HomOX (E,F)(U) ∼= HomOX|U

(
E|U ,F|U

)
∼= HomOX|U

Ä
OnX|U ,F|U

ä
∼= HomOX|U

(
OX|U ,F|U

)n
∼= HomOX (OX ,F)(U)n
∼= F(U)n
∼= (OnX⊗OXF)(U)

by Lemma 3.5.1.27. The fact that this isomorphism is natural with respect to restrictions is imme-
diate.

Invertible modules and the Picard group

Definition 3.5.1.33. (Invertible modules) An OX -module L is said to be invertible if it is locally
free of rank 1.

The name is justified by the fact that the set of all invertible modules upto isomorphism forms
a group under tensor product and is one of the important invariants of a (ringed) space amongst
many others. We now show that indeed this forms a group. We will drop the subscript OX from
the tensor product, for clarity, in the following.

Proposition 3.5.1.34. Let L,L1,L2,L3 be invertible OX -modules. Then,
1. L1 ⊗L2 is invertible,
2. (L1 ⊗L2)⊗L3 ∼= L1 ⊗ (L2 ⊗L3),
3. L∨ ⊗L ∼= OX .

Proof. 1. This is a local question, so pick x ∈ X and an open set U ∋ x such that L1|U ∼= OX|U ∼=
L2|U . We wish to construct a natural map (L1⊗OX L2)(U)→ OX(U) which is an isomorphism. By
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Theorem 20.2.0.1, it suffices to show a natural isomorphism L1(U)⊗OX(U) L2(U) → OX(U). This
is constructed quite easily as L1(U) ⊗OX(U) L2(U) ∼= OX(U) ⊗OX(U) OX(U) ∼= OX(U). Thus we
just need to consider idOX(U).
2. This is again a local question, which can be answered by establishing an isomorphism (by using
Theorem 20.2.0.1)

(L1(U)⊗OX(U) L2(U))⊗OX(U) L3(U) ∼= L1(U)⊗OX(U) (L2(U)⊗OX(U) L3(U))

for any open U ⊆ X , but that is an immediate observation from algebra.
3. By Corollary 3.5.1.31, we have that L∨ is invertible. By Theorem 20.3.0.6, 3, the result would
follow if we can show that there is a natural OX -linear map ϕ : L∨ ⊗ L → OX such that for
each point x ∈ X there exists an open set x ∈ U ⊆ X such that on U , ϕ yields an OX(U)-linear
isomorphism (L∨ ⊗ L)(U) ∼= OX(U). We may take U small enough so that L∨|U

∼= OX|U ∼= L|U .
Thus, after replacing X by U , we may assume L = OX = L∨. By Lemmas 3.5.1.20 and 3.5.1.27,
we obtain the following isomorphisms

L∨ ⊗L = Hom(L,OX)⊗OX ∼= Hom(OX ,OX)⊗OX ∼= OX ⊗OX ∼= OX .

This can easily be promoted to a sheaf map.

Definition 3.5.1.35. (Picard group of X) The Picard group of X is defined to be the set of all
isomorphism classes of invertible modules with the operation of tensor product. We denote this
by

Pic(X)

The Proposition 3.5.1.34 and Lemma 3.5.1.28 shows that Pic(X) is indeed an abelian group.

Direct and inverse image modules

In this and the next sections, we show how the modules behave under map of ringed spaces.

Definition 3.5.1.36. (Direct image) Let f : (X,OX)→ (Y,OY ) be a map of ringed spaces and let F
be an OX -module. Then the direct image of F under f is the direct image sheaf f∗F which is again
an OY -module given by the following composition

OY × f∗F
f♭×id−→ f∗OX × f∗F

f∗m−→ f∗F

where m : OX × F −→ F is the OX -module structure on F. Note that f∗ commutes with products
as f∗ is a right-adjoint.

The inverse image of a module, on the other hand, is an involved construction.

Definition 3.5.1.37. (Inverse image) Let f : (X,OX)→ (Y,OY ) be a map of ringed spaces and let
G be an OY -module. The inverse image of G is defined to be the map

f∗G := OX ⊗f−1OY f
−1G

which is indeed an OX -module as the following lemma shows.
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Lemma 3.5.1.38. The sheaf f∗G is an OY -module.

Proof. We need to show three statements:
1. OX is an f−1OY -module.
2. f−1G is an f−1OY -module.
3. f∗G is an OX -module.

Statement 1 follows from the following composition

f−1OY ×OX
f♯×id−→ OX ×OX −→ OX

where the latter is just the multiplication structure on OX . Statement 2 follows from OY -module
structure on G and the fact that f−1(G× G′) = f−1G× f−1G′ for two sheaves G,G′ over Y . Indeed,
the latter follows from the fact that f+(G× G′) = f+G× f+G′, which in turn follows from the fact
that filtered colimit commutes with finite limits. Statement 3 now follows immediately.

We now state an important result, that is f∗ ⊢ f∗.

Proposition 3.5.1.39. Let f : (X,OX)→ (Y,OY ) be a map of ringed spaces. Then,

Mod(OY ) Mod(OX)
f∗

f∗

⊣ .

In other words, we have a natural isomorphism of groups

HomOX (f∗G,F) ∼= HomOY (G, f∗F).

Proof. Omitted.
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Sums & intersections of submodules

Modules generated by sections

Inverse limit

Do Hartshorne Exercise 1.12 as well.

Direct limit

Do Hartshorne Exercise 1.11 as well.
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Tensor, symmetric & exterior powers

We now define T (F), S(F) and ∧(F) for a module F.

Definition 3.5.1.40 (T (F), Sym(F) and∧(F)). LetF be anOX -module. The sheafification of presheaf
U 7→ T (F(U)) or Sym(F(U)) or ∧(F(U)) is denoted to be T (F) or S(F) or ∧(F) called the tensor
or symmetric or exterior algebra, respectively. This is an OX -algebra, i.e. a sheaf of rings which is
an OX -module. Moreover, we have

T (F) =
⊕
n≥0

Tn(F)

where Tn(F) is the sheafification of U 7→ Tn(F(U)). Note that this makes sense as sheafification is
a left adjoint, so it commutes with all colimits. We call Tn(F) the nth-tensor power of F. Similarly,
we define Symn(F) and ∧n(F).

Lemma 3.5.1.41. If F = OnX is a free OX -module of rank n, then
1. T r(F) ∼= On

r

X ,
2. Symr(F) ∼= O

n+r−1Cn−1
X ,

3. ∧r(F) ∼= O
nCr
X .

Proof. All three isomorphisms are obtained by defining a corresponding map of presheaves which
is an isomorphism on stalks, where this map is induced from the usual map in algebra:

Rn ⊗Rm ∼= Rnm

Symr(Rn) ∼= R
n+r−1Cr

∧r(Rn) ∼= R
nCr .

Then the corresponding map on sheaves induced by universal property of sheafification is an
isomorphism as it is so on stalks.

We now indulge in generalizing some local properties of tensor algebra to this global case. We
first have the standard observation of instantiating these definitions on the finite locally free case,
which generalizes the usual tensor calculations of free modules.

Lemma 3.5.1.42. 6 Let F be a finite locally free OX -module of rank n. Then, T r(F), Symr(F) and ∧r(F)
is a finite locally free OX -module of rank nr, n+r−1Cn−1 and nCr respectively.

Proof. Let {Uα} be an open cover of X where F is OnX|Uα for each α. Let B be a basis of X such that
for any B ∈ B, we have B ⊆ Uα for some α. Observe that F|B ∼= OnX|B . Hence, we may replace X
by B to assume that F is free of rank n. The result now follows from Lemma 3.5.1.41.

Another global phenomenon that is borrowed by tensor calculation of free modules is the
perfect pairing of wedge product.

6Exercise II.5.16 of Hartshorne.
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Ext module

Tor module

3.5.2 The abelian category of OX-modules

We now show an important result that category ofOX -modules over any ringed space is an abelian
category (thus we can do whole of homological algebra over it!). We have essentially done every-
thing, but we write it here for clear reference.

Theorem 3.5.2.1. Let (X,OX) be a ringed space. Then the category Mod(OX) of OX -modules is an
abelian category.

Proof. For any two OX -modules F,G, we have HomOX (F,G) is an abelian group where for any
two f, g ∈ HomOX (F,G), the sum h = f + g is defined to as follows: pick any open U ⊆ X and
define hU = fU + gU . This is an OX -linear sheaf map because f and g are. Hence Mod(OX) is
preadditive. Moreover Mod(OX) is additive. This is what we did in the preceding section while
defining finite products of OX -modules. The preceding section also shows that Mod(OX) has all
kernels and cokernels. Consequently, we need only show that the for any f : F → G in Mod(OX),
CoIm (f) ∼= Im (f). Indeed, this is a local question and can be thus immediately seen by first
isomorphism theorem. More precisely, we need only construct this isomorphism on a basis of X ,
where the canonical map CoIm (f) → Im (f) is an isomorphism by first isomorphism theorem.
This completes the proof.

Theorem 3.5.2.2. Let (X,OX) be a ringed space. Then the abelian category Mod(OX) has enough injec-
tives.

Proof. Let F be an OX -module. We wish to find an injective OX -module I such that F ↪→ I. First
note that for each x ∈ X , we have an injective OX,x-module Ix such that Fx ↪→ Ix by Theorem
19.2.2.7. Observe that Ix is a sheaf over i : {x} ↪→ X . Let I =

∏
x∈X i∗Ix be the corresponing

OX -module. We claim that I is an injective OX -module and there is an injective map F ↪→ I.
To see that there is an injective map F ↪→ I, we claim the following three isomorphisms

HomOX (F, I) ∼=
∏
x∈X

HomOX (F, i∗Ix) ∼=
∏
x∈X

HomOX,x (Fx, Ix).

The first isomorphism is immediate from limit preserving property of covariant hom. The second
isomorphism is obtained by the following isomorphism

HomOX (F, i∗Ix) ∼= HomOX,x (Fx, Ix) (∗)

for each x ∈ X . Indeed, this follows from the maps f 7→ fx and (κ̃ : F → i∗Ix) ←[ (κ : Fx → Ix)
where κ̃ is defined on an open set U ⊆ X as κ̃U : F(U) → Ix mapping as s 7→ κ((U, s)x). These
are clearly inverses of each other. It then follows that a map F → I is equivalent to a collection of
maps Fx → Ix and since we have Fx ↪→ Ix, therefore we obtain a unique injective map F ↪→ I.

Finally, we claim that HomOX (−, I) is exact as a functor into the category of abelian groups. To
this end, by left exactness of hom, we need only show that this is right exact. This immediately fol-
lows from isomorphism (∗) and Ix being injective and that product of surjective homomorphisms
is surjective. This completes the proof.
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3.6 Torsors and 1st-Čech cohomology group

Once we have understood the constructions of the last section, we can now start doing some
serious geometry over our manifolds. Indeed, this is what we start laying out in this section.
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3.7 Bundles

We give here the general theory of fiber, principal and vector bundles. When the need arises, we
will instantiate this into different areas (like in the chapter on differential geometry). The material
in previous chapter will allow a very united way of looking at the notion of bundles, and will start
portraying the intimate connection that bundles and cohomology has.

3.7.1 Generalities on twisting atlases

Let p : E → B be a map of topological spaces/manifolds together with a specified subsheaf of
groups G ⊆ AB(E) ∈ Sh(B) where AB(E) is the sheaf of homeomorphisms/isomorphisms over
B; for any open U ⊆ B, the group AB(E)(U) consists of all homeomorphisms/isomorphisms
ϕ : p−1(U)→ p−1(U) such that p ◦ ϕ = p.

The tuple (p : E → B,G) is the pre-datum for defining (p,G)-twisting atlas for a map π : X →
B.

Definition 3.7.1.1 ((p,G)-twisting atlas for a map). Let p : E → B be a map and G be a subsheaf
of groups G ⊆ AB(E). Let π : X → B be a map. Then, a (p,G)-twisting atlas for π is a family
(Ui, hi)i∈I where {Ui}i∈I is an open cover of B and hi : π−1(Ui)

∼=−→ p−1(Ui) is an isomorphism
over Ui such that for any i, j ∈ I , denoting Uij = Ui ∩ Uj , we have

p−1(Uij) π−1(Uij)

Uij

hi|π−1(Uij)

h−1
j

∣∣∣
p−1(Uij)p

π

and from which we require that

hij = hi|π−1(Uij) ◦ h
−1
j

∣∣∣
p−1(Uij)

is a section in G(Uij). We then call π : X → B together with (Ui, hi) a twist of p : E → B with
structure sheaf G.

Using this, we may define a general notion of a bundle.

Definition 3.7.1.2 (Bundles). Let π : X → B be a map, F a space/manifold and p : B×F → B be
the projection map onto first coordinate. Then π is a bundle with fiber F if there is a (p,AB(B×F ))-
twisting atlas for π. Equivalently, π is a bundle with fiber F if it is a twist of p : B × F → B with
full structure sheaf AB(B × F ).

Remark 3.7.1.3. Let π : X → B be a bundle with fiber F . Consequently we have a AB(B × F )-
twisting atlas of p : B × F → B denoted (Ui, hi), where hi : π−1(Ui)→ p−1(Ui) is an isomorphism
over Ui such that the transition maps hij : p−1(Uij) = Uij × F → Uij × F = p−1(Uij) is just an
isomorphism over Uij (i.e. hij ∈ AB(B × F )(Uij)).



182 CHAPTER 3. FOUNDATIONAL GEOMETRY

3.8 Differential forms and de-Rham cohomology

Do this from Section 8.6 and Section 10.4 of Wedhorn, via sheaf cohomology. Add motivation from courses.

3.8.1 Differential forms on Rn

We first discuss differential forms on Rn as this provides clear and sufficient motivation for the
abstract treatment of differential forms in all other places where it is used. We begin by defining
the main ingredients. The material of Section 16.5 is used in the following.

Definition 3.8.1.1. (Coordinate forms on Rn) Fix n ∈ N. Let V = Rn be the n-dimensional R-
module. The functional

dxi : V −→ R
(x1, . . . , xn) 7−→ xi

is called the ith-coordinate form on V , for each i = 1, . . . , n. Note that dxi is a 1-form/1-tensor, i.e.
dxi ∈ M1(V ) = V ∗. Observe that dxi is the dual basis of V ∗ corresponding to standard basis ei of
V .

Next, we define a multilinear map which for each choices of axes, gives the volume of the
parallelopiped obtained by the projection along those axes, given a parallelopiped spanned by
some vectors.

Definition 3.8.1.2. (Projection forms on Rn) Fix n ∈ N and k ∈ N. Let V = Rn be the n-
dimensional R-module. Let I = (i1, . . . , ik) be an ordered k-tuple where 1 ≤ ij ≤ n for each
j = 1, . . . , k. Then, we define the I-projection form as

dxI := πk(dxi1 ⊗ . . .⊗ dxik) = DI

which is an alternating k-form on V , that is dxI ∈ Λk(V ) (see Example 16.5.3.11). More explicitly,
it is given by the following k-linear form on V

dxI : V × · · · × V −→ R

(v1, . . . , vk) 7−→ det


dxi1(v1) dxi2(v1) . . . dxik(v1)
dxi1(v2) dxi2(v2) . . . dxik(v2)

...
... . . .

...
dxi1(vk) dxi2(vk) . . . dxik(vk)

 .
Remark 3.8.1.3. Recall from Theorem 16.5.3.14 that Λk(V ) has basis given by dxI for distinct in-
creasing k-tuples from 1, . . . , n. Thus, {dxI}I forms an R-basis of Λk(V ) of size nCk.

Remark 3.8.1.4. Recall that wedge product of forms is given by the following (where one defines
them only on the basis elements)

Λk(V )× Λl(V ) −→ Λk+l(V )
(dxI , dxJ) 7−→ dxI ∧ dxJ := dx(I,J)
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where recall that dx(I,J) will be zero if there is any index common in I and J (see Definition
16.5.4.1), where I, J are increasing tuples of indices from {1, . . . , n} of lengths k and l respectively.
From the above, we see that for any alternating k-form ω =

∑
I aIdxI and alternating l-form

η =
∑
J bjdxJ , their wedge product is defined as

ω ∧ η =
∑
J

∑
I

aIbJ(dxI ∧ dxJ).

Remark 3.8.1.5. Let U ⊆ Rn be an open subset of Rn. Observe that C∞(U), the ring of smooth
R-valued functions on U , is an R-algebra. In the same vein, we know that alternating k-forms
Λk(Rn) forms an R-vector space of dimension nCk (see Theorem 16.5.3.14).

Definition 3.8.1.6. (Differential k-forms) Let U ⊆ Rn be an open set and 0 ≤ k ≤ n. The module
of differential k-forms is defined to be the following R-vector space

ΩkU = Λk(Rn)⊗R C∞(U).

As Λk(Rn) is a free R-module with rank nCk, therefore ΩkU is a free C∞(U)-module of rank nCk.

Remark 3.8.1.7. Observe that {ΩkU} obtains the wedge product structure from the wedge product
on {Λk(Rn)} as we may define for ω =

∑
I fIdxI ∈ Λk(Rn) and η =

∑
J gJdxJ the following

ω ∧ η :=
Ç∑

I

fIdxI

å
∧
Ç∑

J

gJdxJ

å
=

∑
I

∑
J

fIgJdxI ∧ dxJ .

Thus,
⊕

k≥0ΩkU forms a graded C∞(U)-algebra.

Remark 3.8.1.8. An arbitrary element ω ∈ ΩkU is called a differential k-form over U and is written
as

ω =
∑
I∈Xk

fI(x1, . . . , xn)dxI

where Xk is the set of size nCk of all k-combinations in increasing order of {1, . . . , n} and fI ∈
C∞(U) is a smooth function. Observe that Ω0

U = C∞(U).

We now construct the exterior derivative which will be a differential over the chain complex
ΩkU , as we will see soon.

Definition 3.8.1.9. (Exterior derivative) Let U ⊆ Rn be an open subset and {ΩkU}k∈N be the mod-
ules of differential k-forms. For each k ∈ N ∪ {0}, we define a map d : ΩkU → Ωk+1U as follows.
Define for k = 0 the following

d : Ω0
U −→ Ω1

U

f 7−→
n∑
i=1

∂f

∂xi
dxi



184 CHAPTER 3. FOUNDATIONAL GEOMETRY

where since f ∈ C∞(U) is smooth, therefore so is ∂f/∂xi. Further, since dxi ∈ Λ1(Rn), therefore
the above is well-defined. For k ≥ 1, we define d as follows

d : ΩkU −→ Ωk+1
U

ω =
∑
I∈Xk

fIdxI 7−→ dω =
∑
I∈Xk

dfI ∧ dxI

where dxI ∈ λk(Rn). Observe that dfI ∈ Ω1
U , thus indeed dfI ∧ dxI ∈ Ωk+1

U . This map d is called
the exterior derivative of differential forms.

The following are immediate but important properties of exterior derivative. TODO.
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We introduce basic players of homotopy theory.
Let us first engage in a discussion of the type of spaces we would like to work with, that is,

compactly generated space.

Definition 5.0.0.1 (Compactly generated spaces). A space X is said to be compactly generated if
it satisfies

1. (weak Hausdorff ) for any compact Hausdorff space K and a map g : K → X , the image g(K)
is closed,

2. (k-space) for any A ⊆ X , if g−1(A) is closed in K for any g : K → X where K is a compact
Hausdorff space1, then A is closed in X .

The following are some immediate observations.

Proposition 5.0.0.2. Let X be a compactly generated space. Then,
1. Every compact subspace of X is closed.
2. If K is compact Hausdorff and g : K → X is a map, then g(K) ⊆ X is compact Hausdorff.
3. If X is compactly generated and f : X → Y is a function, then f is continuous if and only if f |K is

continuous for all compact subspaces K ⊆ X .
4. Any closed subspace of a compactly generated space is compactly generated.

Proof. TODO.

Example 5.0.0.3. Following are some examples of compactly generated spaces.
1. Any compact Hausdorff space is compactly generated. Indeed, for any compact Hausdorff K
and a map g : K → X , we have g(K) is compact in X which is Hausdorff, so closed. Furthermore,
ifA ⊆ X and g−1(A) is closed inK for any such g, then lettingK = X and g = id, we immediately
deduce that A is closed, as required.

1we then call A to be compactly closed
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2. Any Hausdorff space X which is locally compact is compactly generated. Indeed, for any
compact Hausdorff K and a map g : K → X , we have g(K) is compact in X which is Hausdorff,
so closed. Furthermore, if A ⊆ X and g−1(A) is closed in K for any such g, then letting X̃ denote
the 1-pt. compactification of X , we see that X̃ is compact Hausdorff. Consequently we may con-
sider the map id : X̃ → X̃ . As any compact Hausdorff space is compactly generated as shown
above, therefore id−1(A) = A is closed by hypothesis, as needed.

3. Hence, every CW-complex is a compactly generated space.

Remark 5.0.0.4. The above example in particular shows that any real or complex manifold is a
compactly generated space.

Construction 5.0.0.5. (k-ification) Let X be a weak-Hausdorff space. Then, X can be made into a
compactly generated space. Define kX to have the same set as X but a finer topology obtained by
deeming any compactly closed subspace to be closed in kX . It then follows that

1. kX is compactly generated,
2. the function id : kX → X is continuous,
3. X and kX have same compact subsets,
4. for weak Hausdorff spaces X and Y , we have k(X × Y ) = kX × kY .

We now show why we restrict our gaze to only these spaces. In part because the category of
compactly generated spaces is well-behaved.
TODO Category Topcg has limits, colimits and exponential objects (all after k-ification) and that the dual
notion of homotopy as a path in function space is same as that of the usual notion.

Remark 5.0.0.6. From now on in this chapter, we only work with the category of compactly gen-
erated spaces, Topcg. Moreover, any construction on spaces that we do is assumed to be k-ified,
i.e. functor k is applied to it to always end up with the category of compactly generated spaces.

Next, we introduce constructions that one can do on based spaces. We denote Topcg∗ to be the
category of based compactly generated spaces and based maps between them.

Construction 5.0.0.7 (Based constructions). Let X and Y be two based spaces. Then, we denote by
1. [X,Y ] the based homotopy classes of based maps from X to Y . This is a based set itself, the

basepoint being the homotopy class of c∗ : X → Y mapping x 7→ ∗. If X ≃ X ′ and Y ≃ Y ′,
then there is a base point preserving bijection [X,Y ] ∼= [X ′, Y ′].

2. X ∧ Y the smash product given by X × Y/X ∨ Y where X ∨ Y = {∗} × Y ∪X × {∗}. This is
a based space, the base point being the point corresponding to the subspace X ∨ Y .

3. Map∗(X,Y ) the collection of based maps from X to Y . This is again a based space in
compact-open topology where the basepoint is c∗.

4. X+ the based space obtained by adjoining a distinct point ∗ to X .
5. X ∧ I+ the reduced cylinder of X where X is based. For any based X and unbased Y the

based space X ∧ Y+ is naturally homeomorphic to X × Y/{∗} × Y .

There is a natural "⊗-Hom" adjunction in Topcg∗ .

Theorem 5.0.0.8. Let X,Y, Z be based spaces in Topcg∗ . Then we have a natural isomorphism

Map∗(X ∧ Y, Z) ∼= Map∗(X,Map∗(Y,Z)).
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Proof. (Sketch) Let f : X ∧ Y → Z. Then by universal property of quotients, we get a map f̄ :
X × Y → Z which is constant on X ∨ Y . Now construct

f̃ : X −→Map∗(Y,Z)
x 7−→ y 7→ f̄(x, y).

The fact that this is based follows from f̄ being constant on X ∨ Y .
Let g : X →Map∗(Y,Z) a based map. Then we get

ḡ : X × Y −→ Z

(x, y) 7−→ g(x)(y).

This is based immediately. Further, on X ∨ Y , we see that ḡ is constant. By universal property of
quotients, we get the required g̃ : X ∧ Y → Z.

This theorem shows the duality between smash products and mapping space constructions.

Construction 5.0.0.9 (More based constructions). We now give two constructions each for smash
product and mapping space which complement each other.

1. CX the cone of X obtained by X ∧ I where 1 is the basepoint of I .
2. ΣX the suspension of X obtained by X ∧ S1.
3. PX the path space of X obtained by Map∗(I,X).
4. ΩX the loop space of X obtained by Map∗(S

1, X).
It follows from Theorem 5.0.0.8 that we have following natural isomorphisms

Map∗(CX, Y ) ∼= Map∗(X,PY )

and

Map∗(ΣX,Y ) ∼= Map∗(X,ΩY ),

the latter being the famous suspension-loop space adjunction.

In the next few items, we give results which are simple to see but important as technical tools.

Proposition 5.0.0.10. Let X,Y be based spaces in Topcg∗ . Then

π0(Map∗(X,Y )) ∼= [X,Y ].

In particular, we have

[ΣX,Y ] ∼= [X,ΩY ].

Proof. (Sketch) In Topcg, both left and right notions of homotopy are equivalent. Consequently, a
path-component in Map∗(X,Y ) is equivalently the set of based maps X → Y which are homo-
topic, as required.

Every space can be pointified.
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Definition 5.0.0.11 (Pointification). The functor (−)+ : Top → Top∗ given by X 7→ X+ and
f : X → Y mapping to f+ : X+ → Y+ is called the pointification functor.

There are important relationships between based and unbased constructions. We first have the
following simple observation.

Lemma 5.0.0.12. Let X be a based space. We have the following bijectionß
Based homotopies h :
X × I → Y

™
∼= Map∗(X ∧ I+, Y ).

Remark 5.0.0.13. Let X be an unbased space. All the construction of Construction 5.0.0.9 have
an unbased counterpart where smash products are replaced by Cartesian product and Map∗ are
replaced by Map. In particular,

1. CX the unreduced cone of X obtained by X × I/X × {1}.
2. ΣX the unreduced suspension of X obtained by X × S1/X × {1}.
3. PX the unbased path space of X obtained by Map(I,X).
4. ΩX the unbased loop space of X obtained by Map(S1, X).

We also call them by same name, if it is clearly understood that the space in question is unbased.

The following is an important observation about pointification and cones.

Lemma 5.0.0.14. Let X be an unbased space. Then, the unreduced cone of X is isomorphic to the reduced
cone on X+. That is,

CX ∼= CX+.

5.1 Fundamental group and covering maps

5.1.1 Covering spaces

We will now study a very important concept which is used everywhere in algebraic topology,
the concept of covering spaces. This concept captures the notion of when does another space
covers another space. Even though at this time it may seem completely unrelated to what we’ve
been doing, but we will soon see that using this simple idea we would be able to calculate first
homotopy group of S1. So let us first give the definition of a covering space:

Definition 5.1.1.1. (Covering space) Let X be a topological space and suppose π : X̃ → X is a
continuous map such that for all x ∈ X , there exists open neighborhood Ux ∋ x such that:

1. π−1(Ux) =
∐
α∈Jx Vα where Vα’s are disjoint open sets in X̃ ,

2. π|Vα : Vα → Ux is a homeomorphism.
Then, π : X̃ → X is said to be a covering map and X̃ is said to be a covering space over X . In this
case, the open neighborhood Ux ⊆ X containing x is said to be the evenly-covered neighborhood
of x ∈ X .
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...

→

π

Let us begin with an important example.

Example 5.1.1.2. Well, clearly, the easiest way to get a covering space out of any space is to simply
consider that map X ⨿X → X . But that’s not interesting.
The most important example of covering spaces that we will consider in this course is the expo-
nential map:

exp : R −→ S1

θ 7−→ e2πiθ.

Let us make sure that this is indeed a covering map. Take any point e2πiθ ∈ S1 where 0 < θ ≤ 1.
Now consider an open set U of S1, formed by Bϵ(e2πiθ) ∩ S1 where 0 < ϵ < 2. Denote U =:
e2πi(θ−δ,θ+δ) where clearly 0 < δ < 1/2. Consider now π−1(U) ⊆ R. We will have

π−1(U) =
∐
n∈Z

(θ + 2πn− δ, θ + 2πn+ δ).

Denote Vn := (θ + 2πn− δ, θ + 2πn+ δ). Moreover, it is clear that

π|Vn : Vn −→ U

is a homeomorphism. So indeed π is a covering map of S1. This is a very famous covering map as
well. You should think of it as an infinite spiral (homeomorphic to R) which covers the S1 in the
sense that when you view the spiral from the top, you will see only S1.

We will use this covering map exp : R→ S1 to find the first homotopy group of S1. The main
idea there will be resolve complicated loops in S1 to R, where each loop is homotopic to constant
loop at the starting/ending point of the loop(!)

Remark 5.1.1.3. It is clear that every covering map is surjective.

The following is an important example of a covering map.

Lemma 5.1.1.4. The map ϕ : S1 → S1 given by z 7→ zn is a covering map.



5.1. FUNDAMENTAL GROUP AND COVERING MAPS 193

Proof. Pick any z0 = eiθ0 ∈ S1. We wish to show that there exists an open set U0 ∋ z0 in S1 such
that

ϕ−1(U0) =
n−1∐
k=0

Vk

where Vk are open in S1 and ϕ|Vk : Vk → U0 is a homeomorphism.
Denote by γ : R → S1 the continuous surjective map given by t 7→ eit. Thus, z0 = γ(θ0).

Consider the interval I0 =
(
θ0 − π

n , θ0 +
π
n

)
. As the map γ : R → S1 is an open map, therefore we

have U0 = γ(I0) which is an open set of S1 containing z0. We claim that U0 is an evenly covered
neighborhood for z0. Indeed, we see that

ϕ−1(U0) = {z ∈ S1 | zn ∈ U0}

=
¶
eiθ ∈ S1 | eniθ ∈ γ(I0)

©
=
¶
eiθ ∈ S1 | ∃κ ∈ I0 s.t. γ(κ) = eiκ = eniθ

©
=
¶
eiθ ∈ S1 | ∃κ ∈ I0 s.t. nθ = κ+ 2kπ, for some k ∈ Z

©
=
ß
eiθ ∈ S1 | ∃κ ∈ I0 s.t. θ = κ

n
+ 2πk

n
, for some k ∈ Z

™
=
{
eiθ ∈ S1 | θ ∈

∐
k∈Z

Å
θ0
n
− π

n2
+ 2πk

n
,
θ0
n

+ π

n2
+ 2πk

n

ã}
=

n−1∐
k=0

γ

ÅÅ
θ0
n
− π

n2
+ 2πk

n
,
θ0
n

+ π

n2
+ 2πk

n

ãã
.

This completes the proof.

We next discuss the notion of mapping torus of a map and how van Kampen can be used to
compute its fundamental group.

Definition 5.1.1.5 (Mapping torus). For any map f : X → X the mapping torus of f is Tf :=
X × I/ ∼where (x, 0) ∼ (f(x), 1).

Example 5.1.1.6. For id : X → X , one can check that Tid = X × S1.

We have the following basic, but useful lemma.

Lemma 5.1.1.7. Let π : X̃ → X be a covering map. Then, for all x ∈ X the fiber π−1(x) ⊆ X̃ is a discrete
subspace of X̃ , that is, each x̃ ∈ π−1(x) is both open and closed.

Proof. To see this, take any x̃ ∈ π−1(x) and an evenly covered neighborhood Ux ⊆ X of x. Since
π−1(Ux) =

∐
α∈Jx Vα, where each Vα is homeomorphic to Ux under π|Vα . Thus, the unique x̃α ∈ Vα

such that π(x̃α) = x is an element of π−1(x), one for each α ∈ Jx. Now an open set of π−1(x) is
of the form V ∩ π−1(x) where V ⊆ Ṽ is open, therefore Vα ∩ π−1(x) is open in π−1(x). But
Vα ∩ π−1(x) = {x̃α} because each Vα are disjoint. Therefore {x̃α} is open in π−1(x). Similarly, it is
closed in π−1(x) by considering the complement of ∪β ̸=αVβ in π−1(x). Hence π−1(x) is a discrete
subspace of X̃ .
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5.1.2 Path lifting

Covering maps are important in algebraic topology because they come equipped with a lot of
unique lifting properties. We will first spell out the unique path lifting property of covering spaces,
which is a baby version of unique homotopy lifting property. Before that, we need some specific
property of a path in space X which is covered by a covering space X̃ .

Lemma 5.1.2.1. Let γ : I → X be a path in X and π : X̃ → X be a covering map. Then there exists a
partition 0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1 of unit interval I such that for all i = 0, . . . , k − 1, the
image γ([ti, ti+1]) ⊆ X is contained in an evenly-covered neighborhood of X .

Proof. So first, for all t ∈ I , there exists an evenly-covered neighborhoodUt ⊆ X of γ(t) ∈ X . Thus,
by continuity of γ, we get that there exists (at, bt) ⊆ I containing t ∈ I such that γ((at, bt)) ⊆ Ut.
Since each open interval contains a compact interval, therefore we can assume (at, bt) to be [at, bt].
So we have a family of closed subintervals {[at, bt]}t∈I of I . By compactness of I , we get that there
exists a finite subcover [at1 , bt1 ], . . . , [atn , btn ] of I . Now suppose [ati , bti ] and [atj , btj ] intersect,
then we can break down [ati , bti ] ∪ [atj , btj ] into three disjoint closed intervals [ati , atj ] ∪ [atj , bti ] ∪
[bti , btj ]. Furthermore note that each of the above three have their images contained inside an
evenly-covered neighborhood. Since there are only finitely many such intersections, therefore we
have a finite disjoint cover of I by closed intervals, each of which has image under γ contained in
an evenly covered neighborhood.

Theorem 5.1.2.2. (Unique path lifting of covering maps) Let π : X̃ → X be a covering map. Suppose
there is a path γ : I → X and a prescribed point γ̃0 : {0} → X̃ such that π(γ̃0) = γ(0), then there exists
a unique path γ̃ : I → X̃ such that π ◦ γ̃ = γ and γ̃(0) = γ̃0. That is, the following lifting problem is
uniquely filled:

{0} X̃

I X

π

γ

γ̃0

γ̃
.

Proof. Let us first construct such a path lift. By Lemma 5.1.2.1, we have a partition of I into
I = ∪k−1i=0 [ti, ti+1] of disjoint closed intervals where γ([ti, ti+1]) ⊂ Ui ⊂ X and Ui is evenly-covered
in X . Now to construct the said γ̃, we will have to do it for each [ti, tt+1], starting from i = 0, mak-
ing use of γ̃0 ∈ X̃ that has been already given to us. Now, let us first denote π−1(Ui) =

∐
α∈Ji V

i
α

for all i = 0, . . . , k − 1 where V i
α
∼= Ui, which is given by the fact that π is a covering map. Also

keep in note that ∀t ∈ [ti, ti+1], γ(t) ∈ Ui ⊆ X which is evenly-covered.

So let us first define γ̃ for [t0, t1] = [0, t1]. Since π(γ̃0) = γ(0) ∈ U0, therefore γ̃0 ∈ π−1(U0) and
hence there is unique α0 ∈ J0 such that γ̃0 ∈ V 0

α0 .

γ̃|[t0,t1] : [t0, t1] −→ X̃

t 7−→
(
π|V 0

α0

)−1
(γ(t)),
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where π|V 0
α0

: V 0
α0 → U0 is a homeomorphism and we are using it’s inverse map in the above

definition. Ok, so we first observe that γ̃|[t0,t1] (0) =
(
π|V 0

α0

)−1
(γ(0)) =

(
π|V 0

α0

)−1
(π(γ̃0)) = γ̃0.

That is, the starting point of path γ̃ is indeed γ̃0. So we have constructed a path in X̃ from γ̃0 to
γ̃|[t0,t1] (t1). Moreover, this path satsfies that π◦ γ̃|[t0,t1] = γ|[t0,t1], which is exactly what we wanted.

Next, let us continue defining γ̃ for [t1, t2] by using where we left off at [t0, t1]. This in turn
will suggest us how to completely define the whole path γ̃. So we first note that γ(t1) ∈ U0 ∩ U1,
therefore the end point of path γ̃|[t0,t1] at t1, takes value in π−1(U1) as well, so let γ̃|[t0,t1] (t1) ∈ V

1
α1 .

It should be clear by now what we are about to do; now define:

γ̃|[t1,t2] : [t1, t2] −→ X̃

t 7−→
(
π|V 1

α1

)−1
(γ(t)).

As usual, we again observe that γ̃|[t1,t2] (t1) = γ̃|[t0,t1] (t1) because we have(
π|V 1

α1

)−1
(γ(t1)) =

(
π|V 1

α1

)−1
(π( γ̃|[t0,t1] (t1)))

= γ̃|[t0,t1] (t1)

where we conclude second line from first as γ(t1) ∈ U0 ∩ U1, where
(
π|V 1

α1

)−1
is indeed defined.

So we have indeed define a path γ̃|[t1,t2] whose starting point is same as the ending point of γ̃|[t0,t1],
so we have defined the γ̃ upto [t0, t2].

Having done the above, we now give general procedure of continuing the definition of path γ̃
till [tk−1, tk]. Suppose 2 ≤ j ≤ k − 1 and suppose we have constructed γ̃|[tj−1,tj ] : [tj−1, tj ] → X̃

as of yet. So we know the point γ̃|[tj−1,tj ] (tj) ∈ V
j−1
αj−1 where γ(tj) ∈ Uj−1 ∩ Uj . We now construct

with this information the next piece of path γ̃|[tj ,tj+1] : [tj , tj+1]→ X̃ . Well, the following definition
shouldn’t be a surprise:

γ̃|[tj ,tj+1] : [tj , tj+1] −→ X̃

t 7−→
Å
π|
V jαj

ã−1
(γ(t))

where we again observe that the starting point of the above path is same as γ̃|[tj−1,tj ] (tj). More-
over, it is easy to observe that π ◦ γ̃|[tj ,tj+1] = γ|[tj ,tj+1].

Finally, since there are only finitely many [tj , tj+1]s, therefore we have constructed a path γ̃ in
X̃ such that it starts from γ̃0 (γ̃0 = γ̃(0)) and when projected back to X under π, we obtain the
path γ back (π ◦ γ̃ = γ). In particular, the end point γ̃(1) ∈ π−1(γ(1)). The uniqueness of γ̃ follows
by construction.

A simple yet useful observation about higher homotopy groups of universal covers is the fol-
lowing.
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Lemma 5.1.2.3. Let (X,x0) be a path-connected, locally path-connected and semi-locally simply connected
space and denote p : X̃ → X be its universal cover. Then,

p∗ : πk(X̃)→ πk(X)

is an isomorphism for all k ≥ 2.

Proof. We have a homomorphism p∗ : πk(X̃) → πk(X) for all k ≥ 2. We shall show that this
homomorphism has an inverse. Indeed, we have a map

ψ : πk(X) −→ πk(X̃)
[γ] 7−→ [γ̃]

where γ̃ is the unique lift of γ which exists as Sk and X̃ are simply connected for k ≥ 2. It follows
immediately that p∗ ◦ ψ = id and by uniqueness of lifts that ψ ◦ p∗ = id. Hence p∗ is a bijection, as
required.

5.1.3 Homotopy lifting

The Theorem 5.1.2.2 will be the building block for it’s generalization, which is the homotopy
lifting of covering maps. Let us first define what does it mean for a map to have homotopy lifting
property.

Definition 5.1.3.1. (Homotopy lifting property) Let p : E → B be a continuous map. The map
p is said to have homotopy lifting property if for any homotopy H : Y × I → B and any map
H̃0 : Y × {0} → E such that p ◦ H̃0 = H(−, 0), there exists a homotopy H̃ : Y × I → E such that
H̃(−, 0) = H̃0 and p ◦ H̃ = H . That is, the following lifting problem is filled:

Y × 0 E

Y × I B
H

p

H̃0

H̃ .

Remark 5.1.3.2. It is clear that path lifting property is obtained from homotopy lifting property
by setting Y = {0} in the diagram of homotopy lifting problem above.

We then have the following theorem.

Theorem 5.1.3.3. (Unique homotopy lifting of covering maps) Let π : X̃ → X be a covering map. Then
π satisfies unique homotopy lifting property. That is, given any homotopy H : Y × I → X and a map
H̃0 : Y → X̃ such that π ◦ H̃0 = H(−, 0), there exists a unique homotopy H̃ : Y × I → X̃ such that
H̃(−, 0) = H̃0 and π ◦ H̃ = H . In other words, the following lifting problem is uniquely filled:

Y × {0} X̃

Y × I X

π

H

H̃0

H̃ .

Proof. [TODO] Proof is quite long and detailed so I will do it when I will get time..
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5.1.4 π1(S1) ∼= Z

We now prove using the covering map exp : R→ S1 that the first homotopy group of S1 is Z.

Theorem 5.1.4.1. π1(S1) ∼= Z.

Proof. Consider the following map which is quite intuitive to define:

ϕ : Z −→ π1(S1)
n 7−→ [γn]

where γn : I → S1 is the loop θ 7−→ e2πinθ, that is, γn is the loop corresponding to travelling
around n-times on the circle S1. Let us first show that it is indeed a group homomorphism. We
see that

ϕ(n+m) = [γn+m]
= [γn ∗ γm]
= [γn] ∗ [γm]
= ϕ(n) ∗ ϕ(m),

so no qualms there.

The major hurdle starts when we try to prove the injectivity and surjectivity. This is where
we will need to use the path and homotopy lifting properties of the covering map exp : R → S1

where we indeed verified that exp is a covering map in the example below the definition of cover-
ing spaces.

Let us first show surjectivity. So take any [γ] ∈ π1(S1). We need to show that ∃n ∈ Z such that
[γn] = [γ]. So we have that exp(x̃) = γn(0), which in diagrammatic form is

{0} R

I S1

x̃

exp

γ

.

Since exp : R → S1 is a covering map, therefore using the unique path lifting property of cover-
ing maps (Theorem 5.1.2.2), we get that there is a unique γ̃ : I → R such that the above lifting
problem is filled and then we get exp ◦γ̃ = γ and γ̃(0) = x̃ ∈ (exp)−1 (1). Now, we also have that
γ̃(1) ∈ (exp)−1 (1). Therefore γ̃(1)− γ̃(0) = total number of times the loop γ crosses 1 = n, say. So
γ̃ is homotopic to the straight line joining γ̃(0) and γ̃(1), that is κ(t) = (1− t)γ̃(0) + tγ̃(1). Let this
homotopy between κ and γ̃ be denoted by H : I × I → R. Then exp ◦H is a homotopy between
exp ◦κ and exp ◦γ̃ where the former is the γn and the latter is γ. We thus have a homotopy between
them and therefore [γ] = [γn].
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Let us next show injectivity. So suppose ϕ(n) = [γn] = [c1] = [γ0] where c1 = γ0 : I → S1 is the
constant loop at 1 ∈ S1. We need to show that this implies n = 0. We will use homotopy lifting to
prove this, that is, we will lift the homotopy which makes γn homotopic to c1 to a homotopy in R
between the lift of γn to a constant path. More precisely, consider the homotopy

H : I × I −→ S1

establishing a homotopy between H(−, 0) = γn and H(−, 1) = γ0 and moreover H(0,−) =
H(1,−) = 1. Also consider the map γ̃n : I −→ R given by t 7−→ nt. This is the other map which the
lifted homotopy will give a homotopy from to some other map (which we have to figure out). We
then observe that γ̃n is the right map to define here because exp ◦γ̃n(s) = e2πins = γn(s) = H(s, 0).
Ok so now we lift. Using Theorem 5.1.3.3, the following lifting problem is uniquely solved:

I × {0} R

I × I S1
H

exp

γ̃n

H̃ .

So we have a homotopy H̃ : I × I −→ R such that H̃(s, 0) = γ̃n(s) and, more importantly,
exp ◦H̃ = H . Thus, exp(H̃(s, 1)) = H(s, 1) = 1, that is, Im

(
H̃(−, 1)

)
⊆ (exp)−1 (1). Since fibres of

a covering map are necessarily discrete (Lemma 5.1.1.7) and H̃(−, 1) is a continuous map from a
connected set I , so it’s image has to be connected as well and hence Im

(
H̃(−, 1)

)
has to be a point

inside (exp)−1 (1). What this means is that H̃(−, 1) is a constant map, to a point in R, which we
denote as a ∈ R such that exp(a) = 1. So H̃ is a homotopy between γ̃n and ca (the constant path
at a). Moreover, we also have that H̃(0, t) = H̃(1, t) for all t ∈ I because H̃ is a based homotopy.
So we get that the map H̃(1, t) = H̃(0, t) = a ∈ (exp)−1 (1) for all t ∈ I as it is a for t = 1. So this
forces ˜H(s, 0) = γ̃n(s) to have starting point and ending point same, equal to a. But this can only
happen when n = 0 (see definition of γ̃n). We are done.

5.1.5 Couple of properties of covering spaces

Covering maps are quite nice maps as is shown by Theorem 5.1.3.3. We will consider a couple of
important properties that covering spaces hold in this section. The first one being that all fibers of
a covering map of a path-connected space (which is discrete, Lemma 5.1.1.7) are bijective (so have
same size).

Lemma 5.1.5.1. Let π : X̃ → X be a covering map and let X be a path-connected space2. Let x0, x1 ∈ X
be two points, then there is a set bijection

π−1(x0) ∼= π−1(x1).

Proof. [TODO].
2or work over path-components.
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Another use of covering spaces is that if π : X̃ → X is a covering map where both the spaces are
path-connected, then the fundamental group of X̃ is naturally embedded inside the fundamental
group of X .

Proposition 5.1.5.2. Let π : X̃ → X be a covering map where both X and X̃ are path-connected. Then
the map

π1(π) : π1(X̃, x̃0) −→ π1(X,π(x̃0))

is injective.

5.1.6 Fun applications of π1(S1) ∼= Z

We first have the famous Brouwer’s fixed point theorem.

Proposition 5.1.6.1. (Brouwer’s fixed point theorem) For any continuous f : D2 → D2, there exists a
point x ∈ D2 such that f(x) = x.

Next is something we know very well but didn’t knew that it can be done from the methods
we have developed till now:

Proposition 5.1.6.2. (Fundamental theorem of algebra) Let p(x) ∈ C[x]. Then there exists a c ∈ C such
that x− c divides p(x). That is, every complex polynomial has a root in C (and thus have all roots in C).

The last one is something we saw in the departmental seminar a week ago, using which we
saw that one can prove very non-trivial combinatorial results.

Proposition 5.1.6.3. (Borsuk-Ulam theorem) If f : S2 → R2 is a continuous map, then there exists a pair
of anti-podal points which are mapped to same point under f .

5.1.7 Covering spaces, group actions and Galois theory of covers

So in this second phase of the course, we will be seeing some more fancy theorems, but the main
goal will be to go to some calculative things, like computing homology groups and all that. In any
case, we covered covering spaces, but it would be rather incomplete if we don’t say something
about universal covering and more theorems in that direction. The first theorem we therefore dis-
cuss, tells us how a certain type of G-space naturally enriches the quotient map with the structure
of a covering space. We first define the type of G-space we wish to look out for.

Definition 5.1.7.1. (Properly discontinuous action) Let G be a group and X be a space with a
continuous action3 of G. The action of G is said to be properly discontinuous if for all x ∈ X , there
exists an open set Ux ⊆ X containing x such that gUx ∩ Ux = ∅ for all g ∈ G.

There is another type of action:

Definition 5.1.7.2. (Free action) Let G be a group acting continuously on space X . The the action
is said to be free if for all x ∈ X , the stabilizer subgroup is trivial, that is, SG(x) = {e}.

3this means that the action map G×X → X is a continuous map where G is given the discrete topology.
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There are some consequences of the above definition which we collectively state in the the
following lemma:

Lemma 5.1.7.3. Let G be a group and X be a space with continuous G-action.
1. If the action is properly discontinuous, then it is free.
2. If G is finite and X is locally finite4, then the action is free if and only if it is properly discontinuous.

Proof. 1. Take any x ∈ X . Let Ux be the open set containing x obtained from properly discontinu-
ous action of G. If g ∈ SG(x), then gUx ∩ Ux ̸= ∅. Thus g = e.

2. R ⇒ L is simple. For L ⇒ R, we go by contradiction. So suppose the action is free but
not properly discontinuous. Take any point x ∈ X . So for any open U ∋ x and for any g ∈ G,
gU ∩ U ̸= ∅. Now, we have a sequence of open sets each containing x, Un, such that ∩nUn =
{x}. Since gUn ∩ Un ̸= ∅ for each n, therefore we get a sequence {xn} where xn ∈ Un such that
lim←−xn = x and lim←− gxn = x. Since g ∈ G can be treated as g : X → X a homeomorphism, therefore
g(lim←−xn) = x that is gx = x, a contradiction to the fact that G acts freely5.

Let us now state the theorem of interest.

Theorem 5.1.7.4. Let G be a group and X be a space with continuous G-action. If the action is properly
discontinuous, then the quotient map

q : X X/G

is a covering map.

Before stating the proof, we would like to give some example uses of this theorem.

Example 5.1.7.5. Consider G = Zn and X = Rn. There is a canonical action we can define on Rn
using Zn given by

G×X −→ X

((m1, . . . ,mn), (x1, . . . , xn)) 7−→ (m1 + x1, . . . ,mn + xn).

The fact that this is a continuous action is trivial to check. We first claim that this action is properly
discontinuous. It is simple to see why that’s the case; for an x ∈ X simply take any 0 < a < 1/2 and
define U =

∏
(xi− a, xi+ a). This U is open and for any m := (m1, . . . ,mn) ∈ Zn, (m+U)∩U = ∅

for any m ̸= 0. So indeed the action is properly discontinuous.

Next, we observe that X/G = Rn/Zn is simply homeomorphic to [0, 1]n/G and which is in
turn homeomorphic to ([0, 1]/0 ∼ 1)n and which is just (S1)n. So that is why the questions regard-
ing R/Z are so innumerable in literature, as they quickly form spaces which are quite weird to
imagine.

4this means that for all x ∈ X , there exists a sequence of open sets Un containing x such that
⋂
n
Un = {x}.

5this is in-line with what the wonderful man I.P. Freely had to say.
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Example 5.1.7.6. (Configuration space of k-points in space X) Let X be a space. The configuration
space of k points inX , denoted Fk(X), is intuitively the set of all possible positions that k particles
moving in X can inhabit. More precisely, we define:

Fk(X) = {(x1, . . . , xk) ∈
k∏
i=1

X | ∀ i ̸= j = 1, . . . , k, xi ̸= xj}.

This space has an action of Sk, the symmetry group of k letters, given by:

Sk × Fk(X) −→ Fk(X)
(σ, x1, . . . , xk) 7−→ (xσ(1), . . . , xσ(k)).

In other words, we just permute the k points which we find in some position in X . For k = 2, we
get that since S2 = Z2, so the only action possible is

Z2 × F2(X) −→ F2(X)
(0, x1, x2) 7−→ (x1, x2)
(1, x1, x2) 7−→ (x2, x1).

In other words, we swap the two points. Then, orbits of the action of Z2 over F2(X) will consist
of just the point itself and it’s swapped counterpart. Hence,

F2(X)/Z2 ∼= (X ×X)/ ∼

where (x1, x2) ∼ (y1, y2) iff x1 = y2 and x2 = y1. To better understand the situation, suppose
X = S1. Then, F2(S1) = S1 × S1/ ∼. Since S1 × S2 = T 2, therefore we get F 2(S1) = T 2 \∆(S1),
where ∆(S1) is the diagonal subspace of S1×S2. But T 2\∆(S1) will look like quotient of I×I\∆(I)
which looks like two disjoint right triangles together. Now, we can obtainF2(S1)/ ∼ by identifying
the two triangles and doing the ensuing identifications of I × I to reach some weird object.

Example 5.1.7.7. The next example that we do is known for it’s weirdness. It is the construction of
lens space. Consider the odd sphere S2k+1 ⊂ Ck+1 for k ∈ N. Consider the cyclic group Zd where
we take the following presentation of it: Zd = ⟨ξ⟩where ξ is the dth root of unity. We then have the
following action of Zd on S2k+1:

Zd × S2k+1 −→ S2k+1

(ξ, z1, . . . , zk) 7−→ (ξz1, . . . , ξzk).

This is indeed a valid action. In particular, we claim that this is a free action so that by Lemma
5.1.7.3, 2, this action becomes properly discontinuous and we can then use Theorem 5.1.7.4 to get
that S2k+1 is a cover of this so-called lens space. To see that it is free, take any (z1, . . . , zk) ∈ S2k+1.
We see that if (ξnz1, . . . , ξnzk) = (z1, . . . , zk), then ξn = 1. So each stabilizer subgroup is trivial.
Hence the action is free. Then, the lens space is defined to be the quotient S2k+1/Zd. Whatever that
may look like, it has a structure of a 2k + 1 dimension manifold, as we have a cover by Theorem
5.1.7.4.

With all these examples out of the way, let us now get to the proof of the theorem at hand.
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Proof of Theorem 5.1.7.4. Since the action of G is properly discontinuous, therefore for each x ∈ X ,
there exists open Ux ⊆ X such that gUx ∩ Ux = ∅ for all g ∈ G. We claim that for any [x] ∈ X/G,
the set Vx := q(Ux) is evenly covered open neighborhood of [x]. In order to show this, we first
claim the following

q−1(Vx) =
∐
g∈G

gUx.

Now, since g : X → X is a homeomorphism, thus gUx = g(Ux) ⊆ X is open in X . Hence, q−1(Vx)
is open in X , if the above claim is true. So in order to see the claim, we see that

q−1(Vx) = {y ∈ X | q(y) ∈ Vx = q(Ux)}
= {y ∈ X | ∃z ∈ Ux s.t. q(y) = q(z)}
= {y ∈ X | ∃z ∈ Ux s.t. y = gz for some g ∈ G}

=
⋃
g∈G

gUx.

So we need only show that gUx ∩ hUx =. This is simple because if it is not the case, then for some
y, z ∈ Ux, we get gy = hz, so y = g−1hz, a contradiction to Ux ∩ g−1hUx = ∅ by properly discon-
tinuous action of G on X . So indeed the claim is true.

We need only show now that for any g ∈ G, the restriction

q|gUx : gUx −→ Vx

is a homeomorphism. Firstly, it is rather easy to see that q(gUx) = q(Ux), after all, q kills all orbits
so that q(gy) = q(y). Next, since q(Ux) =: Vx, so the above map is well defined. We now only need
to show that it is a homeomorphism. For that, we can consider the following inverse:

w : Vx := q(Ux) −→ gUx

q(y) 7−→ gy.

This is indeed well-defined. To see this, take any z ∈ Ux such that q(y) = q(z). Thus there is
an h ∈ G such that y = hz. Since y, z ∈ Ux and Ux is such that kUx ∩ Ux = ∅ ∀k ∈ G, thus, if
q(y) = q(z), then y = z, hence gy = gz. It is now easy to see that w is a continuous inverse of
q|gUx , as gy 7→ q(gy) 7→ w(q(gy)) = gy and conversely q(y) 7→ gy 7→ q(gy) = y. This completes the
proof.

5.1.8 Category of covering maps

Let (X,x0) be a based space. It is easy to see that knowing information about all covers of (X,x0),
would be pretty handy. But how can one do that? Well, we will try to do exactly that in this
section. Since we want to handle all covers of X , so it is better we start giving this collection of all
covers of (X,x0) some structure. One structure that it has is that it forms a category.

Definition 5.1.8.1. (The category Cov (X,x0)) Let (X,x0) be a based map. The category of cover-
ing maps of (X,x0) and homomorphisms between them is defined by:
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1. Objects: An object of Cov (X,x0) is a covering map p : (X̃, x̃0)→ (X,x0).
2. Arrows: An arrow in Cov (X,x0) is a continuous based map f : (X̃1, x̃1) → (X̃2, x̃2) such

that the following commutes:

(X̃1, x̃1) (X̃2, x̃2)

(X,x0)
p1 p2

f

.

It is clear that Cov (X,x0) is a sub-category of the category Top∗ over (X,x0), that is, Cov (X,x0) ⊆
Top∗/(X,x0).

We will see in this and the following sections that the main ingredient of our goal to under-
stand a covering space will be, just like in Galois theory, the automorphism group of (X̃, x̃0) in
the category Cov (X,x0). We denote the set of all automorphisms of (X̃, x̃0) by Deck(X̃, x0). Note
that in the unbased setting, we will denote the automorphism group of X̃ ∈ Cov (X,x0) as just
Deck(X).

From now, we will abbreviate a based space (X,x0) by just X . Similarly for the covering
spaces.

For our purposes, we see the following result.

Proposition 5.1.8.2. Let X be a path connected and locally path connected based space and consider
(X̃1, p1) and (X̃2, p2) to be two path-connected covers in Cov (X). Let ϕ : (X̃1, p1) → (X̃2, p2) be a
map of covering spaces. Then, ϕ is a covering map over (X̃2, p2).

Proof. We break the proof into following steps.

Act 1 : The map ϕ is surjective.

Take any point y ∈ X̃2. Since X̃2 is path connected, so there is a path η : I → X̃2 with η(0) = x̃2
and η(1) = y. Then we have z := p2(y) ∈ X . Since X is path-connected, we thus have a path
γ : I → X such that γ(0) = x0 and γ(1) = z. By Theorem 5.1.2.2 on X̃2, it can be easily seen that
η is the unique lift of γ. Now, by Theorem 5.1.2.2 for covering space X̃1 with starting point x̃1, we
get a path γ̃1 : I → X̃1 such that γ̃1(0) = x̃1 and p1 ◦ γ̃1 = γ. Moreover, it is unique w.r.t. these
properties. Now denote x := γ̃1(1) ∈ X̃1. Now, we have another path γ̃2 := ϕ ◦ γ̃1 : I → X̃2 such
that γ̃2(0) = x̃2. Moreover, by the fact that p2 ◦ ϕ = p1, we get that p2 ◦ γ̃2 = γ. So if we apply
Theorem 5.1.2.2 on X̃2, then the path that we must get should exactly be γ̃2 because it satisfies
the conditions that makes the path coming from the theorem unique. But then, η = γ̃2. Hence
γ̃2(1) = η(1) = y. Hence ϕ(x) = y. This completes Act 1.

Act 2 : Each point of X̃2 has an evenly covered neighborhood.

Take any point y ∈ X̃2. To get an evenly covered neighborhood of y, we begin with z := p2(y) ∈ X .
Since both X̃1, X̃2 are covering X , therefore there are evenly covered neighborhoods U1, U2 ⊆ X
containing z. Then V := U1 ∩U2 is an open set which is an evenly covered neighborhood for both
the covers. Now, (p2)−1 (V ) ∋ y. Since (p2)−1 (V ) =

∐
i∈Jz Vi. Let y ∈ Viy . We claim that this
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Viy will be an evenly covered neighborhood of y ∈ X̃2 for ϕ. Clearly, (ϕ)−1 (Viy) ∼= (p)−1 (V ) ∼=∐
i∈Iz Wi where p1|Wi

:Wi → V which is a homeomorphism. This concludes Act 2.
This concludes the proof.

We now define universal covering space of a based space.

Definition 5.1.8.3. (Universal covering) Let (X,x0) be a path-connected and locally path-connected
space. A simply connected covering space (X̃, x̃0) is called a universal covering space of (X,x0).

The justification of the name will come soon, but for the time being, let us develop some more
theory of covering spaces, which we would need in order to prove Theorem ??, which classifies
coverings of a space upto isomorphism!

More properties of covering spaces & classification

Let us discuss few more properties of morphisms of covering spaces. It is good to remind our-
selves that a space is path-connected and locally path-connected if and only if it is connected and
locally path-connected.

Remark 5.1.8.4. It is clear by the definition of covering maps that if X is a locally path-connected
space, then any covering space X̃ is also a locally path-connected space. But it is in general not true
that if X is connected then X̃ is connected, a simple example is the trivial covering X ⨿X → X .
In conclusion, if X is connected and locally path-connected, then X̃ may not be connected but is
locally path-connected.

The following lemma shows that to check equality of two maps in Cov (X) of connected cov-
ering spaces, we may check only at one point(!)

Lemma 5.1.8.5. Let X be a path-connected and locally path-connected space. If ϕ0, ϕ1 : (X̃1, p1) ⇒
(X̃2, p2) are two maps of covering spaces in Cov (X) between connected covers X̃1 and X̃2, such that there
exists a point x1 ∈ X̃1 for which ϕ0(x1) = ϕ1(x1), then ϕ0 = ϕ1.

Proof. Let x ∈ X̃1. We wish to show that ϕ0(x) = ϕ1(x). For this, we first denote z := p1(x) =
p2 ◦ ϕ0(x) = p2 ◦ ϕ1(x). Hence it is clear that y0 := ϕ0(x), y1 := ϕ1(x) ∈ (p2)−1 (z), i.e. y0, y1 ∈ X̃2
are in the same fiber. We now need to show that the points y0, y1 ∈ p−1(z) are literally the same.
Suppose to the contrary that y0 ̸= y1. Let z ∈ U ⊆ X be an evenly covered neighborhood of z.
Now, (p2)−1 (U) =

∐
i∈J Vi where p2|Vi : Vi → U is an homeomorphism. Since y0 ̸= y1, therefore,

say y0 ∈ V0 and y1 ∈ V1 where V0 and V1 are disjoint in X̃2. Since ϕ0 and ϕ1 are continuous,
therefore there are open sets W0,W1 ⊆ X̃1 containing x such that ϕ0(W0) ⊆ V0 and ϕ1(W1) ⊆ V1.
Now, denoteW =W0∩W1, so we have ϕ0(W ) ⊆ V0 and ϕ1(W ) ⊆ V1. So for each x ∈ X̃1, we have
an open set x ∈Wx ⊆ X̃1 such that ϕ0(Wx) ∩ ϕ1(Wx) = ∅. This contradicts the fact that x1 ∈ X̃1 is
not such a point.

Remark 5.1.8.6. Hence, for any ϕ ∈ Deck(X̃) where X̃ is connected, ϕ doesn’t have any fixed
points.

The next result is an important one for our purposes, for it generalizes the unique path lifting
property of covering maps to that of any path-connected and locally path-connected space, by
comparing it’s fundamental group.
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Theorem 5.1.8.7 (Unique lifting property). Let (X,x0) be a path-connected and locally path-connected
space and let p : (X̃, x̃0) → (X,x0) be a covering map. Let (Y, y0) be a path-connected and locally path-
connected space. If ϕ : (Y, y0) → (X,x0) is a based map, then there exists a unique lift ϕ̃ : (Y, y0) →
(X̃, x̃0) if and only if ϕ∗(π1(Y, y0)) ≤ p∗(π1(X̃, x̃0)).

More diagrammatically, the following lifting problem is uniquely solved if and only if ϕ∗(π1(Y, y0)) ≤
p∗(π1(X̃, x̃0)):

(X̃, x̃0)

(Y, y0) (X,x0)

p

ϕ

∃! ϕ̃ .

Proof. (L⇒ R) Since p ◦ ϕ̃ = ϕ, therefore ϕ∗(π1(Y, y0)) = (p ◦ ϕ̃)∗(π1(Y, y0)) = p∗(ϕ̃∗(π1(Y, y0))) ≤
p∗(π1(X̃, x̃0)).

(R ⇒ L) We define the following candidate for the lift: for each point y ∈ Y , we join it to y0
using γy : I → Y where γy(0) = y0 and γy(1) = y, and then lift (Theorem 5.1.2.2) ϕ ◦ γy to a path
γ̃y in X̃ from x̃0 to γ̃y(1) ∈ p−1(ϕ(y)). This process gives the following map

ϕ̃ : Y −→ X̃

y 7−→ γ̃y(1).

We complete the rest of the proof in the following acts.

Act 1 : The map ϕ̃ is well-defined.

The plan is to use both homotopy an path liftings for this. So what we need to show is that for any
other choice η : I → Y with η(0) = y0 and η(1) = y, we get that η̃y(1) = γ̃y(1). In order to do this,
we first note that we get a loop γy ∗ η̄y at y0 in Y , so that we have an element [γy ∗ η̄y] ∈ π1(Y, y0).
Now, ϕ∗([γy ∗ η̄y]) = [ϕ◦γy ∗ϕ◦ η̄y]. Now since ϕ∗(π1(Y, y0)) ≤ p∗(π1(X̃, x̃0)), therefore there exists
a loop [ξ] ∈ π1(X̃, x̃0) such that [p ◦ ξ] = [ϕ ◦ γy ∗ϕ ◦ η̄y]. Let us denote [ϕ ◦ γy ∗ϕ ◦ η̄y] =: [χ]. So we
have p◦ξ ≃ χ. Now, by Theorem 5.1.3.3, we get that ξ is homotopic to a loop at x̃0, denoted τ such
that p ◦ τ = χ. Now note that γ̃y joins x̃0 to a point, say ω ∈ X̃ such that p(ω) = ϕ(y). Since we
have a path ϕ ◦ η̄y which connects ϕ(y) to x0 in X , therefore if we lift (Theorem 5.1.2.2) ϕ ◦ η̄y to a
path ˜̄ηy beginning from ω and ending to a point in p−1(x0) in X̃ , we get that we get a unique path
γ̃y ∗ ˜̄ηy from x̃0 to a point in p−1(x0) in X̃ which is unique w.r.t the property that p ◦ (γ̃y ∗ ˜̄ηy) = χ.
But, τ is also a path beginning from x̃0 such that p ◦ τ = χ, hence γ̃y ∗ ˜̄ηy = τ , and thus the lift of η̄y
in X̃ starts at ω and ends at x̃0. So now if we lift ηy in X̃ , we get the path ¯̄̃ηy because of uniqueness
of path lifts. Hence η̃y is a path from x̃0 to ω =: γ̃y(1). Hence well-definedness of ϕ̃ follows.

Act 2 : The map ϕ̃ is continuous.

It is at this point that we will use the hypotheses imposed on Y . We will show that ϕ̃ is locally a
continuous map. Take any point y ∈ Y and let ϕ(y) ∈ X . There is an evenly covered neighborhood
of ϕ(y), which we denote by U ∋ ϕ(y) so that p−1(U) =

∐
i∈I Vi. Denote ϕ̃(y) ∈ V0. We also have

an open set ϕ−1(U) of Y . Since Y is locally path-connected, let W ⊆ ϕ−1(U) be a path-connected
subset of Y containing y. We now claim that ϕ̃|W =

(
p|V0

)−1 ◦ ϕ|W . For this, take any point
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z ∈ W , and since W is path-connected, therefore there exists ξ joining y → z. Since γy already
joins y0 → y, therefore we have that γy ∗ ξ joins y0 → z. By Act 1, we get

ϕ̃(z) = ˜(ϕ ◦ (γy ∗ ξ))(1)
= ( ˜ϕ ◦ γy) ∗ ( ˜ϕ ◦ ξ)(1).

Now, since p|V0 is a homeomorphism of V0 to U and since ϕ(y), ϕ(z) ∈ U are connected by a path
ϕ ◦ ξ, so V0 also has a path connecting ϕ̃(y) and ϕ̃(z). Hence, by uniqueness of path lifts (Theorem
5.1.2.2), we get ( ˜ϕ ◦ γy) ∗ ( ˜ϕ ◦ ξ)(1) =

(
p|V0

)−1 (ϕ(z)). We are now gladly done.

Act 3 : The map ϕ̃ is unique.

Essentially by construction. If the reader is not convinced, just start doing the brute force verifica-
tion and you will see why that’s the case.

This proof is now complete.

This theorem is an extremely important result as it will allow us to classify all connected covers
of a connected and path-connected space upto isomorphism, as we will soon see. We will in the
following few results see the beginnings of the Galois theory of covering spaces.

Lemma 5.1.8.8. Let (X,x0) be a path-connected and locally path-connected space and consider Cov (X,x0).
If (X̃H1, x̃1, p1) and (X̃H2, x̃2, p2) are two connected covering spaces over (X,x0) such that

p1∗(π1(X̃H1, x̃1)) = p2∗(π1(X̃H2, x̃2)) = H ≤ π1(X,x0),

then there exists a unique homeomorphism ϕ : (X̃H1, x̃1, p1)→ (X̃H2, x̃2, p2), that is, (X̃H1, x̃1, p1) and
(X̃H2, x̃2, p2) are equivalent. In diagrammatic terms,

(X̃H1, x̃1) (X̃H2, x̃2)

(X,x0)
p1 p2

∃! ϕ
∼=

.

Proof. We will use Theorem 5.1.8.7 for this purpose. By the said theorem, where, in the notation
of the theorem, we let Y = X̃H1 and ϕ = p1, we get that there is a unique map ϕ : X̃H1 → X̃H1
such that p2 ◦ ϕ = p1. This follows because the condition of the theorem is trivially satisfied. We
now need only show that it has an inverse. This is also easy because of the equality of the image
subgroups; since H = p2∗(π1(X̃H2, x̃2)) ⊆ p1∗(π1(X̃H1, x̃1)) = H , therefore another application of
Theorem 5.1.8.7 yields a unique map ϖ : (X̃H2, x̃2) → (X̃H1, x̃1) such that p1 ◦ϖ = p2. To show
that ϕ and ϖ are inverses of each other, consider the composite ϕ ◦ ϖ : (X̃H2, x̃2) → (X̃H2, x̃2).
Since ϕ ◦ ϖ is a unique map w.r.t. the property that p2 ◦ (ϕ ◦ ϖ) = (p2 ◦ ϕ) ◦ ϖ = p1 ◦ ϖ = p2,
but since so is id(X̃H2, x̃2), therefore ϕ ◦ ϖ = id(X̃H2, x̃2). Similarly, ϖ ◦ ϕ = id(X̃H1, x̃1). This
completes the proof.

Remark 5.1.8.9. Let X̃ be a connected cover of a p.c., l.p.c. space (X, x̃0). Then, we would like
to know whether for any two choice of x̃1, x̃2 ∈ X̃ , we get an element ϕ ∈ Deck(X̃) such that
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ϕ(x̃1) = x̃2 and ϕ(x̃2) = x̃1. In such a case, we can say that the cover X̃ will be the one with
maximal symmetry. Now with the result above, we can partly answer that, for if p1∗(π1(X̃, x̃1)) =
p2∗(π1(X̃, x̃2)) in π1(X,x0), then there is a unique deck transformation ϕ ∈ Deck(X̃) such that
ϕ(x̃1) = x̃2 as p2 ◦ ϕ = p1, where pi : (X̃, x̃i)→ (X,x0). But the question for the converse remains
open and we see how to resolve it in the next big theorem.

We now state one of the major theorems of this course.

Theorem 5.1.8.10. (Classification of coverings) Let (X,x0) be a path-connected and locally path-connected
space. Then,

1. (Based version) Two connected covers (X̃1, x̃1, p1) and (X̃2, x̃2, p2) are equivalent if and only if

p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)) in π1(X,x0).

2. (Unbased version) Two connected covers (X̃1, p1) and (X̃2, p2) are equivalent if and only if for any
x̃1 ∈ p−11 (x0) and x̃2 ∈ p−12 (x0), we have that

p1∗(π1(X̃1, x̃1)) & p2∗(π1(X̃2, x̃2)) are conjugate subgroups of π1(X,x0).

Proof. 1. (R⇒ L) This is exactly the Lemma 5.1.8.8 above.
(L⇒ R) Suppose the two covers are equivalent. Then there is a homeomorphism ϕ : (X̃1, x̃1) →
(X̃2, x̃2) such that p2◦ϕ = p1. Let its inverse beϖ : (X̃2, x̃2)→ (X̃1, x̃1), which satisfies p1◦ϖ = p2.
The former gives us p1∗(π1(X̃1, x̃1)) = p2∗ ◦ ϕ∗(π1(X̃1, x̃1)) ≤ p2∗(π1(X̃2, x̃2)). Similarly, the latter
gives us p2∗(π1(X̃2, x̃2)) = p1∗ ◦ϖ∗(π1(X̃2, x̃2)) ≤ p1∗(π1(X̃1, x̃1)). Hence we get the equality.

2. (L ⇒ R) Choose x̃i ∈ p−1i (x0). We know that there is a homeomorphism ϕ : X̃1 → X̃2 such
that p2 ◦ ϕ = p1. Hence ϕ(x̃1) ∈ p−12 (x0) and may not be equal to x̃2. So we have two based covers
(X̃2, x̃2) and (X̃2, ϕ(x̃1)) with the same projection map p2. Now since (X̃1, x̃1) and (X̃2, ϕ(x̃1)) are
equivalent, then by 1. above, they induce the same subgroups of π1(X,x0). So if we can show
that the subgroups induced by (X̃2, ϕ(x̃1)) and (X̃2, x̃2) are conjugates, then we would be done.
So we reduce to showing that p2∗(π1(X̃2, ϕ(x̃1))) and p2∗(π1(X̃2, x̃2)) are conjugates. Since X̃2 is
path-connected, therefore we have a path γ : I → X̃2 such that γ(0) = ϕ(x̃1) and γ(1) = x̃2. Now
recall from proof of Lemma ?? that the following establishes an isomorphism of groups:

Φ : π1(X̃2, x̃2) −→ π1(X̃2, ϕ(x̃1))
[ξ] 7−→ [γ ∗ ξ ∗ γ̄].

So, applying p2∗ on the above map Φ yields

p2∗(Φ) : p2∗(π1(X̃2, x̃2)) −→ p2∗(π1(X̃2, ϕ(x̃1)))
[p2 ◦ ξ] 7−→ [(p2 ◦ γ) ∗ (p2 ◦ ξ) ∗ (p2 ◦ γ̄)],

which is also an isomorphism. But this tells us more, that each element of p2∗(π1(X̃2, ϕ(x̃1))) can
be written as a conjugate of an element of p2∗(π1(X̃2, x̃2)) by a fixed element [p2 ◦ γ], conditioned
on the fact that we somehow show that [p2 ◦ γ] = [p2◦γ̄], but that’s a tautology. Hence we are done.

(R⇒ L) We are given that there exists [γ] ∈ π1(X,x0) for any choice of x̃1 and x̃2 such that

p1∗(π1(X̃1, x̃1)) = [γ̄]p2∗(π1(X̃2, x̃2))[γ].
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In order to get a homeomorphism ϕ : (X̃1, x̃1, p1) → (X̃2, x̃2, p2), we will use statement 1. above.
Since we need a homeomorphismϕ such that p2◦ϕ = p1, therefore we may show that p1∗(π1(X̃1, ỹ1)) =
p2∗(π1(X̃2, ỹ2)) for any ỹi ∈ p−1i (x0) and then use 1. to conclude the existence of such ϕ. To show
this, we first lift the loop γ in X to a unique path γ̃ in X̃2 where we start the lift at x̃2 (Theorem
5.1.2.2). Hence we have a path γ̃ : I → X̃2 where γ̃(0) = x̃2 and denote z := γ̃(1) ∈ p−12 (x0). Now,
if [p2 ◦ ξ] ∈ p2∗(π1(X̃2, x̃2)), then [γ̄ ∗ (p2 ◦ ξ) ∗ γ] is equal to [(p2 ◦ ¯̃γ) ∗ (p2 ◦ ξ) ∗ (p2 ◦ γ̃)] because
p2 ◦ γ̃ = γ, and then we further get that it is equal to [p2∗ ◦ (¯̃γ ∗ ξ ∗ γ̃)] where [¯̃γ ∗ ξ ∗ γ̃] ∈ π1(X̃2, z).
Conversely, for any [p2 ◦ η] ∈ p2∗(π1(X̃2, z)), we get the loop [α] := [γ̃ ∗ η ∗ ¯̃γ] ∈ π1(X̃2, x̃2) which is
such that [γ̄∗(p2◦α)∗γ] = [p2◦η]. Hence indeed, we get that [γ̄]p2∗(π1(X̃2, x̃2))[γ] = p2∗(π1(X̃2, z)).
Since p1∗(π1(X̃1, x̃1)) = [γ̄]p2∗(π1(X̃2, x̃2))[γ], therefore we get p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, z)), so
we are done as now we can take ỹ1 := x̃1 and ỹ2 := z.

Construction of universal cover

We will show some striking results about the group of deck transformations of the universal cover
and the fundamental group of the base space. Before that, let us define a class of connected covers
which have in some sense maximal symmetry.

Definition 5.1.8.11. (Normal covers) Let (X,x0) be a path-connected and locally path-connected
space. A connected cover p : X̃ → X is said to be normal if for any two x̃1, x̃2 ∈ p−1(x0) there
exists a ϕ ∈ Deck(X̃) such that ϕ(x̃1) = x̃2.

Clearly, this induces the following map when X̃ is normal:

Deck(X̃) −→ Sp−1(x0)

ϕ 7−→ ϕ|p−1(x0) .

We will use this map later. The following gives a characterization of normal covers.

Lemma 5.1.8.12. Let (X,x0) be a path-connected and locally path-connected space. Then, a connected
cover p : X̃ → X is normal if and only if for all x̃0 ∈ p−1(x0), we have that p∗(π1(X̃, x̃0)) is a normal
subgroup of π1(X,x0).

Proof. (L⇒ R) Take any [γ] ∈ π1(X,x0) and let γ̃ be the unique lift of γ in X̃ starting from x̃0 ∈ X̃
(Theorem 5.1.2.2). Denote x̃1 := γ̃(1) ∈ p−1(x0) as γ is a lift of a loop so both endpoints are in
p−1(x0). Now, since X̃ is normal, therefore there exists ϕ ∈ Deck(X̃) such that ϕ(x̃0) = x̃1. Hence
(X̃, x̃0) and (X̃, x̃1) are equivalent connected based covers. Therefore by Theorem 5.1.8.10, 1, we
get that Hi := p∗(π1(X̃, x̃i))6, i = 0, 1, are exactly equal. Now, [γ̄]H0[γ] = [γ̄]p∗(π1(X̃, x̃0))[γ] =
p∗([¯̃γ]π1(X̃, x̃0)[γ̃]) = p∗(π1(X̃, x̃1)) = H1 = H0 where the third to last equality follows from proof
of Lemma ??. Hence H0 is a normal subgroup.

(R ⇒ L) Take any two points x̃1, x̃2 ∈ p−1(x0). To find the required deck transformation ϕ,
we see that since (X̃, x̃1) and (X̃, x̃2) are two covers such that H1 := p∗(π1(X̃, x̃1)) and H2 :=
p∗(π1(X̃, x̃2)) are normal subgroups of π1(X,x0). Now since X̃ is path-connected, therefore there
is a path joining x̃1 to x̃2 and let us denote it by γ : I → X̃ . Now, we get a loop ξ := p ◦ γ : I → X ,
based at x0, and hence [ξ] ∈ π1(X,x0). By uniqueness of path lifts (Theorem 5.1.2.2), we see

6Should have made this notation earlier?
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that the lift of ξ (started at x̃1) indeed has to be γ. We thus get [ξ̄]H1[ξ] = [ξ̄]p∗(π1(X̃, x̃1))[ξ] =
p∗([γ̄]π1(X̃, x̃1)[γ]) = p∗(π1(X̃, x̃2)) = H2, where second to last equality follows from proof of
Lemma ??. Thus, H1 and H2 are conjugate, but both are normal, therefore H1 = H2 and by Theo-
rem 5.1.8.10, 1, we are done.

Let us now briefly outline the construction of universal covering space. Let (X,x0) be a path-
connected, locally path-connected and semi-locally simply connected space7. For such a space, the
universal cover exists and is unique upto isomorphism (in Cov (X,x0)). We construct the univer-
sal cover by quotienting out Path∗ (X,x0), the space of all paths starting at x0, by an equivalence
relation given by the following:

γ ∼ η ⇐⇒ [γη̄] = [cx0 ] ∈ π1(X,x0).

This is a loaded relation, so let us explain. First, γ and η are two elements of Path∗ (X,x0), so they
are paths both starting from x0. The fact that we are demanding [γη̄] = [cx0 ] tells us that we are
demanding two things: 1) that γ and η̄ be joinable, that is both γ and η have same end points,
and 2) γη̄ is homotopy equivalent to constant loop x0. This is indeed an equivalence relation on
Path∗ (X,x0). Hence, by quotienting Path∗ (X,x0) by this relation we obtain a quotient, denoted:

X̃ := Path∗ (X,x0)/ ∼ .

This inherits a topology from compact-open topology of Path∗ (X,x0). Let us only state what is
a basis of that topology, because verifying that indeed is so will unnecessarily deviate us from
our goal. A basis of X̃ is given by subsets of the following form: for each path-connected, locally
path-connected and semi-locally simply connected open subset U ⊆ X and any [γ] ∈ X̃ whose
endpoint lies in U , define

U[γ] := {[γα] ∈ Path∗ (X,x0) | α is contained in U}.

Such sets U[γ] forms a basis of X̃ . A basic fact that can be checked about this basis is the following:

U[γ] ∩ U[η] ̸= ∅ =⇒ U[γ] = U[η].

This is because if [γα] = [ηβ], then for any [γδ] ∈ U[γ], we have [γδ] = [ηβᾱδ] ∈ U[η], similarly the
converse. We then have the following natural map:

p : X̃ −→ X

[γ] 7−→ γ(1).

This is indeed well-defined. Moreover, it’s a covering map as for any x = γ(1) ∈ X for some path
γ and any p.c., l.p.c., s.l.s.c. open set U ∋ x, we get p−1(U) =

∐
[α]∈π1(X,x0) U[αγ]. Finally, note that

X̃ is simply-connected.

7This means that for all x ∈ X , there exists an open set U ∋ x which also contains x0 such that ι∗(π1(U, x0)) = {0} ≤
π1(X,x0). Note that this doesn’t necessarily means that π1(U, x0) = {0}(!)
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Construction of a connected cover from a subgroup

Construction 5.1.8.13. Let (X,x0) be a connected, path-connected and semi-locally simply con-
nected space. Let H ≤ π1(X,x0) be a subgroup. We will construct a connected cover (XH , x̃0) of
X such that p∗(π1(XH , x̃0)) = H . This is obtained as follows.

Consider the following map:

H × Path∗ (X,x0)/ ∼ −→ Path∗ (X,x0)/ ∼
([α], [γ]) 7−→ [α ∗ γ].

This is well-defined because if ([α], [γ]) = ([β], [η]), then [α∗γ] = [β∗η] in Path∗ (X,x0)/ ∼ obtained
by concatenating the two homotopies. Moreover, we have the following

([cx0 ], [γ]) 7→ [γ]
([α], [βγ]) 7→ [αβγ].

So we have that the group H acts on the universal covering space Path∗ (X,x0)/ ∼= X̃ . Now,
consider the quotient X̃/H . Explicitly, this is the quotient of X̃ obtained by the relation

[γ] ∼H [η] ⇐⇒ ∃[α] ∈ H s.t. [γ] = [αη].

The above holds if and only if γ(1) = η(1), hence γη̄ is a loop of X based at x0. The relation above
can thus be read as:

[γ] ∼H [η] ⇐⇒ [γη̄] ∈ H.

Now, note that the quotient space XH := X̃/H will identify certain decks of the cover. Let us
explain. Let γ(1) = x ∈ X for some path γ in X and U ⊆ X be an evenly covered neighborhood
of x. Therefore

p−1(U) =
∐

[α]∈π1(X,x0)
U[αγ].

That is, the cardinality of decks is exactly the order of π1(X,x0). Now, when we apply the quotient
map q : X̃ ↠ X̃/H , we get that

q(U[ξ]) and q(U[η]) are identified if and only if [ξ] = [αη] for some [α] ∈ π1(X,x0)

Hence, applying q on p−1(U) will give us

q(p−1(U)) = q

Ñ ∐
[α]∈π1(X,x0)

U[αγ]

é
=

⋃
[α]∈π1(X,x0)

q(U[αγ])

=
∐

[α]∈H
q(U[αγ]).

Now since q is a quotient map and p : X̃ → X is map such that p identifies all elements of an
equivalence class of X̃/H , therefore we have a unique map pH : XH → X , which is the required
covering map corresponding to subgroup H . Moreover, one can show that pH∗(π1(XH , x̃0)) = H .
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5.1.9 Covers of RP 2 × RP 2

We will classify all covers of this space, and in the process will portray the power of tools devel-
oped so far. We first begin with a section on background calculations. The reader interested only
in the classification result may safely jump on to Theorem 5.1.9.4 and may refer back to results in
the following section whenever it is used in the proof.

Background calculations

Let us begin by trying to understand the structure of π1(RP 2).

Lemma 5.1.9.1. The antipodal action of Z2 on Sn is a free action. This induces a covering map p : Sn →
RPn.

Proof. The action is defined by

Z2 × Sn −→ Sn

(0, x) 7−→ x

(1, x) 7−→ −x.

So if x ∈ Sn is any point, then for any g ∈ SZ2(x), we get g · x = x. This implies that either
g = 0 or x = −x. Since there is no point in Sn such that x = −x, therefore g = 0. So the action
is free. Now, since Z2 is finite and Sn is locally finite, therefore by Lemma 5.1.7.3, 2, we get that
this action is properly discontinuous. Now, using Theorem 5.1.7.4, we get that the quotient map
p : Sn → Sn/Z2 is a covering map. But since Sn/Z2 is exactly how RPn constructed, therefore we
have Sn as a cover of RPn.

ALITER : One can show that we get a covering map p : Sn → RPn by the Z2 action without
using Theorem 5.1.7.4. For this, take any point [x] ∈ RPn where we identify RPn as the quotient
of Sn by Z2, so each element of RPn represents an equivalence class of two points which are
antipodal. To find the required evenly covered neighborhood of [x], we first notice that we get an
open subset of Sn, denoted U and it’s antipodal version −U such that x ∈ U and −x ∈ −U and,
most importantly, U ∩ −U = ∅. This last fact follows most importantly from the fact that the action of
Z2 on Sn is properly discontinuous. Defining p to be the quotient map p : Sn → Sn/Z2, we get
that p−1(U) = U . So we have that p is a 2-sheeted covering of RPn. This explicit proof shows the
importance of the action of the finite group Z2 being free on Sn.

Next we calculate the fundamental group of RP 2 and as a result, gets pleasantly surprised in
the process.8

Lemma 5.1.9.2. π1(RPn) = Z2 for n > 1.

Proof. Take any n > 1. The Lemma 5.1.9.1 tells us that p : Sn → RPn is a covering map for RPn.
We take it as a fact that π1(Sn) = 0. Thus, Sn is a simply, path and locally path-connected space
where RPn is also semi-locally simply connected. Hence by the corollary of main theorem of

8You see, the fact that RPn are such weird manifolds to imagine and also the fact that they are not embeddable in
Rn (for n > 1) entices and invites one to think that their fundamental group is quite bad and complicated. But it is not
so!
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universal covering of a space, we get that π1(RPn) ∼= Deck(Sn). It is clear that Deck(Sn) is just Z2,
as Sn is a 2-sheeted cover of RPn (by Galois equivalence for connected covers).

Lemma 5.1.9.3. RP 2 is connected, locally path-connected and semi-locally simply connected.

Proof. Since R3 is satisfies all of the three properties and the quotient map q : R3 ↠ RP 2 is con-
tinuous, so RP 2 is connected. To show that RP 2 is also locally path-connected, take any point
[x] ∈ RP 2, then lx := q−1([x]) ⊆ R3 is a line passing through origin in R3. For any open set V ∋ [x]
in RP 2, we have U := q−1(V ) is open in R3, containing the line lx. Choose an ϵ > 0 small enough
so that lx × Bϵ ⊆ U . Clearly, lx × Bϵ is path-connected (it’s a solid infinite cylinder with open
boundary). Now, since q is a quotient map so q(lx × Bϵ) is an open set inside V which is path-
connected (as it is a continuous image of a path-connected set). Hence RP 2 is both connected and
locally path-connected.
Since RPn is an n-dimensional manifold, so for each point there is an open neighborhood U which
is homeomorphic to an open ball of Rn, which is contractible. Hence RPn is semi-locally simply
connected.

The classification theorem

Theorem 5.1.9.4. (Classification of covers of RP 2 × RP 2) Each connected cover of RP 2 × RP 2 belongs
to equivalence class of one of the following:

1. RP 2 × RP 2,
2. RP 2 × S2,
3. S2 × RP 2,
4. S2 × S2,
5. S2 × S2/ ∼ where ∼ is generated by (x, y) ∼ (−x,−y).

Proof. In Lemma 5.1.9.2, we obtained π1(RP 2) = Z2. By Lemma ??, we get that π1(RP 2 × RP 2) =
Z2 × Z2. Now, there are the following five subgroups of Z2 × Z2:

1. H1 = {(0, 0)} = {e},
2. H2 = {(0, 0), (0, 1)},
3. H3 = {(0, 0), (1, 0)},
4. H4 = {(0, 0), (0, 1), (1, 0), (1, 1)} = Z2 × Z2.
5. H5 = {(0, 0), (1, 1)}.

Now, note that Z2 × Z2 is an abelian group, therefore, each subgroup of Z2 × Z2 is normal. We
know the following equivalence:

{Connected covers of (X,x0)}/equivalence {Subgroups of π1(X,x0)}/conjugacy

XH←−[H

(X̃,p)7−→p∗(π1(X̃,x̃0))

for a path-connected, locally-path connected and semi-locally simply connected space X . Now,
remember that XH for some H ≤ π1(X,x0) is made via quotienting the universal cover of X by
the action of H that is obtained by restricting the global action of π1(X,x0) on X̃ , via the deck
transformations (we have π1(X,x0) ∼= Deck(X̃)). Hence, XH will be obtained by identifying the
sheets of the universal cover X̃ . In our case, Deck(RP 2) = Z2 × Z2 and (1, 0) acts on (x, y) ∈ S2
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via (1, 0) · (x, y) 7→ (−x, y), similarly for (0, 1), (1, 1). This gives the required identifications on the
sheets and hence the five classes of connected covers as stated above.
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5.2 Cofibrations and cofiber sequences

Most of the long exact sequences appearing in algebraic topology are derived from the topics that
we will cover in this chapter. These should rather be seen as an important conceptual tool in order
to do computations. We will begin with cofibrations, closed subspaces from whose homotopies
can be extended to the whole space, and then fibrations, which can be thought of as generalizations
of covering spaces (more generally, fiber bundles) which one studies in a first course in algebraic
topology.

Cofibrations can be treated as an intermediary tool for developing more sophisticated concepts
in algebraic topology. In particular, we will be using this to derive an exact sequence of groups
out of a map of based spaces.

Note that there is little to no difference in based or unbased cofibrations, so we will prove
something for unbased context and will use it as it has been proved for based context as well. We
will give some remarks towards the end.

5.2.1 Definition and first properties

Definition 5.2.1.1. (Cofibrations) A map i : A → X is a cofibration if it satisfies the homotopy
extension property; if f : X → Y is a continuous map such that there is a homotopy h : A× I → Y
where h(−, 0) = f ◦ i, then that homotopy can be lifted to h̃ : X × I → Y where h̃(−, 0) = f . More
abstractly, if h ◦ i0 = f ◦ i in the following diagram, then there exists h̃ such that the following
diagram commutes:

A A× I

X Y X × I

i

f

i0

h
i×id

h̃

i0

.

One sees that pushout of a cofibration along any map is a cofibration.

Lemma 5.2.1.2. Let i : A → X be a cofibration and f : A → B be any other map. Then, the pushout
j : B → B ∪f X is a cofibration.

Proof. Take any map g : B ∪f X → Y and a homotopy h : B× I → Y where h ◦ i0 = g ◦ j. We have
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the following diagram:

A

B B × I

(B ∪f X)× I

B ∪f X Y

X

j

g

i0

h

j×id

i0

f

i (cofibration) p.o. .

We wish to show that there is a map h̃ : (B ∪f X) × I → Y which commutes with the diagram
shown above. Since we have the following pushout square:

B ∪f X X

B A
f

ij p.o. ,

therefore after applying functor − × I , which has a right adjoint, so is colimit preserving (we
are working in the category of compactly generated spaces which is cartesian closed), we get the
following pushout square which is closer to what we have in the first diagram:

(B ∪f X)× I X × I

B × I A× I
f×id

i×idj×id p.o. .

Now, we get a map h′ as below by the virtue of i being a cofibration:

A A× I

B B × I

(B ∪f X)× I

B ∪f X Y

X X × I

j

g

i0

h

i×id

i0

f

i (cofibration)

f×id

i×id

i0

i0

h′

p.o. .
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Next, by the universal property of pushout (B ∪f X)× I , we get a map h̃

A A× I

B B × I

(B ∪f X)× I

B ∪f X Y

X X × I

j

g

i0

h

i×id

i0

f

i (cofibration)

f×id

i×id

i0

i0

h′

h̃

p.o. ,

which satisfies the required commutativity.

To check that a map i : A → X is a cofibration, we can reduce to checking the homotopy
extension property to the map X →Mi where Mi is the mapping cylinder.

Definition 5.2.1.3 (Mapping cylinder). Let f : X → Y be a map. Then the mapping cylinder of f
is the following pushout space

Mf X × I

Y X
f

i0
⌜ .

More explicitly, it is ((X × I)⨿ Y )/ ∼where (x, 0) ∼ f(x) for all x ∈ X .

Let f : X → Y be a map. More pictorially, Mf is formed by gluing cylinder X × I to Y along
f . In mind, one pictures a cylinder "popping out" of Y from where f(X) lived in Y , as shown in
the following diagram: A based version of mapping cylinder is as follows.

Figure 5.1: Schematic representation of mapping cylinder for f : X → Y .
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Definition 5.2.1.4 (Based mapping cylinder). Let f : X → Y be a based map. The based mapping
cylinder M∗f is the pushout of reduced cylinder about f :

M∗f X ∧ I+

Y X

i0

f

⌟ .

Indeed, we have the following result:

Proposition 5.2.1.5. Let i : A→ X be a map. Then the following are equivalent:
1. i is a cofibration.
2. i satisfies homotopy extension property for any f : X → Y and for any Y .
3. i satisfies homotopy extension property for the natural map X →Mi and the homotopy h : A× I →
Mi obtained from pushout.

Proof. The only non-trivial part is to show 3 ⇒ 2. Take any map f : X → Y and any homotopy
h : A× I → Y . Consider

A A× I

Mi X × I

X Y

i

i0

f

h

i×id

i0

h1

g

.

The map h1 is formed by homotopy extension property of i for X → Mi and g is formed by
universal property of pushout which is Mi. The map gh1 : X × I → Y follows the required
commutativity relations.

Consequently, we have the following result.

Proposition 5.2.1.6. Any cofibration i : A→ X is an inclusion with closed image.

Proof. Consider the natural maps j : X → Mi and h : A × I → Mi obtained by the pushout
square. Since hi0 = ji, therefore by Proposition 5.2.1.5, 3, we obtain a map h̃ : X × I →Mi fitting
in the following commutative diagram

A A× I

X Mi X × I

i

i0

j

h

h̃
i0

.
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Let k :Mi→ X × I be obtained by the following diagram

A A× I

X Mi

X × I

i

i0

j

h⌜

i0
k

i×id .

It follows that h̃ ◦ k : Mi → Mi is id, that is, Mi is a retract of X × I . Consequently, restricting
onto i(A), we see that i(A) is a retract of X × I , hence closed as X × I is compactly generated. It
also follows from h̃ ◦ k = id that i is injective.

We see the following from the proof of the above result.

Corollary 5.2.1.7. Let i : A→ X be a map. Then the following are equivalent:
1. Map i : A→ X is a cofibration.
2. Mapping cylinder Mi is a retract of X × I .

Proof. 1. ⇒ 2. is immediate from the proof. For 2. ⇒ 1. we seee that if Mi ↪→ X × I ↠ Mi is a
retract, then letting h̃ : X × I ↠Mi, we have h̃ ◦ i0 = idX and h̃

∣∣
A×I = h, as needed.

Let f : X → Y be an arbitrary map of spaces. We can replace f by a cofibration followed by a
homotopy equivalence.

Construction 5.2.1.8 (Replacement by a cofibration and a homotopy equivalence). Let f : X → Y
be a map of spaces. Consider the following commutative triangle:

Mf

X Y
f

j r

where Mf = Y ∪f (X × I) is the mapping cylinder and the other two maps are given as follows:
1. Map j : X → Mf is given by x 7→ (x, 1). We claim that j is a cofibration. Indeed, if
g : Mf → Z is any map and we have a diagram as in Definition 5.2.1.1, then we can form
the required homotopy h̃ :Mf × I → Z by defining

h̃([(x, s)], t) :=
®
g(x) if x ∈ Y
h(x, st) if [(x, s)] ∈ X × I.

We then see that h̃(j× id)(x, t) = h̃([(x, 1)], t) = h(x, t) and that h̃i0([(x, s)]) = h̃([(x, s)], 0) =
h(x, 0) = g(x). So we have the required extension and hence j : X →Mf is a cofibration.

2. Map r : Mf → Y is given by r|Y = idY and r|X×I (x, t) = f(x) for t > 0. We claim that r
is a homotopy equivalence. For this, we have a map i : Y → Mf taking y 7→ [y]. We then
see that ri = idY and ir ≃ idMf . The former is simple and the latter is established by the
following homotopy h :Mf × I →Mf mapping as ([(x, s)], t) 7→ [(x, (1− t)s)] on X× I and
(y, t) 7→ y on Y . This is indeed a homotopy from ir to idMf . Thus, r : Mf → Y establishes
that Y is a deformation retract of the mapping cylinder Mf .
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Hence, one can replace a map of spaces f : X → Y by a cofibration j : X → Mf followed by a
homotopy equivalence r :Mf → Y .

We now discuss an important characterization of cofibrations. For this we define first the
following notion.

Definition 5.2.1.9 (Neighborhood deformation retract). A pair (X,A) where A ⊆ X is a neigh-
borhood deformation retract (NDR) if there exists a map u : X → I such that u−1(0) = A and a
homotopy h : X × I → X such that h(x, 0) = idX(x) = x, h(a, t) = a for all a ∈ A and all t ∈ I and
h(x, 1) ∈ A if u(x) < 1.

Remark 5.2.1.10. Let (X,A) be an NDR-pair. If u(X) ⊆ [0, 1), then A ↪→ X is a closed subspace
which is a deformation retract of X .

Theorem 5.2.1.11. Let A be a closed subsapce of X . Then the following are equivalent:
1. (X,A) is an NDR-pair.
2. i : A→ X is a cofibration.

We now define the notion of homotopy equivalence under a space. This will come in handy
later. Recall that if C is a category c ∈ C is an object, then Cc/ denotes the under category at c, i.e.,
where objects are i : c→ a and maps are commutative triangles

c

a b

i j

f

.

Definition 5.2.1.12 (Relative homotopy). Let i : A→ X and j : A→ Y be in Topcg
A/

. Let f, g : X ⇒

Y be maps in Topcg
A/

. Then h : X × I → Y is a homotopy rel A between f and g if h(x, 0) = f(x),
h(x, 1) = g(x) and h(i(a), t) = j(a) for all a ∈ A and t ∈ I .

The notion of homotopy equivalence rel A is special as the Theorem 5.2.1.14 shows, hence we
give it the following name.

Definition 5.2.1.13 (Cofiber homotopy equivalence). Let i : A→ X and j : A→ Y be two spaces
under A in Topcg

A/
. If i and j homotopy equivalent under A, then X and Y are said to be cofiber

homotopy equivalent.

Theorem 5.2.1.14. Let i : A→ X and j : A→ Y be two cofibrations under A and f : X → Y be a map
under A. If f is a homotopy equivalence, then f is a cofiber homotopy equivalence.

Example 5.2.1.15. Let i : A→ X be a cofibration. Then by Construction 5.2.1.8, we have

Mi

A X
i

j r

where j is a cofibration and r is a homotopy equivalence. Since r is a homotopy equivalence under
A, therefore by Theorem 5.2.1.14, r is a cofiber homotopy equivalence. Consequently, there is a
homotopy inverse κ : X →Mi of r under A.
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The following is a mild generalization of Theorem 5.2.1.14 in the sense that we allow mapping
between two cofibration pairs now.

Proposition 5.2.1.16. Let (X,A) and (Y,B) be two cofibration pairs and let f : X → Y and d : A→ B
be maps such that f |A = d. If f and d are homotopy equivalences, then the map of pairs (f, d) : (X,A)→
(Y,B) is a homotopy equivalence of pairs9.

We next portray how a cofibration pair (X,A) in some cases behaves homotopically same as
the quotient X/A.

Proposition 5.2.1.17. Let i : A → X be a cofibration and A be contractible. Then the quotient map
p : X ↠ X/A is a homotopy equivalence.

Proof. As A is contractible, therefore for some x0 ∈ A, we have a homotopy h : A × I → A such
that h0 = idA and h1 = cx0 . Consequently, we obtain h̃ as in the commutative square

A A× I

X X X × I

i

id

i0

h
i×id

h̃

i0

where we have h̃0 = idX , h̃t(A) ⊆ A for all t ∈ I and h̃1(A) = {x0} ∈ A. Consequently, h̃1 fits in
the following diagram

X

X/A X

p

g

h̃1

where g : X/A → X comes from the universal property of quotients. We claim that g is the
required homotopy inverse of p. Indeed, by definition h̃ : idX ≃ g ◦ p. Consequently, we need
only show that idX/A ≃ p ◦ g. We derive this homotopy from h̃ as well. Indeed, for any t ∈ I , we
obtain q̃t by universal property of quotients as in

X X

X/A X/A

p

q̃t

h̃t

p .

It follows that the homotopy q̃ : X/A × I → X/A is such that q̃0 = idX/A and q̃1 = p ◦ g, as
needed.

Let us end this section by discussing how we will tell the same story in the based setting.

Remark 5.2.1.18 (Based cofibration). A based map i : A→ X is a based cofibration if it satisfies the
based version of homotopy extension property. The following are few remarks which are easily
verifiable of the situation in the based case.

9as defined in Definition 5.4.1.1.
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1. If a based map i : A→ X is an unbased cofibration, then it is a based cofibration.
2. If A ⊆ X is a closed subspace such that ∗ → A and ∗ → X are cofibrations and i : A→ X is

a based cofibration, then i : A→ X is an unbased cofibration.
3. A based map i : A→ X is a based cofibration if and only if M∗i is a retract of X ∧ I+.

We see the following example of above remark.

Lemma 5.2.1.19. Let X be a based space. Then the inclusion X ↪→ CX to the base of the cone
1. is a deformation retract,
2. is a cofibration.

Proof. The inclusion map is x 7→ [x, 0]. The fact that X is deformation retract is immediate by the
based homotopy h : CX × I → CX given by ([x, t], s) 7→ [x, t(1− s)]. We will use Remark 5.2.1.18,
3 for showing i : X ↪→ CX is a cofibration. Indeed, consider the map CX ∧ I+ → M∗i given by
[[x, t], s] 7→ [x, s+ t]. The inclusion M∗i→ Y ∧ I+ is the map which on CX is [x, t] 7→ [[x, t], 0] and
on X ∧ I+ is [x, t] 7→ [[x, 0], t]. One checks that this makes M∗i a retract of CX ∧ I+.

5.2.2 Based cofiber sequences

The main point of cofiber sequences is to obtain an exact sequence of groups, which will prove
to be helpful later. All cofibrations in this section are based cofibrations. We first observe that
[ΣX,Y ] is a group.

Proposition 5.2.2.1. Let X,Y be based spaces. Then
1. [ΣX,Y ] is a group under concatenation,
2. [Σ2X,Y ] is an abelian group under the same operation.

Proof. The concatenation operation here is as follows : for f, g ∈Map∗(ΣX,Y ), define f + g as

(f + g)([(x, t)]) :=
®
f([(x, 2t)]) if 0 ≤ t ≤ 1/2
g([x, 2t− 1]) if 1/2 ≤ t ≤ 1.

This tells us that [ΣX,Y ] ∼= [X,ΩY ] is a group. The second statement uses Theorem 5.0.0.8 to
observe that a map Σ2X → Y is a map S1∧S1 = S2 →Map∗(X,Y ). Hence we reduce to showing
that [S2, X] is an abelian group, this is well-known.

Definition 5.2.2.2. (Homotopy cofiber/Mapping cone) Let f : X → Y be a based map and let
j : X → M∗f , x 7→ (x, 1) be it’s cofibrant replacement. The homotopy cofiber Cf of f is defined
to be the quotient of the based mapping cylinder M∗f of f by the image of the map j taking
x 7→ (x, 1). That is,

Cf :=M∗f/j(X).

Alternatively, it is the pushout Cf = Y ∪f CX .

There is a relationship between unbased cofiber and based cofiber.

Lemma 5.2.2.3. Let X be an unbased space. Then the unreduced cone of X is isomorphic to the reduced
cone of pointification of X . That is,

CX ∼= CX+.
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Proof. We have

CX+ = X+ ∧ I = X+ × I
{pt.} × I ⨿X × {1} = X × I ⨿ {pt.} × I

{pt.} × I ⨿X × {1}
∼=

X × I
X × {1} = CX,

as needed.

This is an important observation, as it says that unreduced homotopy cofiber is isomorphic to
the homotopy cofiber of the poinitification.

Proposition 5.2.2.4. Let X,Y be unbased spaces and f : X → Y be an unbased map. Then the unreduced
homotopy cofiber of f is isomorphic to the homotopy cofiber of f+ : X+ → Y+. That is,

Cf ∼= Cf+.

Proof. By Lemma 5.2.2.3, we can write

Cf+ = Y+ ∪f+ CX+ ∼= Y+ ∪f+ CX

whereX+ → CX is the map which takes pt. 7→ [x, 1] as the basepoint ofCX is [x, 1]. Consequently,
Y+ ∪f+ CX is isomorphic to Y ∪f CX .

Remark 5.2.2.5. It follows from Proposition 5.2.2.4 that there is really no difference between re-
duced and unreduced cofiber as unreduced cofiber is really a special case of reduced cofiber by
pointification.

The following result shows that the homotopy cofiber of a based cofibration is is of the same
homotopy type as X/A. This is an important property of cofibrations.

Proposition 5.2.2.6. Let i : A→ X be a based cofibration between based spaces. Then,
1. Ci/CA ∼= X/A,
2. π : Ci→ Ci/CA is a based homotopy equivalence.

Proof. TODO.

Pictorially, one sees that the mapping cone Cf of f : X → Y is obtained by gluing Y to the
cone of X at it’s base. We are now ready to construct cofiber sequence of a based map f : X → Y .

Construction 5.2.2.7 (Cofiber sequence). Let f : X → Y be a based map and denote Cf to be
the mapping cone of f . We have a natural map i : Y → Cf which is the inclusion of Y into the
mapping cone. This is a cofibration because it is the pushout (Lemma 5.2.1.2) of the inclusion
X → CX of X into the 0-th level of the cone CX and this inclusion is a cofibration (Lemma
5.2.1.19). The sequence X → Y → Cf is called the short cofiber sequence of f .

Consider also the map−Σf : ΣX → ΣY which maps [(x, t)] 7→ [(f(x), 1− t)]. We have another
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natural map from the mapping cone to its quotient by Y given by π : Cf → Cf/Y ∼= ΣX . We
then get the following sequence of based maps, called the long cofiber sequence of map f :

X Y Cf

ΣX ΣY ΣCf

Σ2X Σ2Y Σ2Cf

f i

π

−Σf
−Σi

−Σπ

Σ2f

Σ2i

The main theorem that will be used continuously elsewhere is that cofiber sequence of a map
gives a long exact sequence in homotopy sets. First, recall that for any based space Z, we have the
homotopy classes of maps [X,Z]. Moreover, [−, Z] is contravariantly functorial as for any based
map f : X → Y , we get

[f, Z] : [Y, Z] −→ [X,Z]
g 7−→ g ◦ f.

We are now ready to state the main theorem.

Theorem 5.2.2.8 (Main theorem of cofiber sequences). Let f : X → Y be a based map and Z be a
based space in Topcg∗ . Then the functor [−, Z] applied on the long cofiber sequence of f yields a long exact
sequence of based sets:

[Σ2Cf,Z] [Σ2Y,Z] [Σ2X,Z]

[ΣCf,Z] [ΣY,Z] [ΣX,Z]

[Cf,Z] [Y,Z] [X,Z]

π∗

i∗ f∗

The proof of this theorem relies on the following fundamental observation.

Proposition 5.2.2.9. Let f : X → Y be a based map and Z be a based space. Consider the short cofiber
sequence

X
f−→ Y

i−→ Cf.

Then the sequence of based sets

[Cf,Z] −→ [Y,Z] −→ [X,Z]

is exact.



224 CHAPTER 5. FOUNDATIONAL HOMOTOPY THEORY

Proof. Let g ∈ [Y,Z] such that gf ≃ c∗ in [X,Z]. We wish to show that there is a map k ∈ [Cf,Z]
such that ki ≃ g in [Y,Z]. We first have a based homotopy h : X × I → Z between gf and c∗. As
h is constant on X ∨ I , therefore we obtain a map h̄ : CX → Z. Note that the following pushout
diagram commutes so to give a unique map k : Cf → Z

Z

Cf CX

Y X
f

i0i
⌜

g

h̄
k

Hence we have that ki = g, hence we don’t even need to construct a homotopy between ki and
g.

We will now show that each term in the cofiber sequence is obtained by taking cofiber of the
previous map. For that, we would need the following small result.

Lemma 5.2.2.10. Let f : X → Y be a based map. Then,
1. We have a natural based homeomorphism ΣCf ∼= CΣf .
2. The suspension functor takes the short cofiber sequence

X
f−→ Y

i−→ Cf

to a short cofiber sequence

ΣX Σf−→ ΣY Σi−→ ΣCf.

Proof. The first one follows from Σ being a left adjoint. The second statement follows from first
statement as we have the following isomorphism

ΣX ΣY ΣCf

CΣf

Σf Σi

∼= .

This completes the proof.

Proposition 5.2.2.11. Let f : X → Y be a based map. Then each consecutive pair of maps in the long
cofiber sequence of f is a short cofiber sequence.

Proof. Note that the following square commutes

ΣCf Σ2X Σ2Y

CΣf Σ2X Σ2Y

∼= τ

Σπ

π′

−Σ2f

Σ2f
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where τ([x, t, s]) = [x, s, t] is a homeomorphism and π′ : CΣf → CΣf/ΣY is the quotient map.
We claim that τ is homotopic to −id, where (−id)([x, t, s]) = [x, t, 1 − s]. With this claim and
Lemma 5.2.2.10, we would reduce to showing that Y → Cf → ΣX and Cf → ΣX → ΣY in the
cofiber sequence of f are short cofiber sequences.

To see a based homotopy between τ and −id as based maps Σ2X → Σ2X , we see that the
following map will work

h : Σ2X × I −→ Σ2X

([x, t, s], r) 7−→ [x, (1− r)s+ rt, (1− r)t+ r(1− s)].

We now wish to show that the two pairs are short cofiber sequenes. The fact that Y → Cf → ΣX
is a short cofiber sequence is immediate from Proposition 5.2.2.6 as it will yield the following
diagram

Ci

Y Cf ΣX
i π

π′
≃ .

The fact that Cf → ΣX → ΣY is also a short cofiber sequence follows from the following diagram
which can be seen to be commutative, albeit requires a lot of work:

Cf ΣX ΣY

Cf Ci Ci/Cf

π −Σf

≃ ∼=

π′ π′′

.

This completes the proof.

5.3 Fibrations and fiber sequences

We now study fibrations, which is a generalization of covering spaces. Indeed, recall that covering
spaces satisfies homotopy lifting property. That becomes the definition of a fibration. Indeed, one
can have a fruitful time reading about fibrations by keeping the basic results about covering spaces
in mind. We’ll see that familiar objects from geometry are fibrations (fiber bundles, for example).

5.3.1 Definition and first properties

Definition 5.3.1.1 (Fibrations). A surjective map p : E → B is a fibration if it satisfies homotopy
lifting property. That if, for any map f : Y → E and any homotopy h : Y × I → B such that
p ◦ f = h ◦ i0, there exists h̃ : Y × I → E such that the following commutes

Y E

Y × I B

i0

h

p

f

h̃ .
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Just as pushouts of cofibrations along any map is a cofibration, we have pullback of a fibration
along any map is a fibration.

Lemma 5.3.1.2. Let p : E → B be a fibration and g : A→ B be any map. Then the pullback of p along g
given by p′ : E ×B A→ A is a fibration.

Proof. Consider the following diagram

Y E ×B A E

Y × I A B

i0

h

p′

f π

p

g

.

As p is a fibration, we yield a homotopy h̃1 : Y × I → E as in

Y E

Y × I B

i0

gh

p

πf

h̃1 .

Consequently, we get a pullback diagram

Y × I E ×B A E

A B

p

g

p′

π

⌟

h

h̃1

!h̃

which yields h̃ : Y × I → E ×B A. We claim that this is the required homotopy extension. We
immediately have p′h̃ = h from the above diagram. We need only show that h̃i0 = f . To this end,
consider the following pullback square

Y E ×B A E

A B

p

g

p′

π

⌟

hi0

πf

!κ

which yields a unique κ : Y → E ×B A. It follows that both f and h̃i0 satisfies the same com-
mutation properties as κ. It follows from uniqueness of κ w.r.t. these properties that h̃i0 = f , as
required.

We now introduce a sort of intermediary space for further studying fibrations.
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Definition 5.3.1.3 (Mapping path space). Let f : X → Y be a map. The mapping path space Nf
is defined to be the following pullback

Nf := X ×Y Y I X

Y I Y

f

p0

⌟

where p0 : Y I → Y takes γ 7→ γ(0).

Remark 5.3.1.4. Consequently, the mapping path space Nf = {(x, γ) ∈ X × Y I | f(x) = γ(0)}.
Hence a point in Nf is the data of a point x ∈ X upstairs and a path γ ∈ Y I starting downstairs at
the image of x under f .

With regards to mapping path spaces, one important type of functionNf is that of a path lifters.

Definition 5.3.1.5 (Path lifters). Let f : X → Y be a map. Let k : XI → Nf be the unique map
obtained by the following pullback diagram

XI Nf X

Y I Y

f

p0

⌟

p0

fI

k

.

A path lifter s : Nf → XI is a global section of k, i.e. k ◦ s = idNf .

Remark 5.3.1.6. The main content of a path lifter s : Nf → XI is the fact that its a global section of
k. That is, if we let γ̃ = s(x, γ) ∈ XI , then k(γ̃) = (p0(γ̃), f ◦γ̃) = (x, γ). It follows that s(x, γ) = γ̃ is
a lift of the path γ ∈ Y I starting at f(x) to a path γ̃ ∈ XI starting at x. We may keep the following
picture in mind (Figure 5.2).

Figure 5.2: Path lifter s taking (x, γ) downstairs to a lift s(x, γ) in X upstairs.
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Remark 5.3.1.7. (Covering maps have a unique path lifter). Recall that a covering space p : E → B has
unique homotopy lifting property, hence in particular it is a cofibration. Furthermore recall that a
covering space also has unique path lifting property, hence in particular it has a unique path-lifter.

We have the following reduction of fibration criterion to mapping path space.

Proposition 5.3.1.8. Let p : E → B be a surjective map. Then the following are equivalent:
1. p is a fibration.
2. p satisfies homotopy lifting property for the natural projection map Np→ E.

Proof. 1. ⇒ 2. is definition. For 2. ⇒ 1. we proceed as follows. Consider the following diagram

Y E Np

Y × I B BI

i0

h

p

f π

η

p0

⌟
.

We may write h : Y × I → B as hT : Y → BI . Observe that p0hT = pf , leading to the following
unique map κ : Y → Np as below

Y Np E

BI B

p

π

η

p0

⌟

hT

f

κ

.

Similar to hT , we also have ηT : Np× I → B. It is immediate from ηκ = hT that ηT (κ× id) = h :
Y × I → B. Consequently, we have the following commutative diagram

Y Np E

Y × I Np× I B

i0 i0

κ×id

κ

p

ηT

π

η̃T

h

f

and composing η̃T with κ× id yields the required lift of h.

Proposition 5.3.1.9. Let p : E → B be a map. Then the following are equivalent:
1. p : E → B is a fibration.
2. There exists a path lifter s : Np→ EI .

Proof. The forward direction is immediate from dualizing the homotopy lifting property into map-
pings into path space. For the converse, use Proposition 5.3.1.8.

We see that map that the canonical maps p0, p1 : Y I → Y is a fibration.
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Lemma 5.3.1.10. Let Y be a space. The map

p0 : Y I −→ Y

γ 7−→ γ(0)

is a fibration.

Proof. By Proposition 5.3.1.9, it suffices to show that there is a path lifter s : Np0 → Y I×I , i.e. a
global section of k : Y I×I → Np0 mapping h(s, t) 7→ (h(s, 0), h(0, t)). Indeed, we define s((γ1, γ2))
for γi ∈ Y I such that γ1(0) = γ2(0) by the following homotopy square:

γ1

γ2

t

s

This gives us a map h ∈ Y I×I such that h(0, t) = γ1 and h(s, 0) = γ2. This completes the proof.

Let f : X → Y be an arbitrary map of spaces. We can replace f by a homotopy equivalence
followed by a fibration.

Construction 5.3.1.11 (Replacement by a homotopy equivalence and a fibration). Let f : X → Y
be a map. Consider the following commutative triangle

X Y

Nf

f

ν ρ

where

ν : X −→ Nf

x 7−→ (x, cf(x))

and

ρ : Nf −→ Y

(x, γ) 7−→ γ(1).

We now make the following claims:
1. Map ν is a homotopy equivalence. Indeed, consider the natural projection map π : Nf → X

given by (x, γ) 7→ x. We claim that π is a homotopy inverse of ν. Indeed, πν = idX is
immediate. We claim νπ ≃ idNf . Indeed, we may consider the homotopy

h : Nf × I −→ Nf

((x, γ), t) 7−→ (x, γt)

where γt(s) = γ((1− t)s).
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2. Map ρ is a fibration. Let g : A→ Nf be a map such that the following square commutes

A Nf

A× I Y

i0

h

ρ

g

.

We wish to construct h̃ : A × I → Nf which would lift h. Indeed, let g(a) = (g1(a), g2(a))
where g1 : A→ X and g2 : A→ Y I are the component functions. In order to construct h̃, we
need only construct α : A× I → Y I and β : A× I → X such that the following holds (these
are obtained by unravelling ρh̃ = h, h̃i0 = g and the respective pullback square):

(a) fβ = p0α,
(b) β(a, 0) = g1(a),
(c) α(a, 0) = g2(a),
(d) α(a, t)(1) = h(a, t).

We may immediately set β(a, t) = g1(a). For α : A × I → Y I , we may dually write α as
α : A × I × I → Y (recall we are in compactly generated spaces, where the dual notion of
homotopy is equivalent to the usual one). We construct this α as follows. Fix a ∈ A. We then
define the following homotopy

s = 0

s = 1

t = 0 t = 1

h(a, t)

g2(a)(s)
s = 1

1+t

t

s = 1
2

which more explicitly is given by

α(a, t, s) =
®
g2(a)(s · (1 + t)) if 0 ≤ s ≤ 1

1+t
h(a, s · (1 + t)− 1) if 1

1+t ≤ s ≤ 1.

One can then observe that this α satisfies conditions (a), (c) and (d) mentioned above.

5.3.2 Bundles and change of fibers

We now see that, under some mild hypothesis, fibration is a local property on base. As a conse-
quence, we will show that under some mild hypothesis any bundle (Definition 3.7.1.2) is a fibra-
tion.

An open cover {Uα} of B will be called numerable if for each α, there is a map fα : B → I such
that f−1α ((0, 1]) = Uα and {Uα} is a locally finite cover.
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Theorem 5.3.2.1. Let p : E → B be a map and {Uα} be a numerable open cover of B. Then the following
are equivalent:

1. p : E → B is a fibration.
2. p : p−1(Uα)→ Uα is a fibration for each α.

Proof. 1. ⇒ 2. is immediate from Lemma 5.3.1.2.

(2. ⇒ 1.) The main idea is to patch up the lifts of a homotopy that we obtain by virtue of each
p|p−1(Uα) being a fibration. TODO.

We claimed in the beginning that fibrations are upto homotopy generalizations of covering
spaces/certain bundles. We know that such objects have homeomorphic fibres (say, when base
is path-connected). This fact can be generalized to fibrations which would yield that fibres of a
fibration may not be homeomorphic, but will be of same homotopy type!

Construction 5.3.2.2. (Homotopy invariance of path-lifting for fibrations). We now show that a path γ
in the base gives a map of fibers which is invariant under homotopy class of γ.

In particular, let p : E → B be a fibration and γ : I → B be a path from b to b′ in B. Let Eb
and Eb′ be fibers at b and b′ respectively under p. We claim that we get a map γ̃ : Eb → Eb′ whose
homotopy class is independent of the path γ upto homotopy.

We first construct γ̃ : Eb → Eb′ . Indeed, we have the following diagram

Eb E

Eb × I I B

p

γπ2

i0

i

Hγ

by virtue of fibration p. Observe that Hγ,1(e) = Hγ(e, 1) is such that pHγ(e, 1) = γ(1) = b′ for all
e ∈ Eb. Consequently, γ̃ = Hγ,1 : Eb → Eb′ is the required map. This shows the construction of γ̃.
We now show that its homotopy class is invariant of homotopy class of γ.

Let γ, η ∈ BI be two paths joining b and b′ together with a homotopy h : I × I → B rel {0, 1}
such that h0 = γ and h1 = η, that is h is a homotopy between γ and η through paths joining b
and b′. We wish to show that γ̃ and η̃ are homotopy equivalent as well. To this end, we need to
construct a homotopy h̃ : Eb × I → Eb′ satisfying h̃0 = γ̃ = Hγ,1 and h̃1 = η̃ = Hη,1.

Fix an e ∈ Eb. Our goal is to fill the right side of this square continuously with e ∈ Eb

Hγ

Hη

i
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where i : Eb ↪→ E the inclusion. To this end, we first observe that there is a homeomorphism of
pairs

(I × I, S) α−→ (I × I, I × 0)

where S is the union of three sides of the square as shown above; S = I × {0, 1} ∪ {0} × I . Using
this homeomorphism, we obtain the following square

Eb × S E

Eb × I × I I × I B

k

κ h

f

pl

where k = ι(id × α) where ι : Eb × (I × 0) ↪→ Eb × (I × I) and κ(e, t, s) = α−1(t, s). Moreover,
f : Eb × S → E is defined as in the incomplete square above; on I × {0}, f is given by Hγ , on
I×{1}, f is given byHη and on 0×I , f is given by i. .Observe that κk(e, t, s) = (t, s). The fact that
this is a commutative square is immediate. It follows from p being a fibration that there is a lift
l : Eb × I × I → E which fits in the above commutative square. Consequently, we have pl = hπ2
and lk = f . By appropriately composing l with α and replacing l with this composition, we get
that l : Eb × I × I → Eb′ which is given by following schematic homotopy cube, which we leave
the reader to draw. Consequently, we get the following map h̃ : Eb × I → Eb′ where

h̃(−, s) := l(−, 1, s) : Eb × I → Eb′

where l(e, 1, s) ∈ Eb′ because h(1, s) ∈ b′ (h is a homotopy through paths joining b and b′). More-
over, h̃(e, 0) = l(e, 1, 0) = Hγ,1(e) = γ̃(e) and h̃(e, 1) = Hη,1(e) = η̃(e). Thus, h̃ is the required
homotopy between γ̃ and η̃.

5.3.3 Based fiber sequences

Just as for cofibrations, we had a long cofiber sequence, similarly we have a long fiber sequence
for a map of based spaces. As is customary, for based case, we change the definition of mapping
path space of f : X → Y , to Nf = {(x, γ) | f(x) = γ(1)}. We thus define homotopy fiber of a map
and construct the short and long fiber sequences of a map.

Definition 5.3.3.1 (Homotopy fiber/Mapping path space). Let f : X → Y be a based map of
based spaces. The homotopy fiber of f , denoted Ff , is the following pullback space:

Ff X

PY Y

π

⌟
f

p1

.

Remark 5.3.3.2 (Homotopy fiber is the fiber of mapping path space). Let f : X → Y be a based
map. Denote Nf = X ×Y Y I = {(x, γ) ∈ X × Y I | f(x) = γ(1)} to be the mapping path space of
Y . Then, we have a map

q : Nf −→ Y

(x, γ) 7−→ γ(0).
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As the base point of Nf is (∗, c∗) which is mapped to ∗ under q, thus, q is based as well. Moreover,
the fiber of q is

q−1(∗) = {(x, γ) | f(x) = γ(1) & γ(0) = ∗}.

Hence, q−1(∗) = Ff , as required.

We first see why this is called homotopy fiber.

Lemma 5.3.3.3. Let f : X → Y be a based map of based spaces.
1. The map π : Ff → X is a fibration.
2. If ρ : Nf → Y is the fibration replacement of f (Construction 5.3.1.11) where Nf is the mapping

path space of f , then

ρ−1(∗) = Ff.

Proof. For item 1, consider the fibration p1 : PY → Y (Lemma 5.3.1.10). By Lemma 5.3.1.2, we
see that π : Ff → X as above is a fibration. For item 2, recall that ρ(x, γ) = γ(0). Thus, we have
ρ−1(∗) = {(x, γ) ∈ Nf | γ(0) = ∗, γ(1) = f(x)}. But this is exactly the fiber Ff as PY is the based
path space.

We expect the fiber of a fibration to be homotopy equivalent to the homotopy fiber. Indeed it
is true.

Proposition 5.3.3.4. Let p : E → B be a based fibration. Then the fiber F := p−1(∗) is based homotopy
equivalent to homotopy fiber Fp.

Proof. Let F = p−1(∗). Consider the map

φ : F −→ Fp

e 7−→ (e, c∗).

Indeed as p1(c∗) = ∗ = p(e), so (e, c∗) ∈ Fp. To construct a homotopy inverse, we will begin from
the mapping path space of p. Recall from Remark 5.3.3.2 that Fp is the fiber of mapping path space
q : Np→ B, (e, γ) 7→ γ(0). Consider the following homotopy

H : Np× I −→ B

((e, γ), t) 7−→ γ(1− t).

Observe that the following map commutes where the top horizontal map is (e, γ) 7→ e, so that we
get H̃ as shown:

Np E

Np× I B

i0 pH̃

H

.

Define the following homotopy using H̃ :

G : Fp× I −→ Fp

((e, γ), t) 7−→
Ä
H̃((e, γ), t), γ|[0,1−t]

ä
.
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Indeed, as p(H̃((e, γ), t) = H((e, γ), t) = γ(1 − t) = p1(γ|[0,1−t]), thus G is well-defined. Let
g : Fp× I → E given by ((e, γ), t) 7→ H̃((e, γ), t), that is the first coordinate of homotopy G. Then
consider the map

ψ : Fp −→ F

(e, γ) 7−→ g((e, γ), 1).

Indeed, as p(H̃((e, γ), 1)) = H((e, γ), 1) = γ(1−1) = γ(0) = ∗ as (e, γ) ∈ Fp, thusψ is well-defined.
We claim that ψ is the homotopy inverse of φ. Indeed, we have

φ ◦ ψ : Fp −→ Fp

(e, γ) 7−→ (g((e, γ), 1), c∗).

Observe that G1(e, γ) = (g((e, γ), 1), c∗) and G0 = idFp, so that G forms a homotopy between φ◦ψ
and id. Conversely, we have

ψ ◦ φ : F −→ F

e 7−→ g((e, c∗), 1) = H̃((e, c∗), 1).

Consider the restriction of G onto the subspace T of elements ((e, c∗), t) ∈ Fp × I . Note that G
maps onto T as well. Thus we have G : T × I → T and G1(e, c∗) = H̃((e, c∗), 1) and G0 = idT .
Moreover, observe that F → T , e 7→ (e, c∗) is a homeomorphism. Hence the above restriction of G
is a homotopy from ψ ◦ φ to idF . This completes the proof.

Construction 5.3.3.5 (Fiber sequence). Let f : X → Y be a based map of based spaces. Consider
the following three maps

π : Ff −→ X

(x, γ) 7−→ x

ι : ΩY −→ Ff

γ 7−→ (∗, γ).

The sequence

Ff
π−→ X

f−→ Y

is called the short fiber sequence.
We can continue the above short fiber sequence into a long fiber sequence as follows. Consider

the functor −Ω : Topcg∗ → Topcg∗ taking X to ΩX and f : X → Y to −Ωf : −ΩX → −ΩY given by
γ(t) 7→ f ◦ γ(1− t). Thus, we get the following sequence of maps

Ω2Ff Ω2X Ω2Y

ΩFf ΩX ΩY

Ff X Y

Ω2π

Ω2f

−Ωι

−Ωπ
−Ωf

ι

π f
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which we call the long fiber sequence of f : X → Y .

The main theorem is the following, which associates an exact sequence of based sets to the
long fiber sequence.

Theorem 5.3.3.6 (Main theorem of fiber sequences). Let f : X → Y be a based continuous map of
based spaces and Z be a based space. Then, the long cofiber sequence of f induces a long exact sequence of
based homotopy sets:

[Z,Ω2Ff ] [Z,Ω2X] [Z,Ω2Y ]

[Z,ΩFf ] [Z,ΩX] [Z,ΩY ]

[Z,Ff ] [Z,X] [Z, Y ]π∗ f∗

Taking Z = S0 and recalling the suspension-loop space adjunction (Proposition 5.0.0.10), we
immediately get the following long exact sequence of homotopy groups.

Corollary 5.3.3.7 (Homotopy L.E.S.-1). Let f : X → Y be a based map of based space. Then the fiber
sequence of f induces the following long exact sequence of homotopy groups (basepoint suppressed):

π2(Ff) π2(X) π2(Y )

π1(Ff) π1(X) π1(Y )

π0(Ff) π0(X) π0(Y )

∂

π∗

f∗

∂

π∗

f∗

∂

π∗

f∗

.

5.3.4 Serre spectral sequence

For any fibration (more generally, for Serre fibration) p : E → B, there is a spectral sequence
converging to homology of the total space E.

Theorem 5.3.4.1. Let F i→ E
π→ B be a Serre fibration with fiber F . If B is simply connected, then there

is a first quadrant homology spectral seqeunce converging to homology of E:

E2
pq = Hp(B;Hq(F ))⇒ Hp+q(E).

See cite[HopSSeq] for a proof. We will see some applications of the above spectral sequence
below.
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Theorem 5.3.4.2 (Loop fibration). Let ΩB → PB
π→ B be the loop space fibration where π(γ) = γ(1)

(see Lemma 5.3.1.10). Then,
1. H1(ΩB;Z) ∼= H2(B;Z),
2. there is an exact sequence

H4(B)→ H2(B)⊗H2(B)→ H2(ΩB)→ H3(B)→ 0.

Theorem 5.3.4.3 (Fibrations over Sn/Wang sequence). Let F i→ E
π→ Sn be a fibration for n ≥ 2.

Then there is a long exact sequence

Hq−n+1(F ) Hq(F ) Hq(E)

Hq−n(F ) Hq−1(F ) Hq−1(E)

dn−1

i∗

dn
i∗

.

Theorem 5.3.4.4 (Sphere fibrations/Gysin sequence). Let Sn i→ E
π→ B be a fibration for n ≥ 1 and

B be simply connected. Then there is a long exact sequence

Hp−n(B) Hp(E) Hp(B)

Hp−n−1(B) Hp−1(E) Hp−1(B)

π∗

dn+1

π∗

.

We discuss some more general properties now.

Useful properties of Serre spectral sequence
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Acyclic fiber theorem

Theorem 5.3.4.5 (Acyclic fiber). Let f : X → Y be a based map between connected CW-complexes. Then
the following are equivalent:

1. For all k ≥ 0, we have

f∗ : Hk(X;M)
∼=→ Hk(Y ;M)

for every π1(Y )-module M10.
2. The homotopy fiber Ff of f is acyclic11.

Proof.

10That is, M is a left Z[π1(Y )]-module.
11that is, Ff has homology of a point.
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5.4 Homology theories

We will begin by introducing (co)homology from an axiomatic point of view and will derive few
properties off of it. This will come in handy for discussing the main properties of differential man-
ifolds in (co)homological language, especially characteristic classes and orientations and what not.
The main thing that we wish to do is the Hurewicz theorem, which will allow us to connect ho-
motopy groups and homology groups on the one hand, and will allow us to prove the uniqueness
of homology theories for CW complexes on the other hand.

All spaces X are assumed to be compactly generated (Definition 5.0.0.1).
We will use the theory of cofibrations and fibrations as developed above quite freely.

5.4.1 Homology theories

We begin with the category of pairs on which homology theories are defined.

Definition 5.4.1.1 (Top2). The Top2 denotes the category of pairs (X,A) of spaces where A ↪→ X
and maps (X,A)→ (Y,B) which consists of the pair f : X → Y and g : A→ B such that g = f |A.
A map of pairs (f, d) : (X,A) → (Y,B) is said to be a homotopy equivalence if there is a map of
pairs (g, e) : (Y,B)→ (X,A) and there are homotopies H : g ◦ f ≃ idX and K : f ◦ g ≃ idY which
extends the homotopies h : e ◦ d ≃ idA and k : d ◦ e ≃ idB respectively.

Definition 5.4.1.2. (Homology theory) A homology theory for an abelian group π is a sequence
of functors

Hq(−,−;π) : Top2 −→ AbGrp

for q ∈ Z equipped with natural transformations

∂ : Hq(−,−;π) −→ Hq−1(−,−;π)

whose component at (X,A) is given by ∂ : Hq(X,A;π) → Hq−1(A, ∅;π). Denote Hq(X;π) :=
Hq(X, ∅;π). This data must satisfy the following axioms:

1. (Homology of a point) : If X = {pt.}, then homology must be concentrated at degree 0:

Hq({pt.};π) =
®
π if q = 0,
0 if q ̸= 0.

2. (Homology long exact sequence) : The trivial inclusions A ↪→ X and (X, ∅) ↪→ (X,A) induces
the following long exact sequence:

. . .

Hq(A;π) Hq(X;π) Hq(X,A;π)

Hq−1(A;π) Hq−1(X;π) Hq−1(X,A;π)

. . .

∂

∂

∂

.
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3. (Excision invariance) : For an excisive triple (X,A,B), that is A,B ↪→ X and X = A◦∪B◦, the
inclusion (A,A ∩B) ↪→ (X,B) induces an isomorphism at all degree q ∈ Z:

Hq(A,A ∩B;π) Hq(X,B;π)
∼= .

4. (Coproduct preserving) : If (Xi, Ai) is an arbitrary collection of objects in Top2, then the homol-
ogy in any degree of their disjoint union is the sum of the corresponding homology groups:

⊕
i

Hq(Xi, Ai;π)
∼=−→ Hq

Ç∐
i

(Xi, Ai);π
å

where the maps are induced by the inclusions (Xi0 , Ai0) ↪→
∐
i(Xi, Ai).

5. (π∗-insensitivity) : If f : (X,A) −→ (Y,B) is a weak equivalence, then in all degrees the
corresponding homology groups are isomorphic:

fp : Hq(X,A;π)
∼=−→ Hq(Y,B;π).

Remark 5.4.1.3. In nature, there are some homology theories which satisfy all of the above axioms
except the dimension axiom, that is, the group that they assign to a point is not concentrated in
degree 0 (axiom 1. above). A famous example of this is K-theory via the Bott-periodicity theorem.
One calls such a homology theory to be a generalized homology theory. All results that we will derive
here will hold true for a generalized homology theory Eq.

General properties

We now discuss some general properties of homology theories that one can deduce from the ax-
ioms.

Proposition 5.4.1.4. Let π be a group and Eq be a generalized homology theory. Let X be a space.
1. If A ↪→ X

r→ A is a retract of X , then the following natural maps form a short-exact sequence of
E-homology groups:

0→ Eq(A)→ Eq(X)→ Eq(X,A)→ 0.

2. Eq(X,X) ∼= 0.

Proof. 1. The fact that Eq(A) → Eq(X) is injective follows from a set theoretic observation; any
factorization of identity is a monic followed by an epic. By homology long-exact sequence, we
then have that all boundary maps ∂ are trivial. It follows that maps Eq(X) → Eq(X,A) is surjec-
tive. The exactness at middle is given by the homology long-exact sequence.
2. SinceX is always a retract of itself, therefore from item 1, it follows thatEq(X,X) ∼= Eq(X)/Eq(X) ∼=
0.

The following is a long exact sequence in homology that one obtains from a triplet (X,A,B)
where X ⊇ A ⊇ B.
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Proposition 5.4.1.5 (Triplet long-exact sequence). Let (X,A,B) be a triplet and denote i : (A,B) ↪→
(X,B) and j : (X,B) ↪→ (X,A) to be inclusions. Also denote ∂′ : Eq(X,A) → Eq−1(A,B) to be the
composite Eq(X,A)

∂→ Eq−1(A)→ Eq−1(A,B). Then there is a long exact sequence

Eq(A,B) Eq(X,B) Eq(X,A)

Eq−1(A,B) Eq−1(X,B) Eq−1(X,A)

i∗ j∗

∂′

i∗ j∗

.

Proof. This follows from a fairly long diagram chase involving the homology long-exact sequence
corresponding to each of the pairs (A,B), (X,B) and (X,A) which one has to expand for degrees
q and q − 1. From that big diagram, the chase is straightforwad after some reductions and hence
is omitted.

There is an equivalent form of excision which is also quite useful.

Lemma 5.4.1.6 (Excision-II). Let (X,A) ∈ Top2 be a pair and Eq be a homology theory. If B ⊆ A is a
subspace such that B̄ ⊆ A◦, then B can be excised, that is, the inclusion

(X −B,A−B) ↪→ (X,A)

induces an isomorphism in homology:

Eq(X −B,A−B;π) ∼= Eq(X,A;π).

Proof. Consider the triple (X,A,X − B). This is an excisive triple since A◦ ∪ (X − B)◦ = X since
(X −B)◦ = X − B̄. Thus by excision axiom, the inclusion

j : (X −B,A ∩X −B) ↪→ (X,A)

induces isomorphism in Eq. As A ∩ (X −B) = A−B, we get the desired result.

5.4.2 Reduced homology

For each homology theory Eq(−,−), we can construct a based version of the theory denoted
Ẽq(−,pt.). For a based space (X,pt.), define the following

Ẽq(X) := Eq(X,pt.).

This tends to remove the effect of the defining group of the homology theory, so to normalize the
theory in the sense of Lemma 5.4.2.1, 1. In particular, if Eq satisfies dimension axiom, it follows
that E0(pt.) = π. Thus this lemma will tell that Ẽ0(X) = Ẽ0(X)⊕ π.

Let us spell out some basic relations of this reduced homology Ẽq to that of original homology
Eq.
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Proposition 5.4.2.1. Let π be a group and Eq be a generalized homology theory. Let (X,pt.) be a based
space and (A,pt.) ↪→ (X,pt.) be a based subspace.

1. Eq(X) = Ẽq(X) ⊕ Eq(pt.) and the map ι∗ : Eq(A) → Eq(X) restricted on Eq(pt.) is the identity
map ι∗ : Eq(pt.)→ Eq(pt.).

2. There is a long exact sequence

· · ·

Ẽq(A) Ẽq(X) Eq(X,A)

Ẽq−1(A) Ẽq−1(X) Eq−1(X,A)

· · ·

∂

∂

∂

.

3. If Eq is an ordinary homology theory, then for any q ≥ 2, we have

Ẽq(X) ∼= Eq(X).

Proof. 1. The following is split exact on the left as the map pt. ↪→ X is a retract (Proposition 5.4.1.4):

0→ Eq(pt.)→ Eq(X)→ Eq(X,pt.)→ 0.

Note that the left map here is split by the retraction r∗ : Eq(X) → Eq(pt.). The latter statement
follows from the fact that Eq(−, ∅) is a functor and thus takes idpt. to id : Eq(pt.)→ Eq(pt.).
2. Consider i : A ↪→ X . Then Eq(A)→ Eq(X) takes Eq(pt.) to Eq(pt.) isomorphically as in item 1.
Hence we may quotient it out under the exactness to get the desired sequence.
3. This is immediate from long exact sequence of the pair (X,pt.).

In-fact, one can obtain the unreduced homology back by reduced homology via a simple use
of coproduct preservation axiom.

Lemma 5.4.2.2. LetX be a space and denoteX+ to be the based space obtained by disjoint union ofX with
a point pt.. For any generalized homology theory Eq, we have

Eq(X) ∼= Ẽq(X+).

Proof. As X+ = X ⨿ {pt.}, therefore by additivity of homology theories, we obtain

Ẽq(X+) = Eq(X ⨿ {pt.},pt.) = Eq((X,pt.)⨿ (pt.,pt.)) ∼= Eq(X,pt.)⊕ Eq(pt.,pt.)
∼= Ẽq(X)⊕ Eq(pt.) ∼= Eq(X)

where the second-to-last isomorphism follows from Proposition 5.4.2.1, 1 and the last from 4.
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5.4.3 Mayer-Vietoris sequence in homology

We now cover an important calculational tool for generaized homology theories, which relates the
homology groups of X with those of A, B and A ∩B where (X,A,B) forms an excisive triad.

Theorem 5.4.3.1 (Mayer-Vietoris for homology). Let (X,A,B) be an excisive triple and denote i :
A ∩B ↪→ A, j : A ∩B ↪→ B, k : A ↪→ X and l : B ↪→ X . Then there is a long exact sequence

Eq(A ∩B) Eq(A)⊕ Eq(B) Eq(X)

Eq−1(A ∩B) Eq−1(A)⊕ Eq−1(B) Eq−1(X)

i∗
j∗

 [
k∗−l∗

]

∂

where ∂ is obtained as the following composite

Eq(X) Eq(X,B)

Eq−1(A ∩B) Eq(A,A ∩B)
∂ ∼=

∂

where top horizontal arrow is corresponds to (X, ∅) ↪→ (X,B), the right vertical is exicision isomorphism
and the bottom horizontal is the boundary map of homology long exact sequence of the pair (A,A ∩B).

Proof. The proof will follow from excision and long exact sequence for homology quite easily.
TODO.

5.4.4 Relative homology of cofibrations and suspension isomorphism

There are two important results for homology. The first affirms our intuition that the homology
of pair (X,A) ought to behave as homology of X/A, but it works out only when A ↪→ X is a
cofibration. The second gives a suspension isomorphism type result akin to that of homotopy
groups.

Relative homology of cofibrations

Theorem 5.4.4.1. Let i : A ↪→ X be a cofibration andEq a generalized homology theory. Then the quotient
map p : (X,A) ↠ (X/A,pt. induces an isomorphism

p∗ : Eq(X,A)
∼=−→ Eq(X/A).

Suspension isomorphism

Theorem 5.4.4.2. Let (X,x0) be a non-degenerately based space, that is, the inclusion {x0} ↪→ X is a
cofibration. Let Eq be a generalized homology theory. Then, there is a natural isomorphism

Ẽq(ΣX) ∼= Ẽq−1(X).



5.4. HOMOLOGY THEORIES 243

5.4.5 Fundamental theorem of homology theories

We will now see that reduced homology and unreduced homology theories are equivalent. To
this end, we first axiomatize reduced homology theory. The category Top∗ denotes the category
of well-pointed spaces.

Definition 5.4.5.1 (Reduced homology theory). A reduced homology theory for an abelian group
π is a sequence of functors

H̃q(−;π) : Top∗ −→ AbGrp

for q ∈ Z which satisfies the following axioms (we suppress π):
1. (Cofibration exactness) If i : A ↪→ X is a cofibration, then

H̃q(A)→ H̃q(X)→ H̃q(X/A)

is exact.
2. (Suspension isomorphism) For all q ≥ 0, we have a natural isomorphism

Σ : H̃q(X)
∼=→ H̃q+1(ΣX).

3. (Additivity) If X =
∨
i∈I Xi where each Xi is well-pointed, then the natural inclusions ιi :

Xi ↪→ X induces an isomorphism ⊕
i∈I

H̃q(Xi) ∼= H̃q(X)

4. (Weak equivalence) If f : X → Y is a weak equivalence, then

f∗ : H̃q(X)→ H̃q(Y )

is an isomorphism.

5.4.6 Singular homology & applications

We define the usual singular homology groups and will mention that it is a homology theory. Once
that’s set-up, then with the explicit description of chain complexes in singular homology and the
ES-axioms and all the surrounding results, we will have a good toolbox to compute homology
groups of very many spaces. In-fact, these applications are important to really showcase that if
in any situation we have an invariant of any class of objects which is a homology theory, then we
can immediately make this invariant very palpatable to calculations, which is very important in
aspects where the objects are abstract entities like rings or schemes.

For this section, we may assume that our spaces are not compactly generated.

Definition 5.4.6.1 (Singular homology). Let X be a space and fix a field F . Let Si(X) be the
free F -vector space generated by the set of all i-simplices {f : ∆i → X | f is continuous}. An
element of Si(X) is called singular i-chain. Consider the map ∂ : Si(X) → Si−1(X) which on an
i-simplex σ is given by σ 7→

∑i
j=0(−1)j∂jσ where ∂jσ is the σ restricted to the face opposite to

jth-vertex. It follows that ∂2 = 0. Thus, we have a chain complex (Si(X), ∂), called the singular
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chain complex. The homology of this chain complex is defined to be the singular homology of
X , denoted Hi(X;Z) or simply Hi(X). A map f : X → Y on spaces yields a map on singular
complex f♯ : S•(X) → S•(Y ). As map of complexes induces map on homology, we get f∗ :
H•(X)→ H•(Y ).

Let (X,A) be a pair. We define the relative singular i-chains to be

S•(X,A) := S•(X)/S•(A).

The boundary map of S•(X) descends to a boundary map on S•(X,A) by properties of quotients
and thus we define the singular homology of a pair (X,A) to be homology of the complex S•(X,A)
denoted Hi(X,A;Z).

In the following result, we state some important first properties of singular homology.

Theorem 5.4.6.2 (Singular homology is a homology theory). Let X be a space.
1. If {Xk} is the collection of path-components of X , then

Hi(X;Z) ∼=
⊕
k

Hi(Xk Z).

2. Singular homology satisfies dimension axiom:

Hi({pt.};Z) =
®
Z if i = 0
0 else.

3. X is path-connected if and only if

H0(X;Z) ∼= Z.

4. Singular homology has long exact sequence of pairs, that is, if (X,A) is a pair, then there is a long
exact sequence obtained by inclusions A ↪→ X and (X, ∅) ↪→ (X,A) as follows:

. . .

Hq(A;π) Hq(X;π) Hq(X,A;π)

Hq−1(A;π) Hq−1(X;π) Hq−1(X,A;π)

. . .

∂

∂

∂

.

5. Singular homology is excision invariant; for an excisive triple (X,A,B), that is A,B ↪→ X and
X = A◦ ∪B◦, the inclusion (A,A ∩B) ↪→ (X,B) induces an isomorphism at all degree q ∈ Z:

Hq(A,A ∩B;Z) Hq(X,B;Z)
∼=

.

An equivalent restatement is that ifA ⊇ B such that B̄ ⊆ A◦, then the inclusion (X−B,A−B) ↪→
(X,A) induces isomorphism in homology

Hq(X −B,A−B;Z)
∼=−→ Hq(X,A;Z).
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6. Singular homology preserves coproducts, that is, if {(Xi, Ai)}i∈I is a collection of pairs of spaces,
then

⊕
i

Hq(Xi, Ai;π)
∼=−→ Hq

Ç∐
i

(Xi, Ai);π
å

where the maps are induced by the inclusions (Xi0 , Ai0) ↪→
∐
i(Xi, Ai).

7. Singular homology satisfies strong π∗-insensitivity, that is, if f, g : X → Y are two homotopic maps,
then f∗ = g∗ : Hi(X;Z)→ Hi(Y ;Z).

Proof. 1. Observe that Si(X) =
⊕

k Si(Xk) by path-connectedness of each Xk. Moreover, Zi(X) =⊕
k Zi(Xk) and Bi(X) =

⊕
k Bi(Xk). The result follows.

2. First observe that every Si(X) is isomorphic to Z as there is only one i-simplex, namely cpt.,
the constant map. We have for cpt. ∈ Zi+1(X) its boundary as

∂(cpt) =
i+1∑
j=0

(−1)j∂j(cpt.)

where note that the jth-boundary of cpt. is still cpt.. Thus, if i+2 is even, then ∂ : Si+1(X)→ Si(X)
is zero and if i+ 2 is odd, then ∂ : Si+1(X)→ Si(X) is an isomorphism. Hence, we get that

dp : Sp(X)→ Sp−1(X)

is 0 if p is odd and an isomorphism if p is even. From this, it immediately follows that Hp(pt.;Z) =
0 if p > 0 and H0(pt.;Z) ∼= Z.

3. (L⇒ R) Let X be a path-connected space. Recall that H0(X;Z) = S0(X)/Im (∂1). Consider
the following map

ϵ : S0(X) −→ Z∑
j

njxj 7−→
∑
j

nj .

Clearly this is surjective. We claim that Ker (ϵ) = Im (∂1). Suppose
∑
j njxj ∈ S0(X) and each

xj is distinct with
∑
j nj = 0. We wish to find a 1-chain σ =

∑
jmjσj such that ∂1σ =

∑
j njxj .

Fix x0 ∈ X a point different from xj and let γj : I → X be a path joining x0 to xj . Consider
σ =

∑
j njγj . We claim that ∂σ =

∑
j njxj . Indeed, we have

∂σ =
∑
j

nj(γj(1)− γj(0)) =
∑
j

nj(xj − x0) =
∑
j

njxj −

(∑
j

nj

)
x0 =

∑
j

njxj ,

as required.

TODO

Corollary 5.4.6.3. The construction of the sequence of functors Hk(−,−;Z) : Top2 → AbGrp is a
homology theory.
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Remark 5.4.6.4 (Mayer-Vietoris sequence for singular homology). Consider a space X and an
excisive triple (X,A,B). Then since singular homology is a homology theory, hence we have the
Mayer-Vietoris sequence as in Theorem 5.4.3.1. After long exact sequence for pairs, this is the
second most important long exact sequence in homology:

Hq(A ∩B) Hq(A)⊕Hq(B) Hq(X)

Hq−1(A ∩B) Hq−1(A)⊕Hq−1(B) Hq−1(X)

i∗
j∗

 [
k∗−l∗

]

∂ .

This also holds for reduced homology.

Remark 5.4.6.5 (Triplet long exact sequence for singular homology). Consider a triplet (X,A,B)
where X ⊇ A ⊇ B. Then since singular homology is a homology theory, hence we get a triplet
long exact sequence induced by inclusions as in Theorem 5.4.1.5. This is the third long exact
sequence that one derives in singular homology, after l.e.s. of pairs and Mayer-Vietoris. This also
holds for reduced homology.

We now showcase a result which we will meet again later, which relates fundamental group
and first homology group.

Theorem 5.4.6.6 (Hurewicz for π1). Let X be a path-connected space and x0 ∈ X . The canonical map

ϕ : π1(X,x0) −→ H1(X;Z)
⟨α⟩ 7−→ [α]

is surjective with Ker (ϕ) = [π1(X,x0) : π1(X,x0)].

Corollary 5.4.6.7. Let (X,x0) be a path-connected space and such that π1(X,x0) is abelian. Then π1(X,x0) ∼=
H1(X;Z).

Remark 5.4.6.8 (Suspension isomorphism). Let X be a space and SX be unreduces suspension.
Then we have an isomorphism as in Theorem 5.4.4.2:

Hq(SX;Z) ∼= H̃q−1(X;Z).

One can also directly prove this by analyzing the Mayer-Vietoris for the X1 = SX − [x, 1] and
X2 = SX − [x, 0].

5.4.7 Results & computations for singular homology

We now present many computations for singular homology theory, which showcases the strength
of the tools available.

For this section, we may assume that our spaces are not compactly generated.



5.4. HOMOLOGY THEORIES 247

Remark 5.4.7.1. We begin with the list of topics that we cover here, for mental clarity and quick
reference.

• Path components & relative homology.
• Map of long exact sequence of pairs.
• Immediate applications of Mayer-Vietoris.
• Degree of a map f : Sn → Sn.
• Antipode preserving maps f : Sn → S1.
• Jordan-Brower separation theorem.

Path components & relative homology

Lemma 5.4.7.2. Let A ⊆ X be a non-empty subspace and X be path-connected. Then

H0(X,A;Z) = 0.

Proof. Consider d̄ : S1(X,A) → S0(X,A). We claim that Im
(
d̄
)
= S0(X,A). Suffices to show that

Im
(
d̄
)

contains the class of generators x : ∆0 → X . Pick any x as given. To show that there exists
σ+S1(A) ∈ S1(X,A) whose boundary is x. Indeed, as X is path-connected, so for any fixed point
x0 ∈ A, we may consider a path σ joinging x0 to x. This defines an element σ + S1(A) whose
boundary is x− x0 + S0(A) = x+ S0(A), as needed.

Lemma 5.4.7.3. Let {Xk} be path-components of X and A ⊆ X be non-empty. Then

Hn(X,A;Z) ∼=
⊕
k

Hn(Xk, A ∩Xk;Z).

Proof. As Sn(X,A) =
⊕

k Sn(Xk, A ∩Xk), the result then follows by quotienting.

Lemma 5.4.7.4. Let A ⊆ X be a non-empty subspace, then

rank(H0(X,A;Z)) = # path components of X not intersecting A.

Proof. By Theorem 5.4.6.2, 3 and Lemmas 5.4.7.2 and 5.4.7.3, the result is immediate.

Lemma 5.4.7.5. Let X have r-path components. Then,

H0(X,pt.;Z) ∼= Z⊕r−1

Proof. Use Lemma 5.4.7.4.

Example 5.4.7.6 (Homology of (Dn, Sn−1)). We claim that

H̃i(Dn, Sn−1;Z) =
®
Z if i = n

0 else.

Indeed, this follows immediately from les of a pair and Lemma 5.4.7.4.

The following is an important observation in geometry.
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Proposition 5.4.7.7 (Künneth formula-1). Let X be a T1-space and x ∈ X . If U ⊆ X is an open set
containing x, then we have

Hi(X,X − x;Z) ∼= Hi(U,U − x;Z).

Proof. For A = U and B = X − x, we see that both of them are open (B is open as {x} is closed).
Then, (X,A,B) forms an excisive triple. Performing excision, we observe (as A ∩B = U − x) that

Hi(U,U − x;Z) ∼= Hi(X,X − x;Z),

as required.

Remark 5.4.7.8. It is really necessary for U in Künneth formula above to be open, for (S2 − x, I −
x) ↪→ (S2, I) for some path I ↪→ X does not induces isomorphism in homology, as is readily
visible a small computation in the associated les of pairs.

Map of long exact sequence of pairs

Proposition 5.4.7.9. Let f : (X,A) → (Y,B) be a map of pairs. Then, we get a map in the long exact
sequences of the corresponding pairs. That is, the following commutes12

Hn(A) Hn(X) Hn(X,A) Hn−1(A)

Hn(B) Hn(Y ) Hn(Y,B) Hn−1(B)

∆

∆

f∗f∗f∗f∗ .

Proof. Since all maps in the long exact sequence of a pair except the connecting homomorphism are
induced by inclusions, therefore we need only check the commutativity of the rightmost square.
This follows from unravelling the definition of connecting homomorphism as constructed from
the chain level.

We also have a map in Mayer-Vietoris.

Proposition 5.4.7.10. Let f : (X,A,B) → (Y,C,D) be a map of triples, where each is an excisive triple.
Then we get a map in the Mayer-Vietoris sequences of the corresponding pairs. That is, the following
commutes

Hn(A ∩B) Hn(A)⊕Hn(B) Hn(X) Hn−1(A ∩B)

Hn(C ∩D) Hn(C)⊕Hn(D) Hn(Y ) Hn−1(C ∩D)

∆

∆

f∗f∗f∗f∗ .

Proof. Follows directly from Proposition 5.4.7.9 and the proof of original Mayer-Vietoris (in which
we show that Mayer-Vietoris is obtained by les of a pair and excision).

12we drop the group Z in the following diagram.
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Lemma 5.4.7.11. If f : (X,A) → (Y,B) is a homotopy equivalence of pairs, that is, there exists g :
(Y,B)→ (X,A) such that f : X ⇄ Y : g and f : A⇄ B : g are both homotopy equivalences, then

f∗ : Hn(X,A)
∼=−→ Hn(Y,B)

is an isomorphism.

Proof. Use 5-lemma on the diagram in Proposition 5.4.7.9.

Immediate applications of Mayer-Vietoris

Example 5.4.7.12 (Homology of spheres). We wish to show that

H̃i(Sn;Z) =
®
Z if i = n

0 else.

Indeed, let U = Sn − p and V = Sn − q where p, q are north and south poles respectively. Note
U ∩ V ≃ Sn−1. Then (Sn, U, V ) is an excisive triple and thus by Mayer-Vietoris (Remark 5.4.6.4),
we deduce that the connecting homomorphismHq(Sn) ∼= H̃q−1(Sn−1). We conclude by induction.

Example 5.4.7.13 (Homology of wedge of spheres). We wish to show that for each i ≥ 0, we have

H̃i(Sm ∨ Sn) ∼= H̃i(Sm)⊕ H̃i(Sn)

Indeed this follows by considering U to be Sm with some open part of Sn and V to be Sn with
some open part of Sm. We get that U ∩ V ≃ pt., U ≃ Sm, V ≃ Sn and (X,U, V ) an excisive triple.
The result now follows by Mayer-Vietoris (Remark 5.4.6.4).

Using Example 5.4.7.12, we can prove the following seemingly obvious, but otherwise hard to
prove statement.

Theorem 5.4.7.14. Let n,m ∈ N.
1. Sn is homeomorphic to Sm if and only if n = m.
2. Rn is homeomorphic to Rm if and only if n = m.

Proof. Item 1 is immediate application of computation in Example 5.4.7.12. Item 2 can be obtained
from removing a point from the given homeomorphism ϕ : Rn

∼=→ Rm to get a homotopy equiva-
lence Sn−1 → Sm−1. Thus, they have same homology. Invoking Example 5.4.7.12, we win.

Degree of a map f : Sn → Sn

For a map f : Sn → Sn, consider the map f∗ : Z → Z obtained by Hn(Sn) → Hn(Sn). Thus, f∗
takes a generator a to k · a, k ∈ Z. We define deg(f) = k. We begin with some basics.

Lemma 5.4.7.15. Let f : Sn → Sn be a map.
1. If f : Sn → Sn and g : Sn → Sn,

deg(g ◦ f) = deg(g) · deg f.
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2. If f, g : Sn → Sn are homotopy equivalent, then deg(f) = deg(g).

Proof. Immediate.

The main theorem is the following, which computes the degree of reflections.

Theorem 5.4.7.16 (Degree of reflections). Define the following map

f : Sn −→ Sn

(x1, x2 . . . , xn+1) 7−→ (−x1, x2, . . . , xn+1).

Then,

deg(f) = −1.

Proof. Use induction on n and observe that for X1 = Sn − p and X2 = Sn − q, we get a map
induced in Mayer-Vietoris (Proposition 5.4.7.10). This yields the following commutative square
where connecting homomorphism is an isomorphism:

Hn(Sn) H̃n−1(Sn−1)

Hn(Sn) H̃n−1(Sn−1)

f∗ f∗

∆

∆

.

The result now follows by inductive hypothesis.

Corollary 5.4.7.17. Define the following map

f : Sn −→ Sn

(x1, x2 . . . , xn+1) 7−→ (−x1,−x2, . . . ,−xn+1).

Then,

deg(f) = (−1)n+1.

Proof. Immediate from Theorem 5.4.7.16.

Remark 5.4.7.18 (Fixed points and degree). It is an easy observation that if f : Sn → Sn has no
fixed points, then f is homotopic to a : Sn → Sn which is the antipodal map. Thus the degree of a
map f : Sn → Sn which has no fixed points is (−1)n+1.

An easy corollary of this observation is that if f : Sn → Sn is null homotopic, then f has a fixed
point. Indeed as deg f = 0, therefore by contrapositive of above, we deduce that f must have a
fixed point.

A simple use of above remark yields the following fact for maps f : S2n → S2n.

Proposition 5.4.7.19. Let f : S2n → S2n be a map. Then, there exists x ∈ S2n such that either f(x) = x
or f(x) = −x.
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Proof. Suppose f has no fixed points. Then by Remark 5.4.7.18, it follows that f ≃ a, where
a : S2n → S2n is the antipodal map. Thus, deg f = deg a = (−1)2n+1 = −1. It follows that
deg(−f) = 1. Hence, −f must have a fixed point by Remark 5.4.7.18. Consequently, there exists
x ∈ S2n such that −f(x) = x, as required.

We also have the following conclusion.

Proposition 5.4.7.20. Let f : Sn → Sn be a degree 0 map. Then there exists x, y ∈ Sn such that f(x) = x
and f(y) = −y.

Proof. Indeed, by above we immediately conclude that both f and −f has degree 0, thus have
fixed points.

A more non-trivial application of ideas surrounding degree is the following.

Lemma 5.4.7.21. Any linear map T : R2n+1 → R2n+1 has an eigenvector.

Proof. We may assume that T is a bijection. Thus, T takes one dimensional linear subspaces to one
dimensional linear subspaces. We get in particular a map g : S2n → S2n given by v

∥v∥ 7→
Tv
∥Tv∥ . Use

Proposition 5.4.7.19 to conclude.

Antipode preserving maps f : Sn → S1

Another interesting application of singular homology is to show that if n > 1, then there is no
antipode preserving map f : Sn → S1, where a map f : Sm → Sn is antipode preserving if for all
x ∈ Sm, we have −f(x) = f(−x).

Theorem 5.4.7.22. If n > 1, then there is no antipode preserving map f : Sn → S1.

Remark 5.4.7.23. One can deduce Borsuk-Ulam theorem, that for any map f : S2 → R2 there
exists x ∈ S2 such that f(x) = f(−x), from Theorem 5.4.7.22 as follows. By composing by linear
shift, we may assume Im (f) does not contain origin. Composing with the map y 7→ y

∥y∥ , we obtain

the map g : S2 → S1 mapping as x 7→ f(x)
∥f(x)∥ . Applying the above theorem, Borsuk-Ulam follows.

Jordan-Brower separation theorem

We wish to show the following result.

Theorem 5.4.7.24 (JBST). Suppose C ⊆ Sn is a subspace of Sn homeomorphic to Sn−1. Then Sn−C has
two components and has boundary C.

More important for us is the two homological results which will be used to prove the above
theorem.

Definition 5.4.7.25 (Cells in a space). A k-cell in a space X is a subspace A ⊆ X homeomorphic
to Dk.

Theorem 5.4.7.26. Let A be a k-cell in Sn. Then,

H̃i(Sn −A;Z) = 0

for every i ≥ 0.
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Using above theorem, we have the following result.

Proposition 5.4.7.27. Let h : Sk ↪→ Sn be an embedding where n > k ≥ 0. Then

H̃i(Sn − h(Sk);Z) =
®
Z if i = n− k − 1,
0 else.

Proof. This follows from Mayer-Vietoris and induction on k, where we define X1, X2 ⊆ Sn −
h(Sk) = X as follows. Let E+

k = Sk − q and E−k = Sk − p, p, q are north, south poles, respectively.
Then define X1 = Sn − h(E+

k ) and X2 = Sn − h(E−k ). Then X1 ∩X2 = Sn − h(Sk) and X1 ∪X2 =
Sn−h(Sk−1). Using Theorem 5.4.7.26 will yield the isomorphism H̃q(Sn−h(Sk−1)) ∼= H̃q−1(Sn−
h(Sk−1)). We conclude by inductive hypothesis.

Remark 5.4.7.28. Note that Proposition 5.4.7.27 already shows the first statement of Theorem
5.4.7.24. Indeed, Using the result, we get for k = n − 1, that H̃0(Sn − h(Sn−1);Z) = Z, that is,
there are two path-components of Sn − h(Sn−1). As Sn is locally path-connected, so number of
components and path-components are same.

An important application is the invariance of domain.

Theorem 5.4.7.29 (Invariance of domain). Let U ⊆ Rn be a n open set and consider a map f : U → Rn
which is a continuous bijection. Then,

1. f(U) is open in Rn,
2. f : U → f(U) is a homeomorphism.

That is, f is an open embedding.

Proof. Pick any open ball B ⊆ U such that B̄ ⊆ U . Observe Sn−1 ∼= B̄ − B = ∂B. Consider
the composite f : ∂B → f(U) ↪→ Sn where we consider Rn ↪→ Sn. By JBST, f : Sn−1 → Sn

separates Sn into two components, say Sn − f(Sn−1) = W1 ⨿W2. If f(B) ⊆ W1, we claim that
f(B) = W1. Indeed, this follows from Theorem 5.4.7.26 which says that removing a k-cell still
keeps Sn path-connected.

5.4.8 Homology with local coefficients
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5.5 Cohomology theories
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5.6 Cohomology products and duality
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5.7 CW-complexes & CW homotopy types

One of the important properties of compactly generated spaces is that any such space can be ap-
proximated upto homotopy by a class of spaces constructed in a rather simple manner. These are
precisely the CW complexes. Once the above approximation theorems are set up, we can safely
reduce a lot of computation in homology to such a CW-approximation. Moreover, the reductions
run so deep that in-fact any homology theory Eq on general compactly generated spaces necessar-
ily induces and comes from the restriction of Eq to CW-complexes. An application of Hurewicz
theorem will then tell us that upto natural isomorphism, there is a unique homology theory over
CW-complexes. Moreover, the fundamental result of Whitehead would allow us to interpret ho-
motopy groups as a complete set of homotopical invariants for CW-complexes

5.7.1 Basic theory

5.7.2 Approximation theorems

5.7.3 CW homotopy types

We wish to prove some foundational results on homotopy equivalences of CW-complexes.

Whitehead’s theorem

We wish to see the following important result.

Theorem 5.7.3.1 (Whitehead). Let X and Y be weakly equivalent CW-complexes. Then X and Y are
homotopy equivalent.

Applications of Whitehead’s theorem

Lemma 5.7.3.2 (Weak uniqueness of universal covers). LetX be a CW-complex. If E is a CW-complex
and f : E → X is such that

f∗ : πk(E)→ πk(X)

is an isomorphism for all k ≥ 2 and πk(E) = 0 for k = 0, 1, then E is homotopy equivalent to the universal
cover X̃ of X .

Proof. As π0(E) = 0, therefore E is connected. It follows by unique lifting (which is possible as
π1(E) = 0) that we have a commutative diagram of spaces:

X̃

E X

p
f̃

f

.

Applying πk for any k ≥ 2, we deduce from our hypothesis that f̃∗ : πk(E) → πk(X̃) is an
isomorphism. As π0(X̃) = π1(X̃) = 0, therefore f̃ is a weak equivalence. It follows by Whitehead’s
theorem (Theorem 5.7.3.1) that f̃ is a homotopy equivalence, as required.
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5.8 Homotopy and homology

5.8.1 Hurewicz’s theorem

Theorem 5.8.1.1 (Hurewicz-1). Let X be an (n− 1)-connected based space. Then the Hurewicz map

hn : πn(X)→ Hn(X;Z)

is an isomorphism and

hn+1 : πn+1(X)→ Hn+1(X;Z)

is a surjection.

It is also very beneficial to keep the following version of Hurewicz in mind as it is usually used
to deduce conclusion about homology groups from some information about homotopy groups
and vice-versa. The second item is often used after passing to universal covers.

Theorem 5.8.1.2 (Hurewicz-2). LetX,Y be path-connected based spaces and f : X → Y be a based map.
Let n ∈ N.

1. If f∗ : πk(X) → πk(Y ) is an isomorphism for k < n and a surjection for k = n, then f∗ :
Hk(X;Z)→ Hk(Y ;Z) is an isomorphism for k < n and a surjection for k = n.

2. If X,Y are simply connected and f∗ : Hk(X;Z) → Hk(Y ;Z) is an isomorphism for k < n and a
surjection for k = n, then f∗ : πk(X) → πk(Y ) is an isomorphism for k < n and a surjection for
k = n.

5.9 Homotopy & algebraic structures

5.9.1 H-spaces

Definition 5.9.1.1 (H-spaces & groups). Let (X, e) be a based space. Then X is said to be a an
H-space if there exists a continuous map

m : X ×X −→ X

(x, y) 7−→ x · y

such that
1. e · e = e,
2. me : X → X , x 7→ x · e and me : X → X , x 7→ e · x are both homotopy equivalent to idX rel
{e}.

An H-space (X, e, ·) is said to be an H-group if moreover the map m satisfies the following:
1. the two associativity maps X ×X ×X ⇒ X are homotopic to each other rel {(e, e, e)},
2. there exists an inverse map (−)−1 : X → X such that e−1 = e and that the two left/right

multiplication by inverse mapsX ⇒ X , x 7→ x ·x−1 and x 7→ x−1 ·x is homotopic to constant
map ce rel {e}.

Example 5.9.1.2. Every topological group is a strict H-group.
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Example 5.9.1.3. Every loop space ΩX is an H-group where the product of two loops is the con-
catenation and inverse is the inverse of the loop. The required conditions for ΩX to be anH-group
is then immediate.

The following is one of the most important result for H-spaces. It says that the contravariant
hom functor that they represent is group valued.

Theorem 5.9.1.4. Let Y be an H-group. Then for any based space X , the based homotopy classes of maps
[X,Y ] forms a group whose operation is

(f · g)(x) := f(x) · g(x).
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5.10 Model categories & abstract homotopy

5.11 Classifying spaces

5.11.1 Eilenberg-Maclane spaces

Remark 5.11.1.1 (The canonical map). Let X be a connected space and G = π1(X). Then there is
a natural map i : X → BG which identifies X as a subcomplex of BG. Moreover i∗ : π1(X) →
π1(BG) = G is an isomorphism.

5.12 Spectra

Spectra are objects which generalizes both the notion of cohomology theories and spaces, in that
there are mappings from cohomology theories and spaces into the homotopy category of spectra.
Thus, one needs to construct a good category of spectra, give a model structure on it and thus
by Quillen’s theory obtain this absolutely wonderful homotopy category of spectra, which unites
the viewpoint of cohomology and spaces. However, we are getting ahead of ourselves, as finding
the right homotopy category and giving a construction of category of spectra is easier said than
done. We will meet this topic later in our discussion of∞-categories (they will form a prototypical
example of stable∞-categories).

5.13 Lifting & extension problems
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Stable Homotopy Theory

In this chapter, we give an overview of stable homotopy theory.

259



260 CHAPTER 6. STABLE HOMOTOPY THEORY



Chapter 7

Classical Ordinary Differential
Equations
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We will prove some basic existence/uniqueness results about ODEs here, with a classical/analytic
viewpoint in mind. Let us first begin by stating what is meant by an initial value problem and what
is meant by solving an initial value problem. A main focus will be on doing analytical proofs, which
is always extremely helpful. In particular, we will see how much weird and pathological behav-
iors can emerge after passing to limit, thus justifying why commuting with limits is a sought after
property in all over analysis.
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7.1 Initial value problems

Let us begin by understanding what is meant by a differential equation. LetD ⊆ R×Rn be an open
set. Consider a continuous function f : D → Rn mapping as (t, x) 7→ f(t, x) where t ∈ R, x ∈ Rn.
A fundamental goal that one wishes to achieve is to find a "nice" function x : I ⊆ R→ D such that
the function f can be known upto first derivatives, that is, we want to construct such a function
x : I → Rn such that it can tell us the following about f :

1. (Correct domain)∀t ∈ I , we shall have (t, x(t)) ∈ D,
2. (Differential equation)dxdt (t0) = f(t0, x(t0)),∀t0 ∈ I . That is, the first derivative of x can give us

exactly the values that f takes on D.
To find such a function x, the main difficulty is the condition 2 above, for this requires x : I → Rn
to be continuously differentiable (so of class C1) and that we necessarily have to construct a func-
tion x by the knowledge only of it’s first derivative (which is f(t, x)).

This problem of constructing a C1 map x : I ⊆ R → Rn from only the data of it’s continuous
first derivative is called the process of solving a differential equation.

Clearly, many C1 maps can have same first derivative (we need only add a scalar in front).
So the uniqueness of the above problem is hopeless. However, one can add an extra data to the
problem above that x shall satisfy and then we do get uniqueness at times. In particular, we
demand the following from x:

3. (Initial value) for some fixed s0 ∈ I and x0 ∈ Rn, we require x(s0) = x0.
We then define an initial value problem (IVP) as follows:

Definition 7.1.0.1. (IVP & solutions) Let f : D → Rn be a continuous map on an open set D ⊆
R × Rn. An IVP is a construction problem where from the tuple of data (f, (t0, x0)) for some
(t0, x0) ∈ D, we have to construct the following:

1. an interval I ⊆ R containing t0,
2. a function x : I → Rn.

This function x should then satisfy the following:
1. (t, x(t)) ∈ D ∀t ∈ I ,
2. dx

dt (t) = f(t, x) ∀t ∈ I ,
3. x(t0) = x0.

We identify the above IVP with the tuple (f, (t0, x0)). If such a function x : I → Rn exists, then it
is called a solution to the IVP (f, (t0, x0)).

7.1.1 Existence: Peano’s theorem

We have an elementary result which tells us that, if the solution exists, then what should be its
form.

Lemma 7.1.1.1. Let f : D → Rn be a continuous map and (f, (t0, x0)) be an IVP. Then, a continuous
map x : I → Rn is a solution to the IVP (f, (t0, x0)) if and only if ∀t ∈ I , x(t) is the following line integral

x(t) = x0 +
∫ t

t0
f(s, x(s))ds.
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Proof. (L ⇒ R) Since x is a solution, therefore dx
dt (t) = f(t, x(t)) ∀t ∈ I and t0 ∈ I . Then use

fundamental theorem of calculus to calculate the line integral of the vector field∇x along the line
joining t0 and t.

(R⇒ L) By continuity of x, we get that t 7→ f(t, x(t)) is continuous. Since x(t0) = x0, therefore
by continuity of t 7→ (t, x(t)), there exists an open interval I ∋ t0 of R such that (t, x(t)) ∈ D for all
t ∈ I . It then follows by an application of fundamental theorem of calculus that dx

dt (t) = f(t, x(t))
for each t ∈ I .

We next do Peano’s theorem, which tells us that indeed solutions exists. This when combined
with above tells us that solutions to IVP (f, (t0, x0)) exists and is of same "form". However, it will
require a classic result in analysis called Arzela-Ascoli theorem. Let us do that first.

Theorem 7.1.1.2. (Arzela-Ascoli theorem) Let xn : [0, 1] → Rn be a sequence of continuous functions
such that {xn} is a uniformly bounded and equicontinuous family of maps. Then there exists a subsequence
of {xn} which is uniformly convergent.

We can now approach the existence result.

Theorem 7.1.1.3. (Peano’s theorem) Let f : D → Rn be a continuous map where D ⊆ R × Rn is open
and let (t0, x0) ∈ D so that the tuple (f, (t0, x0)) forms an IVP. Choose r > 0 and c > 0 such that
[t0− c, t0 + c]×Br(x0) ⊆ D1. Then, denoting M := max

x∈[t0−c,t0+c]×Br(x0) f(x) and h := min{c, rM },
there exists a solution to the IVP (f, (t0, x0)) given by

x : [t0 − h, t0 + h] −→ Br(x0).

Proof. We will construct the solution x in a limiting manner. First, we may replace t0 by 0 as we
can shift the solution to t0 thus obtained. Second, we may define x on [0, h] as we may translate
and scale the solution as desired. Now, consider the sequence of functions defined as follows:

xn(t) : [0, h] −→ Rn

t 7−→

{
x0 if t ∈ [0, hn ],
x0 +

∫ t−h/n
0 f(s, xn(s))ds if t ∈ [hn , h].

So we obtain a sequence of functions {xn} defined over [0, h]. Now, in the limiting case, we will
have a function exactly of the form required by Lemma 7.1.1.1, so we reduce to showing that a
subsequence of the above converges and converges to a continuous function. We will use the
Arzela-Ascoli (Theorem 7.1.1.2) for showing this. We thus need only show that the sequence {xn}
is uniformly bounded and equicontinuous. For uniform boundedness, we will simply show that

1That is, choose a basic closed set around (t0, x0) in D.
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xn(t) ∈ Br(x0) ∀t ∈ [0, h]. This follows from the following:

|xn(t)− x0| ≤
∣∣∣∣∫ t−h/n

0
f(s, xn(s))ds

∣∣∣∣
≤

∫ t−h/n

0
|f(s, xn(s))| ds

≤M(t− h

n
)

≤Mh

≤ r.

Finally, to see equicontinuity, we may simply observe that for any ϵ > 0 and for any n ∈ N,

|xn(s)− xn(t)| ≤
∣∣∣∣∫ s−h/n

t−h/n
f(u, xn(u))

∣∣∣∣ du
≤

∫ s−h/n

t−h/n
|f(u, xn(u))| du

≤M(s− t).

This shows equicontinuity.

Remark 7.1.1.4. (Comments on proof of Theorem 7.1.1.3) The main idea of the proof was to find the
required function through a limiting procedure, where to make sure that we do get the limit, we used
Arzela-Ascoli. One of the foremost things we did as well was to reduce to the nicest possible setting,
which will be very necessary to clear things around.

7.1.2 Uniqueness: Picard-Lindelöf theorem

We will now show that for an IVP (f, (t0, x0)), we may get unique solutions provided some hy-
potheses on f . In order to understand what this hypothesis on f is, we need to review Lipschitz
and contractive functions.

Definition 7.1.2.1. ((locally)Lipschitz functions) A map f : E ⊆ Rn → Rm is a Lipschitz function
if ∃L > 0 such that ∀ x, y ∈ R, we have

∥f(x)− f(y)∥ < L∥x− y∥.

The function f is called locally Lipschitz if ∀x ∈ E, there exists r > 0 such that f |Br(x) is a Lipschitz
map.

Example 7.1.2.2. The map f : R → R given by x 7→ x1/3 is not locally Lipschitz at x = 0. This is
because if it is so, then ∃ϵ > 0 such that on Bϵ(0) the map f is Lipschitz. But for x, y ∈ Bϵ(0) we
get

|x− y| =
∣∣∣(x1/3)3 − (y1/3)3

∣∣∣
=
∣∣∣(x1/3 − y1/3)(x2/3 + y2/3 + (xy)1/3)

∣∣∣
≤ 2ϵ.
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Thus, ∣∣∣x1/3 − y1/3∣∣∣ ≤ 2ϵ∣∣x2/3 + y2/3 + (xy)1/3
∣∣ ,

which shows that f can not be Lipschitz on Bϵ(0).

We have that all continuously differentiable maps are locally Lipschitz.

Lemma 7.1.2.3. Let f : E ⊆ Rn → Rm be a C1-map on an open set E, then f is locally Lipschitz.

Proof. Take a ∈ E. We reduce to showing that there exists a ϵ > 0 such that Bϵ(0) ⊂ E so that the
continuous map Df : E → L(Rn,Rm) achieves maxima on the compact set. This follows from the
fact that E is open.

One definition that we will need is that of uniform Lipschitz.

Definition 7.1.2.4. (Uniform Lipschitz) Let f : D ⊆ R×Rn → Rn be a continuous map. Then f is
called uniformly Lipschitz w.r.t. x if there exists L > 0 such that

∥f(t, x)− f(t, y)∥ < L∥x− y∥

for all (t, x), (t, y) ∈ D.

A contraction is defined in an obvious manner.

Definition 7.1.2.5. (Contractive mappings) Let f : X → X be a continuous map of metric spaces.
Then f is said to be contractive if there exists 0 < λ < 1 such that

d(f(x), f(y)) < λd(x, y)

for all x, y ∈ X .

Our goal is to find the conditions that one must impose on f for the IVP (f, (t0, x0)) to have
a unique solution. This means we need to find a solution x : I → Rn in such a manner that x is
the unique solution possible on that interval I . Now a place uniqueness comes into the picture is
Banach fixed point theorem. Indeed, we will use it to find such an interval I and map x so that it
would be unique for the said IVP.

Theorem 7.1.2.6. (Banach fixed point theorem) Let X be a complete metric space and f : X → X be a
contractive mapping. Then, f has a unique fixed point.

Proof. We will first show the existence of such a fixed point. There is an obvious process of doing
so. Take any point x0 ∈ X . We then form the sequence {xn} in X where xn = fn(x0). We claim
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that {xn} is Cauchy. Indeed, we have that for any ϵ > 0 (we may take n ≥ m):

d(xn, xm) = d(fn(x0), fm(x0))
< λmd(fn−m(x0), x0)
< λm

(
d(fn−m(x0), f(x0)) + d(f(x0), x0)

)
< λm

(
λd(fn−m−1(x0), x0) + d(x1, x0)

)
= λm+1d(fn−m−1(x0), x0) + λmd(x1, x0)
< d(x1, x0) (λm + · · ·+ λn)

= λm
1− λn−m

1− λ d(x1, x0)

<
λm

1− λd(x1, x0).

Next, by completeness ofX , we have that there exists x = lim−→n
xn inX . Now, f(x) = f(lim−→n

xn) =
lim−→n

f(xn) by continuity and lim−→n
f(xn) = x by definition of xn. The uniqueness is simple by

contractive property of f .

We now come to the main result, the uniqueness of solutions of IVP. Before stating it, let us
state how we will be proving it, using the following bijection between solutions of (f, (t0, x0)) and
fixed points of certain mapping.

Construction 7.1.2.7. Let f : D ⊆ R×Rn → Rn be a continuous mapping where D is open and let
(t0, x0) ∈ D so that (f, (t0, x0)) forms an IVP. Now consider the following space for some c > 0

X := C1 [[t0 − c, t0 + c],Rn]

and consider the following map

T : X −→ X

x(t) 7−→ T (x)(t) := x0 +
∫ t

t0
f(s, x(s))ds.

Then, by Lemma 7.1.1.1, we see that x(t) ∈ X is a solution of (f, (t0, x0)) if and only if T (x(t)) =
x(t). Hence

{Solutions of IVP (f, (t0, x0))} ∼= {Fixed points of T : X → X}.

Theorem 7.1.2.8. (Weak Picard-Lindelöf) Let f : D ⊆ R × Rn → Rn be a continuous map where
D is open and (t0, x0) ∈ D such that (f, (t0, x0)) forms an IVP. Choose c > 0 and r > 0 such that
[t0 − c, t0 + c]×Br(x0) ⊆ D. Denote M := max

x∈[t0−c,t0+c]×Br(x0) f(x). If the map

f : [t0 − c, t0 + c]×Br(x0) −→ Rn

is uniformly Lipschitz w.r.t. x and Lipschitz constant being L, then, denoting h := min{c, rM ,
1
L}, there

exists a unique solution of IVP (f, (t0, x0)) given by

x : [t0 − h, t0 + h] −→ Br(x0).
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Proof. (Sketch) The main part of the proof will be the idea in Construction 7.1.2.7 and Banach fixed
point theorem. Let X denote the following space

X :=
®
y ∈ C0 [[t0 − h, t0 + h],Rn] | y(t0) = x0 & sup

x∈[t0−h,t0+h]
∥x0 − y(t0)∥ ≤ hM

´
.

Consider the following function on X

T : X −→ X

y 7−→ x0 +
∫ t

t0
f(s, y(s))ds.

By Theorem 7.1.2.6, we reduce to showing that function X is complete and T is a contraction
mapping. Let us first show completeness ofX . One then shows thatX ↪→ C [[t0 − h, t0 + h],Rn] is
a closed subspace and it will suffice since C [[t0 − h, t0 + h],Rn] is complete and closed subspaces
of complete spaces are complete.

We will now prove Picard-Lindelöf again but with a weakening of hypotheses as compared
to Theorem 7.1.2.8. This is important because most of the time one doesn’t has the information
of Lipschitz constant L as is required in Theorem 7.1.2.8 while constructing the interval of the
solution.

Lemma 7.1.2.9. Something about Picard iterates: If f is Lipschitz with constant L > 0, then the Picard
iterates {xn(t)} satisfies

∥xn+1(t)− xn(t)∥ ≤
MLn(t− t0)n+1

(n+ 1)! .

Theorem 7.1.2.10. (Strong Picard-Lindelöf) Let f : D ⊆ R × Rn → Rn be a continuous map on an
open set D and (t0, x0) ∈ D so that (f, (t0, x0)) forms an IVP. Choose c > 0 and r > 0 such that
[t0 − c, t0 + c]×Br(x0) ⊆ D. Denote M := max

x∈[t0−c,t0+c]×Br(x0) f(x). If the map

f : [t0 − c, t0 + c]×Br(x0) −→ Rn

is uniformly Lipschitz w.r.t. x, then, for any h < min{c, rM }, there exists a unique solution of IVP
(f, (t0, x0)) given by

x : [t0 − h, t0 + h] −→ Br(x0).

The following corollary tells us an alternate sufficient condition on f for the existence of unique
solution to an IVP on f .

Corollary 7.1.2.11. Let f : D ⊆ R× Rn −→ Rn be a continuous map where D is open. If ∂fi
∂xj

: D → R
are continuous maps for all 1 ≤ i, j ≤ n, then for each (t0, x0) ∈ D there exists an open neighborhood
around (t0, x0) ∈ D in which there is a unique solution to IVP (f, (t0, x0)).

Remark 7.1.2.12. In practice, to reduce to an open neighborhood where the solution is unique, the
above corollary will be useful.
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7.1.3 Continuation of solutions

Consider the map f : R × R → R given by (t, x) 7→ x2 and (0, 1) ∈ R × R. One sees that the IVP
(f, (0, 1)) has a solution given by

x : (−1, 1) −→ R

t 7−→ 1
1− t .

However, this solution can be "extended"/"continued" to the following solution of the said IVP

y : (−∞, 1) −→ R

t 7−→ 1
1− t .

These two are different solutions but the domain of one is inside the domain of the other. This con-
cept of solutions extending from one domain to a larger domain will be investigated in this section.

The following definition is obvious.

Definition 7.1.3.1. (Continuation of solutions) Let f : D ⊆ R × Rn → Rn be a continuous map
where D is open and (t0, x0) ∈ D so that (f, (t0, x0)) forms an IVP. Let x : I → Rn be a solution of
(f, (t0, x0)). Then the solution x is said to be continuable if there exists a solution y of (f, (t0, x0))
given by y : J → Rn where J ⊇ I and y|I = x.

The following theorem tells us a sufficient criterion on the solution which would make it con-
tinuable to some larger interval.

Theorem 7.1.3.2. Let f : D ⊆ R × Rn → Rn be a continuous map where D is open and (t0, x0) ∈ D so
that (f, (t0, x0)) forms an IVP. Let x : (a, b)→ Rn be a solution of (f, (t0, x0)).

1. If lim−→t→b− x(t) exists and (b, lim−→t→b− x(t)) ∈ D, then there exists ϵ > 0 such that x can be continued
to a solution x̃ : (a, b+ ϵ)→ Rn.

2. If lim−→t→a+ x(t) exists and (a, lim−→t→a+ x(t)) ∈ D, then there exists ϵ > 0 such that x can be contin-
ued to a solution x̃ : (a− ϵ, b)→ Rn.

The following lemma states that for mild conditions on f , the boundary limits might exist for
a solution.

Lemma 7.1.3.3. Let f : D ⊆ R × Rn → Rn be a continuous map where D is open and (t0, x0) ∈ D so
that (f, (t0, x0)) forms an IVP. If f is bounded, then for any solution x : (a, b)→ Rn, the limits

lim−→
t→b−

x(t) & lim−→
t→a+

x(t) exist.

Proof. Use Lemma 7.1.1.1 to get that x is uniformly continuous over (a, b), so it has unique exten-
sion to its boundary.
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7.1.4 Maximal interval of solutions

Let (f, (t0, x0)) be an IVP and let x : I → Rn be a solution. A natural question is whether there is
a "maximal continuation" of x in the sense of Definition 7.1.3.1. This is what we investigate here.
The following definition is clear.

Definition 7.1.4.1. (Maximal interval of solution) Let f : D ⊆ R×Rn → Rn be a continuous map
and (t0, x0) ∈ D so that (f, (t0, x0)) forms an IVP. The maximal interval of solution x is an interval
J ⊆ R such that there exists a continuation of x on J and there is no continuation of z : L→ Rn of
y where L ⊋ J .

Lemma 7.1.4.2. Let f : D ⊆ R × Rn → Rn be a continuous map and (t0, x0) ∈ D so that (f, (t0, x0))
forms an IVP. If x : I → Rn is a solution of (f, (t0, x0)), then there exists a maximal interval of solution x.

Proof. This is a simple application of Zorn’s lemma on the poset

P = {y : J → Rn | y is a continuation of x}

where y ≤ z iff z is a continuation of x.

We wish to now find a characterization of maximal intervals of a solution. That is, we wish to
know when can we say that a given solution is maximal.

Proposition 7.1.4.3. Let f : D ⊆ R×Rn → Rn be a continuous map and (t0, x0) ∈ D so that (f, (t0, x0))
forms an IVP. Let x : (a, b)→ Rn be a solution of (f, (t0, x0)). Then,

1. The interval [t0, b) is a right maximal interval of solution x if and only if for any compact subset
K ⊆ D, there exists t ∈ [t0, b) such that (t, x(t)) /∈ K.

2. The interval (a, t0] is a left maximal interval of solution x if and only if for any compact subset
K ⊆ D, there exists t ∈ (a, t0] such that (t, x(t)) /∈ K.

Proof. (Sketch) By symmetry, we reduce to showing 1. The main idea is to use the maximality and
the results of previous section.

7.1.5 Solution on boundary

In this section, we investigate the limiting cases of solutions of ODEs on a maximal interval (see
Lemma 7.1.4.2). We see that if the one-sided limit of a maximal solution exists, then it’s graph has
to lie on the boundary of the domain.

Theorem 7.1.5.1. Let f : D → Rn be a continuous map where D ⊆ R× Rn is open and let (t0, x0) ∈ D
so to make (f, (t0, x0)) an IVP. If x : I → Rn is a solution to (f, (t0, x0)) and I = (a, b) is a maximal
interval of solution, then

1. If ∂D ̸= ∅, b <∞ and lim−→t→b− x(t) exists, thenÇ
b, lim−→
t→b−

x(t)
å
∈ ∂D.

2. If ∂D = ∅, b <∞ then

lim sup
t→b−

x(t) =∞.
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A similar statement holds for left sided limit towards a.

Proof. 1. Suppose not. Then
Ä
b, lim−→t→b− x(t)

ä
∈ D as D is open. It follows from Lemma 7.1.3.2

that [t0, b) is not maximal.

2. Suppose not. Then lim supt→b− x(t) ̸= ∞. Hence, there exists M > 0 such that ∥x(t)∥ < M
for all t ∈ [t0, b). Now, construct K = [t0, b] × C where C is a compact disc such that ∀t ∈ [t0, b),
x(t) ∈ C, which can be chosen as an appropriate disc in BM (x0). Since K ⊆ D, therefore by
Proposition 7.1.4.3 we get a contradiction to maximality of [t0, b).

That’s all we have to say here, so far.

7.1.6 Global solutions

So far we have studied solutions x(t) to IVP defined only on some small enough intervals I such
that (t, x(t)) ∈ D. However, we defined D ⊆ R × Rn as an arbitrary open set. In this section
we would restrict to certain type of domains D, namely of the form D = I × Rn and will try to
study whether we can obtain a solution x(t) : I → Rn to an IVP (f, (t0, x0)). If they exists, we call
such a solution to be a global solution of the IVP f : I×Rn → Rn with initial values (t0, x0) ∈ I×Rn.

Let f : I × Rn → Rn be a continuous map where I ⊆ R is an open interval and choose
(t0, x0) ∈ D so that (f, (t0, x0)) forms an IVP. Let x : J → Rn be a solution of (f, (t0, x0)). The main
result of this section says that every such solution x(t) can be extended to a global solution on I
given some regularity conditions of values of f .

Theorem 7.1.6.1. Let f : I × Rn → Rn be a continuous map where I ⊆ R is an open interval and choose
(t0, x0) ∈ D so that (f, (t0, x0)) forms an IVP. Suppose

∥f(t, x)∥ ≤M(t) + ∥x∥N(t)

where M,N : I → R are non-negative continuous maps, ∀(t, x) ∈ I ×Rn. Then any solution x : J → Rn
of (f, (t0, x0)) can be continued to a solution x̃ : I → Rn.

We are more interested in the applications of the above theorem, which we now present.

Corollary 7.1.6.2. Let f : I×Rn → Rn be uniformly Lipschitz w.r.t. x. Then, there exists a unique global
solution x : I → Rn of the IVP (f, (t0, x0)).
Proof. We get that ∃L > 0 such that

∥f(t, x)− f(t, y)∥ < L∥x− y∥

for all t ∈ I and x, y ∈ Rn. In particular for y = 0, we get

∥f(t, x)∥ ≤ ∥f(t, x)− f(t, 0)∥+ ∥f(t, 0)∥
≤ L∥x∥+ ∥f(t, 0)∥

where N(t) = L and M(t) = ∥f(t, 0)∥ in the notation of Theorem 7.1.6.1. Hence, by the same
theorem, if there exists a solution of (f, (t0, x0)), say x on J ⊆ I , then it extends to a solution on I .
Now by Strong Picard-Lindelöf (Theorem 7.1.2.10), we conclude that there is a unique solution on
I ; if there are two solutions on I , then by restriction on the interval obtained from Picard-Lindelöf,
we would get a contradiction to it’s uniqueness.
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For a system of equations linear in x, for x ∈ Rn, we have the following result.

Corollary 7.1.6.3. Let f(t, x) = A(t)x+ b(t) be a map from I ×Rn to Rn where A(t) ∈ C(I,Rn×n) and
b ∈ C(I,Rn) for an open interval I ⊆ R and x = (x1, . . . , xn). For (t0, x0) ∈ I × Rn, consider the IVP
(f, (t0, x0)). Then there exists a unique solution

x : I × Rn → Rn.

Proof. Using triangle inequality, we obtain

∥f(t, x)∥ ≤ ∥A(t)∥∥x∥+ ∥b∥.

The result follows by an application of Theorem 7.1.6.1 and Corollary 7.1.6.2.

7.2 Linear systems

So far, we covered solutions of ODE of the form

dx

dt
= f(t, x(t))

where f : D ⊆ R× Rn → Rn and x : I → Rn. In particular, dxdt is given as

dx

dt
(t) =

[
dx1
dt

dx2
dt . . . dxn

dt

]
where each xi : I → R. On the other hand, the right side consists of f(t, x), which is a continuous
function from a subset of R× Rn to Rn.

In this section, we would now study in detail a particular type of IVP in which the aforemen-
tioned function f(t, x) is a linear map. In particular, the mapping f is given by

f : D ⊆ R× Rn −→ Rn

(t, x) 7−→ Ax

for a real matrix A.

Remark 7.2.0.1. One should keep in mind that these are not new ODEs; a linear system is same
as dx

dt = f(t, x) where f(t, x) = Ax, so they are special cases of general ODEs and have special
properties like uniqueness of solutions. In particular, all the results of the previous section on
general ODEs will obviously hold in the linear case.

Remark 7.2.0.2. By Lemma 7.1.1.1, we know that a solution of dxdt = Ax is necessarily of the form

x(t) = x0 +A
∫ t

0
x(s)ds.
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7.2.1 Some properties of matrices

Let us begin by stating some of the properties of matrix algebra, especially of exponential of ma-
trices as it will be used in Theorem 7.2.2.1. Since these are not fancy results so we omit the proof
of all except the main observations required in each.

Theorem 7.2.1.1. Let A,B ∈Mn(R). Then,
1. ∥A+B∥ ≤ ∥A∥+ ∥B∥.
2. ∥AB∥ ≤ ∥A∥∥B∥.
3. The series eX defined by

eX :=
∞∑
n=0

Xn

n!

converges for all X ∈Mn(R).
4. e0 = I .
5. (eA)T = eA

T .
6. eX is invertible and (eX)−1 = e−X for all X ∈Mn(R).
7. If AB = BA, then eA+B = eAeB = eBeA.
8. If A = diag(λ1, . . . , λn), then eA = diag(eλ1 , . . . , eλn).
9. If P is invertible, then ePAP−1 = PeAP−1.

Proof. We omit the proof of all but the 3. To show that the series converges, by M-test, we reduce
to showing that

∑
n
∥X∥n
n! converges as

∥X
n

n! ∥ ≤
∥X∥n

n! .

Indeed, it converges to e∥X∥.

Out of the above, perhaps the most important is the last one, as it tells us that if we have a
diagonalizable matrix A = PDP−1, then knowing its eigenvalues (that is, knowing D) and the
matrix P is enough for us to calculate the eA. Indeed, one should note that the exponent of a
matrix is not easy to compute all the time!

We now give the lemma which will be quite useful for our goals, that the derivative of expo-
nential of matrices is the obvious one.

Lemma 7.2.1.2. Let X ∈Mn(R). Then,

d

dt
eAt = AeAt.

Proof. One would need to interchange two limits at one point, which could only be done if the
convergences are uniform. This could be shown by M-test.
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7.2.2 Fundamental theorem of linear systems

The most important theorem for linear systems of the form dx
dt = Ax is that that they have a unique

solution.

Theorem 7.2.2.1. Let A ∈Mn(R). Then for any x0 ∈ Rn, the IVP

dx

dt
= Ax(t)

with x(0) = x0 has a unique solution given by

x(t) = eAtx0.

Proof. Suppose y(t) is another solution. Then, define z(t) = e−Aty(t). Differentiating this, we get

d

dt
z(t) = −Ae−Aty(t) + e−At

dy

dt
(t).

Since dy
dt = Ay, thus the above equation gives d

dtz(t) = −Ae
−Aty + e−AtAy = 0. Hence z(t) = c is

constant, therefore y(t) = ceAt. Since y(0) = x0 = c, therefore y = x.

Non-homogeneous linear systems

A non-homogeneous linear system is a linear IVP with an offset; they are of the form:

dx

dt
= Ax(t) + b(t)

with x(0) = x0. Their solution have a peculiar form.

Lemma 7.2.2.2. Let dxdt = Ax(t)+ b(t) with x(0) = x0 be a non-homogeneous IVP for A ∈Mn(R). Then
x is a solution if and only if

x(t) = eAtx0 +
∫ t

0
eA(t−s)b(s)ds.

Proof. We can multiply the IVP by e−At to obtain

e−At
dx

dt
= Ae−Atx+ e−Atb(t)

e−At
dx

dt
−Ae−Atx = e−Atb(t)

d

dt
[e−Atx] = e−Atb(t)

x(t) = eAtx0 + eAt
∫ t

0
e−Asb(s)ds.

One can easily check that the given form satisfies the IVP, by an application of fundamental theo-
rem of calculus.
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7.3 Stability of linear systems in R2

Consider the linear IVP given by

dx

dt
= Ax(t)

with x(0) = x0 where x(t) = (x1(t), x2(t)) ∈ R2 and A ∈ M2(R). From the fundamental theorem,
we know that the solution is of the form x(t) = eAtx0. By Jordan form, we know that there exists
base change matrix P ∈ GL2(R) such that A = P−1BP where B is in Jordan form and hence it is
of either of the three forms:

B =
ï
λ 0
0 µ

ò
, B =

ï
λ 0
0 λ

ò
, B =

ï
a −b
b a

ò
.

By Theorem 7.2.1.1, 9, we get

x(t) = eAtx0 = eP
−1BPtx0 = P−1eBtPx0

so we reduce to understanding the plots of eBtx0 for the aforementioned three cases, in order to
understand the plot of eAtx0 as both are related by coordinate transformation by P .

A phase portrait of a linear system

dx

dt
= Ax(t)

is a plot of x1(t) vs x2(t) for various choices of initial points. Indeed, the choice of initial points is
paramount if one ought to find the behavior of solutions. On the basis of the analysis of the three
cases for B, we make the following definitions.

Definition 7.3.0.1. Let dx
dt = Ax be a linear system where detA ̸= 0 and A ∈ M2(R). Then, the

system is said to have

1. saddle at origin if A ∼
ï
λ 0
0 µ

ò
where λ < 0 < µ,

2. node at origin if

(a) A ∼
ï
λ 0
0 µ

ò
where λ, µ have same sign,

(b) A ∼
ï
λ 1
0 λ

ò
,

3. focus at origin if A ∼
ï
a b
−b a

ò
,

4. center at origin if A ∼
ï
0 b
−b 0

ò
.

7.4 Autonomous systems

An IVP is said to be autonomous if the governing equation

dx

dt
= f(x(t))
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is such that the continuous map f : D ⊆ R × Rn → Rn is independent of time parameter t and
we further assume that f ∈ C1. In such a case we write f : D ⊆ Rn → Rn, and for a fixed initial
datum, the maximal interval of existence is unique as well (see Corollary 7.1.2.11)

One calls a point x0 ∈ D to be an equilibrium point of the dx
dt = f(x(t)) if f(x0) = 0.

7.4.1 Flows and Liapunov stability theorem

In our attempt at a better understanding of the autonomous system’s dependence on initial point,
we develop a basic machinery to handle it. The phase plots were a tool only available for linear
systems, but we are not dealing with then in this section. Note however that a linear system is
also autonomous.

The first tool we want to make is the notion of flows.

Definition 7.4.1.1. (Flows) Consider the following autonomous ODE

dx

dt
= f(x(t))

where f : E ⊆ Rn → Rn is a continuous map. Denote by ϕ(−, y) : Iy → E to be a solution of
the IVP (f, (0, y)) defined on the maximal interval of existence Iy for ϕ(−, y) (Lemma 7.1.4.2). The
map

ϕ : I × E −→ E

(t, y) 7−→ ϕ(t, y)

is called the flow of the system and the map ϕ(t,−) : E → E is called the flow of the system at time
t. As we argued in the beginning, there is only one maximal interval of existence for each initial
datum.

Remark 7.4.1.2. For a pair (t, y) ∈ I × E, the value of the flow ϕ(t, y) ∈ E tells us where the
solution ϕ(−, y) takes the initial point y at time t.

We have some obvious observations.

Lemma 7.4.1.3. Consider the following autonomous ODE

dx

dt
= f(x(t)).

Let ϕ : I × E → E be the flow of the system. Then,
1. ϕ(0, y) = y.
2. ϕ(s, ϕ(t, y)) = ϕ(s+ t, y).
3. ϕ(−t, ϕ(t, y)) = y.

Proof. Trivial.

We now define the important notions surrounding stability.
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Definition 7.4.1.4. (Stability) Consider the following autonomous ODE

dx

dt
= f(x(t)).

Let ϕ : I × E → E be the flow of the system.
1. An equilibrium point x0 ∈ E is said to be (Liapunov)stable if ∀ϵ > 0, ∃δ > 0 such that
x ∈ Bδ(x0) =⇒ ϕ(t, x) ∈ Bϵ(x0) ∀t ≥ 0.

2. An equilibrium point x0 ∈ E is said to be unstable if it is not stable.
3. An equilibrium point x0 ∈ E is said to be asymptotically stable if it is stable and ∃r > 0 such

that

x ∈ Br(x0) =⇒ lim−→
t→∞

ϕ(t, x) = x0.

We are now ready to state one of the most important results in stability theory, the Liapunov
stability theorem. This result gives a sufficient condition for stability of a given point in the domain
of f : E → Rn of an autonomous system.

Theorem 7.4.1.5. (Liapunov stability theorem) Let f : E ⊆ Rn → Rn be a continuous map and

dx

dt
= f(x(t))

be a given autonomous system with x0 ∈ E being an equilibrium point. If there exists a map of class C1

V : E → R

such that V (x0) = 0 and V (x) > 0 for all x ∈ E \ {x0}, then
1. if V ′(x) ≤ 0 for all x ∈ E \ {x0}, then x0 is stable,
2. if V ′(x) < 0 for all x ∈ E \ {x0}, then x0 is asymptotically stable,
3. if V ′(x) > 0 for all x ∈ E \ {x0}, then x0 is unstable.

Remark 7.4.1.6. It is important to note that for most of the autonomous systems in nature, the
function V as above which will do the job will be the energy functional of the physical system,
that is, sum of kinetic and potential energy.

7.5 Linearization and flow analysis

Consider the following system:

x′ = f(x)

where f : E ⊆ Rn → Rn is a continuous map and E is an open set. In the terminology of what
we have covered so far, we have an autonomous system. In general, the above system may not be
linear, as we studied previously. However, we can linearize the system at an equilibrium point x0,
as we shall show below. Indeed, this allows us to analyze the general autonomous system around
each point as if it were linear.
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Construction 7.5.0.1. (Linearization of system at a point) Let E ⊆ Rn be an open set and f : E → Rn
be a C1 map. Let x0 ∈ E be an equilibrium point. For any x ∈ E, by Taylor’s theorem, we get

f(x) = f(x0) +Df(x0)(x− x0) + higher order terms
= Df(x0)(x− x0) + higher order terms
= A(x− x0) + higher order terms.

We thus call the x′ = Df(x0)x to be the linearization of the system f at point x0.

Few definitions are in order.

Definition 7.5.0.2. (Hyperbolic, sink, source & saddle points) Let f : E ⊆ Rn → Rn be a C1-map.
An equilibrium point x0 ∈ E is said to be:

1. hyperbolic if all eigenvalues of Df(x0) has non-zero real part,
2. sink if all eigenvalues of Df(x0) has negative real part,
3. source if all eigenvalues of Df(x0) has positive real part,
4. saddle if there exists eigenvalues λ, µ of Df(x0) such that real part of λ is > 0 and real part of
µ is < 0.

7.5.1 Stable manifold theorem

"For a non-linear system, there are stable and unstable submanifolds, so that once you are in either of them,
the flow will constrain you to remain there."

We will do an important theorem in the theory of linearization of autonomous systems. We
shall avoid the proof this theorem. A reference is pp 107, [cite Perko]. Let us first define three
important subspaces corresponding to a linear system.

Definition 7.5.1.1. (Stable, unstable & center subspaces) Let

x′ = Ax

be a linear system where A ∈Mn(R). Let λj = aj + ibj be eigenvalues of A and wj = uj + ivj be a
generalized eigenvector of λj . Then,

1. the stable subspace Es is defined to be the span of all uj , vj in Rn for those j = 1, . . . , n such
that aj < 0,

2. the unstable subspace Eu is defined to be the span of all uj , vj in Rn for those j = 1, . . . , n
such that aj > 0,

3. the center subspace Ec is defined to be the span of all uj , vj in Rn for those j = 1, . . . , n such
that aj = 0.

Lemma 7.5.1.2. Let x′ = Ax be a linear system for A ∈Mn(R). Then,
1. Rn = Es ⊕ Eu ⊕ Ec,
2. Es, Eu and Ec are invariant under the flow ϕ(t, x) of the linear system, which as we know is given

by eAtx.

Proof. 1. This is easy, as generalized eigenvectors always span the whole space.
2. We need only show that for a generalized eigenvector wj corresponding to λj = aj + ibj with
aj < 0, the vector Akwj is again a genralized eigenvector. Indeed, this follows from definition of a
generalized eigenvector as (A− λjI)wj is again a generalized eigenvector.
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We now come to the real deal.

Theorem 7.5.1.3. (Stable manifold theorem) Let E ⊆ Rn be an open subset with 0 ∈ E, consider f : E →
Rn to be a C1-map and consider the system that it defines. Denote Es and Eu to be the stable and unstable
subspaces of the system x′ = Df(0)x. If,

• f(0) = 0,
• Df(0) : Rn → Rn has k eigenvalues with negative real part and n− k eigenvalues with positive real

part,
then:

1. There exists a k-dimensional differentiable manifold S inside E such that
(a) T0S = Es,
(b) for all t ≥ 0 and for all x ∈ S, we have

ϕ(t, x) ∈ S,

(c) for all x ∈ S, we have

lim−→
t→∞

ϕ(t, x) = 0.

2. There exists an n− k-dimensional differentiable manifold inside E such that
(a) T0U = Eu,
(b) for all t ≤ 0 and for all x ∈ U , we have

ϕ(t, x) ∈ S,

(c) for all x ∈ U , we have

lim−→
t→−∞

ϕ(t, x) = 0.

Let us explain via an example

Example 7.5.1.4. Consider the systemx′1x′2
x′3

 =

 −x1
−x2 + x21
x3 + x21

 .
This is not a linear system as for f((x1, x2, x3)) = (−x1,−x2 + x21, x3 + x21), the above system is
given by

x′ = f(x) (7.1)

and f(x) is clearly not linear in x. However, note that f(0) = 0. Thus, linearizing the system (7.1)
at 0, we obtain the linear system

x′ = Ax (7.2)
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where

A := Df(0) =

−1 0 0
0 −1 0
0 0 1

 .
So A has two eigenvalues with negative real part, namely -1 and -1 and one eigenvalue with
positive real part, namely 1. In particular A is diagonalizable, hence Es and Eu are just span of
the eigenvectors (as all generalized eigenvectors in this case are just your regular eigenvectors).
Hence we see

Es = span


10
0

 ,
01
0


Eu = span


00
1

 .

Hence Es = x9y plane and Eu is the z-axis of R3.

By an application of stable manifold theorem on this system, the stable manifold S is of di-
mension 2 and unstable manifold U is of dimension 1. Now, by elementary calculations, we can
actually solve the linear system (7.2) and we thus obtain the following solution

x1(t) = c1e
−t

x2(t) = c2e
−t + c21(e−t − e−2t)

x3(t) = c3e
t +

c21
3 (et − e−2t).

Hence, the flow of the system is given by

ϕ : R× R3 −→ R3

(t, (c1, c2, c3)) 7−→

Ö
cc1e

−t

c2e
−t + c21(e−t − e−2t)

c3e
t + c21

3 (e
t − e−2t)

è
.

Now, notice the following for any c = (c1, c2, c3) ∈ R3

lim−→
t→∞

ϕ(t, c) = 0 ⇐⇒ c3 +
c21
3 = 0

lim−→
t→−∞

ϕ(t, c) = 0 ⇐⇒ c1 = c2 = 0.

Notice the fact that the above equivalence is very particular to this example. But this leads us to
the following conclusions

S = {(c1, c2, c3) ∈ R3 | c3 + c21/3}
U = {(c1, c2, c3) ∈ R3 | c1 = c2 = 0} ∼= z9axis.

Note that it is indeed true that for all c ∈ S and any t ≥ 0, ϕ(t, c) ∈ S. Similarly for U . Finally, one
can check that T0S = Es and T0U = Eu, where the latter is immediate.
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7.5.2 Poincaré-Bendixon theorem

So far, for a system we have defined its flow. Flow or integral curves of the system holds im-
portant information about the system at hand. However, we have not done any serious analysis
with them. We shall begin the analysis of flows of a system now and prove the aforementioned
theorem. It’s use is predominantly to find closed trajectories of a system, which most of the times
appears as a boundary of two differing phenomenon of the system, hence the importance of closed
trajectories and of the theorem.

We first set up the terminology to be used in order to define basic objects of analysis of flow of
a system.

Definition 7.5.2.1. (ω & α -limit set) Let E ⊆ Rn be an open set and f : E → Rn be a C1 map. Let
ϕ : R× E → Rn be the flow of the system. Then,

1. a point y ∈ E is said to be a ω-limit point of x ∈ E if there exists a sequence t1 < t2 < · · · <
tn < . . . in R such that lim−→n→∞ tn =∞ and lim−→n→∞ ϕ(tn, x) = y.

2. a point y ∈ E is said to be an α-limit point of x ∈ E if there exists a sequence t1 > t2 > · · · >
tn > . . . in R such that lim−→n→∞ tn = −∞ and lim−→n→∞ ϕ(tn, x) = y.

Let x ∈ E, the set of all ω and α limit points of x are denoted Lω(x) and Lα(x) respectively.

The following are some simple observations from the definition

Lemma 7.5.2.2. Let f : E ⊆ Rn → Rn be a C1 map on an open set E and consider the system given by it.
1. If y ∈ Lω(x) and z ∈ Lω(y) then z ∈ Lω(x).
2. If y ∈ Lω(x) and z ∈ Lα(y) then z ∈ Lω(x).
3. For any x ∈ E, the limit sets Lω(x) and Lα(x) are closed in E.

Using the concept of limit points, we can define certain nice subspaces ofE conducive to them.

Definition 7.5.2.3. (Positively invariant set) Let f : E ⊆ Rn → Rn be a C1 map on an open set E
and consider the system defined by it. A region D ⊆ E is said to be positively invariant if for all
x ∈ D, ϕ(t, x) ∈ D for all t ≥ 0 where ϕ : R× E → E is the flow.

We then have the following simple result.

Lemma 7.5.2.4. Let f : E ⊆ Rn → Rn be a C1 map on an open set E and consider the system defined by
it.

1. If x, z are on same flow line/trajectory, then Lω(x) = Lω(z).
2. For any x ∈ E, the limit set Lω(x) is positively invariant.
3. If D ⊆ E is a closed positively invariant set, then for all x ∈ D, Lω(x) ⊆ D.

We now define another set of tools helpful in doing flow analysis. First is a notion which
will come in handy while trying to discuss both the topology of underlying space and the flow
together. A hyperplane in Rn is a codimension 1 linear subspace.

Definition 7.5.2.5. (Local sections) Let f : E ⊆ Rn → Rn be a C1 map on an open set E and
consider the system defined by it. Let 0 ∈ E. A local section S of f is an open connected subset
of a linear hyperplane H ⊆ Rn such that 0 ∈ S and H is transverse to f , that is, f(x) /∈ H for all
x ∈ S.
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The next tool helps to "straighten" out flow around a local section.

Definition 7.5.2.6. (Flow box) Let f : E ⊆ Rn → Rn be a C1 map on an open set E and consider
the system defined by it. Let 0 ∈ E and S be a local section of f . A flow box around S is a
diffeomorphism Φ between (−ϵ, ϵ)×S ⊆ R×E and Vϵ ⊆ E given by Vϵ := {ϕ(t, x) | t ∈ (−ϵ, ϵ), x ∈
S}:

Φ : (−ϵ, ϵ)× S −→ Vϵ

(t, x) 7−→ ϕ(t, x).

We identify (−ϵ, ϵ)× S as the flow box around S.

For a flow box, the diffeomorphism is important as it tells us that we can assume WLOG in a
flow box that flow line are identical to the orthogonal coordinate system of (−ϵ, ϵ)× S ⊆ Rn+1.

We would now like to do flow analysis for the special case of planar systems. Indeed, the main
theorem of this section is about the behaviour of certain limit sets of planar systems.

Let us first observe that for a planar system, any local section intersects a flow line at only
discretly many points.

Lemma 7.5.2.7. Let f : E ⊆ R2 → R2 be a C1 map on an open set E and consider the planar system
defined by it. Let x ∈ E and consider a local section S around x. Let

Σ := {ϕ(t, x) ∈ E | t ∈ [−l, l]}.

Then Σ ∩ S is discrete.

Next, we see that if a sequence of points in a local section S of a planar system is monotonous
in S and those same points appear in a trajectory, then it is monotonous in that trajectory as well.
Indeed, a sequence of points {ϕ(tn, x)} along a trajectory is said to be monotonous if lim−→n→∞ tn =
∞. Note that for a planar system, a codimension 1 linear subspace is a line, hence it has an inherent
order and thus we can talk about monotonous sequences in a local section.

Proposition 7.5.2.8. Let f : E ⊆ R2 → R2 be a C1 map on an open set E and consider the planar system
defined by it. Let S be a local section of the system. If xn = ϕ(tn, x) is a sequence of points monotonous
along the trajectory and xn ∈ S, then {xn} are monotonous in S as well.

One can use the above proposition to deduce some "eventual" properties of points in a local
section by observing their intersection points with a flow line (which are discrete). Further it can
be used for replacing a sequence along a trajectory to a sequence along a local section, which might
be easier to analyze (as it’s behaviour will just be that of monotonous sequences in R).

Next we see an important observation, that trajectories of some special points cannot intersect
a local section at more than one point(!)

Lemma 7.5.2.9. Let f : E ⊆ R2 → R2 be a C1 map on an open set E and consider the planar system
defined by it. For some x ∈ E, let y ∈ Lω(x) ∪ Lα(x). Then the trajectory of y intersects any local section
at not more than single point.
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The next result is interesting, for it says that if the trajectory of a point intersects a local sec-
tion, then there is a whole neighborhood worth of point around it, each of whose trajectories will
intersect the local section(!) In some sense, this corresponds to the continuity of flow.

Proposition 7.5.2.10. Let f : E ⊆ R2 → R2 be a C1 map on an open setE and consider the planar system
defined by it. Let ϕ : R× E → R2 denote the flow of the system. Let S be a local section around y ∈ E. If
there exists z0 ∈ E such that for some t0 > 0 we have ϕ(t0, z0) = y, then

1. there exists an open set U ∋ z0,
2. there exists a unique C1-map τ : U → R,

where τ has the property that τ(z0) = t0 and

ϕ(τ(z), z) ∈ S ∀z ∈ U.

With this, we define the main object of study, a closed orbit.

Definition 7.5.2.11. (Closed orbits) Let f : E ⊆ R2 → R2 be a C1 map on an open set E and
consider the planar system defined by it. A closed orbit is a periodic trajectory which doesn’t
contain an equilibrium point.

Note that if a trajectory contains an equilibrium point, then it will terminate after some finite
time, hence the above requirement.

We now come to the main theorem of this section, which tells us a sufficient condition to find
a closed orbits of a planar system.

Theorem 7.5.2.12. (Poincaré-Bendixon theorem) Let f : E ⊆ R2 → R2 be a C1 map on an open setE and
consider the planar system defined by it. Let x ∈ E be such that Lω(x) (Lα(x)) is a non-empty compact
limit set which doesn’t contain an equilibrium point. Then Lω(x) (Lα(x)) is a closed orbit.

Let us now give some applications of the above theorem. First, we can classify limit sets Lω(x)
completely.

Theorem 7.5.2.13. (Classification of limit sets) Let f : E ⊆ R2 → R2 be a C1 map on an open set E and
consider the planar system defined by it. Let x ∈ E be such that Lω(x)

• is connected,
• is compact,
• has finitely many equilibrium points.

Then one of the following holds
1. Lω(x) is a singleton.
2. Lω(x) is periodic trajectory with no equilibrium points.
3. Lω(x) consists of equilibrium points {xj} and a set of non-periodic trajectories {γi} such that for all
i, the trajectory γi tends to some xj as t→ ±∞.

The main use of Poincaré-Bendixon is to find limit cycles.

Definition 7.5.2.14. (Limit cycles) Let f : E ⊆ R2 → R2 be a C1 map on an open set E and
consider the planar system defined by it. A limit cycle is a periodic trajectory γ such that there
exists x ∈ E for which γ ⊆ Lω(x) or γ ⊆ Lα(x).
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We now state the corollary of Poincaré-Bendixon which allows us to find the existence of limit
cycles.

Corollary 7.5.2.15. Let f : E ⊆ R2 → R2 be a C1 map on an open set E and consider the planar system
defined by it. If there exists a subseteq D ⊆ E such that D

1. is compact,
2. is positively invariant,
3. has no equilibrium points,

then there exists a limit cycle in D.

Proof. By Poincaré-Bendixon, we need only find x ∈ D such that Lω(x) is compact, as then Lω(x)
itself will be the limit cycle. This is straightforward, as D is positively invariant and compact, so
Lω(x) is inside D and is closed (hence compact).

7.6 Second order ODE

We now discuss some basic theory of second order ordinary differential equations.

Definition 7.6.0.1. (Second order system and solutions) Let I ⊆ R be an interval of R and consider
a0, a1, a2, g ∈ C(I) to be four continuous maps I → R such that a0(x) > 0 ∀x ∈ I . Then, a second
order system with parameters a0, a1, a2, g is given by

a0(x)y′′ + a1(x)y′ + a2(x)y = g(x). (7.3)

Note that y′ := dy
dx . A solution of a second order system (q, r, f) is a C2(I) map y(x) such that it

satisfies (7.3).

Remark 7.6.0.2. A second order ODE can be written in the form

y′′ + q(x)y′ + r(x)y = f(x)

where q, r, f ∈ C(I). This form is the one that we shall use and will identify a second order system
by the tuple (q, r, f).

Remark 7.6.0.3. On the R-vector space C2(I) of twice continuously differentiable functions, every
2nd order system (q, r, f) defines a linear transformation

L : C2(I) −→ C(I)
y(x) 7−→ (D2 + q(x)D + r(x))y

where D : C2(I)→ C(I) is the derivative transformation y 7→ y′, which is evidently linear. In this
notation, we can write a second order system (q, r, f) as

Ly = f

where L = D2 + qD + r. We call this linear transformation L the transform associated to (q, r, f).

Definition 7.6.0.4. (Solution space) Let (q, r, f) be a 2nd order system and L : C2(I) → C(I) be
the associated transform. The solution space of (q, r, f) is defined as the Ker (L) ⊆ C2(I). Note
that the set of all solutions of (q, r, f) in C2(I) is given by L−1(f) ⊆ C2(I).
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Lemma 7.6.0.5. Let (q, r, f) be a 2nd order system andL be the associated transform. Then dimR(Ker (L)) =
2.

We now observe that one can obtain all solutions of the 2nd order system S := (q, r, f) by
obtaining a basis of the solution space of S and one solution of S.

Lemma 7.6.0.6. Let S = (q, r, f) be a 2nd order system and L be the associated transform. Then, for any
yp ∈ L−1(f)

L−1(f) = yp + Ker (L).

Proof. Observe that y − yp ∈ Ker (L) and a linear transformation has all fibers of same size.

We define a tool which helps in distinguishing independent or dependent solutions of a ho-
mogeneous system.

Definition 7.6.0.7. (Wronskian) Let f, g ∈ C1(I). The Wronskian of f and g is given by

W (f, g) : I → R

where for any x ∈ I , we have

W (f, g)(x) : = det
ï
f(x) g(x)
f ′(x) g′(x)

ò
= f(x)g′(x)− g(x)f ′(x).

Lemma 7.6.0.8. Let (q, r, 0) be a homogeneous system and let y1, y2 ∈ C2(I) be two solutions. Then,
1. W (y1, y2) is either constant 0 for all x ∈ I or W (y1, y2)(x) ̸= 0 for all x ∈ I .
2. y1, y2 are linearly independent if and only if W (y1, y2) ̸= 0 ∀x ∈ I .

7.6.1 Zero set of homogeneous systems

Let (q, r, f) be a 2nd order system and let y be a solution. There are some peculiar properties of the
zero set Z(y) := {x ∈ I | y(x) = 0} ⊆ R. We first show that the set Z(y) is discrete if the system is
homogeneous.

Lemma 7.6.1.1. Let (q, r, 0) be a 2nd order homogeneous system and let y be a solution. The zeroes of y(x)
are isolated, that is, Z(y) is discrete.

Strum separation and comparison theorems

These theorems are at the heart of the analysis of zeros of homogeneous systems.

Theorem 7.6.1.2. (Strum separation theorem) Let (q, r, 0) be a 2nd order homogeneous system. Let y1, y2
be two distinct linearly independent solutions of the system. Then,

1. Z(y1) and Z(y2) are disjoint.
2. Z(y1) andZ(y2) are braided, that is, for any two x11 and x12 inZ(y1), there exists x21 ∈ Z(y2) between

them, and vice versa.
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Theorem 7.6.1.3. (Strum comparison test) Consider two homogeneous 2nd order systems (0, r1, 0) and
(0, r2, 0). Let y be a solution of (0, r1, 0) and u be a solution of (0, r2, 0), both non-trivial. Let x1, x2 ∈ Z(u)
such that

1. r1(x) ≥ r2(x) for all x ∈ (x1, x2),
2. ∃ xk ∈ (x1, x2) such that r1(xk) > r2(xk).

Then, there exists z ∈ Z(y) such that z ∈ (x1, x2).

7.6.2 Boundary value problems

A boundary value problem (BVP) is a second order system on an interval I = [a, b] given by

y′′ + qy′ + ry = f

for q, r, f ∈ C(I) such that its solutions has to satisfy certain conditions on the boundary given by

Ba(y) := α1y(a) + β1y
′(a) = 0

Bb(y) := α2y(b) + β2y
′(b) = 0

where αi, βi ∈ R, i = 1, 2. This is clearly a different problem than that of IVP. However, with some
construction, we can convert this problem into a pair of 2nd order IVPs. It will turn out that the
solution of this pair has important consequences for the original IVP at hand.

Reduction to a pair of 2nd order IVPs and criterion for uniqueness of BVP solution

Theorem 7.6.2.1. Let I = [a, b] and q, r, f ∈ C(I). Consider the 2nd order system (q, r, f) and denote the
associated transform as L : C2(I) → C2(I). From the system (q, r, f) consider the BVP given explicitly
by

Ly := y′′ + qy′ + ry = f (7.4)
Ba(y) := α1y(a) + β1y

′(a) = 0
Bb(y) := α2y(b) + β2y

′(b) = 0

where αi, βi ∈ R, i = 1, 2. Construct the following two 2nd order IVPs

Ly := y′′ + qy′ + ry = 0 (7.5)
y(a) = β1

y′(a) = −α1

and

Ly := y′′ + qy′ + ry = 0 (7.6)
y(b) = β2

y′(b) = −α2.

Then the following are equivalent
1. Let y1 be a solution of (7.5) and y2 be a solution of (7.6). Then y1 and y2 are linearly independent in

the solution space Ker (L).
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2. The homogeneous BVP

Ly := y′′ + qy′ + ry = 0 (7.7)
Ba(y) = 0
Bb(y) = 0

has only 0 as solution.
3. The BVP (7.4) has a unique solution.

Variation of parameters

Variation of parameters can give us a general form of a particular solution of Ly = f , in terms of
the solutions of IVPs (7.5) and (7.6). Indeed, we have the following theorem.

Theorem 7.6.2.2. Let y1 be a solution of (7.5) and y2 be a solution of (7.6). Let

c1(x) =
∫ x

a

−f(s)y2(s)
W (y1, y2)(s)

ds (7.8)

c2(x) =
∫ x

a

f(s)y1(s)
W (y1, y2)(s)

ds.

Then,

yp(x) = c1(x)y1(x) + c2(x)y2(x) (7.9)

is a particular solution of Ly = f with yp(a) = 0.

Further, we obtain a general form of solution of BVP (7.4).

Theorem 7.6.2.3. Consider the notations of Theorems 7.6.2.1 and 7.6.2.2.
1. Any solution y of BVP (7.4) is

y = yp − c1(b)y1

where y1 is a solution of (7.5) and c1(x) is defined in (7.8).
2. Any solution of the BVP (7.4) is given by the integral

y(x) =
∫ b

a
G(x, s)f(s)ds (7.10)

for all x ∈ I , where

G(x, s) =
{

y1(x)y2(s)
W (y1,y2)(s) if x ≤ s ≤ b
y1(s)y2(x)
W (y1,y2)(s) if a ≤ s ≤ x.

(7.11)

This map G is called the Green’s function for the transformation L : C2(I)→ C(I).
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Strum-Liouville system

Let p, q ∈ C2(I) and f ∈ C(I) with p > 0. Define the 2nd order system

py′′ + p′y′ + qy = f.

We can write it in neater terms as follows

(py′)′ + qy = f. (7.12)

We will call this the Strum-Liouville system, denoted by (p, q, f), and the associated transform as
L : C2(I)→ C(I) mapping y 7→ (py′)′ + qy. Consequently, (7.12) can be written as

Ly := (py′)′ + qy = f.

We have some basic results about the associated transform L.

Lemma 7.6.2.4. Let (p, q, f) be a Strum-Liouville system and L be the associated transform.
1. (Lagrange’s identity) If y1, y2 ∈ C2(I), then

y1Ly2 − y2Ly1 = (pW (y1, y2))′.

2. (Abel’s formula) If y1, y2 are solutions of Ly = 0, that is, they are solutions of the Strum-Liouville
system defined by (p, q, 0), then

W (y1, y2) = c/p

for some constant c ∈ R.

Strum-Liouville Boundary Value Problems (SL-BVPs)

Consider a homogeneous Strum-Liouville system (p, q, 0) and let L be the associated transform.
Consider r ∈ C(I) and λ ∈ C. Then, a Strum-Liouville boundary value problem is a following type of
2nd order BVP

Ly + λry = 0 (7.13)
with

Ba(y) = 0
Bb(y) = 0.

Strum-Liouville EigenValue Problems (SL-EVPs)

An SL-EVP consists of an SL-BVP (7.13) and the following question: find λ ∈ C such that the
SL-BVP (7.13) admits a non-zero solution yλ ∈ C2(I). In such a case λ is called the eigenvalue and
yλ the eigenfunction of the corresponding SL-EVP. We then call the tuple (p, q, r) as the SL-EVP.
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Types of SL-EVPs

We further classify an SL-EVP (p, q, r) based on the properties of the underlying functions.
1. regular if p > 0 and r > 0 on [a, b],
2. singular if p > 0 on (a, b), p(a) = 0 = p(b) and r ≥ 0 on [a, b],
3. periodic if p > 0 on [a, b], p(a) = p(b) and r > 0 on [a, b].

We next see that any eigenvalue of SL-EVP is always real.

Lemma 7.6.2.5. Let (p, q, r) be a regular SL-EVP. Then all eigenvalues of (p, q, r) are real.
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Chapter 9

Jet Bundles

It is through the concepts explained in this chapter that we shall begin doing some geometry over
our base manifolds. A classical use of differential equations is elaborated in Chapter 7, whereas
here we shall be more conceptual in order to elucidate the underlying structure of the notion of
"differential equations".
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Chapter 10

Analysis on Complex Plane
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We will here review some of the classical results of complex function theory of one variable,
namely the following four topics:

• Analytic functions; Cauchy-Riemann equations, harmonic functions.
• Complex integration; Zeroes of analytic functions, winding numbers, Cauchy’s formula and

theorem, Liouville’s theorem, Morera’s theorem, open-mapping theorem, Schwarz’s lemma.
• Singularities; Classification, Laurent series, Casorati-Weierstrass theorem, residues and ap-

plications, meromorphic maps, Rouché’s theorem.
• Conformal maps; Möbius transformations, normality and compactness, Riemann mapping

theorem.
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All this is important as it will build one’s intuition of geometry in complex case, which is some-
thing we don’t learn as early in our studies as, say, real geometry. Of-course this would be of
immense use in complex algebraic geometry, some if which we shall cover in later chapters. More-
over, a complex manifold by definition locally looks like Cn, hence it is imperative that we under-
stand the geometry and analysis of complex plane and make it as second nature as the usual
geometry over R2 is to us.

10.1 Holomorphic functions

Let Ω ⊆ C denote an open subset of the complex plane C for the rest of this chapter. Consider a
function f : Ω→ C. Motivated by the classical case of real differentiability in one variable, we can
define a notion of differentiation for f at a ∈ Ω.

Definition 10.1.0.1. (C-differentiable/holomorphic functions) A function f : Ω→ C is C-differentiable
or holomorphic at a ∈ Ω if the following limit exists:

lim−→
z→0

f(a+ z)− f(a)
z

in which case it’s value is said to be the derivative of f at a and is denoted by df
dz (a) = f ′(a) ∈ C.

Remark 10.1.0.2. As we shall soon see, this seemingly innocuous definition for some surprising
reason gives the following fantastic results:

1. Theorems 10.1.1.2 and ?? tells us:

{All C-differentiable maps f : Ω→ C}

{All pairs of differentiable maps u, v : Ω→ R, related by CR-equations}

∼= .

2. Corollary 10.1.2.2 and Theorem ?? tells us:

C-differentiable maps are conformal.

3. Theorem ?? tells us:

C-differentiable functions are harmonic.

Moreover, Theorem ?? tells us that if Ω is simply connected, then

{Harmonic functions Ω ⊆ R2 ∼= C}

{C-differentiable functions on Ω ⊆ C}

∼= .

4. Theorem ?? tells us:

Contour integral of a C-differentiable map around a loop is 0.
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5. Theorem ?? tells us:
A C-differentiable function inside a disc is determined by its values on the disc’s boundary.

6. Corollary 10.2.3.5 tells us:

{C-differentiable maps f : Ω→ C}

{Analytic maps f : Ω→ C}

∼= .

This shows the sheer importance of the notion of C-differentiability, which we will explore later in
a more local setting. Our goal in the rest of this chapter is to provide rather quick proofs to these
results while portraying the main ideas employed in them.

Let us start by analyzing some elementary properties of holomorphic maps.

10.1.1 Cauchy-Riemann equations

Let f : Ω → C be a holomorphic map on an open subset Ω ⊆ C. Now, there is a homeomor-
phism ϕ : R2 → C given by (x, y) 7→ x + iy. Composing f with this map, we get that f can
equivalently be stated as the data of two real valued maps u : R2 → R and v : R2 → R given by
u(x, y) = ℜf(ϕ(x, y)) and v(x, y) = ℑf(ϕ(x, y)).

Like in the case of R-differentiability, in our case we can also define partial differential opera-
tors of f w.r.t. x, y and z.

Definition 10.1.1.1. (Partial differential operators on f ) Let f : Ω→ C be a holomorphic map on
an open subset Ω of C. Then, we define the following quantities in an obvious manner:

1. ∂f
∂x := ∂u

∂x + i ∂v∂x .
2. ∂f

∂y := ∂u
∂y + i∂v∂y .

3. ∂f
∂z := 1

2

Ä
∂f
∂x − i

∂f
∂y

ä
.

4. ∂f
∂z̄ := 1

2

Ä
∂f
∂x + i∂f∂y

ä
.

Then the fact that f is holomorphic can be equivalently stated in terms of real differentiability
of the maps u and v as the following theorem states.

Theorem 10.1.1.2. Suppose f : Ω → C is any C-valued function on an open set Ω of C. Then write
f(x+ iy) = u(x, y) + iv(x, y) where u, v : R2 ⇒ R.

1. f : Ω → C is holomorphic at z0 ∈ Ω if and only if u, v are real differentiable and satisfy any of the
following equivalent PDEs at z0:

(a) ∂u
∂x = ∂v

∂y & ∂u
∂y = − ∂v

∂x .

(b) ∂f
∂x = −i∂f∂y .

(c) ∂f
∂z = ∂f

∂x .
(d) ∂f

∂z̄ = 0.
2. If u, v : Ω→ R is a pair of C1-maps satisfying the CR-equations, then f := u+ iv is a holomorphic

map.
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Proof. Equivalence of the four PDEs is straightforward. Now let f : Ω→ C be a holomorphic map.
This means that for any a ∈ Ω, we have

∂f

∂z
(a) = lim−→

z→0

f(a+ z)− f(a)
z

.

The required PDEs for u and v follows by letting z approach 0 first from real axis and then from
imaginary axis and deeming them equal.

Next, we may write R(z) = f(a + z) − f(a) − cz for some c = c1 + ic2 and then R(z) =
Ru(z)+ iRv(z) where Ru(z) = u(a+ z)−u(a)− c1x+ c2y and Rv(z) = v(a+ z)− v(a)− c2x− c1y.
Then, f is holomorphic at a with df

dz (a) = c if and only if lim−→z→0
R(z)
z = 0. But the latter happens

if and only if lim−→z→0
Ru(z)
z = 0 = lim−→z→0

Rv(z)
z . Now Ru(z)

z = 0 if and only if c1 = ∂u
∂x(a) and

c2 = −∂u
∂y (a). Similarly, lim−→z→0

Rv(z)
z = 0 if and only if c2 = ∂v

∂x(a) and c1 = ∂v
∂y (a).

10.1.2 Conformal maps

We will now show that holomorphic maps "preserves angles". The meaning of angle is not well-
defined a-priori on the complex plane, so we will have to develop that first.

A curve in C is a continuous map γ : I → C. It is said to be differentiable if ℜγ : I → R and
ℑγ : I → R are differentiable R-valued functions. It is said to be regular at t ∈ I if γ′(t) ̸= 0 ∈ C.
Now, let γ1, γ2 : I → C be two curves which intersect at γ1(t1) = γ2(t2) for t1, t2 ∈ I such that γi is
regular at ti, i = 1, 2. Such an intersection is said to be regular. Then, the angle of intersection of γ1
and γ2 at a regular point is defined to be:

∠γ1(t1), γ2(t2) := arg γ′2(t2)− arg γ′1(t1).

A function f : Ω→ C is conformal at z0 ∈ Ω if f preserves angles of all regular intersections of two
curves at z0.

It is now an easy observation that holomorphic maps will be conformal.

Lemma 10.1.2.1. Let f : Ω → C be a holomorphic map on an open set Ω of C. If z0 ∈ Ω such that
f ′(z0) ̸= 0, then for any two curves γ1, γ2 such that γ1(t1) = z0 = γ2(t2) and γ1, γ2 are regular at t1, t2
respectively, then

∠γ1(t1), γ2(t2) = ∠f ◦ γ1(t1), f ◦ γ2(t2).

Proof. The result follows from chain rule and the fact that argwz = argw + arg z.

A map f : Ω → C is called conformal if it preserves angles of all regularly intersecting curves.
Thus,

Corollary 10.1.2.2. All holomorphic functions are conformal except at those points at which derivative is
zero.

We will now show that even an arbitrary conformal map f : Ω→ C is also holomorphic.
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Theorem 10.1.2.3. Let f : Ω→ C be a conformal map such that ℜf and ℑf are of class C1. Then,
1. f is holomorphic.
2. f ′(z) ̸= 0 for all z ∈ Ω.

Proof. Simple thus omitted.

10.1.3 Harmonic maps

A function f : Ω → C is said to be harmonic if ∂2f
∂x2

+ ∂2f
∂y2

= 0. Below are some straightforward
implications of Cauchy-Riemann equations.

Lemma 10.1.3.1. Let f = u+ iv : Ω→ C be a function where u, v : Ω ⇒ R. Then, f is harmonic if and
only if u and v are harmonic (in R-sense).

Lemma 10.1.3.2. All holomorphic maps are harmonic.

Lemma 10.1.3.3. All conformal maps are harmonic.

10.1.4 Linear fractional transformations

A linear fractional transformation is a map

ϕ : C −→ C

z 7−→ az + b

cz + d

where a, b, c, d ∈ C. These are important as they provide a class of workable examples of rational
functions, which are pretty much the bread and butter of algebraic geometry. Moreover, these
maps arrange themselves in a group and it then follows that it contains as a subgroup the bi-
holomorphic automorphism group of lots of geometric objects of interest (see Lemmas 10.1.4.2,
10.1.4.3). However, these maps makes the most sense on the complex projective line, CP 1, the
quotient of C2 by all lines passing through origin, which is the usual Riemann sphere C̄.

Let us work out this connection in detail. We have the following maps:

α : C2 CP 1 C̄

(w, z) [w, z] w
z

∼=

Notice that Lf (C̄), the collection of all linear fractional transforms on C̄ forms a group where the
identity is given when a = 0 = c. The multiplication of two fractional transforms is again a
fractional transform, as can be checked easily. Hence, it follows that Lf (C̄) is a subgroup of all bi-
holomorphic maps of C̄, the Aut

(
C̄
)
. Hence we have a hold on one type of global biholomorphic

maps of the Riemann sphere(!)

We then have the following result.
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Lemma 10.1.4.1. Let C̄ denote the Riemann sphere. Then,

Lf (C̄) ∼= GL2(C)
/
C×I2

Proof. There’s a natural map

κ : GL2(C) −→ Lf (C̄)ï
a b
c d

ò
7−→ az + b

cz + d
.

This is a group homomorphism, as can be checked easily. The kernel of this homomorphism
consists of matrices

M =
ï
a b
c d

ò
such that az+bcz+d = z. Unravelling, we get c = 0 = b and a = d ̸= 0.

This group is also known by projective general linear group, PGL2(C) := Lf (C̄). The group
Lf (C̄) also has some special subgroups. For example, it consists of all biholomorphic maps of
D◦ := {z ∈ C | |z| < 1}.

Lemma 10.1.4.2. For the open unit ball D◦, we have

Aut (D◦) ∼=
ß
t(z − a)
1− āz | |t| = 1 & a ∈ D◦

™
.

Similarly, it also contains an isomorphic copy of all biholomorphic maps of upper half plane
H.

Lemma 10.1.4.3. For the upper half plane H ⊂ C, we have

Aut (H) ∼= SL2(R) ⊂ GL2(C).

Properties

Let us now state some basic properties of fractional transforms.

Lemma 10.1.4.4. If ϕ : C̄ → C̄ is a non-identity fractional transform, then either it has one or two fixed
points, but not zero.

Proof. A non-identity fractional transform ϕ(z) = az+b
cz+d follows that either b, d ̸= 0 or a ̸= c.

Suppose the former is not the case. Now if ϕ(z) = z, then it follows that cz2 + (d − a)z − b = 0
where b = d = 0. Thus we obtain z(cz − a) = 0, which gives atleast one and atmost two solutions.
Similarly, if a = c, then b, d ̸= 0. It then follows that the above quadratic has either one or two
solutions.

Another property of fractional transforms is that they are uniquely determined by how they
map on three points.
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Lemma 10.1.4.5. If z1, z2, z3 and w1, w2, w3 are two pair of distinct points in C̄, then there exists a unique
fractional transform ϕ ∈ Lf (C̄) such that

f(zi) = wi ∀i = 1, 2, 3.

Proof. Uniqueness follows from the fact that if ϕ,ϖ : C̄ ⇒ C̄ are two fractional transforms taking
zi 7→ wi, then the fractional transform ϕ ◦ϖ−1 has 3 fixed points. It follows from Lemma 10.1.4.4
that ϕ ◦ϖ−1 = id.

To show existence, take any arbitrary triple v1, v2, v3 ∈ C̄. We will show that one can construct
a fractional transform depending on vi mapping as zi 7→ vi. Denote then the map ϕ, zi 7→ vi and
ϖ, wi 7→ vi. Then ϖ−1 ◦ ϕ would be the required map. Since vi can be arbitrary, therefore we
choose it as per our convenience. It is perhaps easier to write it for∞, 0, 1.

One last basic property that may be observed for fractional transforms is that they are confor-
mal.

Lemma 10.1.4.6. All fractional transforms ϕ : C̄→ C̄ are conformal.

Proof. Since fractional transforms are holomorphic, therefore by Corollary 10.1.2.2, we reduce to
showing that ϕ′(z) ̸= 0 for all z ∈ C̄. Indeed, we have

φ′(z) = ad− bc
(cz + d)2 ,

where since ad− bc ̸= 0 by definition, therefore φ′(z) ̸= 0.

Example : The Cayley transform

We will discuss here the properties of the following fractional transform, known by Cayley’s name:

ϕ : C̄ −→ C̄

z 7−→ z + i

z − i
.

10.2 La théorie des cartes holomorphes

The theory of holomorphic maps. We now begin another part of complex function theory which
is at the heart of a lot of sources of interest in it. We first consider the line integrals.

10.2.1 Line integrals

Let γ : [a, b]→ C be a continuous function. Suppose G ⊆ C is an open subset containing γ and it’s
interior and let f ∈ Chol(G) be a holomorphic map f : G → C. Then, the line integral of f along γ
is defined as ∫

γ
f(z)dz :=

∫ b

a
f(γ(t))γ′(t)dt
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where definite integral of a complex valued function g : [a, b] → C where g = u + iv is given
simply as the Riemann integral on each of the real and imaginary parts:∫ b

a
g(t)dt =

∫ b

a
u(t)dt+ i

∫ b

a
v(t)dt.

A continuous map γ : [a, b] → C is called piecewise C1 if γ is C1 at all but finitely many points
and where it isn’t differentiable, one sided derivative exists.

Few properties of line integrals are in order.

Theorem 10.2.1.1. Let γ : [a, b] → C be a curve in C and let G ⊆ C be an open subset containing γ. Let
f ∈ Chol(G) be a holomorphic map over G. Then,

1. (FTOC) If γ is piecewise C1, then ∫ b

a
γ′(t)dt = γ(b)− γ(a).

2. If f ∈ Chol(G) where G contains γ, then∫
γ
f ′(z)dz = f(γ(b))− f(γ(a)).

So if γ is a closed loop, then integral of f ′ along it is 0.
3. If f ∈ Chol(G) and γ̃ is a reparametrization of γ, then

∫
γ f(z)dz =

∫
γ̃ f(z)dz.

4. (Estimate) If f ∈ Chol(G) and M = supt∈[a,b] |f(γ(t))|, then∣∣∣∣∫
γ
f(z)dz

∣∣∣∣ ≤ML(γ)

where L(γ) =
∫ b
a |γ′(t)| dt is the arc-length.

Proof. Assuming 1 by FTOC on each piece, all results follows from basic analysis.

10.2.2 Cauchy’s theorem - I

We will now state the Cauchy’s theorems on holomorphic maps and integrals. This will be a
special case of the general version, which we shall do later, for we will find almost all of the
traditional applications without needing that generality. We will begin with it’s infantile version,
which is quite simple to state now with line integrals in our pouch.

Theorem 10.2.2.1. (Cauchy’s theorem) Let γ : [a, b]→ C be a closed piecewiseC1 loop in C and letG ⊆ C
be a convex open set containing γ and it’s interior Int(γ). If f ∈ Chol(G), then∫

γ
f(z)dz = 0.

Then there is the Cauchy integral formula.
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Theorem 10.2.2.2. (Cauchy’s integral formula) Let C be a circle oriented in the counterclockwise manner
and let G ⊆ C be an open set containing C and its interior Int(C). Then,

f(z) = 1
2πi

∫
C

f(w)
w − z

dw

for all z ∈ Int(C).

Remark 10.2.2.3. Let f ∈ Chol(G) be a holomorphic map on openG ⊆ C. The integral formula tells
us that the value of f at z ∈ G can be given in terms of line integral of f around a small enough
circle C in the CCW orientation centered at z so that C ⊆ G. Hence the integral formula tells
us that holomorphic maps are pretty much completely determined by taking their line integrals
around circles.

We will provide some results which can be derived from them. In particular, using these, we
would be able to show that a holomorphic map is analytic (Corollary 10.2.3.5).

Proof of Cauchy’s theorem : Holomorphic maps have primitives

A primitive of a holomorphic map f is a holomorphic map g such that g′ = f . We first state the
following theorem without proof using which we will prove the Cauchy’s theorem.

Theorem 10.2.2.4. (Cauchy’s triangle theorem) Let T be a triangle in C and G ⊆ C be an open set
containing T and Int(T ). If f ∈ Chol(G), then∫

T
f(z)dz = 0.

Proof. [??] [Sarason].

Now, we will prove the following lemma using the above triangle theorem.

Lemma 10.2.2.5. Let G ⊆ C be a convex open set and f ∈ Chol(G). Then there exists a map g ∈ Chol(G)
such that g′ = f .

Proof. For a fixed z0 ∈ G, define

g : G −→ C

z 7−→
∫
[z0,z]

f(z)dz

where [z0, z] denotes the path formed by line joining z0 and z in G. We claim that for all z ∈ G,
g′(z) = f(z). Indeed, pick any z1 ∈ G to form triangle T = (z0, z1, z) inside G (G is convex). Then,
by Theorem 10.2.2.4, we get the following

0 =
∫
T
f(w)dw

=
∫
[z0,z1]

f(w)dw +
∫
[z1,z]

f(w)dw +
∫
[z,z0]

f(w)dw

g(z)− g(z1) =
∫
[z1,z]

f(w)dw.
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We wish to estimate ∣∣∣∣g(z)− g(z1)z − z1
− f(z1)

∣∣∣∣ = ∣∣∣∣ 1
z − z1

∫
[z1,z]

f(w)dw − f(z1)
∣∣∣∣

=
∣∣∣∣ 1
z − z1

∫
[z1,z]

(f(w)− f(z1))dw
∣∣∣∣

≤ 1
|z − z1|

∫
[z1,z]
|f(w)− f(z1)| dw.

Since f is continuous, therefore for any ϵ > 0, there is a δ > 0 such that |w − z1| < δ implies
|f(w)− f(z1)| < ϵ. Hence, for |w − z1| < δ, we get

≤ 1
|z − z1|

∫
[z1,z]

ϵdw

= ϵ.

Hence as z → z1, the above difference→ 0.

Proof of Theorem 10.2.2.1. Since f ∈ Chol(G), therefore by Lemma 10.2.2.5, there exists g ∈ Chol(G)
such that g′ = f . Hence the result follows by Theorem 10.2.1.1, 2.

Proof of Cauchy’s integral formula : Cauchy integrals

We would like to present the proof of Cauchy integral formula as it portrays how to use the fact
that integral of holomorphic maps around closed loops are zero (Theorem 10.2.2.1).

Proof of Theorem 10.2.2.2. Pick any z0 ∈ Int(C). We shall show the result for this chosen z0. We
shall use the Cauchy’s theorem 10.2.2.1 in an essential manner. Indeed, consider the follow-
ing figure on the complex plane inside G: Integrating the holomorphic map f(w)

w−z0 over the each

z0
Cϵ

C

Figure 10.1: Contour over which to integrate f(w)
w−z0 .

of the four regions will give zero by Theorem 10.2.2.1. However, summing them up, one can
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see that we get the difference
∫
C

f(w)
w−z0dw −

∫
Cϵ

f(w)
w−z0dw, which should thus be zero, yielding us∫

C
f(w)
w−z0dw =

∫
Cϵ

f(w)
w−z0dw. Note this is true for all ϵ < d(z0, C).

Now recall that
∫
C

1
zdz = 2πi. Hence, we get the following estimate for any chosen ϵ < d(z0, C)∣∣∣∣ 1
2πi

∫
C

f(w)
w − z0

dw − f(z0)
∣∣∣∣ = ∣∣∣∣ 1

2πi

∫
Cϵ

f(w)
w − z0

dw − f(z0)
∣∣∣∣

=
∣∣∣∣ 1
2πi

∫
Cϵ

f(w)− f(z0)
w − z0

dw

∣∣∣∣
Now, by Theorem 10.2.1.1, 4, let Mϵ = supw∈Cϵ

∣∣∣f(w)−f(z0)w−z0

∣∣∣ to obtain the following inequality

≤ Mϵ

2π L(Cϵ)

= Mϵ

2π 2πϵ

= ϵMϵ.

Since f is holomorphic, therefore lim−→ϵ→0Mϵ = |f ′(z0)|. Hence, lim−→ϵ→0 ϵMϵ = 0, which gives the
desired result.

10.2.3 Theory of holomorphic maps

We now present applications of the two highly useful results of Cauchy (Theorems 10.2.2.1, 10.2.2.2).
The results covered here are as follows:

• Mean value property.
• Power series representation of Cauchy integrals.
• Morera’s theorem.
• Derivatives.
• Liouville’s theorem.
• Identity theorem.
• Maximum modulus theorem.
• Schwarz’s lemma.
• Classification of bijective holomorphic maps of open unit ball.
• Open mapping theorem.
• Fundamental theorem of algebra.
• Inverse function theorem.
• Local mth power property.
• Harmonic conjugates.

These results lie at the heart of complex analysis.

Let us begin by understanding the behavior of a holomorphic map around a circle centered at
a point.
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Mean value property of holomorphic maps

Proposition 10.2.3.1. Let G ⊆ C be an open set and f ∈ Chol(G). Then, for all z0 ∈ G and Cr a circle of
radius r centered at z0 contained inside G together with its interior Int(C), we have

f(z0) =
1
2π

∫ 2π

0
f(z0 + reit)dt.

Proof. Using the integral formula (Theorem 10.2.2.2) and using γ(t) = z0 + reit as a parameteriza-
tion of Cr, the result follows.

Power series representation of Cauchy integrals

We will in this section show that functions defined by Cauchy integrals are analytic. Since holo-
morphic maps are given by Cauchy integrals, thus we would be able to show that holomorphic
maps are analytic.

Definition 10.2.3.2. (Maps given by Cauchy integral) Let γ : [a, b] → C be a piecewise C1 curve
in C and f ∈ Chol(G) be a holomorphic map on an open subset G ⊆ C where G contains Im (γ).
Define the following map

f̃ : C \ Im (γ) −→ C

z 7−→
∫
γ

f(w)
w − z

dw.

Then f̃ is called the Cauchy integral associated to f ∈ Chol(G) and γ : [a, b]→ G.

We first show that holomorphic maps are given by Cauchy integrals.

Lemma 10.2.3.3. Let f ∈ Chol(G) be a holomorphic map on an open set G ⊆ C. Then f is locally given
by a Cauchy integral.

Proof. Indeed, by Theorem 10.2.2.2, we see that for all z ∈ G, choosing a small circle Cz around z
and such that Cz and Int(Cz) are inside G, we can write

f(z) = 1
2πi

∫
Cz

f(w)
w − z

dw.

Hence locally f looks like a Cauchy integral.

We now show that Cauchy integrals are analytic, making holomorphic maps analytic by above
lemma.

Proposition 10.2.3.4. Maps defined by Cauchy integrals are analytic.

Proof. Let f ∈ Chol(G) where G is open and let γ : [a, b]→ G be a piecewise C1 curve. We wish to
show that f̃ defined on C\ Im (γ) is given locally by power series. Indeed, pick any z ∈ C\ Im (γ).
Since Im (γ) is closed, therefore there exists a ball of radius r, Br, such that Br ⊆ C \ Im (γ). In
order to expand f̃(z) =

∫
γ
f(w)
w−z dw as a power series, we first focus on 1

w−z , where w ∈ Im (γ) and
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z is as above. Indeed, for any z0 ∈ Br, we have |z − z0| < r and |w − z0| > r, thus yielding that∣∣∣ z−z0w−z0

∣∣∣ < 1 and hence we can write

1
w − z

= 1
(w − z0)− (z − z0)

= 1
(w − z0)(1− z−z0

w−z0 )

= 1
w − z0

∞∑
n=0

Å
z − z0
w − z0

ãn
=
∞∑
n=0

(z − z0)n

(w − z0)n+1 .

Moreover the convergence is uniform as we are within the radius of convergence. Now, f(w) ≤M
for allw ∈ Im (γ) as Im (γ) is compact and f is continuous over it. Hence we get that that following
holds for all w ∈ Im (γ)

f(w)
w − z

=
∞∑
n=0

f(w)(z − z0)n

(w − z0)n+1 .

Taking integral both sides, it thus follows from uniform convergence of above series that

f̃(z) =
∫
γ

f(w)
w − z

dw =
∫
γ

∞∑
n=0

f(w)(z − z0)n

(w − z0)n+1 dw

=
∞∑
n=0

∫
γ

f(w)(z − z0)n

(w − z0)n+1 dw

=
∞∑
n=0

Å∫
γ

f(w)
(w − z0)n+1dw

ã
(z − z0)n.

Hence locally f̃ looks like a power series, i.e. it is analytic.

Corollary 10.2.3.5. Holomorphic maps are analytic.

Proof. By Lemma 10.2.3.3, holomorphic maps are given by Cauchy integrals. By Proposition
10.2.3.4, maps given by Cauchy integrals are analytic.

Morera’s theorem : Converse of Cauchy’s triangle theorem

Proposition 10.2.3.6. If f : G→ C is a continuous map on an open set G ⊆ C such that for all triangles
T ⊆ G where Int(T ) ⊆ G as well we get ∫

T
f(z)dz = 0,

then f is holomorphic.

Proof.
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Derivatives of a holomorphic map

Proposition 10.2.3.7. Let f ∈ Chol(G) be a holomorphic map on an open set G ⊆ C. Then, f is differen-
tiable to all orders and

f (n)(z) = n!
2πi

∫
Cr

f(w)
(w − z)n+1dw

where Cr is a circle in CCW orientation of radius r such that Cr ⊆ G and Int(Cr) ⊆ G. Moreover, for all
z ∈ Int(Cr) with z0 as center, we have that

f(z) =
∞∑
n=0

f (n)(z0)(z − z0)n

n!

=
∞∑
n=0

1
2πi

Å∫
Cr

f(w)
(w − z)n+1dw

ã
(z − z0)n

Liouville’s theorem

A holomorphic map f on the entire complex plane, that is f ∈ Chol(C), is said to be entire.

Proposition 10.2.3.8. Any entire bounded function f : C→ C is constant.

Zeroes of holomorphic maps

Proposition 10.2.3.9. Let G ⊆ C be an open connected subset of C. If f ∈ Chol(G) is a holomorphic map
on G, then the zero set V (f) = {z ∈ G | f(z) = 0} has no limit point in G i.e. either V (f) = G or V (f)
is discrete.

Identity theorem

Proposition 10.2.3.10. Let f, g ∈ Chol(G) be two holomorphic maps defined on an open connected set
G ⊆ C. Then f = g on G if and only if there exists a set A ⊆ G which has a limit point in G such that
f |A = g|A.

Corollary 10.2.3.11. Let f, g be two holomorphic maps on open connected subset G ⊆ C such that there
exists an open set U ⊊ G contained inside of G such that ∂U ̸= ∅ and Ū ⊆ G and f |U = g|U . Then f = g
on G.

Proof. Indeed, since any element in ∂U is a limit point of U in G and f |U = g|U , then the result
follows by Proposition 10.2.3.10.

Corollary 10.2.3.12. Let f, g be two holomorphic maps on open connected subset G ⊆ C such that there
exists a closed ball B ⊂ G on which f |B = g|B , then f = g on G.

Proof. A closed ball has non-empty interior. The result follows by Corollary 10.2.3.11.

Maximum modulus principle

Proposition 10.2.3.13. Let G ⊆ C be an open connected set and f ∈ Chol(G) be a holomorphic map on G.
Then |f | doesn’t achieves local maxima in G.
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Schwarz’s lemma

Lemma 10.2.3.14. Let D = {z ∈ C | |z| < 1} be the open unit disc. If f ∈ Chol(D) is a holomorphic map
f : D → D such that f(0) = 0, then

1. |f(z)| ≤ |z| for all z ∈ D.
2. |f ′(0)| ≤ 1.
3. If f is not of the form λz for λ ∈ S1, then the inequality in 1. & 2. is strict at all points z ∈ D \ {0}.

In particular, if there exists z0 ∈ D \ {0} such that |f(z0)| = |z0|, then f(z) = λz for |λ| = 1 and
λ = f ′(0).

Proof. Consider the map defined by

g : D −→ C

z 7−→
®f(z)

z if z ∈ D \ {0}
f ′(0) if z = 0.

Clearly g is holomorphic. Now, for any r ∈ (0, 1), for Cr ⊂ D, by maximum modulus, Proposition
10.2.3.13, we have

|g(z)| < 1
r

for all z ∈ Int(Cr). Taking limit as r → 1, we obtain |g(z)| ≤ 1 for all z ∈ D. Now, if ∃w ∈ D
such that |f(w)| = |w|, then |g(w)| = 1. Since |g(z)| < 1 for all z ∈ D as shown above, therefore
by another use of maximum modulus, Proposition 10.2.3.13, it follows that g(z) = λ is a constant
where |λ| = 1. Thus f(z) = λz.

Corollary 10.2.3.15. (Pick’s lemma) Let f : D → D be a holomorphic map where D = {z ∈ C | |z| < 1}.
Then, for any two points z, w ∈ D ∣∣∣∣∣ f(z)− f(w)1− f(z)f(w)

∣∣∣∣∣ ≤
∣∣∣∣ z − w1− zw̄

∣∣∣∣
except if f is a linear fractional transform mapping disc onto itself.

Proof. Define for each w ∈ D the following fractional transform

gw : D −→ D

z 7−→ z − w
1− zw̄ .

Then apply Schwarz’s lemma (Lemma 10.2.3.14) on gf(w)◦f ◦g−1w : D → D as fractional transforms
are biholomorphic.

Classification of bijective holomorphic maps of open unit ball

We shall classify all bijective holomorphic maps f : D → D for D := {z ∈ C | |z| < 1} and
see that in the process that they are biholomorphic as well. For this, we first define the following
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important map which we encountered in Pick’s lemma (Corollary 10.2.3.15). Define the following
map for each α ∈ D:

ϕα : D̄ −→ D̄

z 7−→ z − α
1− ᾱz .

This is indeed a holomorphic map over D̄. We now see that this is biholomorphic.

Theorem 10.2.3.16. For any α ∈ D, the map ϕα : D̄ → D̄ is such that
1. ϕα takes D to D,
2. ϕα takes ∂D to ∂D,
3. ϕα is injective,
4. ϕα is surjective,
5. ϕα has a holomorphic inverse given by ϕ−α.

Proof. Fix an α ∈ D. We first show 2. For any z ∈ ∂D, we can write z = eit for t ∈ R. Thus we
have ∣∣∣ϕα(eit)∣∣∣ = ∣∣∣∣ eit − α1− ᾱeit

∣∣∣∣
=
∣∣∣∣ eit − α1− ¯̄αēit

∣∣∣∣
=
∣∣∣∣ eit − α1− αe−it

∣∣∣∣
=
∣∣∣∣eit − αeit − α

∣∣∣∣
= 1.

Thus, ϕα(eit) ∈ ∂D. This shows 2. Now we show 1. For this, by maximum modulus (Proposition
10.2.3.13), we have that |ϕα| achieves maxima on ∂D, and by 1., that maxima is 1, hence at every
point of ∂D does |ϕα| achieves maxima. Hence ϕα(D) ⊆ D. This shows 1. Next, it is a matter of
simple calculation to see that ϕα ◦ ϕ−α = idD̄ and thus by symmetry idD̄ = ϕ−α ◦ ϕα. Hence, ϕα
is a biholomorphic map taking D onto D and ∂D onto ∂D.

We would now like to see that all biholomorphic maps of open unit ball are given by some
unit modulus scalar multiples of ϕα. However, we need an idea to do so, which is provided by
the following result.

Proposition 10.2.3.17. (Extremality) For fixed α, β ∈ D, denote Cα,β to be the class of holomorphic maps
into the unit disc f : D → D such that f(α) = β. Then,

1. we have

sup
f∈Cα,β

∣∣f ′(α)∣∣ = 1− |β|2

1− |α|2
.
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2. The map f ∈ Cα,β achieving the suprema is given by the following rational map

f = ϕ−β ◦ λ ◦ ϕα

where λ ∈ ∂D is a scalar.

Proof. 1. We need only show that for each f ∈ Cα,β , we get

∣∣f ′(α)∣∣ ≤ 1− |β|2

1− |α|2
.

Indeed, this simply follows from a similar idea as used in the proof Pick’s lemma (Corollary
10.2.3.15) above; consider the map g = ϕβ ◦ f ◦ ϕ−α and use Schwarz’s lemma (Lemma 10.2.3.14)
on it to get the bound |g′(0)| ≤ 1. Now use chain rule while keeping in mind that ϕ′(0) = 1− |α|2
and ϕ′α(α) = 1

1−|α|2 .

2. From proof of 1, it follows that the equality is achieved if and only if |g′(0)| = 1. By Schwarz’s
lemma (Lemma 10.2.3.14) this happens only if g(z) = λz for λ ∈ ∂D. Rest follows by composing
with inverses of ϕβ and ϕ−α which we know from Theorem 10.2.3.16, 5.

We now come to the real deal. The following shows that all bijective holomorphic mapsD → D
are biholomorphic and are given by unit modulus scalar multiples of ϕα for some α ∈ D. However
we shall need a topic which we will cover in the next few sections, namely the inverse function
theorem for one complex variable (see Section ??, Theorem ??). Moreover we shall also need
another result which we do only in a further section called Rouché’s theorem (Section ??, Theorem
??).

Theorem 10.2.3.18. (Bijective holomorphic mapsD → D) Let f : D → D be a bijective holomorphic map.
Denote α ∈ D to be the unique element such that f(α) = 0. Then, there exists λ ∈ ∂D such that

f = λϕα.

Proof. Consider the set-theoretic inverse of f , denoted g : D → D. By Rouché’s theorem (Theorem
??) and by inverse function theorem (Theorem ??), we obtain that g ∈ Chol(D). Now by chain rule
we obtain g′(f(α))f ′(α) = 1, that is, g′(0) = 1/f ′(α). Now by Proposition 10.2.3.17, we obtain the
following inequality for f and g where f(α) = 0 and g(0) = α:

|f(z)| ≤ 1
1− |α|2

|g(z)| ≤ 1− |α|2 .

In particular, we obtain that 1 − |α|2 ≥ g′(0) = 1/f ′(α) ≥ 1 − |α|2, thus g′(0) = 1 − |α|2. Simi-
larly, |f ′(α)| = 1

1−|α|2 . Hence f achieves the suprema of Proposition 10.2.3.17, 1. By Proposition
10.2.3.17, the result follows.
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Corollary 10.2.3.19. There is a bijectionß
Bijective holomorphic maps f : D → D

™
ß

Rational functions of the form λ z−α
1−ᾱz , α ∈ D, λ ∈ ∂D

™
.

∼=

Using this and Schwarz’s lemma, we can show that a holomorphic map f : D → D can have
atmost one fixed point.

Corollary 10.2.3.20. Let f : D → D be a holomorphic map. Then f has atmost one fixed point.

Proof. The idea is quite simple and we have used it already in the proof of Pick’s lemma (Corollary
10.2.3.15). Indeed, we will construct ϕα : D → D in such a manner that Schwarz’s lemma can be
applied to ϕ ◦ f ◦ ϕ−1 and will use the results about the function ϕα (Theorem 10.2.3.16).

Suppose z1 ̸= z2 ∈ D are two fixed points of f . Consider the map ϕz1(z) := z−z1
1−z̄1z . This is a

biholomorphic mapping ϕ−z1 : D → D. Consider

h = ϕz1 ◦ f ◦ ϕ−z1 .

Then h : D → D is a holomorphic map and h(0) = 0. Applying Schwarz’s lemma (Lemma
10.2.3.14), we obtain that |h(z)| ≤ |z|. But notice that h(ϕz1(z2)) = ϕz1(z2). Thus ϕz1(z2) is a fixed
point of h. Moreover, ϕz1(z2) ̸= 0 as other wise z2 = z1, a contradiction. Thus, there exists w ∈ D
such that |h(w)| = |w| (in particular, forw = ϕz1(z2)). Hence by contrapositive of Lemma 10.2.3.14,
3, we obtain that h(z) = λz. Since h(w) = w = λw, we obtain that λ = 1. Hence h = id, thus
f = id.

Open mapping theorem

This theorem is quite an important result in the theory of holomorphic maps. It says a very simple
thing, all holomorphic maps on open connected sets are open maps(!)

Theorem 10.2.3.21. Let G ⊆ C be an open connected subset and let f ∈ Chol(G) be a non-constant
holomorphic map f : G→ C. Then f is an open map.

Fundamental theorem of algebra

Proposition 10.2.3.22. Every non-constant polynomial f(x) ∈ C[x] can be factored into linear factors.

Proof. Suppose f(x) ∈ C[x] is a non-constant polynomial given by

f(x) = anx
n + · · ·+ a1x+ a0.



10.2. LA THÉORIE DES CARTES HOLOMORPHES 313

Suppose to the contrary that f has no zeros in C. Then g(x) = 1
f(x) : C → C is an entire map. We

wish to use Liouville’s theorem (Proposition 10.2.3.8) on g(x) in order to obtain a contradiction.
Indeed, to get an upper bound for |g(x)|, we need a lower bound for |f(x)|. To this end we have

|f(x)| ≥ |anxn + · · ·+ a1x+ a0|

≥ |anxn|
∣∣∣∣Å1 + an−1

anx
+ · · ·+ a1

anxn−1
+ a0
anxn

ã∣∣∣∣
≥ |anxn|

Å
1−

∣∣∣∣an−1anx

∣∣∣∣− · · · − ∣∣∣∣ a1
anxn−1

∣∣∣∣− ∣∣∣∣ a0
anxn

∣∣∣∣ã
where the last inequality comes from triangle inequality. Now write h(x) = 1 −

∣∣∣an−1
anx

∣∣∣ − · · · −∣∣∣ a1
anxn−1

∣∣∣− ∣∣∣ a0
anxn

∣∣∣. In order to get a further lower bound for |f(x)|, we need to get an upper bound

for h(x). Since h(x) → 0 as x → ∞, therefore for some R > 0, we shall have h(x) ≤ 1
3 for |x| > R.

Thus, we get

|f(x)| ≥ |anRn|
2
3

for |x| > R. Now on |x| ≤ R, by continuity of |f | on a compact domain, we get that it achieves a
minima, and hence |f | is a lower bounded map and hence g(x) is an upper bounded map.

Inverse function theorem

Remember that for a differentiable map f : Rn → Rn, if x0 ∈ Rn is a point such that Dfx0 is
invertible, the inverse function theorem tells us that f is a diffeomorphism in some neighborhood
around x0. A similar statement is true for holomorphic maps f : G ⊆ C→ C.

Theorem 10.2.3.23. (Inverse function theorem) Let G ⊆ C be an open connected set and ϕ ∈ Chol(G) be a
holomorphic map onG. If for z0 ∈ Gwe have that f ′(z0) ̸= 0, then there exists a neighborhood z0 ∈ V ⊆ G
such that

1. ϕ|V : V → ϕ(V ) is bijective,
2. ϕ(V ) ⊆ G is open,
3. the map ψ : ϕ(V )→ V given by ϕ(z) 7→ z is in Chol(ϕ(V )),
4. the map ϕ|V : V → ϕ(V ) is biholomorphic.

We will now prove it. Let us begin with the following simple lemma.

Lemma 10.2.3.24. Let G ⊆ C be an open connected set. If f : G→ C is a holomorphic map, then the map
defined by

g : G×G −→ C

(z, w) 7−→
®f(z)−f(w)

z−w if z ̸= w,

f ′(z) if z = w

is continuous.
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Proof. Clearly g is continuous for all (z, w) with z ̸= w. Pick any a ∈ G. We will show that g is
continuous at (a, a). For that, we wish to estimate |g(z, w)− g(a, a)|. For this, note that we can
write g(z, w) as follows where γ is the straight path γ(t) = (1− t)z + tw:

g(z, w) = f(z)− f(w)
z − w

= f(γ(0))− f(γ(1))
γ(0)− γ(1)

= 1
w − z

∫
γ
f ′(z)dz

=
∫ 1

0
f ′(γ(t))dt

where the third equality follows from Theorem 10.2.1.1, 2. Thus we can write

|g(z, w)− g(a, a)| =
∣∣∣∣∫ 1

0
f ′(γ(t))dt− f ′(a)

∣∣∣∣
=
∣∣∣∣∫ 1

0
f ′(γ(t))− f ′(a)dt

∣∣∣∣
≤

∫ 1

0

∣∣f ′(γ(t))− f ′(a)∣∣ dt.
Now by continuity of f ′, the estimate follows.

We can now prove the inverse function theorem.

Proof of Theorem 10.2.3.23. 1. The surjectivity is clear. For injectivity, we will show that for two
z1 ̸= z2 ∈ V , |ϕ(z1)− ϕ(z2)| ≥ M for some M > 0 using the lemma just proved. Indeed, using
Lemma 10.2.3.24 and triangle inequality, we obtain for ϵ = 1

2 |ϕ
′(z0)| an open set Ṽ containing

(z0, z0) such that for all (z1, z2) ∈ Ṽ with z1 ̸= z2 we get the following∣∣∣∣∣∣∣∣ϕ(z1)− ϕ(z2)z1 − z2

∣∣∣∣− ∣∣ϕ′(z0)∣∣∣∣∣∣ ≤ ∣∣∣∣ϕ(z1)− ϕ(z2)z1 − z2
− ϕ′(z0)

∣∣∣∣ < ϵ = 1
2
∣∣ϕ′(z0)∣∣ .

Using this, we obtain that

|ϕ(z1)− ϕ(z2)| ≥
1
2
∣∣ϕ′(z0)∣∣ |z1 − z2| .

Thus for z1, z2 ∈ V ⊆ G where V is obtained by projecting a small open set inside Ṽ back to G, we
see that on that V ϕ is injective.

2. This is just open mapping theorem, Theorem 10.2.3.21.

3. Shrink V enough so that ϕ′(z) ̸= 0 for all z ∈ V . Then everything is straightforward using

|ϕ(z1)− ϕ(z2)| ≥
1
2
∣∣ϕ′(z0)∣∣ |z1 − z2|

which we obtained in 1.
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Local mth power property

Any holomorphic map around a point can be represented by the mth power of some other special
holomorphic map. Indeed, this is what the following theorem tells us.

Theorem 10.2.3.25. Let G ⊆ C be an open-connected subset of C and let f ∈ Chol(G) be a holomorphic
map on G. Let z0 ∈ G and denote w0 = f(z0). Let m be the order of zero that f −w0 has at z0. Then, there
exists an open set z0 ∈ V ⊆ G and a holomorphic map

ϕ : V → C

in Chol(G) such that
1. f(z) = w0 + (ϕ(z))m for all z ∈ V ,
2. ϕ′ is nowhere vanishing in V , i.e. has no zero in V ,
3. there exists r > 0 such that ϕ is biholomorphic onto Dr(0), the open disc of radius r around 0. Thus,
ϕ : V → Dr(0) is bijective.

Proof. The main point of the proof is to try to represent the desired ϕ as exp ??
m . We just need to fill

?? correctly. Since f − w0 has zero of order m at z0, therefore there exists g ∈ Chol(G) such that

f(z)− w0 = (z − z0)mg(z).

Now, by appropriately shrinking G away from zeros of g, we may assume g ̸= 0∀z ∈ G \ {z0}1.
Thus we have that g′

g is holomorphic on G (this is our V ). By Lemma 10.2.2.5, we get h ∈ Chol(G)
such that h′ = g′

g . We now claim that g = exph. Indeed, it is a simple matter to see that the
derivative of g exp−h is zero. Thus, by using surjectivity of exp, we can absorb the additive
constant into h to obtain the above claim. One then sees that

ϕ(z) = (z − z0) exp
h(z)
m

does the job for 1. The rest is straightforward.

Harmonic conjugates

We will now show that any real valued harmonic map u : G ⊆ R2 → R defines a unique (upto
some constant) holomorphic map g : G→ C whose real part is u.

Theorem 10.2.3.26. Let G ⊆ C be a convex open connected set. Let u : G→ R be a harmonic real valued
function. Then, there exists holomorphic map g : G→ C unique upto an additive constant such that

ℜg = u.

Proof. The main idea is to construct a holomorphic map f on G via the data of partial derivatives
of u, and then use the Lemma 10.2.2.5, to get a primitive g, which will do the job. Indeed, we can
make f via the following observation: u is harmonic real valued function if and only if ∂2

∂z̄∂z = 0.
Using this, just define f = ux − iuy and to show that f is holomorphic, observe that ∂f∂z̄ = 0.

1We are implicitly using the isolated zeros theorem (Theorem ??) which we shall do later.
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In combination with Lemma 10.1.3.2, we get that

Corollary 10.2.3.27. Let G ⊆ C be open connected. Then,

{g : G→ C is holomorphic} ∼= {u : G→ R is harmonic}

where we identify functions upto additive constant.

10.3 Singularities

Consider the map f(z) = 1/z on C×. It is holomorphic. However, at z = 0, it is not holomorphic.
Such points are called singularities of f , as we shall define more clearly later. Our goal is to study
this phenomenon more carefully in this section. For this, we first need to develop a tool for local
analysis of such "bad" points (some may also call it "the" points).

10.3.1 Laurent series

Definition 10.3.1.1. (Laurent series) A Laurent series centered at z0 ∈ C, denoted by
∑∞
n=−∞ an(z−

z0)n, is a series of functions defined on some annulus Az0(R1, R2) := {z ∈ C | R1 < |z − z0| < R2}
centered at z0 for 0 ≤ R1 < R2 such that the series converges at all points z ∈ Az0(R1, R2). That
is, the sequence of holomorphic maps {

∑n=N
n=−N an(z−z0)n}N onAz0(R1, R2) converges uniformly

and absolutely to a holomorphic function f : Az0(R1, R2)→ C (by Weierstrass theorem).

For a Laurent series, we can find the coefficents in terms of Cauchy integral of the function it
represents.

Lemma 10.3.1.2. Let f(z) =
∑n=∞
n=−∞ an(z−z0)n be a Laurent series around z0 ∈ C in an annulus. Then

for all n ∈ Z

an = 1
2πi

∫
Cr

f(w)
(w − z0)n+1dw

where R1 < r < R2.

Proof. Use the uniform convergence of the Laurent series on f(z)
(z−z0)n+1 (so to limits out of integrals)

and the fact that
∫
Cr
(z − z0)ndz = 2πi.

By Cauchy-Hadamard theorem for calculation of radius of convergence we also get the pa-
rameters for the maximum annulus on which a Laurent series can exist.

Lemma 10.3.1.3. For a Laurent series f(z) =
∑∞
n=−∞ an(z − z0)n, the smallest value of R1 and largest

value of R2 such that f(z) converges on Az0(R1, R2) is given by
1. R1 = lim supn→∞ |a−n|

1
n

2. R2 = 1
lim supn→∞|an|

1
n

Proof. Straightforward use of Cauchy-Hadamard.

The following is the main theorem here.

Theorem 10.3.1.4. Consider any 0 < R1 < R2 and any z0 ∈ C. If f : Az0(R1, R2)→ C is holomorphic,
then it is represented by a Laurent series.
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10.3.2 Isolated singularities : Removable, poles and essential

We now come to the main matter of the present study, the notion of singularities. A holomorphic
function f : G → C is said to have an isolated singularity at z0 /∈ G if there exists a punctured disc
Az0(0, r) ↪→ G. Consequently, by Theorem 10.3.1.4, we obtain a Laurent series expansion of f in
Az0(0, r). Let us denote it by

f(z) =
n=∞∑
n=−∞

anz
n.

We can then classify the isolated singularity z0 into three types:
1. z0 is a removable singularity if an = 0 for all n < 0,
2. z0 is a pole of order m if min{n < 0 | an ̸= 0} = m,
3. z0 is an essential singularity if min{n < 0 | an ̸= 0} = −∞ or unbounded.

There are three characterizing theorems of each of the three kinds of singularities.

Theorem 10.3.2.1. (Riemann’s extension theorem) Let f : G → C be a holomorphic map. Then the
following are equivalent.

1. The point z0 ∈ C \G is a removable singularity of f .
2. There exists a punctured disc Az0(0, r) ↪→ G such that f is bounded on it.

Theorem 10.3.2.2. (Criterion for a pole) Let f : G → C be a holomorphic map. Then the following are
equivalent.

1. The point z0 ∈ C \G is a pole of f of some order.
2. We have

lim−→
z→z0

|f(z)| =∞.

Theorem 10.3.2.3. (Casorati-Weierstrauss theorem) Let f : G → C be a holomorphic map. If the point
z0 ∈ C \ G is an essential singularity of f , then there exists a punctured disc Az0(0, r) ↪→ G such that
f(Az0(0, r)) is dense in C.

The last theorem in particular shows the chaotic behaviour of essential singularities.

10.4 Cauchy’s theorem - II

Let γ : I → C be a piecewise closed C1 curve in C and let Ω = C× \ Im (γ). We define the index of
γ to be the following map over Ω:

Indγ(z) : Ω −→ C

z 7−→ 1
2πi

∫
γ

1
w − z

dw.

Lemma 10.4.0.1. Let γ : I → C be a piecewise closed C1 curve in C and let Ω = C× \ Im (γ). Then
Indγ(z) is a holomorphic map on Ω.

Proof. This follows from Proposition 10.2.3.4, as Indγ(z) is the Cauchy integral of the constant
function 1.
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The following is the main theorem that we shall use.

Theorem 10.4.0.2. Let γ : I → C be a piecewise closed C1 curve in C and let Ω = C× \ Im (γ). Then,
1. Indγ(z) is an integer valued map,
2. Indγ(z) is constant on each connected component of Ω,
3. Indγ(z) is 0 on unbounded component of Ω.

We now introduce the main Cauchy’s theorem.

10.4.1 General Cauchy’s theorem

To state the Cauchy’s theorem in full generality, we first need to build the small language of chains,
which is just a slight generalization of curves. Let {γi : Ii → C}ni=1 be a finite collection of piece-
wise C1 curves over C. A chain generated by {γi} is a formal sum of the form

Γ = γ1 + · · ·+ γn.

One can be more precise here by treating Γ as an element of the free abelian group of all singular
1-chains, but we don’t need that technology right now. We denote

Im (Γ) :=
n⋃
i=1

Im (γi).

Moreover, for a continuous map f : Im (Γ)→ C, we further denote∫
Γ
f(z)dz :=

n∑
i=1

∫
γi
f(z)dz.

We can further define the index of a chain Γ as simply the sum of indices of individual curves:

IndΓ(z) :=
n∑
i=1

Indγi(z)

for all z ∈ Ω, where Ω = C× \ Im (Γ). Note that the set Ω here will have multiple components if
each element of the cycle is a distinct loop. Indeed, if Γ = γ1 + · · · + γn is a cycle where each γi
is a closed loop, then we call Γ a cycle. The general Cauchy’s theorem is then a statement about
integral over cycles.

Theorem 10.4.1.1. (Cauchy’s theorem) Let Ω ⊆ C be an open set and Γ ↪→ Ω be a cycle such that

IndΓ(z) = 0 ∀z ∈ C× \ Ω.

Let f : Ω→ C be a holomorphic map. Then,
1. (Integral formula)

IndΓ(z)f(z) =
1
2πi

∫
Γ

f(w)
w − z

dw

for all z ∈ Ω \ Im (Γ).
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2. (Integral theorem) ∫
Γ
f(z)dz = 0,

3. if Γ0,Γ1 ↪→ Ω are two cycles such that IndΓ0(z) = IndΓ1(z) for all z /∈ Ω, then∫
Γ0
f(z)dz =

∫
Γ1
f(z)dz.

The most important of the above triad of conclusions is the first one, which clearly generalizes
the known integral formula.

10.4.2 Homotopy & Cauchy’s theorem

Theorem 10.4.2.1. Let Ω ⊆ C be an open-connected set. If γ0, γ1 ↪→ Ω are two piecewise C1 closed loops
in Ω such that they are homotopic in Ω, then

Indγ0(z) = Indγ1(z) ∀z /∈ Ω.

This has some major corollaries in combination with Theorem 10.4.1.1.

Corollary 10.4.2.2. Let Ω ⊆ C be an open-connected set and let f : Ω → C be a holomorphic map. If
γ0, γ1 ↪→ Ω are two piecewise C1 closed loops in Ω such that they are homotopic in Ω, then∫

γ0
f(z)dz =

∫
γ1
f(z)dz.

Corollary 10.4.2.3. Let Ω ⊆ C be an open-connected set and let f : Ω → C be a holomorphic map. If
γ ↪→ Ω is a piecewise C1 closed loop in Ω and Ω is simply connected, then∫

γ
f(z)dz = 0.

10.5 Residues and meromorphic maps

Let Ω ⊆ C be an open-connected set and f : Ω → C be holomorphic. Let z0 /∈ Ω be a point of
isolated singularity of f . The residue of f at z0 is then defined to be the coefficient a−1 of the Laurent
series

∞∑
n=−∞

anz
n

of the map f around z0. We denote residue of f at z0 by resz0(f) := a−1. For example, consider
the following integral where Cr is a circle of radius r centered at z0∫

Cr

∞∑
n=−∞

an(z − z0)n.
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Since all terms an(z−z0)n are n ̸= −1 contributes zero integral as the positive parts of holomorphic
in the interior of the loop and the negative parts are derivatives of constant 1, which is zero,
therefore the only non-zero term is contributed by n = −1. Consequently, we have∫

Cr

∞∑
n=−∞

an(z − z0)n = 2πia−1

= 2πiresz0(f)

where f(z) =
∑∞
n=−∞ anz

n.

We now define a class of holomorphic maps which one encounters often in complex analysis.

Definition 10.5.0.1. (Meromorphic maps) Let Ω ⊆ C be an open-connected set and f : Ω → C be
any function. We say that f is meromorphic if

1. there exists a set A ⊂ Ω which has no limit points in Ω,
2. f : Ω \A→ C is holomorphic,
3. every point of A is a pole of f .

One often calls the set A as the set of poles of f .

There are some observations to be made.

Lemma 10.5.0.2. Let f : Ω→ C be a meromorphic map on an open-connected set Ω. Then, the set of poles
of f is atmost countable.

Proof. Let A ⊂ Ω be the set of poles of f . Covering Ω by countably many compact sets {Ki},
we observe that intersection of each of Ki ∩ A has to be atmost finite, otherwise there exists a
sequence in Ki ∩A, which consequently admits a convergent subsequence, that is, a limit point in
Ω. Consequently, A is a countable union of finite sets.

Remark 10.5.0.3. For the purposes of residue of f at a ∈ A, one can replace analysis of f with
analysis of f by the analysis of Q =

∑−1
n=−m an(z − a)n, called the principal part of f at a where m

is the order of pole of f at a ∈ A. Clearly, resaQ = resaf . Moreover, one sees that

resa(f)Indγ(a) =
1
2πi

∫
γ
Q(z)dz

where γ is a piecewise C1-loop centered at a, in Ω \A. This is again a consequence of the fact that
all terms inside the integral are zero except the one corresponding to a−1. Indeed, this hints at a
general phenomenon, which is clarified by the following theorem.

Theorem 10.5.0.4. (The residue theorem) Let Ω ⊆ C be an open-connected set. If f : Ω → C is a
meromorphic map with A ⊆ Ω its set of poles and Γ a cycle in Ω \A such that

IndΓ(z) = 0 ∀z /∈ Ω,

then

1
2πi

∫
Γ
f(z)dz =

∑
a∈A

resa(f)IndΓ(a).
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We now an important result, which gives us information of zeroes of holomorphic maps on
certain subsets.

Theorem 10.5.0.5. Let γ : I → C be a piecewise closed C1-loop in an open-connected set Ω ⊆ C such that
1. Indγ(z) = 0 for all z /∈ Ω,
2. Indγ(z) = 0 or 1 for all z ∈ Ω \ Im (γ).

Then we have that for any holomorphic maps f, g : Ω→ C, denoting Ω1 := {z ∈ Ω\Im (γ) | Indγ(z) = 1}
and Nf = #Z(f) ∩ Ω1, we get that

1. if f has no zeros on Im (γ) ⊆ Ω, then

Nf = 1
2πi

∫
γ

f ′(z)
f(z) dz = Indf◦γ(0).

2. (Rouché’s theorem) if

|f(z)− g(z)| < |g(z)| ∀z ∈ Im (γ),

then Ng = Nf .

10.5.1 Riemann mapping theorem

The following is a very strong rigidity result for holomorphic maps.

Theorem 10.5.1.1. Let Ω ⊊ C be a proper simply connected domain. Then Ω is biholomorphic to the open
unit disc.

This is a starting point for the uniformization.
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We discuss the theory of one dimensional complex manifolds, aka Riemann surfaces. The tools
which we will use here will yield a good motivation to study them in the scheme theoretic setting,
as done in Chapter 1. Our main goal in these notes is to reach Riemann-Roch theorem and discuss
some applications.

Let us begin by defining a Riemann surface and then see some examples.

11.1 Introduction

These are some notes on Riemann surfaces. We wish to prove three main results here: monodromy,
Riemann-Hurwitz formula and the infamous Riemann-Roch theorem. We also wish to portray
example uses of them. A philosophical goal in our mind is also to see how analytic world behaves
in comparison to algebraic world. We do this in part so that we can get more insights into the
latter, before going into an involved study of it.

We make references to our notes "Facets of Geometry" by writing Theorem FoG.23.2.1.4.
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11.1.1 Definitions and basic properties

After defining Riemann surfaces and giving basic examples, we will cover some basic lemmas
some of which generalizes results which we have seen in complex analysis of one variable.

Definition 11.1.1.1 (Riemann surface). A conformal atlasA = ({Ui}i, {zi}i) on a second countable
Hausdorff space X is the data of an open cover {Ui}i∈I of X together with open embeddings
zi : Ui → C such that if Ui ∩ Uj ̸= ∅ then the composite

zj ◦ z−1i : zi(Ui ∩ Uj)→ zj(Ui ∩ Uj)

is a holomorphic map between two open subsets of C. Two conformal atlases A1 and A2 are
equivalent if for any U, z in A1 and any V,w in A2, the transition map

w ◦ z−1 : z(U ∩ V )→ w(U ∩ V )

is a conformal map. A Riemann surface X is a connected Hausdorff space with an equivalence
class of conformal atlas. We usually fix one atlas in a class which is maximal in that it is the union
of all atlases in that class.

Example 11.1.1.2. Here are few examples of Riemann surfaces.
1. Any open subset U ⊆ C is a Riemann surface. Indeed, consider id : U → U , this defines a

conformal atlas on U . Thus C and the open unit disc D are Riemann surfaces.
2. The Riemann sphere C̄ or usually called complex projective line P1

C (see Proposition 11.1.3.2)
is a Riemann surface. Topologically, P1

C is S2. We give a conformal structure on S2 as follows.
Consider the open sets U+ = S2 − p and U− = S2 − q where p and q are north and south
poles respectively. Consider

z+ : U+ −→ C

(x1, x2, x3) 7−→
x1 + ix2
1− x3

z− : U− −→ C

(x1, x2, x3) 7−→
x1 − ix2
1 + x3

.

These are obtained by usual stereographic projection from north pole p. One can observe
that

z+(U+) = C
z−(U−) = C− {0}

and are thus homeomorphisms. Furthermore U+ ∩U− = S2−{p, q}. It follows that z+(U+ ∩
U−) = C× = z−(U+∩U−), the punctured complex plane. The transition map can be checked
to be

z+ ◦ z−1− : z−(U+ ∩ U−) −→ z+(U+ ∩ U−)

w 7−→ 1
w

which as a map C× → C× is conformal.
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Here is how we can define maps of Riemann surfaces.

Definition 11.1.1.3 (Holomorphic maps of Riemann surfaces). Let X and Y be two Riemann
surfaces with atlases (Ui, zi) and (Vi, wi) on X and Y respectively and f : X → Y be a continuous
map. Then, f is said to be holomorphic if for each x ∈ X and charts Ui ∋ x and Vj ∋ f(x), the
composite

wj ◦ f ◦ z−1i : zi(Ui)→ wj(Vj)

is a holomorphic map between two open sets of C. We denote byO(X) = {f : X → C | f is holomorphic}.
This is a C-algebra under pointwise addition and multiplication.

Lemma 11.1.1.4. Let f : X → Y and g : Y → Z be a holomorphic map of Riemann surfaces. Then
g ◦ f : X → Z is a holomorphic map.

Proof. Denote h = g ◦ f : X → Z. Pick any x ∈ X and pick any coordinate charts (Ux, ϕx) ∋ x and
(Wh(x), ϕh(x)) ∋ h(x). We wish to show that ϕh(x)◦h◦ϕ−1x : ϕx(Ux)→ ϕh(x)(Wh(x)) is holomorphic.
Pick any chart Vf(x) ∋ f(x). Then we have

ϕh(x) ◦ h ◦ ϕ−1x = ϕh(x) ◦ g ◦ ϕ−1f(x) ◦ ϕf(x) ◦ f ◦ ϕ
−1
x

where ϕh(x) ◦ g ◦ ϕ−1f(x) and ϕf(x) ◦ f ◦ ϕ−1x are holomorphic as f and g are holomorphic. This
completes the proof.

Remark 11.1.1.5. We get a category of Riemann surfaces, denoted RS.

Definition 11.1.1.6 (Subsurface). Let X be a Riemann surface and U ⊆ X be an open set. Then U
is also a Riemann surface with the charts obtained by restrictions of that of X .

There is an identity principle for Riemann surfaces, which would be used quite often.

Lemma 11.1.1.7 (Identity principle). LetX,Y be Riemann surface andX be connected. If f, g : X → Y
are holomorphic and there exists A ⊆ X which has a limit point in X such that f |A = g|A, then f = g.

Proof. Let a ∈ X be a limit point of A and let (U, z) be a chart of a. Then f |U = g|U by usual
identity principle of C. Now pick any point a ̸= b ∈ X . As X is locally path-connected and
connected, therefore it is path-connected. Let γ : a → b be a path joining a and b in X . We claim
that f is constant along this path. Indeed, cover Im (γ) by finitely many charts of X denoted Ui
such that Ui ∩ Ui+1 ̸= ∅ with U1 = U . As f and g agree on an open subset of U2, therefore by
identity principle of C, it follows that f |U2

= g|U2
. Continuing this, we conclude that f = g on

Im (γ) and thus f(b) = g(b), as required.

Corollary 11.1.1.8. Let f : X → C be a non-zero holomorphic where X is a Riemann surface. Then
D(f) := {x ∈ X | f(x) = 0} is a discrete set in X .

Proof. If D(f) is not discrete, then it has a limit point and thus by Lemma 11.1.1.7, f = 0, a
contradiction.

We can define meromorphic maps between Riemann surfaces as well.
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Definition 11.1.1.9 (Meromorphic maps). Let X be a Riemann surface. A meromorphic map on
X is a holomorphic map f : X → P1

C such that f ̸= c∞, c∞ being the constant infinity map. By
identity principle (Lemma 11.1.1.7), thus, f−1(∞) has to be a discrete set. We denote the set of all
meromorphic functions on X as M(X). Clearly, M(X) is a C-algebra.

Meromorphic maps form a field!

Lemma 11.1.1.10. Let X be a connected Riemann surface. Then M(X) is a field.

Proof. Let f : X → P1
C be a non-zero meromorphic map. Then consider g := 1/f on D(f) = {x ∈

X | f(x) ̸= 0} and g := ∞ on X \D(f). Clearly, g is holomorphic on D(f), which is open. Since
D(f) is discrete by Corollary 11.1.1.8. Thus, g is indeed meromorphic. Observe that f · g = 1 on X
as it is one on D(f) and then we may apply identity principle (Lemma 11.1.1.7). This completes
the proof.

Remark 11.1.1.11. As there is a natural inclusion O(X) ↪→M(X), thus it follows O(X) is a domain.
By universal property of fraction fields, Q(O(X)) ⊆M(X).

We now see when O(X) itself is a field.

Lemma 11.1.1.12 (General Liouville). Let X be a compact connected Riemann surface1, then O(X) is
isomorphic to C as the only elements in O(X) are constants.

Proof. Pick any f ∈ O(X). We wish to show that f is a constant. Consider the composite X →
C → R given by |f |. As X is compact, thus |f | achieves maxima, say at x0 ∈ X and a = |f(x0)|.
For a chart (U, z) ∋ x0, we have by maximum-modulus for C that |f | is constant and thus f is
constant ca on U . By identity principle (Lemma 11.1.1.7), it follows that f is constant ca on the
entire X .

Open mapping theorem is also true for maps of Riemann surfaces.

Lemma 11.1.1.13 (Open mapping theorem). Let X be a connected Riemann surface and f : X → Y be
a holomorphic map. Then f is an open map.

Proof. Pick any open set U ⊆ X and consider f(U) ⊆ Y . We wish to show that f(U) is open.
Pick any point f(x) ∈ f(U) where x ∈ U . Pick any chart (V, z) ∋ x and (W,w) ∋ f(x) such that
V ⊆ U . Thus the map w ◦ f ◦ z−1 : z(V ) → w(W ) is a holomorphic map. By open mapping
theorem for C, it follows that w ◦ f ◦ z−1 is an open map. Thus, let x ∈ V ′ ⊆ V be an open set.
Then w ◦ f ◦ z−1(z(V ′)) = w(f(V ′)) ⊆ w(W ) is open and thus f(x) ∈ f(V ′) ⊆ W is open, as
required.

There is an intimate connection between covering spaces and Riemann surfaces, whose first
piece we explain as follows. We first need a small lemma.

Lemma 11.1.1.14. Let pi : Xi → Y for i = 1, 2 be a holomorphic map where Xi, Y are Riemann surfaces
and Xi are connected. If there exists a continuous f : X1 → X2 such that

X2

X1 Y

f

p1

p2

1say, for example, P1
C!
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commutes, then f is holomorphic.

Proof. Pick any point x ∈ X1, charts (U1, z1) ∋ x and (U2, z2) ∋ f(x). We wish to show that
z2 ◦ f ◦ z−11 : z1(U1) → z2(U2) is holomorphic. Indeed, we may first assume by continuity of f
and pi that Ui is a sheet of an evenly covered neighborhood V ⊆ Y under pi for i = 1, 2. Now,
the restricted maps pi : Ui → zi(Ui) are biholomorphic maps. Now, zi ◦ p−1i : V → zi(Ui) are two
charts in Y . As transition maps has to be holomorphic, therefore we get

(z2 ◦ p−12 ) ◦ (z1 ◦ p−11 )−1 = z2 ◦ f ◦ z−11

is holomorphic, as required.

Proposition 11.1.1.15. Let p : X → Y be a covering map where Y is a Riemann surface. Then there exists
a unique conformal structure on X such that p is holomorphic.

Proof. We first do uniqueness, as it is easy by Lemma 11.1.1.14. Indeed, if there are two non-
equivalent conformal structures on X , then we get two holomorphic covering maps pi : Xi → Y .
As underlying space and maps of each (Xi, p) is same, therefore by lifting criterion for covering
maps, we deduce that there is a continuous map f : X1 → X2 which is furthermore holomorphic
by above lemma and p ◦ f = p. Now, we may similarly get g : X2 → X1 holomorphic such that
p◦g = p. As these lifts are based lifts, we get that f ◦g is unique with respect to the fact that it fixes
a point, thus it is id, similarly for the other side. Hence X1 ∼= X2, that is, they are biholomorphic
and thus have equivalent conformal structure.

We thus need only construct a conformal structure on X via p. Indeed, we may first assume
that Y has an atlas (Vi, zi) fine enough that each Vi ⊆ Y is an evenly covered neighborhood.
Hence for each Vi, the map p : Wi,j → Vi is a homeomorphism where p−1(Vi) =

∐
jWi,j . Define

an open cover of X by (Wi,j , zi ◦ p). We claim that this is an atlas. Indeed, zi ◦ p : Wi,j → zi(Vi)
is a homeomorphism and for any (i, j), (k, l), we have (zi ◦ p) ◦ (zj ◦ p)−1 = zi ◦ z−1j , which is a
holomorphic map. This completes the proof.

11.1.2 Structure sheaf and modules

We wish to show that the structure sheaf of a Riemann surface OX is such that the meromorphic
sheaf M is an OX -module. So we first define the structure sheaf.

Remark 11.1.2.1 (Riemann surface as a locally ringed space). Let X be a Riemann surface with
an atlas (Ui, zi). As discussed in Chapter 8, §8.1.2 on "Sheaves and atlases" in FoG, by Theorem
FoG.8.1.2.4, it follows that we get an atlas sheaf (Definition FoG.8.1.2.1) OX on X w.r.t which
(X,OX) is a locally ringed space which is a complex manifold (Definition FoG.8.1.1.3) of dimen-
sion 1. Recall that in particular for an open subset U ⊆ X , OX(U) is defined by

OX(U) = {f : U → C | f ◦ x−1i : xi(U ∩ Ui)→ C is holomorphic},

that is, OX is the sheaf of holomorphic maps on X . The OX is also called the structure sheaf of X .
Thus, giving a conformal structure on X is equivalent to giving an atlas sheaf.

We will be using this sheaf very frequently, as it will be of fundamental importance to us to
translate over working working knowledge of algebraic geometry to this analytic language2.

2Note that explicit charts are rarely used in schemes, whereas in geometry, one uses it quite frequently.
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Remark 11.1.2.2. There might be apparent addition of complexity to think of a Riemann surface
as a locally ringed space with a sheaf of holomorphic maps without any reference to a chart. But
we wish to portray that one can prove results similar to that in previous section from this point of
view as well, as this allows us to reduce to local affine patch (i.e. local chart) quite immediately.

For example, general Liouville (Lemma 11.1.1.12) can also be seen by the following argument.
Considering that |f | : X → R achieves maximum at x0 ∈ X , for an affine open set containing
x0 say U , the restriction f |U : U → R can be thought of as a map on an open subset of C which
achieves maximum on interior, so f |U is constant. Thus by identity priniciple, we are done.

An important and crucial observation from complex analysis of one variable is the following:

Proposition 11.1.2.3. Let (X,OX) be a Riemann surface. Then for any x ∈ X , the stalk is isomorphic to
power series ring over C:

OX,x ∼= C[[z]].

Proof. Let U ∋ x be an affine open subset of x. Then, OX,x = OU,x. Let ϕ : U → C be a chart. As
it is an open embedding, therefore, OU,x ∼= OC,ϕ(x), where OC is the sheaf of holomorphic maps
on C. As any homolomorphic map has a power series representation at each point, thus, power
series forms a cofinal system in the representation of a holomorphic map in the stalk. The result
now follows.

Remark 11.1.2.4. This proposition immediately tells us what type of information is stored in the
stalk. That is, it tells you how a function locally around a point looks like.

We next see that meromorphic maps form a sheaf as well.

Definition 11.1.2.5. Let (X,OX) be a Riemann surface. The assignment for each open U ⊆ X

MX(U) = {f : U → P1
C | f ̸= c∞ holomorphic}

forms a presheaf under restrictions. This is called the sheaf of meromorphic maps on X .

We first see that MX is a constant sheaf!

Proposition 11.1.2.6. Let X be a Riemann surface and let K = MX(X) the field of global meromorphic
maps. Then

MX
∼= K,

where the latter is the constant sheaf on field K.

We’ll see its proof later. An important property is that the stalks of MX are again quite simple.

Proposition 11.1.2.7. Let (X,OX) be a Riemann surface with meromorphic sheaf MX . Then for any
x ∈ X ,

MX,x
∼= C((z)).

Proof. Same as Proposition 11.1.2.3 except that in the end we use the fact that any meromorphic
function locally has a Laurent series expansion at each point.

We now study some important class of Riemann surfaces, those coming from non-singular
projective plane curves.
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11.1.3 Smooth algebraic plane curves

We wish to study a class of examples of Riemann surfaces coming from algebra. This will give us
a tight intuition about algebraic curves which will guide further development.

We begin by giving an alternate construction of Riemann surface.

Example 11.1.3.1 (Complex projective line P1
C). Topologically, we first define P1

C = C2/ ∼ where
(z0, z1) ∼ (λz0, λz1) for all λ ∈ C. Denote any point in P1

C by [z0 : z1] where zi ∈ C. We now give
a conformal structure on P1

C. Consider U0 = {[1 : z] | z ∈ C} and U1 = {[z : 1] | z ∈ C}. These are
open subspaces of P1

C since under the quotient map π : C2 ↠ P1
C, π−1(U0) = {(z0, z1) ∈ C2 | z0 ̸=

0} = D(z0), the plane minus the z1-axis, which is open. Similarly for U1.
Now consider the maps which we will show makes (Ui, ϕi) into an affine chart

ϕ0 : U0 −→ C

[z0 : z1] 7−→
z1
z0

ϕ1 : U1 −→ C

[z0 : z1] 7−→
z0
z1
.

Note that these are homeomorphisms as the image the whole complex plane which is open and ϕi
are homeomorphisms onto it. Indeed, ϕi can be seen to be bijective to C quite easily and an inverse
of ϕ0, say, can be constructed by defining ψ0 : C→ U0 given by z 7→ [1 : z]. This is continuous and
an inverse of ϕ0.

Now observe that U0 ∩ U1 = {[z0 : z1] | z0, z1 ̸= 0} = U . Observe that ϕi(U) = C×. The
transition maps then are

ϕ1 ◦ ϕ−10 : ϕ0(U) −→ ϕ1(U)

z 7−→ 1
z
,

which is a holomorphic map C× → C×. Thus, we have obtained a Riemann surface P1
C with

structure sheaf OP1
C

whose sections on an open subset U ⊆ P1
C are those functions f : U → C

which are holomorphic with respect to the chart (Ui, ϕi)i=1,2. The Riemann surface (P1
C,OP1

C
) is

called the projective line over C.

Proposition 11.1.3.2. Let C be the Riemann sphere. Then C is biholomorphic to P1
C

Proof. Indeed, consider the map

f : C −→ P1
C

z 7−→
®
[1 : z] if z ̸=∞
[0 : 1] if z =∞.

Indeed, this is continuous since on any neighborhood of 0, this is the inverse of the chart map ϕ0
and on any neighborhood of∞ it is the inverse of the chart ϕ1. As C̄ is compact and P1

C Hausdorff,
it follows that f is a homeomorphism.

Using charts of Example 11.1.1.2, it is immediate to see that this is holomorphic. The inverse
of this map is [z0 : z1] 7→ z1

z0
. Again this is continuous and holomorphic by same reasons.
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We now introduce a space where most of our geometry will take place.

Construction 11.1.3.3 (CP2, the projective plane3). Topologically, CP2 is C3/ ∼where (z0, z1, z2) ∼
(λz0, λz1, λz2). This can be given the structure of a complex 2-manifold by giving an atlas con-
sisting of three charts (Ui, ϕi)i=0,1,2 where Ui = {[z0 : z1 : z2] | zi ̸= 0}. The maps are given
by

ϕ0 : U0 −→ C2

[z0 : z1 : z2] 7−→
Å
z1
z0
,
z2
z0

ã
ϕ1 : U1 −→ C2

[z0 : z1 : z2] 7−→
Å
z0
z1
,
z2
z1

ã
ϕ2 : U2 −→ C2

[z0 : z1 : z2] 7−→
Å
z0
z2
,
z1
z2

ã
.

One can check that this makes CP2 a complex 2-manifold by showing all transitions are holomor-
phic maps from open subsets of C2 to C2 (which would require a knowledge of several complex
variables, but we skip over that as really don’t require that here).

We would like to know a class of closed (thus compact) subsets of CP2 formed by polynomials
in two variables. These will motivate algebraic counterparts of the analytic geometry that we are
consider currently.

Definition 11.1.3.4 (Projective algebraic plane curves). Let p̄(z1, z2) ∈ C[z1, z2] be a polynomial
and let p(z1, z2, z3) ∈ C[z1, z2, z3] be its homogenization so that p is homogeneous of degree d ≥ 1.
Consider the set

V (p) = {[z0 : z1 : z2] ∈ CP2 | p(z1, z2, z3) = 0}.

This defines a closed subset of CP2 since it is CP2\V (p) is the image of C3\V (p̄) under the quotient
map π : C3 → CP2. We call V (p) ⊆ CP2 a projective algebraic plane curve.

We see that a projective algebraic plane curve Z is formed by three pieces of affine algebraic
plane curves.

Lemma 11.1.3.5. Let p̄ ∈ C[z0, z1], p ∈ C[z0, z1, z2] be its homogenization and Z = V (p) be the projective
algebraic curve. Let (Ui, ϕi)i=0,1,2 be the standard chart of P2

C (see Construction 11.1.3.3). Then the image
of Z ∩ Ui under ϕi in C is V (p̄i) where p̄0 = p(1, z1, z2), p̄1 = p(z0, 1, z2) and p̄2 = p(z0, z1, 1).

Proof. Indeed, since, say Z ∩ U0 = {[1 : z1 : z2] | p(1, z1, z2) = 0}, therefore

ϕ0(Z ∩ U0) = {(z1, z2) | p(1, z1, z2) = 0} = V (p̄0).

The other cases are same.
3We would freely interchange between CP2 and P2

C, depending on the temperature outside.
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We now show that a certain type of algebraic plane curves define Riemann surfaces.

Definition 11.1.3.6 (Smooth algebraic plane curves). Let f ∈ C[z1, z2, z3] be a homogeneous poly-
nomial. Then, the polynomial f is called non-singular or smooth if for all points p ∈ V (f) ⊆ CP2,
we have that ∂f

∂zi

∣∣∣
p
̸= 0 for atleast one i from 0, 1, 2. In this case, the projective plane curve V (f)

that it defines is called the smooth projective algebraic plane curve. A similar definition gives
smooth affine algebraic plane curves in C2.

We now show that every smooth projective plane curve defined by an irreducible smooth
homogeneous polynomial in three variables gives a Riemann surface. For that we need following
two preliminary results.

Theorem 11.1.3.7. Let p ∈ C[z0, z1, z2] be a homogeneous polynomial.
1. If p is non-singular, then V (p) ⊆ P2

C is irreducible.
2. If p is irreducible, then V (p) ⊆ P2

C is connected.

We now state the main theorem. Its proof can be seen by implicit function theorem for C, but
we omit all such checks.

Theorem 11.1.3.8. Let p ∈ C[z0, z1, z2] be a non-singular homogeneous polynomial. Then, V (p) ⊆ P2
C is

a compact connected Riemann surface.
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11.2 Ramified coverings & Riemann-Hurwitz formula
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11.3 Monodromy & analytic continuation
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11.4 Holomorphic & meromorphic forms

Having differentials on a given geometric object gives us a sense of direction of each point. Exploit-
ing this, one can define very many types of forms (differentiable, holomorphic, meromorphic...)
and their interrelations which allows us to study the object in question more deeply.

11.4.1 Differentials

We will We first construct the sheaf of differentiable maps on a Riemann surface.

Definition 11.4.1.1 (Sheaf of differentiable maps). Let X be a Riemann surface. Consider the
assignment for each open U ⊆ X

EX(U) := {f : U → C | ∀ charts (Ui, zi), f ◦ z−1i : zi(U ∩ Ui)→ C is differentiable.}

This assignments with restrictions naturally forms a sheaf, called the sheaf of differentiable maps
on X . This is a sheaf of C-algebras. Moreover, this is an OX -algebra as well since pointwise
product of holomorphic and differentiable map is again differentiable.

We will use the sheaf EX to build many other sheaves which will be of prime importance to
us. Let us first introduce few operators on the seaf EX .

Construction 11.4.1.2 (Operators on EX ). Define ∂
∂x ,

∂
∂y as two operators on EX as follows. For

any open U ⊆ X , define

∂

∂x
: EX(U) −→ EX(U)

f : U → C 7−→ ∂f

∂x
: U → C

where ∂f
∂x : U → C is defined as follows. Let (Ui, zi) be a chart. As f is differentiable, therefore

f ◦ z−1i : zi(U ∩ Ui)→ C is differentiable. Define

∂f

∂x
◦ z−1i = ∂

∂x

(
f ◦ z−1i

)
for each chart (Ui, zi). Similarly, one defines ∂

∂y . Note that these maps commutes with restrictions.
Hence we get sheaf maps ∂

∂x ,
∂
∂y : EX → EX . Note that both of these are C-linear.

Consider the two operators

∂

∂z
:= 1

2

Å
∂

∂x
− i ∂

∂y

ã
∂

∂z̄
:= 1

2

Å
∂

∂x
+ i

∂

∂y

ã
.

These two also define C-linear operators on EX .

We observe some of the immediate consequences.
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Lemma 11.4.1.3. Let (X,OX) be a Riemann surface. Then,

0 −→ OX −→ EX
∂
∂z̄−→ EX

is exact.

Proof. Note that the map OX → E is obtained by thinking of a holomorphic map as a real dif-
ferentiable map. By Cauchy-Riemann, f : V ⊆ C → C is holomorphic if and only if ∂f

∂z̄ = 0. It
follows that on an open U ⊆ X , we have Ker

(
∂
∂z̄

)
= {f ∈ OX(U) | f is holomorphic} = OX(U),

as required.

Remark 11.4.1.4 (EX is locally ringed). Consider the sheaf of differentiable maps EX on a Riemann
surface X . We observe that for any point x ∈ X , the stalk EX,x is a local ring where the maximal
ideal mx consists of those germs which vanishes at point x. Thus, EX is a locally ringed OX -
algebra.

Definition 11.4.1.5 (Cotangent space at a point). Let (X,OX) be a Riemann surface and OX be the
OX -algebra of differentiable maps. Then, the cotangent space at point x ∈ X is the C-vector space
given by

T
(1)
x = mx

m2
x

where (EX,x,mx) is the local ring at point x of sheaf EX . A point in T (1)
x is referred to as a cotangent

vector at x ∈ X .

Remark 11.4.1.6 (Cotangent vectors and "direction"). For a point a ∈ X , pick a covector (U, f)a ∈
T
(1)
x . As (U, f)a ∈ T (1)

x and (Ui, zi) is a chart containing a ∈ X , therefore f ◦ z−1i : zi(U ∩ Ui) → C
is differentiable. We may write the Taylor expansion of f ◦ z−1i at the point zi(a) = (a1, a2) to get
that

f ◦ z−1i (x, y) = f(a) + ∂f

∂x
(a)(x− a1) +

∂f

∂y
(a)(y − a2) + terms of degree ≥ 2.

As m2
x consists of products of those germs vanishing at a and "terms of degree ≥ 2" vanishes at a,

therefore, we get that

(U, f)a =
∂f

∂x
(a)(x− a1) +

∂f

∂y
(a)(y − a2) +m2

a.

The above motivates the following definition.

Definition 11.4.1.7 (Differential of a map). Let X be a Riemann surface and f ∈ OX(U) be a
differentiable map on open U ⊆ X . Let a ∈ U . Define the following C-linear transformation

da : EX,a −→ T
(1)
a

(U, f)a 7−→ (f − f(a)) +m2
a.
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As is evident from Remark 11.4.1.6, the differentials of maps x, y : U → C which on a chart
(Ui, zi) is defined by x◦z−1i : zi(U ∩U)i→ C mapping (x, y) 7→ x and similarly for y, holds special
position amongst all differentials.

Proposition 11.4.1.8. Let X be a Riemann surface and a ∈ X contained in open U . Then,
1. T (1)

a has {dax, day} as basis.
2. T (1)

a has {daz, daz̄} as a basis.
3. For any f ∈ EX(U),

daf = ∂f

∂x
(a)dax+ ∂f

∂y
(a)day

= ∂f

∂z
(a)daz +

∂f

∂z̄
(a)daz̄.

Proof. A simple exercise in reduction to affine charts and using properties of it (in this case, Taylor
series).

Notation 11.4.1.9 (Decomposition of cotangent space). By Proposition 11.4.1.8, it follows that we
can write

T
(1)
a = Cdaz ⊕ Cdaz̄

=: T 1,0
a ⊕ T 0,1

a .

Elements of T 1,0
a are called covectors of type (1,0), same for the other case. For any f ∈ EX(U), we

further denote

daf = d′af + d′′af

for unique d′af ∈ T
1,0
a and d′′af ∈ T

0,1
a , where

d′af = ∂f

∂z
(a)daz,

d′′af = ∂f

∂z̄
(a)daz̄.

Taking exterior powers of T (1)
a gives us other vector spaces which we will use to define differ-

ential k-forms.

Definition 11.4.1.10 (Differential k-forms). Let X be a Riemann surface and U ⊆ X be an open
subset. Let T (k)

a = ∧kT (1)
a be the kth-exterior power of T (1)

a . Note that dimC ∧kT
(1)
a =. A differential

k-form is a section

ω : U →
∐
a∈U

T
(k)
a

where ω(a) ∈ T (k)
a (that is, a differential k-form is a section of kth-exterior power of the cotangent

bundle). A differential 1-form ω over U is of type (1,0) if for all a ∈ U , ω(a) ∈ T 1,0
a . Similarly for

differential 1-form of type (0, 1).
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Using differential forms, we can define differentiable, holomorphic and meromorphic 1-forms.
Before that we quickly define Laurent expansion and residuce of holomorphic maps.

Remark 11.4.1.11 (Laurent expansion & residue). Let X be a Riemann surface and a, b ∈ X . Let
(U, z) be a chart containing a, where we may assume z(a) = 0. Let f ∈ OX(U \ {a}). Then
f ◦ z−1 : z(U) \ {0} → C is holomorphic. Thus, around point 0 ∈ z(U), there is a Laurent series
representation of f ◦ z−1:

(f ◦ z−1)(x) =
∞∑

n=−∞
cnx

n,

which we may then write in terms of coordinates z as

f(z) =
∞∑

n=−∞
cnz

n.

Thus, f has a removable singularity or pole of order k at a if and only if so does f ◦z−1 at z(a) = 0.
Let ω = fdz ∈ Ω1

X(U \ {a}) be a holomorphic 1-form. Then f =
∑
n anz

n, we define residue of
f at a as resaf = c−1.

Definition 11.4.1.12 (Differentiable, holomorphic and meromorphic 1-forms). Let X be a Rie-
mann surface and and U ⊆ X open. Let (Ui, zi) be any chart. A differential 1-form ω is said to
be:

1. differentiable if on U ∩ Ui we have

ω = fdz + gdz̄

where f, g ∈ EX(U∩Ui), denote ω ∈ E
(1)
X (U). If ω = fdz, then we say that ω is a differentiable

1-form of type (1,0), denoted ω ∈ E1,0
X (U). Similarly, if ω = gdz̄, then ω is a differentiable 1-

form of type (0,1), denoted ω ∈ E0,1
X (U);

2. holomorphic if on U ∩ Ui we have

ω = fdz

where f ∈ OX(U ∩ Ui), denote ω ∈ Ω(1)
X (U),

3. meromorphic if there exists an open subseteq V ⊆ U such that ω on V is a holomorphic
1-form, U \ V contains isolated points and ω has a pole at each point in U \ V . Denote
ω ∈M

(1)
X (U).

One can also define a differential 2-form ω to be differentiable if ω = fdz∧dz̄ where f ∈ E(U ∩Ui).
Differentiable 2-forms on U ⊆ X are denoted E

(2)
X (U). Note in all of the above, say in differentiable

2-forms, when we wrote ω = fdz ∧ dz̄, we meant that for any a ∈ U , we have

ω(a) = f(a)daz ∧ daz̄ ∈ T (2)
a = T

(1)
a ∧ T (1)

a .

Finally, all E(1)
X , E(2)

X , Ω(1)
X and M

(1)
X are sheaves of C-vector spaces. One also calls M

(1)
X sheaf of

abelian differentials.
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Construction 11.4.1.13 (Exterior derivative). We now construct the following two maps:

EX
d−→ E

(1)
X

d−→ E
(2)
X .

Indeed, on an open set U ⊆ X , define

d : EX(U) −→ E
(1)
X (U)

f 7−→ df

where df : U →
∐
a∈U T

(1)
a is given by a 7→ daf . Next, define for

d : E(1)
X (U) −→ E

(2)
X (U)

ω 7−→ dω

where if ω =
∑
k fkdgk for fk, gk ∈ EX(U ∩ Ui) for some chart (Ui, zi), then dω is defined as

dω =
∑
k

dfk ∧ dgk.

Definining for any f ∈ EX(U) elements d′f ∈ E1,0
X (U) given by a 7→ d′af and d′′f ∈ E0,1

X (U) given
by a 7→ d′′af and similarly the maps d′, d′′ : E(1)

X → E
(2)
X , we thus have the following two chains as

well:

EX
d′−→ E

(1)
X

d′−→ E
(2)
X

and

EX
d′′−→ E

(1)
X

d′′−→ E
(2)
X .

11.4.2 Dolbeault’s lemma

Theorem 11.4.2.1 (Dolbeault’s lemma for C). Let X = {z ∈ C | |z| < R} for 0 < R ≤ ∞. If
f : X → C is differentiable, then there exists g : X → C differentiable such that

∂g

∂z̄
= f.

Theorem 11.4.2.2 (Dolbeault’s lemma for Riemann surfaces). LetX be a Riemann surface and U ⊆ X
be an open set. Then for any f ∈ EX(U), there exists g ∈ EX(U) such that

∂g

∂z̄
= f.

Proof. Let f be as above. Pick any chart (Ui, zi) of X . Then fi := f ◦ z−1i : zi(U ∩ Ui) → C is
a differentiable map where we may assume zi(U ∩ Ui) to be an open disc by considering finer
charts. By Dolbeault’s lemma for C (Theorem 11.4.2.1), we get that there exists differentiable
gi : zi(U ∩ Ui) → C such that ∂gi

∂z̄ = fi. Thus, we get a differentiable g : U → C which on chart
(Ui, zi) is given by g ◦ z−1i = gi so that ∂g∂z̄ ◦ z

−1
i = ∂

∂z̄ (g ◦ z
−1
i ) = ∂gi

∂z̄ = fi. Thus, ∂g∂z̄ agrees with f on
each chart, hence ∂g

∂z̄ = f .
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11.5 Riemann-Roch theorem

Our goal is to prove and showcase the uses of the following theorem.

Theorem 11.5.0.1 (Riemann-Roch theorem). Let X be a compact Riemann surface of genus g and let D
be a divisor on X . Then:

1. The cohomology groups H0(X,O(D)) and H1(X,O(D)) are finite-dimensional C-vector spaces.
2. The dimensions of the 0th and 1st cohomology groups satisfy

dimCH
0(X,O(D))− dimCH

1(X,O(D)) = 1− g + degD.

Remark 11.5.0.2. Note that H0(X,O(D)) = Γ(X,O(D)), so one can interpret dimCH
1(X,O(D))

as the correction term to the inequality dimC Γ(X,O(D)) ≥ 1 − g + degD so that it becomes an
equality.

In the process of proving the above statement, we have to understand the following notions
on a Riemann surface : cohomology of sheaves, divisors and genus. We undertake the last two, as
we have covered cohomology of sheaves in detail in Chapter FoG.27. However, as we need some
results on cohomology of sheaves of differentials and some important long exact sequences, we
spend a section setting up the results which we will use.

11.5.1 Cohomology

Recall from §FoG.27.7 that for a given space X and a sheaf F on X , we can define its Čech-
cohomology groups H i(X,F). For us the most important is the first cohomology, as is evident
in Theorem 11.5.0.1.

Remark 11.5.1.1. We first recollect the sheaves that we have so far constructed on any Riemann
surface X .

1. OX of holomorphic maps on X .
2. MX of meromorphic maps on X .
3. EX of differentiable maps on X .
4. E

(k)
X of differentiable k-forms on X , k = 1, 2.

5. E1,0
X and E0,1

X of differentiable 1-forms of type (1,0) and (0,1), repsectively.
6. Ω(1)

X of holomorphic 1-forms on X .
7. M

(1)
X of meromorphic 1-forms on X .

Every sheaf from 2-7 is an OX -module. Using these seven sheaves, we can extract quite a bit of
geometric information about Riemann surfaces.

We first explore the many maps that one has amongst the above seven sheaves.

Example 11.5.1.2. Let (X,OX) be a Riemann surface. Here are some maps between above sheaves.
1. [Exterior derivative] We have maps

EX
d−→ E

(1)
X

d−→ E
(2)
X ,

EX
d′−→ E

(1)
X

d′−→ E
(2)
X
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and

EX
d′′−→ E

(1)
X

d′′−→ E
(2)
X .

as constructed in Construction 11.4.1.13.
2. [Natural inclusions] We have following inclusions:

OX ↪→ EX

Ω(1)
X ↪→ E1,0

X

3. [Exponential map] Let O×X be a sheaf of abelian groups obtained as follows. For each open
U ⊆ X , define

O×X(U) := {f ∈ OX(U) | f : U → C×}.

That is, O×X is the multiplicative abelian group of units of sheaf of C-algebra OX . We then
define the following map

exp : OX −→ O×X

which on an open U ⊆ X is

expU : OX(U) −→ O×X(U)
f 7−→ e2πif .

This is clearly a map of sheaves. This is called the exponential map and it plays an important
role in geometry.

We have an example of a situation where the image presheaf is not a sheaf (hence justifies why
we need to sheafify to get the image preseheaf).

Example 11.5.1.3 (Image presheaf may not be a sheaf). ForX = C, consider the open coverU = C\
(−∞, 0] and V = C \ [0,∞). Consider the image presheaf of the exponential map exp : OX → O×X ,
denoted F . Let id ∈ O×X(U) and id ∈ O×X(V ). Observe that they agree on intersection U ∩ V .
Observe further that U and V are simply connected, therefore they have an analytic branch of log,
that is, id ∈ Im (expU ), Im (expV ). We claim that there is no section in F (U ∪ V ) whose restriction
to U and V are id. Indeed, since U ∪ V = C×, therefore if the above two sections glue, then we
will have an analytic branch of log on C×, not possible.

The cohomology long exact sequence

We now state the main theorem, after proving two lemmas which are nice exercises in general
sheaf theory.

Recall that a sheaf map is injective, surjective, if it is so at the level of stalks.

Lemma 11.5.1.4. 4 Let ϕ : F → G be an injective map of sheaves of abelian groups. Then ϕU : F(U) →
G(U) is injective.

4To remove before addition to FoG and add relevant reference.
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Proof. Indeed, if ϕU (f) = 0 for some f ∈ F(U), then at stalks at each point x ∈ U , we get
ϕx((U, f)x) = (U,ϕU (f))x = 0. Thus, by injectivity, (U, f)x = 0 in Fx for all x ∈ U . Consequently,
f is locally zero at each point of U , thus it is zero at each point of U .

Lemma 11.5.1.5. 5 Let X be a space and 0 → F
ϕ→ G

ψ→ H be an exact sequence of sheaves of abelian
groups on X . If U ⊆ X is any open, then

0→ F(U) ϕU→ G(U) ψU→ H(U)

is exact.

Proof. By Lemma 11.5.1.4, ϕU is injective. We first show that Ker (ψU ) ⊇ Im (ϕU ). Pick any f ∈
F(U). Need only show that ψU (ϕU (f)) = 0. Indeed, it suffices to show that (U,ψU (ϕU (f)))x = 0
in Hx for all x ∈ U . Pick any x ∈ U . Observe that (U,ψU (ϕU (f)))x = ψx ◦ φx((U, f)x). The latter is
zero by exactness, as needed.

Next, we wish to show that Ker (ψU ) ⊆ Im (ϕU ). Indeed, pick g ∈ Ker (ψU ) and consider the
germ (U, g)x ∈ Gx for any x ∈ U . Observe that (U, g)x ∈ Ker (ψx) = Im (ϕx). Thus, there exists
(Vx, fx)x ∈ Fx such that

ϕx ((Vx, fx)x) = (Vx, ϕVx(fx))x = (U, g)x.

By definition of germs, we may assume that ϕVx(fx) = g on Vx ⊆ U for all x ∈ U . Hence we have
an open covering {Vx}x∈U of U and ϕVx(fx) = g on G(Vx). We claim that {fx}x∈U can be glued. To
this end, we wish to show that on Vx ∩ Vy, we have an equality fx = fy in F(Vx ∩ Vy). By Lemma
11.5.1.4, it suffices to show that ϕVx∩Vy(fx) = ϕVx∩Vy(fy) in G(Vx ∩ Vy). Observe that the element
ϕVx∩Vy(fx) = g|Vx∩Vy = ϕVx∩Vy(fy) in G(Vx ∩ Vy). Thus, we have the required equality.

It follows that {fx}x∈U can be glued to f ∈ F(U) such that ϕU (f) in G(U) is such that its
restriction to each Vx is g, thus by sheaf axioms, ϕU (f) = g, that is, g ∈ Im (ϕU ), as needed.

Remark 11.5.1.6 (Surjective maps of sheaves). Recall that if ϕ : F → G is surjective on sections,
then it is a surjective map, but the converse is not true. Indeed for X = C, the map of sheaves
exp : OX → O×X is surjective as any germ in the latter locally has a logarithm, but expC× is not
surjective on sections as the constant map id ∈ O×X(C

×) does not have a logarithm.
However, we do have the following "local surjectivity": ϕ is surjective if and only if for any

open U ⊆ X and any s ∈ G(U), there exists an open cover {Ui}i∈I of U and ti ∈ F(Ui) such that
ϕUi(ti) = s|Ui .

Moreover, some of the above sheaves are obtained by kernels and gives us several short exact
sequences, which will be used later.

Example 11.5.1.7. [Important short exact sequences] Let (X,OX) be a Riemann surface. Some of
the sheaves in Remark 11.5.1.1 are kernels of some other map of sheaves and they give rise to
some important short exact sequences.

1. The sheaf of holomorphic maps OX is obtained as the kernel

OX = Ker
Ä
d′′ : EX → E0,1

X

ä
.

5To remove before addition to FoG and add relevant reference.
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Thus, we have a s.e.s.

0 −→ OX −→ EX
d′′−→ E0,1

X −→ 0

where d′′ is surjective by Dolbeault’s lemma (Theorem 17.3.2.3).
2. The sheaf of holomorphic 1-forms Ω(1)

X is obtained from the kernel

Ω(1)
X = Ker

Ä
d : E1,0

X → E
(2)
X

ä
.

Thus we have a s.e.s.

0 −→ Ω(1)
X −→ E1,0

X
d−→ E

(2)
X −→ 0

where d is surjective as follows. For any ω = fdz ∧ dz̄ in E
(2)
X (U ∩ Ui) for (Ui, zi) a chart

and f ∈ EX(U ∩ Ui), we get by Dolbeault’s lemma (Theorem 17.3.2.3) that there exists g ∈
EX(U∩Ui) such that ∂g∂z̄ = f . Thus, d(−gdz) = −

Ä
∂g
∂zdz +

∂g
∂z̄dz̄

ä
∧dz = −∂g

∂z̄dz̄∧dz = fdz∧dz̄.
This shows that d is surjective on sections, as required.

3. Let LX = Ker
Ä
d : E(1)

X → E
(2)
X

ä
be the sheaf of closed 1-forms. Then we claim that the fol-

lowing is a s.e.s.

0 −→ C −→ EX
d−→ LX −→ 0.

Indeed, Ker (d : EX → LX) is given on an open-connected U ⊆ X by those differentiable
maps f : U → C such that df = d′fdz + d′′fdz̄ = 0, that is, ∂f/∂z = 0 and ∂f/∂z̄ = 0 on U .
It follows that f is holomorphic with zero derivative, that is, f is constant (U is connected).
Hence, we get the inclusion C ↪→ EX whose image is Ker (d).
Now, d is surjective as locally any closed form is exact by local existence of primitives from
one variable complex analysis.

4. For the exponential map, observe that we have a map Z→ OX which on an open-connected
U ⊆ X is given by

Z = Z(U) −→ OX(U)
cn 7−→ cn.

For some arbitrary open set U ⊆ X , Z(U) is given by functions which are constant on each
open connected component (any Riemann surface is locally connected), so they are in par-
ticular also holomorphic. We thus get a s.e.s.

0 −→ Z −→ OX
exp−→ O×X → 0

where exp is surjective as locally any non-zero holomorphic map has an analytic branch of
log.

We will now discuss the map in cohomology induced by a map of sheaves and how the con-
necting homomorphism works.
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Construction 11.5.1.8 (Map in cohomology). 6 Any map of abelian sheaves over X yields a map
in the cohomology as well. Indeed, let ϕ : F → G be a map of sheaves. Then we get a map

ϕq : Cq(U ,F) −→ Cq(U ,G)
s = (s(α0, . . . , αq)) 7−→ ϕq(s) =

(
ϕα0...αq(s(α0, . . . , αq))

)
where ϕα0...αq = ϕUα0∩···∩Uαq .

It then follows quite immediately from the fact that each ϕα0...αq is a group homomorphism
that dϕq = ϕq+1d. It follows that we get a map of chain complexes

ϕ• : C•(U ,F) −→ C•(U ,G).

Hence, we get a map in cohomology

ϕq : Hq(U ,F) −→ Hq(U ,G).

Finally, this gives by universal property of direct limits a unique map

ϕq : Ȟq(X,F) −→ Ȟq(X,G)

such that for every open cover U , the following diagram commutes:

Ȟq(X,F) Ȟq(X,G)

Hq(U ,F) Hq(U ,G)

ϕq

ϕq

where vertical maps are the maps into direct limits.

Construction 11.5.1.9 (Connecting homomorphism). 7 Let X be a topological space and

0 F G H 0ϕ ψ

be an exact sequence of sheaves on X . We define the connecting homomorphism

H0(X,H) H1(X,F)δ

as follows. First, pick any h ∈ H0(X,H) = Γ(X,H). As ψ is surjective therefore there exists an
open covering U = {Ui}i∈I of X and gi ∈ G(Ui) such that ψUi(gi) = h|Ui . Using (gi) and (Ui) we
construct a 1-cocycle for F as follows. Observe that for each i, j ∈ I , we have ψUi∩Uj (gi − gj) = 0
in H(Ui∩Uj). Thus, gi−gj ∈ Ker

(
ψUi∩Uj

)
. By exactness guaranteed by Lemma 11.5.1.5, it follows

that there exists fα0α1 ∈ F(Uα0 ∩ Uα1) such that ϕUα0∩Uα0 (fα0α1) = gα0 − gα1 , for each α0, α1 ∈ I .
We claim that the element

f := (fα0α1)α0,α1 ∈
∏

(α0,α1)∈I2
F(Uα0 ∩ Uα1) = C1(U ,F)

6To remove before addition to FoG and add relevant reference.
7To remove before addition to FoG and add relevant reference.
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is a 1-cocycle. Indeed, we need only check that df = 0 in C2(U ,F). Pick any (α0, α1α2) ∈ I3. We
wish to show that df(α0, α1α2) = 0. Indeed,

df(α0, α1α2) =
2∑
j=0

(−1)jρj
(
fα0α̂jα2

)
= fα1α2 − fα0α2 + fα0α1

in F(Uα0 ∩Uα1 ∩Uα2). We claim the above is zero. Indeed, By Lemma 11.5.1.5 on V := Uα0 ∩Uα1 ∩
Uα2 we get that ϕV is injective. But since

ϕV (fα1α2 − fα0α2 + fα0α1) = ϕV (fα1α2)− ϕV (fα0α2) + ϕV (fα0α1)
= gα1 − gα2 − (gα0 − gα2) + gα0 − gα1

= 0,

hence it follows that df(α0, α1α2) = 0, as required. Hence f ∈ C1(U ,F) is a 1-cocycle. Thus we get
an element [f ] ∈ H1(U ,F). This defines a group homomorphism H0(X,H) → H1(U ,F). Further
by passing to direct limit, we get an element [f ] ∈ H1(X,F). We thus define

δ(f) := [f ] ∈ H1(X,F).

This defines the required group homomorphism δ.

Theorem 11.5.1.10 (Long exact cohomology sequence). 8 Let X be a topological space and

0 F G H 0ϕ ψ

be an exact sequence of sheaves on X . Then there exists a long exact sequence

0 H0(X,F) H0(X,G) H0(X,H)

H1(X,F) H1(X,G) H1(X,H)

ϕ0 ψ0

δ

ϕ1 ψ1

where δ is as in Construction 11.5.1.9.

Applications

We now state and prove three big results, which follows from cohomology l.e.s. quite naturally.
The first result is an immediate corollary of the cohomology l.e.s. good to get the muscles

moving, which states what happens when the middle sheaf has no first cohomology.

Proposition 11.5.1.11. Let X be a topological space and

0 F G H 0ϕ ψ

be an exact sequence of sheaves on X . If H1(X,G) = 0, then

H1(X,F) ∼=
Γ(X,H)

ψX(Γ(X,G))
8To remove before addition to FoG and add relevant reference.
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Proof. Write the cohomology l.e.s. (Theorem 11.5.1.10) and use first isomorphism theorem.

We next give Dolbeault’s theorem which for a Riemann surface calculates first cohomology of
structure sheaf and holomorphic 1-forms purely in terms of differentiable functions and differen-
tiable 1 and 2-forms. This is essentially already clear from the first two s.e.s. in Example 11.5.1.7
and above result.

Theorem 11.5.1.12 (Dolbeault’s theorem). Let X be a Riemann surface.
1. All sheaves EX ,E

1,0
X ,E0,1

X , E(1)
X and E

(2)
X have first cohomology group 0.

2. We have isomorphisms

H1(X,OX) ∼=
Γ(X,E0,1

X )
d′′X(Γ(X,EX))

,

H1(X,Ω(1)
X ) ∼=

Γ(X,E(2)
X )

dX(Γ(X,E1,0
X ))

.

Proof. We omit the proof of item 1, for it can be found in Forster, Theorem 12.6 cite[Forster].
By Proposition 11.5.1.11 and the first two s.e.s. in Example 11.5.1.7, we need only show that

H1(X,EX) = 0 = H1(X,E1,0
X ), which we know to be true from item 1.

Corollary 11.5.1.13. Let X = BR(0) ⊆ C be an open ball considered as a Riemann surface. Then
H1(X,OX) = 0.

Proof. Need only show that d′′X : Γ(X,EX)→ Γ(X,E0,1
X ) is surjective. That is, for any differentiable

1-form of type (0, 1), i.e. ω = fdz̄ on X , we wish to find a differentiable map g on X such that
d′′g = ∂g

∂z̄dz̄ = fdz̄. Indeed, by Dolbeault’s lemma for C (Theorem 11.4.2.1), we get such a g.

Remark 11.5.1.14 (deRham cohomology). Let X be a Riemann surface and denote H1
dR(X) the

deRham cohomology of X , that is,

H1
dR(X) =

Ker
Ä
dX : E(1)

X (X)→ E
(2)
X (X)

ä
Im
Ä
dX : EX(X)→ E

(1)
X (X)

ä .
We can now easily see by cohomology l.e.s. that H1

dR(X) is same as H1(X,C).
Theorem 11.5.1.15 (deRham isomorphism for Riemann surfaces). Let X be a Riemann surface and C
be the constant sheaf associated to field C. Then we have an isomorphism

H1
dR(X) ∼= H1(X,C).

Proof. By Example 11.5.1.7, 3, we have a s.e.s.

0 −→ C −→ EX
d−→ LX −→ 0.

where H1(X,EX) = 0 by Dolbeault’s theorem (Theorem 11.5.1.12). By Proposition 11.5.1.11, it
follows that

H1(X,C) ∼=
Γ(X,LX)
dXΓ(X,EX)

where Γ(X,LX) is the set of all global closed differentiable 1-forms and dXΓ(X,EX) is the image
of all differentiable functions, that is Γ(X,LX)

dXΓ(X,EX) =: H1
dR(X), as required.
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11.5.2 Divisors

11.5.3 Proof of Riemann-Roch theorem

11.5.4 Applications
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13.1 Towards the axioms of a Topos

Consider the categories Sets, Setsn, G-Sets, SetsN for N being the totally ordered N regarded as a
category and the slice category Sets/S for some set S . These all, as we will see later, are important
examples of topoi. But the more interesting fact arises from the realization that all of the above
examples except the last one, can be shown to be a special case of another important example of a
topos, the presheaf category:

SetsCop
.

For example, we can see that if we fix C as the n object discrete category, then we get back the cat-
egory Setsn. The arrows in Setsn is just the arrow (natural transf.) in the functor category SetsCop

.
To see this, consider two presheaves F,G : Cop −→ Sets. A natural transformation η : F −→ G
would take some object ∗i in C to the component η∗i : F∗i → G∗i for 0 ≤ i ≤ n. Hence we have n
arrows between two n-tuple of sets, (F∗1, . . . , F∗n) and (G∗1, . . . , G∗n). This is exactly the arrow
in Setsn, so that we have established an isomorphism of categories. Similar constructions for the
other examples realize the importance of the presheaf category in this aspect. However, the slice
category Sets/S is different in the sense that it is almost a presheaf category. Almost because one
can only construct the presheaf category SetsS of S indexed family of sets which will not be iso-
morphic to the slice, but equivalent only upto a natural isomorphism.

Next thing we notice about the above examples is that they all have finite limits. Recall that any
category have finite limits if and only if it has terminal object and all pullbacks. Now one may see
the importance of having pullbacks by the following trivial example. Suppose we are working in
the Sets and we have f : X → B and g : Y ↪→ B for Y ⊆ B, the latter of which is clearly a monic.
Then the pullback of g along f would be the set P characterized as:

P = {(x, y) ∈ X × Y : f(x) = g(y) = y}.

Clearly, we have that P ∼= (f)−1 (Y ). That is, we have a set P which is same as the inverse image
of f for some subset Y of it’s co-domain. We can hence quite easily turn this idea into any category
in order to find a generalized notion of inverse of an arrow.

The most immediate use, however, of existence of terminal object and pullbacks is in the gen-
eralization of the fact that in Sets, any subset S ⊂ X can be written either as a monic m : S ↣ X
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or as a characteristic function χS : X → 2 where 2 = {0, 1} is a 2 object set which maps as
following:

χS(x) =
®
0 if x ∈ S
1 if x /∈ S

where we regard 2 = {0, 1} as the Truth object, which contains the possible truth values of the
category of sets, which clearly exists and has two elements. This latter convention for a subset of
a set X can be generalized to an arbitrary category by the following definition:

Definition 13.1.0.1. (Subobject Classifier) Suppose C has all finite limits. A subobject classifier is a
monic global element

true : 1 ↣ Ω

where Ω is the truth object, such that for any subobjectm : S ↣ X , there exists a unique arrow φ : X → Ω
such that the following forms a Pullback Square:

S 1

X Ω

m true

φ

⌟

We can in-fact turn the whole construction of a Subobject to a Presheaf itself!

Definition 13.1.0.2. (Subobject Functor) In a well-powered1 category C, we have the following presheaf
called the subobject functor

SubC (−) : Cop −→ Sets

which takes:
1. Object X to the small set SubC (X),
2. Arrow f : Y → X to the arrow:

SubC (f) : SubC (X)→ SubC (Y )

which takes any subobject m : S ↣ X in SubC (X) to the pullback of s along f , i.e.:

S P S

X Y X

m m′ m

f

⌟

In-fact, the functor SubC (−) is a Representable Functor represented exactly by the Truth object
Ω!

Proposition 13.1.0.3. (Representability of SubC (−)) Suppose C is a small category with finite limits.
Then, C has a subobject classifier if and only if ∃ an object Ω such that ∃ θ

θ : SubC (−) =⇒ HomC (−,Ω)

which is a natural isomorphism.
1A category which has small set of all subobjects for any object.
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Proof. (L =⇒ R) Suppose C has a subobject classifier. Take any f : Y → X in C. The SubC (f)
identifies an arrow θX : SubC (X) −→ HomC (X,Ω), given by θX(m) = characteristic arrow of
subobject m. This θX can be seen to be natural in X by direct verification.
(R =⇒ L) Suppose θ : SubC (−) ⇒ HomC (−,Ω) is a natural isomorphism. Take any monic
m : A ↣ E in C. Consider the unique arrow θE(m) : A → Ω. We also have by the isomorphism
a unique subobject t : 1 ↣ Ω obtained by such t with θΩ(t) = 1Ω. The result then follows by
observing the naturality condition on θX(f) for a monic f : A↣ E.

13.1.1 Subobject Classifier in SetsCop

Since we saw earlier that most of the examples of topoi are particular instances of presheaf cate-
gories, therefore the construction of a subobject classifier for SetCop

constructs a subobject classifier
for them too.
To begin with, clearly, every monic in SetCop

is just a natural transformation whose each compo-
nent is injective. That is, for a monic arrow θ : Q =⇒ P in the presheaf category, for any object C
of C, the component θC : QC ↣ PC is monic, so that QC ⊂ PC. Moreover, by naturality, for any
arrow f : D → C in C, we must have that Qf = Pf |QC⊂PC . This exactly is the definition of Q
being the subfunctor of P . Therefore, subobjects in presheaf category are subfunctors. With this,
we now construct the classifier object Ω.

Suppose Ω in SetsCop
is the classifier object. Since it classifies all subobjects, therefore it must

also classify the contravariant functor HomC (−, C) for any object C of C. But, by Proposition
13.1.0.3, we have that:

SubĈ (HomC (−, C)) ∼= HomĈ (HomC (−, C),Ω)
∼= ΩC By Yoneda Lemma

where Ĉ = SetsCop
. Hence, Ω is that object/presheaf in Ĉ, which takes object C of C to the set of

all subobjects of the representable functor HomC (−, C) in Ĉ. But this set would contain just the
subfunctors of HomC (−, C). Now, if we define the following:

Definition 13.1.1.1. (Sieve over an Object) In a category C, a sieve on an object C is the following set :

SC = {f : A→ C | if h : B → A, then f ◦ h ∈ SC for any such A}.

Then we notice that a sieve on C is actually the same thing as a subfunctor of HomC (−, C).
Hence, ΩC is just the set of all sieves over the object C. But what about the action of Ω on the
arrows of C?
To answer this, we must remind ourselves first that pullback preserves the subobjects. This means
that if g : B → C in C, then pullback of the subobject identified by the monic Q =⇒ HomC (−, C)
along the arrow Yon (g) : HomC (−, B) =⇒ HomC (−, C) is a subobject of HomC (−, B). This
translates to the fact that pullback of a sieve over C, SC is just the sieve over B, SB defined by:

SB = SC · g = {h | g ◦ h ∈ SC}.

Hence, Ωg for g : B → C is the set function:

Ωg : ΩC −→ ΩB
SC 7−→ SB = SC · g.
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Hence the monic subobject classifier in Ĉ is simply:

true : 1 =⇒ Ω
trueC : 1C = {⋆}↣ ΩC

⋆ 7→Maximal Sieve over C.

The final piece left to settle is the unique characteristic function φ : P =⇒ Ω for a given subobject
Q =⇒ P . It can be seen that the following choice of φ does make the corresponding classifier a
pullback diagram:

φ : P =⇒ Ω
φC : PC −→ ΩC

p 7→ {f : E → C | (Pf)(p) ∈ Q(E) for any such f : E → C}

Note that component φC maps each element to that sieve which contains those arrows of C whose
image under P takes that element to the subset mapped to by the Q under the domain of that
arrow. Clearly, when p ∈ QC ⊂ PC, then for any f : E → C, Pf(p) ∈ QE because Qf =
Pf |QC⊂PC , hence φC(p) is the maximal sieve over C.

13.1.2 Colimits in SetsCop

It turns out that the presheaf category has a peculiar property that each object/presheaf in it is the
colimit of some particular diagram of representable presheaves, and that too in the most obvious
way. Before stating it precisely, let us look at a very general result, whose corollary gives us the
above result.

Definition 13.1.2.1. (Category of Elements for a Presheaf) Suppose P : Cop −→ Sets. Then we can
construct a category called the category of elements,

∫
C P , which has:

1. Objects as the pairs (C, p) where C ∈ Ob(C) and p ∈ PC,
2. Arrows as u : (C ′, p′)→ (C, p) where u is just u : C ′ → C in C but with property that

Pu(p) = p′.

where composition is defined as in C. Also, there clearly exists a functor:

πP :
∫

C
P −→ C

(C, p) 7−→ C(
u : (C ′, p′)→ (C, p)

)
7−→

(
u : C ′ → C

)
Theorem 13.1.2.2. Suppose C is a small category and A : C −→ E is a functor to a co-complete category
E. Then, the following functor:

R : E −→ SetsCop

E 7−→ HomE (A(−), E)



356 CHAPTER 13. CLASSICAL TOPOI

has a Left Adjoint given by:

L : SetsCop
−→ E

P 7−→ lim−→

Å∫
C
P

πP−→ C A−→ E
ã

Proof. Suppose E is some object in E. Take any λ : P =⇒ RE from HomĈ (P,RE). For any object
C of C, λC : PC → HomE (AC,E) is therefore just the collection of (C, p) for p ∈ PC. Hence, λC
is a subset of Ob(

∫
C P ). The projection πP of (C, p) for any p is simply the object C ov C. Further

application of functor A on πP (C, p) would be AC. Similarly, for u : (C ′, p′) −→ (C, p), the arrow
Au : AπP (C ′, p′)→ AπP (C, p) would be such that the following commutes, because λ is a natural
transformation:

AπP (C, p)

E

AπP (C ′, p′)

u

λC(p)

λC′(p)

Clearly, this means that E forms a cocone over the diagram
∫

C P
πP−→ C A−→ E. Therefore, there

exists a unique arrow E 99K LP . This assignment establishes the corresponding natural isomor-
phism between HomĈ (P,RE) and HomE (LP,E).

This Theorem now naturally leads to the result discussed in the beginning:

Proposition 13.1.2.3. In the presheaf category Ĉ, any presheaf P is the colimit of a particular diagram of
representable functors, in a canonical way.

Proof. In the above Theorem 13.1.2.2, if we set E = Ĉ and A = Yon (−), we get the desired result,
where the diagram is the following: ∫

C
P

πP−→ C
Yon(−)−→ Ĉ

of index as category of elements of P .

13.1.3 Exponentials in SetsCop

The next important general result about the presheaf category is that every object/presheaf in
it is exponentiable. Now since Ĉ is already complete, therefore existence of exponentials would
imply that Ĉ is Cartesian Closed! As we will note much later in a bit more detail, this is a general
property of any topoi.

Proposition 13.1.3.1. Suppose C is a small category, then the presheaf category Ĉ is Cartesian Closed.
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Proof. It can be verified that for any object P,Q in Ĉ, the another object QP defined by:

QP : Cop −→ Sets
C 7−→ HomĈ (HomC (−, C)× P,Q) = Nat (HomC (−, C)× P,Q)

makes QP the exponential of P and Q.

Remark 13.1.3.2. With all the discussion above, we now see that presheaves is an important cate-
gory and the examples seen in the beginning of topoi follows the following three rules: (1) it has
finite (co)limits, (2) each object in it is exponentiable & (3) it has a subobject classifier. In fact, these
three exactly constitute the definition of a topos, as we will see later!

13.2 Grothendieck Topologies & Sheaves

Suppose we wish to generalize sheaves on to arbitrary categories. The first problem that one might
face to this goal would be that defining a sheaf requires a notion of cover of an open subset of the
given topological space. Therefore sheaves on arbitrary categories would require a notion of cover
of each object in that category. This is precisely the problem handled (among many others) by
Grothendieck topologies and the notion of a site. Reconciling such topologies on any categories
would lead us to a vast generalization of the notion of a cover of a given space, but now arbitrary
objects, which has very deep connotations within algebraic geometry, which we would discuss
after defining them.

13.2.1 Grothendieck Topologies

Definition 13.2.1.1. (Grothendieck Topology & Site) Suppose C is a small category. A Grothendieck
topology on C is a functor:

J(−) : Ob(C) −→ Sets
C 7−→ JC := {S | S is a sieve over C}

where Ob(C) is the discrete category of objects of C, such that for any object C, the collection JC of sieves
over C in category C must satisfy:
GT.1 (Maximal Cover) The maximal sieve over C, SmaxC , must be in JC.
GT.2 (Stability of Covers) For any S ∈ JC and f : D → C in C, we must have that:

f∗(S) := {g | f ◦ g ∈ S}︸ ︷︷ ︸
a sieve over D

∈ JD

GT.3 (Transitivity of Covers) If S ∈ JC and R is any sieve over C such that

∀ f ∈ S , f∗(R) ∈ J(dom(f))

then we must have that

R ∈ JC.

A site (C, J) is just a small category C coupled with a Grothendieck topology J on C.
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Lemma 13.2.1.2. Suppose (C, J) is a site. Then for any object C,

R,S ∈ JC =⇒ R ∩ S ∈ JC

Proof. Take any f : D → C and note that f∗(R ∩ S) = f∗(S). Then use GT.3 on R ∩ S, in which
GT.2 would be used.

Example 13.2.1.3. Suppose X is a topological space. Then a functor J : Ob(O(X)) −→ Sets where
Ob(O(X)) is the discrete category of open sets of X defined by:

S ∈ JU ⇐⇒ U ⊆
⋃
V ∈S

V

forms a Grothendieck topology over O(X).

Proof. GT.1 : The set of all arrows over U in O(X), when we take all their union, would equal U .
So maximal sieve over U is in JU .
GT.2 : Let S ∈ JU and V ⊂ U . Then V ∗(S) = {W ∈ S | W ⊂ V ⊂ U} is such that

⋃
W∈V ∗(S)W ⊇

V .
GT.3 : Let S ∈ JU andR be any sieve overU such that for any V ⊂ U with V ∈ S, the V ∗(R) ∈ JV .
Since

⋃
W∈SW ⊇ U and V ∗(R) = {T | T ⊂ V ⊂ U , T ∈ R} ∈ JV =⇒

⋃
T∈V ∗(R) T ⊇ V and

V ∗(R) ⊂ R ∀ V ∈ S as sieve, therefore
⋃
Q∈RQ ⊇

⋃
W∈SW ⊇ U . Hence R ∈ JU .

13.2.2 Basis for a Grothendieck Topology

Note that in O(X), the usual notion of an open cover of U as U =
⋃
i∈I Ui does not makes {Ui}i∈I

a sieve over U . But one could generate a sieve from this open cover, by collection all V ⊆ U with
V ⊆ Ui for some i ∈ I . Therefore the collection {Ui}i∈I forms a base cover for U from which we can
generate a usual cover over U . We now extend this to any category with pullbacks2.

Definition 13.2.2.1. (Basis for a Grothendieck Topology) Suppose C is a small category. A basis for
Grothendieck topology is a functor

K : Ob(C) −→ Sets

where Ob(C) is the discrete category of objects of C, such that for any object C of C, the collection KC of
sets of arrows over C must satisfy:

BGT.1 (Isomorphic Objects are Bases) If f : C ′ → C is an isomorphism, then

{f} ∈ KC

BGT.2 (Pullback Stability of Bases) If {fi : Ci → C | i ∈ I} ∈ KC and g : D → C is any arrow, then

{πi : Ci ×C D → D | i ∈ I} ∈ KD

BGT.3 (Transitivity of Bases) If {fi : Ci → C | i ∈ I} ∈ KC and {f ji : Cji → Ci | j ∈ Ii} ∈ KCi, then

{fi ◦ f ji : Cji → C | j ∈ Ii , i ∈ I} ∈ KC
2because the pullback in O(X) of U ↪→ X and V ↪→ X is just the intersection of U and V .
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One uses the same terminology of sites, even when we just have a base. That is, we will
call (C,K) a site, even when K is a base, not a Grothendieck topology. One also generates a
Grothendieck topology J from a base K as follows:

Lemma 13.2.2.2. Suppose C is small and K is a base defined over it. Consider the topology J generated by
the base K as follows:

S ∈ JC ⇐⇒ ∃ R ∈ KC such that R ⊆ S.

Then J is indeed a Grothendieck Topology.

Proof. GT.1 : Any R ∈ KC is subset of the maximal sieve over C. So maximal sieve is in JC.
GT.2 : Suppose S = {fi : Ci → C | i ∈ I} ∈ JC and g : D → C. We want to show g∗(S) ∈ JD.
By BGT.2, we have {πi : Ci ×C D → D | i ∈ I} ∈ KD. Remember that g ◦ πi = fi ◦ σi where
σi : Ci ×C D → Ci because of pullback square. But fi ∈ S, therefore fi ◦ σi = g ◦ πi ∈ S. Hence,
πi ∈ g∗(S), which shows that {πi : Ci ×C D → D | i ∈ I} ⊆ S so that g∗(S) ∈ JD.
GT.3 : The canonical idea works.

Remark 13.2.2.3. Conversely to Lemma 13.2.2.2, given a site (C, J), we can construct a basis K of
J as follows:

R ∈ KC ⇐⇒ (R) ∈ JC

where (R) is the sieve generated by the basic cover R. More precisely:

(R) = {f ◦ g | f ∈ R , g is any composable arrow}.

Similar to Lemma 13.2.1.2, we have the following for basic covers:

Lemma 13.2.2.4. Suppose we have a site (C,K). For any two basic covers R,P ∈ KC of C, there exists
a common refinement of R and P in KC.

Proof. A collection {fi : Ci → C | i ∈ I} is said to be a refinement of {gj : Dj → C | j ∈ J} if every
fi factors through some gj . Suppose J is the Grothendieck topology generated from K. Therefore
(R), (P ) ∈ JC. By Lemma 13.2.1.2, (R) ∩ (P ) ∈ JC, so that ∃ Q ∈ KC such that Q ⊆ (R) ∩ (P ).
Moreover, any arrow f ∈ Q is such that f ∈ (R) and f ∈ (P ). This means that f factors through
some arrow in R and P , so that Q is a common refinement of R and P .

13.2.3 Sheaves on a Site

With the notion of Grothendieck topologies over a small category in place, we have now a notion
of what it means to cover an object in a small category. Therefore, the next step would be now to
generalize the notion of sheaves over sites.

Matching Families and Amalgamations

In ordinary definition of sheaves over topological spaces (Definition ??), the gluing condition re-
quires the elements of the members of the cover of some open set which match over all restrictions
of their corresponding members to their intersections, to be collatable to form an element of the
whole open set under the sheaf functor. The analogue of the elements of members of the cover
which satisfy the above property in sheaves over a site is known as a matching family:
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Definition 13.2.3.1. (Matching Family of a Cover for a Presheaf) Suppose (C, J) is a site. Let S ∈
JC be an arbitrary cover of object C and P be a presheaf over C. Then a matching family of S for the
presheaf P is a set MP

S given by:

MP
S = {xf ∈ P (dom (f)) | f ∈ S and ∀ g post-composable with f , P (g)(xf ) = xf◦g}

Note that MP
S may not be the only matching family for the cover S.

The notion of a global collation is then captured by the following:

Definition 13.2.3.2. (Amalgamation of a Matching Family) Suppose (C, J) is a site, S ∈ JC is a
cover of C, P is a presheaf over C and MP

S is a matching family of S. An amalgamation of MP
S is then the

following element of PC:

x ∈ PC such that Pf(x) = xf ∀ f ∈ S , where xf ∈MP
S .

Finally, a sheaf over a site is then defined as the following:

Definition 13.2.3.3. (Sheaves over a Site - Ordinary Defn.) Suppose (C, J) is a site. A presheaf
P : Cop −→ Sets is a sheaf if and only if:

any matching family MP
S for any cover S ∈ JC for any object C ∈ Ob(C) has a unique amalgamation.

In-fact, the above definition can be written purely in categorical language as follows:

Definition 13.2.3.4. (Sheaves over a Site - Categorical Defn.) Suppose (C, J) is a site. A presheaf
P : Cop −→ Sets is a sheaf if and only if ∀C ∈ Ob(C) and ∀S ∈ JC, the following is an equalizer
diagram

PC

∏
f∈S P (dom (f))

∏
f∈S,g, dom(f)=cod(g) P (dom (g))

e

p

a

where e, p and a are:

e : PC −→
∏
f∈S

P (dom (f))

x 7−→ {Pf(x)}f∈S

a :
∏
f∈S

P (dom (f)) −→
∏

f∈S,g, dom(f)=cod(g)
P (dom (g))

{xf}f∈S 7−→ {Pg(xf )}dom(f)=cod(g)

p :
∏
f∈S

P (dom (f)) −→
∏

f∈S,g, dom(f)=cod(g)
P (dom (g))

{xf}f∈S 7−→ {xf◦g}dom(f)=cod(g)

Note that a is just mapping the xf to the corresponding member xf◦g ∈ {xf}f∈S because f ◦ g ∈ S.
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Sheaves in terms of Basis

A sheaf over a site (C,K) where K is a basis (Definition 13.2.2.1) can also be realized, albeit we
require different notion of matching families for a basic cover:

Definition 13.2.3.5. (Matching Family of a Basic Cover for a Presheaf) Suppose (C,K) is a site
where K is a basis, R ∈ KC is a basic cover of C and P is a presheaf over C. A matching family MP

R of the
basic cover R for the presheaf P is then defined as the following set:

MP
R =

{
xfi ∈ PCi | fi : Ci → C ∈ R such that P (π1ij)(xfi) = P (π2ij)(xfj )

}
where π1ij and π2ij are as follows:

Ci ×C Cj Cj

Ci C
fi

fjπ1
ij

π2
ij

⌟

Remark 13.2.3.6. An amalgamation of a matching family of a basic cover for a presheaf is then
defined as done previously (Definition 13.2.3.2), i.e. x ∈ PC is an amalgamation ofMP

R if Pf(x) =
xf ∈MP

R ∀ f ∈ R.

A sheaf is over a basic site is then obtained as follows (note the similarity of the result with
that of Definition 13.2.3.3) :

Theorem 13.2.3.7. Suppose (C,K) is a site and K is a basis and P is a presheaf over C. Then, P is a sheaf
if and only if any basic cover {fi : Ci → C | i ∈ I} ∈ KC for any object C has a unique amalgamation.

Proof. Proof is a bit long so we only provide a very brief sketch.
(L =⇒ R) Take the topology J generated from K. P is a sheaf so (R) ∈ JC has an unique
amalgamation. Canonical observations lead to the realization that this unique amalgamation of
(R) is an amalgamation for R too.
(R =⇒ L) Again take the J as above. Take any matching family of a cover S from JC. Since
∃ R ⊆ S where R ∈ KC and premise of the question says that this R has a unique amalgamation,
therefore argue that this unique amalgamation of R is a unique amalgamation for S too.

An example of sheaves on a site (Top,K) where K is the open cover topology is the usual
contravariant hom-functor:

Yon (Y ) = HomC (−, Y )

This is quite trivial to see by a simple un-ravelling of definitions.

13.2.4 The Grothendieck Topos

We are now at a good footing to understand one of the central themes of this text, the Grothendieck
topos. Denote the category of sheaves over a site (C, J) and natural transformations between them
as the following:

Sh (C, J)
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Note that this category of sheaves is a full subcategory of the presheaf category Ĉ. Hence we have
the following inclusion functor:

Sh (C, J) ↣ Ĉ.

Hence, we have the following definition:

Definition 13.2.4.1. (Grothendieck Topos) A Grothendieck Topos is a category T which is functorially
equivalent to a category Sh (C, J) of sheaves over some site (C, J).

Remark 13.2.4.2. Clearly, the category Sh (C, J) is a trivial example of a Grothendieck Topos.

We will later see some of the basic properties of the category of sheaves.

13.2.5 The Sheafification Functor

Suppose (C, J) is a site and we have the sheaf category Sh (C, J). As mentioned in Section ?? for’O(X), since the inclusion of Sh (C, J) into Ĉ is the simplest way to get a presheaf from a sheaf, then
it’s adjoint has to be the simplest way to get a sheaf from a presheaf. Of-course, the aspect of the
construction which transforms a presheaf to a sheaf is interesting, but as we will see (as we had
already seen in ??) this construction is a bit non-trivial.
The construction which we would now study is known as the (−)+-Construction:

The (−)+-Construction

Suppose (C, J) is a site and P : Cop −→ Sets be a presheaf. We define a new presheaf P+ as
follows:

• Define

Match (R,P )C := Set of all matching families of R ∈ JC

• Define the following functor:

Match (−, P )C : (JC)op −→ Sets
R 7−→ Match (R,P )C

S ⊂ R 7−→ Match (R,P )C → Match (S, P )C

where Match (R,P )C → Match (S, P )C takes a matching family of R to that of S by restrict-
ing the elements of the family to that of S ⊂ R.

• Define presheaf P+ as the following:

P+ : Cop −→ Sets
C 7−→ lim−→ Match (−, P )C

A more illuminating equivalent definition of P+ by reminding ourselves the definition of colimits
in Sets, however, would be the following:

Definition 13.2.5.1. ((−)+-Construction of a Presheaf) Suppose (C, J) is a site and P is a presheaf
over C. The presheaf P+ is given as follows:
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• Define an equivalence relation on the set
⋃
S∈JC

⋃
MP
S
∈Match(S,P )C

MP
S where two matching families

are related as follows:

MP
S ∼MP

R ⇐⇒ ∃ a refinement T ⊆ S ∩R , T ∈ JC such that

xf = yf ∀ f ∈ T , xf ∈MP
S & yf ∈MP

R

• Define action of P+ on objects as:

P+ : Cop −→ Sets

C 7−→ Set of equivalence classes

Ñ ⋃
S∈JC

⋃
MP
S
∈Match(S,P )C

MP
S

é
/ ∼

• Define action of P+ on arrows as:

P+ : Cop −→ Sets
f : D → C 7−→ P+f : P+C → P+D

where P+f is as follows:

P+f : P+C −→ P+D

[MP
S ] 7−→ [f ◦MP

S ]

and f ◦MP
S is defined as (let MP

S = {xg ∈ P (dom (g)) | g ∈ S}):

f ◦MP
S := {xf◦h ∈MP

S | h ∈ f∗(S)}.

Remark 13.2.5.2. (P+ is well defined) One may wonder whether the P+f as mentioned above is
well-defined or not. That is, does MP

S ∼ MP
R =⇒ f ◦MP

S ∼ f ◦MP
R ? Well it can be seen quite

easily that this is true because if we take the refinement T ⊂ R ∩ S and it’s pullback f∗(T ), one
can see that it would be a refinement too of f∗(R)∩ f∗(S). Clearly, elements of f ◦MP

S and f ◦MP
R

are same when restricted to f∗(T ). So P+ is indeed well-defined.

There is a canonical natural transformation which takes any presheaf to it’s (−)+ presheaf.
This would be important in the following constructions.

Lemma 13.2.5.3. Suppose (C, J) is a site and P is a presheaf over C. Then the following is an important
natural transformation:

η : P =⇒ P+

defined by

ηC : PC −→ P+C

x 7−→
î
MP
Smax
C

ó
where

MP
Smax
C

:= {Pf(x) ∈ P (dom (f)) | f ∈ Smax
C }
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A Presheaf to the Sheaf via (−)++

We will now see how we would transform a presheaf to a sheaf via the above construction. More
specifically, we would take a presheaf P and then do the following cascade of transformations:

P P+ (P+)+ηP ηP
+

where ηP is the natural transformation ηP : P =⇒ P+, as given in Lemma 13.2.5.3. As we will see
now, the (P+)+ is guaranteed to be a sheaf over (C, J) for any presheaf P .
We now quickly state some canonical lemmas without proof (in the following, we assume (C, J)
is a given site):

Lemma 13.2.5.4. A presheaf P is separated ⇐⇒ η : P =⇒ P+ is a monic.
Similarly, a presheaf P is a sheaf ⇐⇒ η : P =⇒ P+ is an isomorphism.

Lemma 13.2.5.5. (Universality of P+) If F is a sheaf and P is a presheaf over C and we are given a map
θ : P =⇒ F in Ĉ, then ∃ a unique map P+ =⇒ F such that the following commutes:

P

P+ F

θη

Lemma 13.2.5.6. For any presheaf P , the presheaf P+ is separated.

Lemma 13.2.5.7. For any separated presheaf, the presheaf P+ is a sheaf.

With the above lemmas we can state the following theorem, whose proof is now quite easy
with their help:

Theorem 13.2.5.8. Suppose (C, J) is a site. Then sheaves over this site Sh (C, J) forms a reflective sub-
category of Ĉ, where the corresponding adjunction is given by the following:

Ĉ Sh (C, J)

i

a

⊣

where

a : Ĉ −→ Sh (C, J)

P 7−→ a(P ) := ηP
+ ◦ ηP = (P+)+.

Moreover, we have:

a ◦ i ∼=Nat idSh(C,J).

Proof. Lemma 13.2.5.6 means P+ is separated and Lemma 13.2.5.7 means that (P+)+ is a sheaf.
That a as defined above is the left adjoint of inclusion can be seen via the Lemma 13.2.5.5.



13.2. GROTHENDIECK TOPOLOGIES & SHEAVES 365

Remark 13.2.5.9. The sheafification functor a(−) preserves finite limits. This is due to the fact
that the functor Match (R,−) preserves finite limits as it is isomorphic to HomĈ (R,−) (Proposi-
tion 20.6.2.4 generalized to sites), which preserves limits, for a fixed coverR. But the P+ is defined
to be a filtered colimit. But filtered colimit commutes with finite limits. Therefore P 7→ P+ pre-
serves limits and hence a(−) preserves limits. This shows that i ⊢ a is a geometric morphism
between topoi.

13.2.6 Properties of Sh (C, J)
We now look at some of the basic properties of categories of sheaves over a site. In particular, we
will see that Sh (C, J) satisfies all properties of an elementary topos. In the following, we assume
that a site (C, J) is given to us.

Proposition 13.2.6.1. Sh (C, J) has all small limits.

Proof. Take any diagram in Sh (C, J). Compute their limit in the Ĉ. But limits in Ĉ are computed
point-wise. Then use the Definition 13.2.3.4 on each member of the diagram in Ĉ evaluated at
some objectC to get an equalizer diagram. Take the limit of each member of the equalizer diagram.
This new diagram would also be an equalizer. Hence limit of the original diagram also follows
the equalizer definition of sheaves over a site and hence it is also in Sh (C, J).

Remember the following functor from our previous discussions:

∆ : Sets −→ Ĉ
S 7−→ ∆S := Constant presheaf to S

The following is an useful adjunction, called the global sections adjunction:

Definition 13.2.6.2. (Global Sections Adjunction) Suppose (C, J) is a site and left adjoint of inclusion
a : Ĉ −→ Sh (C, J) as given in Theorem 13.2.5.8. We then have the following adjunction:

Sets Sh (C, J)

a◦∆

Γ

⊣

where Γ : Sh (C, J) −→ Sets takes a sheaf F to Nat (1, F ), i.e. Γ is the global sections functor.

We now see that sheaf category has small colimits.

Proposition 13.2.6.3. Sh (C, J) has all small colimits.

Proof. From Theorem 13.2.5.8, we have that a preserves colimits as it is the left adjoint. Therefore,
to find colimit of a diagram in Sh (C, J), first take it’s limit in Ĉ and then apply a to it, since it
would preserves colimits, we then have colimit of the original diagram in Sh (C, J).

Finally, we show without proof that the exponentials in Sh (C, J) exists and how they are given
by:
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Proposition 13.2.6.4. Sh (C, J) has all exponentials and for two sheaves F & G, the exponential FG is
given by:

FG : Cop −→ Sets

C 7−→ FG(C) := Nat (HomC (−, C)×G,F )

Remark 13.2.6.5. Since Sh (C, J) is a full subcategory of Ĉ, therefore it doesn’t matter whether we
take all natural transformations in Ĉ or Sh (C, J) in the above. Also note that the above construc-
tion of exponential was already proved in Proposition 13.1.3.1.

Hence we are just one step away from proving that Sh (C, J) is an elementary topos; we just
need to show that Sh (C, J) has a subobject classifier (Definition 13.1.0.1) which would classify one
subobject from the other. Constructing that requires a bit more insight, which we gain now.

Subobject Classifier in Sh (C, J)

The truth object and the subobject classifier in Sh (C, J) are to be constructed now. We first define
a closed sieve:

Definition 13.2.6.6. (Closed Sieve over an object) Let (C, J) be a category. A closed sieve S over an
object C in the given site is such a sieve which follows:

If for any f : D → C, f∗(S) ∈ J(C), then f ∈ S.

Remark 13.2.6.7. It’s quite trivial to see that closed sieves are stable under pullback under any
compatible arrow. Also, all maximal sieves are closed sieves.

Then, the truth object is given by the following :

Proposition 13.2.6.8. Suppose (C, J) is a site and Sh (C, J) is the sheaf category over it. Then, the truth
object Ω : Cop −→ Sets is given by:

Ω : Cop −→ Sets
C 7−→ ΩC := Set of all J-closed sieves over C

f : B → C 7−→ Ωf : ΩC → ΩB
S 7→ f∗(S)

and this truth object Ω is indeed a sheaf.

Proof. (Sketch) First prove that Ω is a separated presheaf. For this, take any matching family R of
any object C and take two amalgamations S1 and S2 in ΩC. Note now that S1 ∩R = S2 ∩R. With
this take g ∈ S1 and show that g ∈ S2. Similarly the converse to assert that S1 = S2.
After this, now show that Ω has amalgamations for any matching family. For this, take any
matching family of R ∈ JC and form a different sieve over C by collecting all closed sieves’
pre-composed with the corresponding member of R to get arrows over C. Argue that the closure3

of this sieve is the amalgamation of that matching family.

3The closure of a sieve S over C in a site (C, J) is defined as S̄ := {g | cod (g) = C , g∗(S) ∈ J(dom (g))}.



13.3. BASIC PROPERTIES AND RESULTS IN TOPOI 367

Now, the "truth" monic and the unique characteristic map is then given as (the proof requires
a small result but is fairly trivial afterwards, so is not presented below):

Proposition 13.2.6.9. Suppose (C, J) is a site and Sh (C, J) is the sheaf category. Then the monic

true : 1 =⇒ Ω
in Sh (C, J), given as

trueC : {⋆} −→ ΩC
⋆ 7−→ SmaxC

is the subobject classifier for Sh (C, J). The unique characteristic map χ : G =⇒ Ω corresponding to the
monic m : F =⇒ G in Sh (C, J) is given as:

χ : G =⇒ Ω
χC : GC −→ ΩC

x 7−→ {f | cod (f) = C , Gf(x) ∈ F (dom (f))}.

Hence by Propositions 13.2.6.1,13.2.6.3,13.2.6.4 & 13.2.6.9, Sh (C, J) is an elementary topos, as
was required to be shown.

13.3 Basic Properties and Results in Topoi

We now study the first properties observed from the definition of a topos. We will see that there
are a lot of striking similarity between Sets and a topos E. For example, each subobject in a topos
will have a clearly defined way of identifying "elements" as whether they are indeed in the given
subobject or not, similarly, whether two "elements" are same or not, image of a subobject along
other arrow and so on, purely in categorical terms, and all of which is generalized from their
usual notions in Sets.
Let’s begin with the definition of a topos, with the underlying help of sets:

Definition 13.3.0.1. (Elementary Topos - I) A category E is a topos if:
ETI.1 E has all finite limits.
ETI.2 The subobject functor (Definition 13.1.0.2) SubE (−) : Eop −→ Sets is representable and the object

which represents it, denoted Ω, is called the subobject classifier. That is,

SubE (A) ∼=Nat HomE (A,Ω).

ETI.3 The functor HomE (B ×−,Ω) is representable for all objectsB and the representing object is denoted
as PB, called the power object of object B. That is,

HomE (B ×A,Ω) ∼=Nat HomE (A,PB).

Remark 13.3.0.2. One can combine ETI.2 and ETI.3 to get

SubE (B ×A) ∼=Nat HomE (A,PB)
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As pointed earlier, we can actually state a definition of topos in complete categorical language
without any use of underlying sets. Hence, the following is the first order theory of an elementary
topos:

Definition 13.3.0.3. (Elementary Topos -II) A category E is a topos if:
ETII.1 All pullbacks exists.
ETII.2 A terminal object 1 exists.
ETII.3 There exists an object Ω and a monomorphism true : 1 ↣ Ω in E such that for any monomorphism

m : E ↣ B, there exists a unique map φ : B → Ω such that the following is a pullback square:

E 1

B Ω

m

φ

true
⌟

ETII.4 For any object B, there exists an object PB in E and an arrow:

ϵB : B × PB −→ Ω

such that for any object A and any arrow f : B × A → Ω, we have a unique arrow f̂ : A −→ PB
such that the following commutes:

A B ×A

PB B × PB Ω

f
1×f̂

ϵB

f̂ .

The f̂ is usually called the P-transpose of f .

The construction of power object can be defined as the following functor:

Definition 13.3.0.4. (Power Object Functor) : Suppose E is a topos. The power object for each object B
of E is a functor

P : Eop −→ E
B 7−→ PB (the object defined in Definition 13.3.0.3, ETII.4)

f : B → C 7−→ Pf : PC → PB

where the Pf is the unique map for which the corresponding diamond commutes:

B × PB

B × PC Ω

C × PC

ϵB

ϵC

1×Pf

f×1

.

That is,

ϵB ◦ (1× Pf) = ϵC ◦ (f × 1) .

Remark 13.3.0.5. This means that the arrow ϵB : B × PB −→ Ω is dinatural in B.
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13.3.1 Extension, Characteristic & Name of a subobject

Remember that A ∼= A × 1 in any category. Therefore by the Definition 13.3.0.1, we have the
following isomorphisms in a topos E:

SubE (A) ∼= HomE (A,Ω) ∼= HomE (1, PA)

Hence there are three equivalent ways to talk about a subobject. These are denoted as follows:

Definition 13.3.1.1. (Extension, Characteristic & Name) Suppose E is a topos. Let m : S ↣ A be a
subobject of A. Then we denote the total three corresponding arrows (from above isomorphisms) as follows:

S A A Ω 1 PAm φ s

S:={m|φ}

Extension of φ Characteristic of S

φ:=char S

Name of φ

s:=⌜φ⌝

.

This convention becomes useful when we realize that an arrow b : X → A can be treated as a
"generalized element" of A. Hence, we can talk whether an "element" b of A is in a subobject of A.
The role of characteristic map φ = char S is illuminating. It tells us about the property/predicate
that is followed by the subobject that it characterizes. For example, the statement of the subobject
classifier (Definition 13.3.0.3, ETII.3) can be reformulated as the condition that an "element" of A,
a : X → A, is in the subobjectm : S ↣ A if and only if (char S)◦a = true◦ (X → 1). Let us denote
trueX := true ◦ (X → 1). Note that true ◦ (X → 1) is simply the arrow X → Ω corresponding to all
truth. Therefore, the fact that (char S)◦a = trueX means that the element X forms a cone over the
pullback square and hence we have a unique arrow X → S, meaning that X is also a "generalized
element" of S.

We now develop more interesting predicates, like the one which tells us whether an element is
in a given subobject named by a name ⌜φ⌝.

Membership Predicate

Suppose we are given an element b : X → B of B and a subobject named s := ⌜φ⌝ of B. We then
have the following commutative diagram:

X B Ω

X × 1 B × 1 B × PB

b φ

b×1 1×s

ϵB (13.1)

This means that:

ϵB ◦ (b× s) = trueX×1 if and only if φ ◦ b = trueX .

That is, ϵB ◦ (b × s) is true exactly when φ ◦ b is true. But the latter means that b factors through
the subobject (is in) named by s because of universality of pullback. Hence ϵB ◦ (b× s) is true only
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when b is in the subobject named by s.

This is exactly the reason why ϵB is called the membership predicate for object B.

Equality Predicate

Suppose now that we have two elements b, b′ : X → B of B. How can we know that these are
same elements, that is, what is the condition for b = b′? Clearly, this is a property of the elements
of B, hence there must be a predicate for B to answer this question. This predicate for an object
which tells us when two elements of it are same is exactly what we construct now.

Remember first the diagonal arrow of B, ∆B : B −→ B × B, which is such that p1 ◦ ∆B =
p2 ◦∆B = 1, where p1, p2 are projections of B × B. It can be seen without much effort that ∆B is
actually a monic. We can hence talk about the subobject ∆B : B ↣ B ×B of B ×B:

B 1

B ×B Ω

∆B

char ∆B

true
⌟ (13.2)

where char ∆B is the unique characteristic map of subobject ∆B . But now, by power object ad-
junction (Definition 13.3.0.3, ETII.4), we have the following unique arrow:

B B ×B Ω

PB B × PB

char ∆B

1× ˆchar ∆B ϵB
ˆchar ∆B

where ˆchar ∆B is the P -transpose of char ∆B . Let us denote this transpose as

{·}B := ˆchar ∆B.

Now, take any two elements b, b′ : X → B of B. We then have a unique arrow ⟨b, b′⟩ : X → B ×B
due to the universality of the product. Hence, by universality of the pullback in (13.2), we get the
following condition:

(char ∆B) ◦ ⟨b, b′⟩ = trueX if and only if b = b′.

Due to this exact reason, the characteristic map of subobject ∆B , char ∆B is called the equality
predicate for object B4.

The arrow {·}B : B −→ PB is always a monic:

4At this point one should notice how the above two predicates have been constructed. We are using the subobject
classifier to distinguish between elements based on the object’s properties. Hence it is the subobject classifier (Definition
13.3.0.3, ETII.3) which provides us with the opportunity to talk about properties of an object in a topos, which can not
be done otherwise in any arbitrary category.
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Proposition 13.3.1.2. Suppose E is a topos. For any object B of E, the arrow

{·}B := ˆchar ∆B : B −→ PB

is always a monic.

Proof. Let b, b′ : X → B be two arrows such that

{·}B ◦ b = {·}B ◦ b′

(1× {·}B) ◦ (1× b) = (1× {·}B) ◦ (1× b′)
ϵB ◦ (1× {·}B) ◦ (1× b) = ϵB ◦ (1× {·}B) ◦ (1× b′)

(char ∆B) ◦ (1× b) = (char ∆B)(1× b′)

Now note the following diagram:

X B 1

B ×X B ×B Ω

b

b′ ∆B

char ∆B

true
⌟

⟨b′,1⟩⟨b,1⟩

1×b

1×b′

The right square is a pullback, whereas the two left squares are also pullback by an easy observa-
tion. Hence the whole two bigger rectangles in the above diagram are pullbacks. But this means
that the char ⟨b, 1⟩ = char ∆B ◦(1×b) = char ∆B ◦(1×b′) = char ⟨b′, 1⟩. Hence ⟨b, 1⟩ and ⟨b′, 1⟩ are
same pullbacks. Therefore ∃f : X → X isomorphism such that ⟨b, 1⟩ = ⟨b′, 1⟩ ◦ f . But this means
that b = b′ ◦ f and 1 = f because ⟨a, b⟩ ◦ f = ⟨a ◦ f, b ◦ f⟩. Hence b = b′ ◦ 1 = b′.

Logical Morphism

The fact that a topos has it’s own defining properties like a subobject classifier and power objects
means that any functor may or may not preserve these properties. To distinguish such a functor,
we define what we call a logical morphism. Before formally defining them, let’s look at one of the
more defining properties of a topos; that a topos is balanced:

Proposition 13.3.1.3. Suppose E is a topos. Any monomorphism f : A ↣ B is an equalizer of some
parallel pair.

Proof. The arrow f : A↣ B equalizes the following:

B Ω
char f

true◦!B

where !B : B −→ 1, because of the following:

char f ◦ f = true◦!A
= true◦!B ◦ f

as !A =!B ◦f . Now becauseA is universal with this property (note we are just stating the subobject
classifier’s definition) so we have that f : A↣ B equalizes the above pair.
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Corollary 13.3.1.4. In a topos E, every arrow f : A→ B which is both monic and epic is an isomorphism.

Proof. If f : A → B is monic, so it equalizes two parallel pairs x, y : B → C. But then x ◦ f =
y ◦ f =⇒ x = y because f is epic. Therefore f is an equalizer of the same pair of arrows, which is
always the identity at the domain. Hence f is an isomorphism.

Remark 13.3.1.5. A category in which every monic + epic arrow is an isomorphism is called a
balanced category. Hence every topos is balanced.

Definition 13.3.1.6. (Logical Morphism) Suppose E and E′ are two topoi. A functor

T : E −→ E′

is called a logical morphism if it preserves all finite limits, subobject classifier and all exponentials, upto
isomorphism.

Direct Image

Suppose in Sets, we have a monic m : S′ −→ B′ and some other function f : B′ −→ B. With this,
we have another function PB′ −→ PB, which takes a subset S′ in PB′ to the set f(S′). We can
generalize it to an arbitrary topos.

Definition 13.3.1.7. (Direct Image Arrow) Suppose E is a topos and let m : S′ ↣ B′ be a monic and
k : B′ → B be any arrow. Then there is an arrow

∃k : PB′ −→ PB

called the direct image arrow of k is defined by:

U 1 1

B′ × PB′ Ω

B × PB′ Ω

PB′ PB

ek:=char (k×1)◦uB′

true

uB′

ϵB

true

k×1

∃k

⌟

Direct image arrow preserves names of the subobject, as was expected from the beginning
discussion of the same arrow in Sets:

Proposition 13.3.1.8. Suppose E is a topos. Then, for monics

S B′ B
m k

we have that the following commutes:

1

PB′ PB

⌜char m⌝

∃k

⌜char k◦m⌝
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13.3.2 Factorization in a Topos

A distinguishing feature of a topos is that each arrow in it can be factored into a product of a
monomorphism and an epimorphism:

Proposition 13.3.2.1. Suppose E is a topos and let f be any arrow in it. Then there is a monic m and an
epic e composable such that

f = m ◦ e.

Proof. (Sketch) The m is constructed by taking the equalizer of the cokernel pair5 of f and e as the
universal arrow from A to the object representing this equalizer. In more concrete setting, for the
given f , denote the x and y as the following pushout components:

C B

B A

f

f

x

y

⌜

Then the m and e are the following arrows (with their defining properties mentioned above):

A M B C
f

x

ye m
.

It then follows that m is monic and e is epic.

We now show that the collection of all subobjects for an object in a topos forms a lattice. Later
we will show that it actually forms a Heyting Algebra.

Definition 13.3.2.2. (Lattice) Suppose C is a posetal category. C is a lattice when it has all binary products
and coproducts. The product is alternatively called "meet" and coproduct the "join" and denoted ∧ & ∨
respectively.

Now, we get the following important theorem:

Theorem 13.3.2.3. Suppose E is a topos. Let k : A→ B be any arrow in E. Then,
1. SubE (D) is a lattice for any object D in E.
2. The functor ∃k : SubE (A) −→ SubE (B)6 which takes each subobject to the object which mono-epi

factorizes7 it, and the pullback arrow forms the following adjunct pair between lattices (regarded as
5The pushout of f : A → B with itself.
6Note that ∃k here is the "external" direct image functor, in contrast to Definition 13.3.1.7, which was internal.
7That is, for u : S ↣ A, ∃k(u) would be the monic mk◦u : ∃kS ↣ B in the figure given below:

S

∃kS

B

ek◦u

mk◦u

composes to k ◦ u.
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categories):

SubE (A) SubE (B)
∃k

(k)−1

⊣

where

(k)−1 : SubE (B) −→ SubE (A)
m : S ↣ B 7−→ π1 : A×B S ↣ A.

Proof. To show that SubE (D) is a lattice, we first note that it is partially ordered by inclusion, as if
S, T, U ∈ SubE (D) then S ⊆ S, S ⊆ T & T ⊆ S implies S = T and finally if S ⊆ T and T ⊆ U then
S ⊆ U . Moreover, for any two subobjects S, T , we can form two more subobjects as follows:

S ∧ T := S ×D T T

S D

⌟

and
D

M

S S ⨿ T T
i1 i2

f

ef

mf

where S ∨ T := M and f is the unique universal arrow from the coproduct of S and T to D and
mf , ef are it’s mono-epic factors (Proposition 13.3.2.1). Therefore (SubE (D),∨,∧) is a lattice.

Now, to show that ∃k and (k)−1 are adjoints as required in the theorem, we first take any sub-
object mA : SA ↣ A of A and mB : SB ↣ B of B. We want to establish the following natural
isomorphism:

HomSubE(B) (∃kmA,mB) ∼= HomSubE(A)
Ä
mA, (k)−1mB

ä
.

Hence, take any arrow g : ∃kSA −→ SB , so that g is just an arrow ∃kmA −→ mB . Then consider
the following diagram:

SA k−1SB SB ∃kSA

A A B B

k−1mB mB

g

k

⌟
mk◦mAmA

ek◦mA
f

where, because the pairmA and g◦ek◦mA forms a cone over the middle pullback asmB◦g◦ek◦mA =
mk◦mA ◦ ek◦mA = k ◦ mA, ∃ ! f : SA −→ (k)−1 SB which is the required arrow to establish the
adjunction.
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Remark 13.3.2.4. In continuation of "external"/"internal" debate mentioned in footnote 15, we
note that SubE (A) is the external subobject lattice. We will later see that the internal analogue
of SubE (A) is the power object PA and it too forms an appropriate notion of an internal lattice.
In-fact, both SubE (A) and PA forms a Heyting algebra and an internal Heyting algebra, respectively.

SubE (1) ≡ Open (E)

There’s more to the story than just the fact that all subobjects of an object forms a lattice. As we
will see now, the subobject lattice of terminal object is a bit special in the sense that it is equivalent
to a particular category of all objects which have a monic to the terminal. Let’s retrospect this in
the category of Sets, in which the terminal object is the singleton {⋆}. Clearly, any subset of the
singleton is either the singleton {⋆} itself or null-set φ. But note that {⋆} and φ are also the only
sets with a monic arrow to {⋆}. Therefore the result mentioned in the beginning clearly holds in
the prototypical elementary topos Sets. Let’s now prove this in any arbitrary elementary topos E:

Definition 13.3.2.5. (Open Objects) Suppose E is a topos. Then an object B is an open object if the
unique arrow to the terminal object is a monic, B ↣ 1 .

We then have the following:

Lemma 13.3.2.6. Suppose E is a topos. An object U is open if and only if HomE (X,U) = {⋆} ∀ X ∈
Ob(E).

Proof. U is open ⇐⇒ m : U ↣ 1 ⇐⇒ any parallel pair x, y : X → U would be such that
m ◦ x = m ◦ y, but because m is monic, we get x = y.

Proposition 13.3.2.7. Suppose E is a topos. The lattice SubE (1) is equivalent to the full subcategory
Open (E) of open objects of E, i.e.

SubE (1) ≡ Open (E).

Proof. Since HomSub(1) (S, T ) = {⋆} = HomOpen (E) (X,Y ) where last equation follows from
Lemma 13.3.2.6, therefore SubE (1) ≡ Open (E).

SubE (B) is reflective into E/B

We now show that the subobject category (lattice) is a reflective subcategory of the slice over that
object.

Proposition 13.3.2.8. Suppose E is a topos. For any object B in E, the inclusion SubE (B) ↪→ E/B has a
left adjoint σ, i.e.

E/B SubE (B)

σ

i

⊣

where

σ : E/B −→ SubE (B)
(f : A→ B) 7−→ mf : S ↣ B, where



376 CHAPTER 13. CLASSICAL TOPOI

S

A B
f

ef mf .

Proof. Take any arrow σf ⊂ g in SubE (B) where f : A → B is an object in E/B and g : S ↣ B is
an object in SubE (B). Now note the following diagram:

S A T

B B

fg

ef

σf :=mf

h

h◦ef

where h : T → S is the arrow corresponding to the subobject inclusion σf ⊂ g. We claim that the
arrow h◦ef : A→ S is the unique arrow f → ig in E/B, because, firstly (g ◦h)◦ef = (mf )◦ef = f
and, secondly, for any other arrow k : A→ S with g ◦ k = f , since g ◦ h ◦ ef = f too, therefore by
monic nature of g, we would have k = h ◦ ef .

13.3.3 Internal Structures

Any mathematical structure which admits definition in set theory can be translated into internal
object in a suitable category with enough structure. One prime example of such internalization is
the group object in a category:

Definition 13.3.3.1. (Internal Group Object) Suppose C is a category with binary products and a ter-
minal object. An object G in C is said to be a group object if there are:

1. An arrow m : G×G −→ G,
2. An arrow i : G −→ G,
3. An arrow 0 : 1 −→ G

which satisfy the following three commutative diagrams:

G×G×G G×G G×G G

G×G G G G×G

G×G G G× 1

G× 1 G G×G

m×1

m1×m

m

Associativity

m

⟨1,i⟩

⟨i,1⟩

m

Unital

0◦!G

1⟨1,0⟩

m

⟨0,1⟩

m

Identity

g+0=g=0+g

g+(−g)=0=−g+g(g+h)+k=g+(h+k)

∼=

∼=

where !G : G −→ 1 is the unique terminal arrow.
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In a similar fashion, we define an internal meet semilattice in the truth object Ω in any topos,
which would prove to be very beneficial in the following discussion on generalization of sheaves
on an arbitrary topos.

However, the definition of this internal meet semilattice in Ω is not as direct as Definition 13.3.3.1.

Internal Meet in Ω

Definition 13.3.3.2. (Internal Meet Semilattice8 in Ω) Suppose E is a topos and Ω is it’s truth
object. There is an arrow

∧
: Ω× Ω −→ Ω which is given by the following construction:

1. By Theorem 13.3.2.3, 2, for any k : A→ B in E, (k)−1 preserves finite limits, hence we get:

(k)−1 (S ∩ T ) ∼= (k)−1 (S) ∩ (k)−1 (T )
9for any two subobjects S, T of B.

2. This determines the following functor:

− ∩− : SubE (B)× SubE (B) −→ SubE (B)

which is natural in B, due to the 1.
3. We then have the following diagram:

SubE (B)× SubE (B) SubE (B)

HomE (B,Ω)×HomE (B,Ω) HomE (B,Ω)

HomE (B,Ω× Ω) HomE (B,Ω)

∼=

∼=

−∩−

∼=

∧
B

which gives rise to the above
∧
B : HomE (B,Ω× Ω) −→ HomE (B,Ω), which is also natural

in B because − ∩− was too.
4. Now, because

∧
B is natural in B, this would translate that

∧
(−) is the following natural

transformation: ∧
(−)

: HomE (−,Ω× Ω) =⇒ HomE (−,Ω)

But by Yoneda Lemma, we would have that

Nat (HomE (−,Ω× Ω),HomE (−,Ω)) ∼= HomE (Ω× Ω,Ω)

Therefore by the above, the natural transformation
∧

(−) determines a unique arrow
∧

as
follows: ∧

Ω×Ω
(1Ω×Ω) =

∧
: Ω× Ω −→ Ω

8a poset which has a meet for any nonempty finite subset.
9The "∩" is the meet of two subobjects in the lattice (Theorem 13.3.2.3,1).
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The collection (Ω,
∧
, true : 1 −→ Ω) forms what we call an internal meet semilattice in Ω.

Remark 13.3.3.3. (
∧

gives the characteristic of intersection) The internal meet operation
∧

in Ω
gives the characteristic map of the intersection of two subobjects S, T of some arbitrary object B.
That is, if s, t : B −→ Ω are characteristic maps for S and T respectively then, the characteristic
map for S ∩ T would be given by:

B Ω× Ω Ω
⟨s,t⟩

∧
.

This follows from the construction in Definition 13.3.3.2 and the trivial natural isomorphism SubB (E) ∼=
HomE (B,Ω) (Definition 13.3.0.1, ETI.2).

Remark 13.3.3.4. (Internal meet in PA) Moreover, one can consider an internal meet not just in
Ω but in any power object PA in a topos E. The construction is roughly similar and is done in
Proposition 13.3.5.9.
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13.3.4 Slice Topos

One important result in the theory of topoi is that a slice of a topos is itself a topos. Moreover, the
change of base functor between two slices provides a way of giving sets-like properties of topoi,
which we will discuss later.

Theorem 13.3.4.1. Suppose E is a topos. The slice category E/B is a topos for any object B in E.

Proof. Let us not derive power object here as it’s construction is a bit involved and would defeat
the purpose of the notes. It is done in detail in Theorem 1, pp 190 of [MacMoer]. Let’s show that
E/B has finite limits. For this, the terminal object in E/B is the identity 1 : B → B. The equalizer
of two parallel arrows a, c : f → g where f : A → B, g : C → B are two objects in E/B is just the
equalizer of a, c : A → C in E itself. Binary product of a : A → B and c : C → B in E/B is given
by their pullback in E. Hence, E/B has all finite limits.
Next, the subobject classifier of E/B is given as follows: for a subobject m : s ↣ a in E/B where
s : S → B and a : A→ B is given by the following diagram:

S B 1×B

B

A Ω×B Ω×B

!S

m

char m

trueE/B

s

a

∼=

1

⟨true,1⟩

π2

Hence, the subobject classifier in E/B is ⟨true, 1⟩ : 1×B ↣ Ω×B.

Change of base functor

The following theorem would be used to derive sets-like properties of a topos:

Theorem 13.3.4.2. Suppose E is a topos and k : B −→ A is any arrow in it. The change of base functor
defined as:

k∗ : E/A −→ E/B

which takes an object of E/A to it’s pullback along k, that is:

X k∗(X) X

A B A

x π1

k

x

π2

⌟

has both left and right adjoints where left adjoint is given by pre-composition with k:

E/B E/A E/A E/B

∑
k
:=k◦−

k∗

k∗

∏
k

⊣ ⊣ .

Moreover, k∗ is a logical morphism of topoi (Definition 13.3.1.6).
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Proof. Since a slice category in a topos is also a topos (Theorem 13.3.4.1), therefore each slice is
cartesian closed, so we have both the adjoints by Theorem 4, Chapter I, pp 59 of [MacMoer]. It
remains to be seen that k∗ is a logical morphism.
Since k∗ is a right adjoint, therefore it preserves all finite limits. To see that k∗ preserves the
subobject classifier, first take the pullback of each member of the subobject classifier diagram in
E/A so that we obtain a diagram in E/B. Since pullbacks preserves monic, so we just need to show
that B ×A (Ω × A) ∼= Ω × B, where Ω is the truth object of E. Now since it can be verified quite
easily by universality of pullbacks that B ×A (Ω × A) ∼= Ω × (B ×A A) ∼= Ω × B, we hence have
that k∗ preserves the subobject classifier. Lastly, we need to show that k∗ preserves exponentials,
that is, there is a following natural isomorphism:

k∗(−) ◦ (−)x ∼= (−)k∗x ◦ k∗(−)

where y : Y → A and x : X → A are objects in slice E/A. If we could show that the corresponding
left adjoints of the above equation is also isomorphic, then the result would follow. Therefore the
left transpose equivalent to be shown is:

(X ×A −) ◦ Σk(−) ∼= Σk(−) ◦ (k∗(X)×B −).

For some object z : Z → B in E/B, we have by definition of Σk:

(X ×A −)(Σkz) = (X ×A −)(k ◦ z) = k ◦ zx : X ×A Z → X

where k ◦ zx is the pullback of k ◦ z : Z → A along x : X → A. Similarly, we have:

Σk(−) ◦ (k∗(X)×B z) = Σk (k∗(X)×B z) = k ◦
(
zxk
)

where zxk is the pullback of z : Z → B along the pullback of x along k. Clearly, both the objects
are isomorphic. Hence the left adjoint commutes, then so does the right adjoint.

"Sets-like" properties of topoi

From Theorem 13.3.4.2, we can derive various sets-like properties of topoi, the proofs of all which
depends on the translation of the problem from the topos E to some appropriate slice topos and
using the fact that pullback would preserve both finite limits and colimits and would be a logical
morphism. We derive some such results below.

The first result draws motivation from the fact that in Sets, for a surjective function e : A→ B and
any function f : C → B, the set C ×B A = {(c, a) ∈ C ×A | e(a) = f(c)} has an obvious surjection
to C given by (c, a) 7→ c as for all c ∈ C, ∃a ∈ A with f(c) = e(a) because im (f) ⊆ B = im (e). It’s
generalization in an arbitrary topos is the following:

Proposition 13.3.4.3. In a topos E, the pullback of an epimorphism is an epimorphism.

Proof. Suppose e : A → B is an epimorphism in a topos E. The fact that e is an epimorphism can
be equivalently stated as the pushout condition on the left below:

B B 1B 1B

B A 1B e

e

e

⌜
1

1

e

e

1

1

⌜In Slice E/B
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Now treat e as an object in the slice E/B, where this pushout condition would translate to the
pushout condition on the right. For any arrow f : C → B, the corresponding change of base f∗ :
E/B −→ E/C preserves colimits (Theorem 13.3.4.2), therefore we would have the same pushout
condition in E/C by the pullback along f . We hence have that epics are pullback stable in a
topos.

Next, consider the initial object in Sets, which is the null set ∅. By definition, any map f : A→
∅ is an isomorphism by default. In general:

Proposition 13.3.4.4. In a topos E, any arrow k : A→ 0 is an isomorphism.

Proof. Denote !A : 0 → A as the unique initial arrow. Since k◦!A = 10 by uniqueness, we hence
need to show !A ◦ k = 1A. Focus on the objects k and 10 in the topos E/0. Clearly, 10 is the initial
object in E/0. But it is also terminal in this slice. Now, since the pullback !A : 0 → A of 10 : 0 → 0
along k : A → 0 would also be initial and final in E/A, then, because 1A : A → A and k : A → 0
forms a cone over this pullback, therefore we get !A ◦ k = 1A.

Another consequence in Sets of null-set ∅ is that the unique arrow f : ∅ → A is always
injective. In general:

Corollary 13.3.4.5. In a topos E, the unique arrow !A : 0 −→ A for any object A is a monomorphism.

Proof. Let x, y : B → 0 be two arrows such that !A◦x =!A◦y. But since x and y are isomorphisms by
Proposition 13.3.4.4, therefore, (x)−1 , (y)−1 : 0 → B are two arrows from initial 0, hence (x)−1 =
(y)−1 =⇒ x = y, so !A is a monic.

In Sets, the product of two surjective functions is also surjective. This holds in general:

Proposition 13.3.4.6. In a topos E, if f : X → Y and g : W → Z are epimorphisms, then f × g :
X ×W → Y × Z is also an epimorphism.

Proof. Note f × g = (f × 1Z) ◦ (1X × g). So if we could show that f × 1Z and 1X × g are epics then
we would be done. To this end, note that (X × Z) ×Z W ∼= X ×W follows from universality of
pullbacks and products, and then we have the following diagram:

X ×W (X × Z)×Z W W

X × Z X × Z Z

g

p2

π1

π2

⌟

∼=

1X×g

where π1 ∼= 1X × g. But by Proposition 13.3.4.3, π1 is an epimorphism, then so is 1X × g. Similarly,
f × 1Z is also an epimorphism, so we have our result.

We finally have the following important result:

Theorem 13.3.4.7. In a topos E, every epimorphism is the coequalizer of it’s kernel pair.
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Proof. Suppose f : C → B is an epimorphism. Let π1, π2 : C ×B C → C be the kernel pair of f .
The coequalizer of this kernel pair would be denoted:

C ×B C C Q
π2

π1
c .

Let’s translate this coequalizer to a diagram in slice topos E/B. For this, the object would be the
epic f : C → B. Also notice that f being epi means that !f : f → 1 is an epic in E/B. Take
the product f × f in E/B. By Theorem 13.3.4.1, the product is exactly the pullback of f along
itself. The projections f × f → f is therefore exactly the π1 and π2 as above. Hence, to find the
coequalizer in E of pullback projections π1, π2 : C ×B C → C is same as finding coequalizer of
product projections π1, π2 : f × f → f in E/B.
Now, for any topos F, let X be an object and p1, p2 : X ×X → X be the projection of the product.
Let the coequalizer of p1, p2 be denoted as L as shown:

X ×X X L
p2

p1
v

We wish to show that when !X : X → 1 is an epic, then L ∼= 1. Our motivation for this stems
from the fact that !f : f → 1 is an epic in E/B and L ∼= 1 would mean directly that f : C → B
would be the coequalizer of π1, π2 : C ×B C → C. To this end, we use the fact that in a topos, any
arrow which is both monic and epic is an isomorphism. !L : L→ 1 is monic, because if we let two
arrows x and y in F with domain some arbitrary K be such that !L ◦ x =!L ◦ y, which just means
that !K =!K , then we have the following:

K

X ×X L× L

X L

⟨x,y⟩

qi

v×v

pi

v

i = 1, 2

Remember the coequalizer (here, q) is always an epimorphism and so q × q is an epimorphism by
Proposition 13.3.4.6. Since both the squares commute, q1◦(v×v) = v◦p1 = v◦p2 = q2◦(v×v) =⇒
q1 = q2. Therefore q1 ◦ (⟨x, y⟩) = q2 ◦ (⟨x, y⟩) =⇒ x = y, so that !L : L → 1 is a monic. Now
to show !L is an epic, if a◦!L = b◦!L, then a◦!L ◦ v = b◦!L ◦ v =⇒ a◦!X = b◦!X =⇒ a = b as
!X : X → 1 is a given epic. Hence L ∼= 1.

13.3.5 Internal Lattices, Heyting Algebras and Subobject Lattice

We saw in Section 13.3.3 that one can define internal group objects and internal meet "in" some
object. In particular, we saw internal meet in the truth object Ω, which determines the characteristic
of intersection or meet of two subobjects in a given subobject lattice SubB (E). This would be
important to define the closure of a subobject when generalizing sheaves over arbitrary topoi.
We now continue this line of internalization of algebraic structures and, in the same vein as internal
group object, introduce lattice and Heyting algebra objects and then study the "external" subobject
lattice SubE (A) in more detail.
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Internal Lattices

Definition 13.3.5.1. (Internal Lattice) Suppose C is a category with finite limits. An internal lattice or
a lattice object (L,∧,∨) is an object L in C with two arrows∧

: L× L −→ L &
∨

: L× L −→ L

which satisfy the following commutative diagrams:

L× L× L L× L L× L× L L× L

L× L L L× L L

L× L L L× L L

L× L L× L

L× L L L× L L

L× L L× L

L L× L

L× L L× L× L L× L× L

L L× L

1×∧

∧×1

∧

∧

1×∨

∨

∨×1 ∨

x∧(y∧z)=(x∧y)∧z x∨(y∨z)=(x∨y)∨z

Associativity

Commutativity

∧

∧τ

∨

∨τ

x∧y=y∧x x∨y=y∨x

Idempotency

x∧x=x x∨x=x

∧

1×1 ∧

∨

∨1×1

Absorption

x∧(y∨x)=x=(x∧y)∨x

∆L×1 1×τ

p1

p1

1×∧

∨

∧

∨×1

where ∆L := ⟨1, 1⟩ : L −→ L× L is the diagonal map and τ : L× L −→ L× L is the twist arrow, given
as τ := ⟨p2, p1⟩ where p1, p2 are the projection arrows of L× L.
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An internal lattice can also have top and bottom elements:

Definition 13.3.5.2. (Internal Lattice with ⊤ and ⊥) Suppose category C has finite limits and L is an
internal lattice in C. L is said to be an internal lattice with top (⊤) and bottom (⊥) elements if there are
additionally two arrows ⊤ : 1 −→ L and ⊥ : 1 −→ L which satisfy the following commutative diagrams:

L× L L L× L L

L 1× L L 1× L

∧

⊤×1 1

∼=

⊤∧x=x

⊥×1

∼=

∨

1

⊥∨x=x

.

We now define an internal Heyting algebra object:

Internal Heyting Algebras

Definition 13.3.5.3. (Internal Heyting Algebra - I) Suppose C is a category with finite limits and H
is an internal lattice with ⊤ and ⊥ in C. H is then said to be an internal Heyting algebra if there is an
additional arrow (⇒) : H ×H −→ H such that the following commutes

H ×H H H ×H ×H H ×H

H H ×H H

H ×H ×H H ×H ×H H ×H H ×H ×H ×H H ×H ×H H ×H

H ×H ×H ×H

H ×H H H ×H ×H H ×H H

(⇒)

∆H ⊤◦!H

(x⇒x)=⊤

∧

∆H×1

1×(⇒)

∧

x∧(x⇒y)=x∧y

1×τ 1×(⇒)

∆H×1 ∧

p1

x∧(y⇒x)=x

1×∧ (⇒)

∆H×1×1

1×τ×1

(⇒)×1×1 1×(⇒)

p2

x⇒(y∧z)=(x⇒y)∧(x⇒z)

where ∆H : H −→ H ×H is the diagonal map and τ : H ×H −→ H ×H is the twist map.

For any lattice (S,∧,∨), we have an partial order induced by the meet, given by x ≤ y ⇐⇒
x = x ∧ y. We can do the same in an internal lattice:

Definition 13.3.5.4. (Internal Partial Order in an Internal Lattice) Suppose (L,∧,∨) is an internal
lattice in a category C with finite limits. Then (L,≤L) is called an internal partial order in L or an internal



13.3. BASIC PROPERTIES AND RESULTS IN TOPOI 385

poset where the internal order in L,≤L, is given by the following equalizer diagram10:

≤L L× L Le
∧

p1

.

Remark 13.3.5.5. Note that internal partial order ≤L is hence a subobject of L× L.

One may remember from the usual set-theoretic definition of a Heyting algebra (H,∧,∨,⊤,⊥,⇒
) that it was just a lattice with top and bottom where each object additionally was exponentiable,
meaning that for the partial order induced from the meet of the lattice, ∀x, y ∈ H , ∃(x ⇒ y) ∈ H
such that for any z ∈ H :

z ≤ (x⇒ y) if and only if z ∧ x ≤ y.

Since by Definition 13.3.5.4, we now have a way to induce the internal partial order in an internal
lattice, we can hence redefine internal Heyting algebra as follows:

Definition 13.3.5.6. (Internal Heyting Algebra - II) Suppose C is a category with finite limits. Let
(H,∧,∨,⊤,⊥) be an internal lattice with ⊤ and ⊥ in C. H is said to be an internal Heyting algebra if
there exists an additional arrow (⇒) : H ×H −→ H such that the subobjects P and Q are equivalent in
the following:

P ≤H Q

H ×H ×H H ×H H ×H ×H∧×1

e

⌟

1×(⇒)

⌟

x∧y≤z x≤y⇒z

.

A lattice homomorphism f : (A,∧,∨,⊤,⊥) −→ (B,∧,∨,⊤,⊥) is defined to be the one which
respects all the structure (∧ and ∨) and preserves ⊤ and ⊥. We can similarly define internal lattice
homomorphism as the following:

Definition 13.3.5.7. (Internal Lattice homomorphism) Suppose C is a category with finite limits and
L,L′ are two internal lattices with ⊤ and ⊥. An arrow f : L −→ L′ is said to be an internal lattice

10The diagram is the internal way of saying that for x, y ∈ L, x ≤ y ⇐⇒ x = x ∧ y.
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homomorphism if the following diagrams commute11:

L L× L L L× L

L L× L L L× L

1 L 1 L

L L

f

∧

f×f

∧

f

∨

∨

f×f

⊤

⊤
f

⊥

⊥
f

f(x∧y)=f(x)∧f(y) f(x∨y)=f(x)∨f(y)

f(⊤)=⊤ f(⊥)=⊥

.

Subobject Lattices, Internal & External

We now discuss the two subobject lattices, the external, SubE (A), and the internal, PA. We first
begin by showing that SubE (A) is in-fact a Heyting Algebra, which extends the result obtained in
Theorem 13.3.2.3, 1.

Proposition 13.3.5.8. Suppose E is a topos. The lattice SubE (A) of subobjects of object A is a Heyting
algebra where the top and bottom elements are ⊥ : 0 ↣ A12 and ⊤ := 1 : A ↣ A. Moreover, for any
k : A→ B in E, the functor (k)−1 : SubE (B)→ SubE (A) is a Heyting algebra homomorphism.

Proof. First note that SubE (A) ∼= SubE/A (1) therefore it is enough to talk about the subobjects of
identity in slice E/A. To construct the (⇒) in SubE/A (1), take any two open objects13 U ↣ 1 and
V ↣ 1 in the SubE/A (1). Clearly, UV is also open, so UV ↣ 1 in SubE/A (1). The corresponding
UV ↣ A in E is the required exponential.
For next result, take an arrow k : A → B in E. Since change of base functor k∗ : E/B −→ E/A
is a logical morphism and preserves limits and colimits (Theorem 13.3.4.2), therefore the corre-
sponding arrow (k)−1 : SubE (B) −→ SubE (A) is also structure preserving as it preserves the
meet (limit), join (image), top & bottom (by functoriality) and exponents (logical morphism).

As to what we eluded earlier in remark of Theorem 13.3.2.3, we have proved the external part
of it in the Proposition 13.3.5.8. The remaining thing to do is to show that the internal subobject
lattice PA is also an internal Heyting algebra. This is exactly what we do now.

Proposition 13.3.5.9. Suppose E is a topos. The power object PA for any object A is an internal Heyting
algebra. Moreover, for any arrow k : A→ B in E, the map Pk : PB → PA is an internal Heyting algebra
homomorphism.

11The diagrams are the internal way of saying that f preserves all structure.
12See Corollary 13.3.4.5.
13See Definition 13.3.2.5.
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Proof. The proof follows the canonical construction of Definition 13.3.3.2. Construct internal meet
in PA as the arrow

∧
: PA × PA −→ PA given by the Yoneda lemma on the natural trans-

formation
∧

(−) : HomE (−, PA× PA) ⇒ HomE (−, PA). Similarly for
∨

. Now for internal
(⇒) : PA × PA −→ PA, we again follow the same construction on the (⇒)′ of the Heyting
algebra SubE (A×X), which gives the following implication arrow in external subobject lattice:

(⇒)′ : SubE (A×X)× SubE (A×X) −→ SubE (A×X)

which can be seen to give rise to a natural transform (⇒)′(−) : HomE (−, PA× PA) −→ HomE (−, PA)
which then by Yoneda lemma gives an arrow (⇒) : PA × PA −→ PA which is the required
implication for internal Heyting algebra PA. Since top element of SubE (A) is the 1 : A ↣
A, which gives the corresponding arrow 1 → PA by the natural isomorphism SubE (A× 1) ∼=
HomE (1, PA). Similarly for ⊥. To see the Pk is an internal Heyting algebra homomorphism,
we use generalized elements and argue the HomE (X,Pk) is induces an external Heyting al-
gebra homomorphism between SubE (B ×X) and SubE (A×X). This can be seen easily since
SubE (B ×X) ∼= HomE (X,PB) and similarly for PA. Since the square thus formed commutes,
therefore we have an external Heyting algebra homomorphism by externalization of Pk, which
means Pk is an internal Heyting algebra homomorphism.

Remark 13.3.5.10. (Internal logic of a topos is Intuitionistic) What we have just proved in Propo-
sitions 13.3.5.8 & 13.3.5.9 is a very striking fact that in a topos, all the subobjects of an object forms
a Heyting algebra instead of a Boolean algebra. This is striking because law of excluded middle
(either there is something or nothing, more concretely, x ∨ ¬x = ⊤ or ¬¬x = x) does not hold in a
Heyting algebra. This means that for a subobject S of A in a topos, S ∨ ¬S ̸= ⊤, which when
unraveled means S ∨ (S ⇒ 0) ̸= A since ¬S := (S ⇒ ⊥) and ⊤ := 1 : A↣ A and ⊥ : 0 ↣ A.
For example, the topos Sets is such that the subobject lattice in Sets forms a Boolean algebra since
S∪S∁ = A for S ⊂ A. But the fact that this doesn’t hold in an arbitrary topos suggests that a topos
is a generalized universe to do sets-like mathematics.

This concludes the basic properties of topoi. We now study how one can generalize the concept
of a topology, and therefore a sheaf, to an arbitrary topos.

13.4 Sheaves in an arbitrary Topos

We have studied two notions of sheaves, one on a topological space X , whose sheaf category is
denoted Sh (X) and the other one on a site (C, J), whose sheaf category is denoted Sh (C, J). Both
times we saw that the sheaf category is a reflective subcategory of ’O(X) (for Sh (X), Theorem ??)
and Ĉ (for Sh (C, J), Theorem 13.2.5.8). We now generalize the notion of a sheaf to an arbitrary
topos. We will see that the same relations of the sheaf category in a topos and the underlying topos
holds as one eluded to earlier. We would in-fact see that the notion of a sheaf in a topos is indeed
a generalization of sheaves over a site, and hence over a topological space. But the interesting
observation would here be that we do not access the "space" itself in the following generalization
of sheaves. That is, we assume that our arbitrary topoi acts as if it is a presheaf topos of some
notion of "generalized space" and this "space" is completely inaccessible to us14.

14We would later see how to "access" it, via what we would call points of a topos.
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13.4.1 The Lawvere-Tierney Topology on a Topos

Of-course, to define a sheaf, we would first need to define a notion of a cover. But since we are
working with a given topos as if it were a presheaf topoi, so we try to look at what properties are
sufficient to give a "topology" on that "generalized space" over whom we consider our topos is
actually it’s presheaf topos.

To see what are the sufficient conditions to identify a topology on the "generalized space" while
only having access to it’s presheaf topos, we first look at the example of sheaves over a site (C, J).
That is, we first study the notion of a Grothendieck topology J but not looking at the "space" C,
but looking at the effect of J on the presheaf category Ĉ.
First note that the presheaf topos has the subobject classifier Ω which maps each object of C to
the corresponding collection of sieves on it. It is also quite easy to see that a sieve S over C is
a J-covering sieve if and only if S̄ is maximal. Therefore J determines a natural transformation
j : Ω ⇒ Ω where jC(S) := S̄ where S̄ := {f : dom (f) → C | f∗(S) ∈ Jdom (f)} (See footnote
12). Let’s analyze this natural transformation j : Ω ⇒ Ω. First, if true : 1 ⇒ Ω is the subobject
classifier of Ĉ, then j ◦ true = true because trueC(⋆) := Smax

C (Section 13.1.1). Next, we note that
j ◦ j = j and this is obvious. Finally, note that jC(S ∩ T ) = S ∩ T is such that for any f ∈ S ∩ T ,
f∗(S ∩ T ) ∈ Jdom (f) which implies that f∗(S) ∩ f∗(T ) ∈ Jdom (f) which further means that
f∗(S), f∗(T ) ∈ Jdom (f) so that f ∈ S̄∩T̄ . Similarly, for f ∈ S̄∩T̄ , we get f∗(S), f∗(T ) ∈ Jdom (f)
therefore f∗(S ∩ T ) = f∗(S) ∩ f∗(T ) ∈ Jdom (f). Therefore jC(S ∩ T ) = jC(S) ∩ jC(T ).
Therefore, we are motivated to define the following axioms for a "topology" on a topos E. The
topology, is in-fact on the underlying space, but if see j as above on the presheaf topos, then we
can safely say that it corresponds to a topology in that underlying generalized space.

Definition 13.4.1.1. (Lawvere-Tierney Topology) Suppose E is a topos and Ω is it’s truth object. An
arrow j : Ω −→ Ω is called a Lawvere-Tierney topology on E if j satisfies the following commutative
diagrams:

1 Ω Ω× Ω Ω

Ω Ω Ω Ω Ω× Ω Ω

true

j

true

j◦true=true

j

j
j

j◦j=j

∧

∧

j×j j

j◦∧=∧◦(j×j)

LTT.1 LTT.2 LTT.3

where ∧ : Ω× Ω −→ Ω is the internal meet in Ω as in Definition 13.3.3.2.

Remark 13.4.1.2. As mentioned in Definition 13.3.3.2, the truth object in a topos defines an internal
meet-semilattice object (Ω,∧, true : 1 −→ true) where true is the top element. Now, the axiom
LTT.1 says that j preserves 0-ary meet/top element in Ω. LTT.3 on the other hand tells us that j
preserves the meet in Ω and LTT.2 says that j is idempotent. Hence, in accordance with Definition
13.3.5.7, we can say that a Lawvere-Tierney topology on a topos E is equivalently an idempotent
internal meet-semilattice endomorphism on Ω, where Ω is the truth object of E.

Example 13.4.1.3. An easy to see example of this is the arrow j : Ω⇒ Ω in SetsO(X)op
which is the

characteristic arrow of the subobject J : O(X)op −→ Sets which takes an open set U ⊆ X to the
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collection of all those sieves over U which forms an open cover of U . In particular, this natural
transformation j is given by components jU : ΩU → ΩU which takes a sieve S over U to it’s closure
S̄, i.e., S̄ is that sieve which contains all those open subsets V of X for which V ∩ S forms an open
cover of V .

The Closure Operator

Any arrow j on a topos E gives equivalently an operator which sends each subobject to it’s j-
closure.

Definition 13.4.1.4. (j-Closure Operator) Suppose E is a topos and j : Ω −→ Ω is any such arrow.
Then j determines a map ¯(−) : SubE (A) −→ SubE (A) for any object A given as follows:

SubE (A) HomE (A,Ω)

SubE (A) HomE (A,Ω)

HomE(A,j)

∼=

∼=

¯(−)

which, as the above diagram says, maps each subobject of m : S ↣ A of A to another subobject of A,
m̄ : S̄ ↣ A which is called j-closure of S and this subobject S̄ is given by the subobject characterized by
the arrow j ◦ char m, that is,

char m̄ = j ◦ char m.

One can see that the closure operator ¯(−) : SubE (A) −→ SubE (A) is natural in A:

Lemma 13.4.1.5. Suppose E is a topos and j : Ω −→ Ω is any such arrow in E. For any arrow f : A −→ B
in E and it’s corresponding subobject pullback functor (f)−1 : SubE (B) −→ SubE (A), we have that

(f)−1 (S̄) = (f)−1 (S).

for any subobject S → B.

Proof. The following diagram directly shows the result:

(f)−1 (S) S 1 1

A B Ω Ω
f

m
⌟

char m

true
⌟

j

true
⌟

as characteristic arrow for both (f)−1 (S̄) and (f)−1 (S) are same.

One can give the description of a Lawvere-Tierney topology from the closure operator.

Proposition 13.4.1.6. Suppose E is a topos. An arrow j : Ω −→ Ω is a Lawvere-Tierney topology on E if
and only if the corresponding j-closure operator ¯(−) satisfies for any subobjects S, T ↣ A for any object A
the following

S ⊆ S̄ S̄ = ¯̄S S ∩ T = S̄ ∩ T̄
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Proof. (L =⇒ R) Let j : Ω −→ Ω to be a Lawvere-Tierney topology on E. To show that S ⊆ S̄,
we need a monomorphism S ↣ S̄, which can be seen to exist by the fact that S forms a cone
(m, !A) over the subobject pullback of S̄ and the fact that this does forms a cone depends on LTT.1.
To show that S = ¯̄S, we can simply note that from LTT.2, we have char m̄ = j ◦ char m = (j ◦
j) ◦ char m = char ¯̄m. To show S ∩ T = S̄ ∩ T̄ , we can note the following by the help of LTT.3
(n : A→ Ω is the characteristic of T ):

char m ∩ n = j ◦ char m ∩ n
= j ◦ ∧⟨char m, char n⟩
= ∧ ◦ (j × j) ◦ ⟨char m, char n⟩
= ∧ ◦ ⟨j ◦ char m, j ◦ char n⟩
= ∧ ◦ ⟨char m̄, char n̄⟩
= char m̄ ∧ char n̄

which is indeed the required result.
(R =⇒ L) LTT.2 and LTT.3 essentially follows from following the arguments above in reverse.
Whereas for LTT.1, since we have S ↣ S̄ for any subobject S, then for S = 1 and A = Ω, that is, if
we take the subobject classifier true : 1 ↣ Ω as our subobject, then because characteristic arrow of
true is 1Ω, therefore 1̄ = 1 and so j ◦ 1Ω ◦ true = 1 ◦ true, i.e. j ◦ true = true.

Closed & Dense Subobjects

Based on what the j-closure of a subobject m : S ↣ A looks like in relation to S and A, each j
determines two classes of subobjects:

Definition 13.4.1.7. (Closed & Dense Subobjects) Suppose E is a topos and j : Ω −→ Ω is a Lawvere-
Tierney topology on E. Let m : S ↣ A be any subobject. We then define

• The subobject m is closed if S̄ = S.
• The subobject m is dense if S̄ = A.

As expected, any Lawvere-Tierney topology j : Ω ⇒ Ω on SetsCop
determines a Grothendieck

topology on C, therefore generalizing it.

Proposition 13.4.1.8. Every Grothendieck topology J on a small category C determines a Lawvere-Tierney
topology j : Ω⇒ Ω in the presheaf topos SetsCop

.

Proof. Let (C, J) be a site. Define j : Ω ⇒ Ω to be a natural transformation with components
jC : ΩC → ΩC which takes a sieve to it’s J-closure. The fact that j is a Lawvere-Tierney topology
in SetsCop

can be seen from the beginning discussion above Definition 13.4.1.1.

13.4.2 j-Sheaves in a topos

A Grothendieck topology J on a small category C leads to a notion of sheaves over a site as given
by Definition 13.2.3.2. Remember that a J-covering sieve SC is a subpresheaf of Yon (C) such
that the closure of sieve SC is Smax

C . As in the proof of Proposition 13.4.1.8, the Lawvere-Tierney
topology j in SetsCop

corresponding to J is such that the j-closure of a sieve is maximal if and only
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if that sieve is a J-cover, that is, a J-cover SC is a j-dense subobject of Yon (C). A matching family
of a J-cover SC is simply a natural transformation SC ⇒ P where SC is viewed as a subpresheaf
of Yon (C). An amalgamation of a matching family SC ⇒ P is hence a natural transformation
from Yon (C) ⇒ P . The condition when P is a sheaf says every matching family has a unique
amalgamation, which from above discussion surmounts to the fact that the following commutes:

SC P

Yon (C)

(dense)

∀

∃!
.

This motivates the following definition of a sheaf in any arbitrary topos:

Definition 13.4.2.1. (Sheaf Object in a Topos) Suppose E is a topos and j : Ω −→ Ω is a Lawvere-
Tierney topology on it. An object F is called a sheaf in E if for all dense subobjects m : A ↣ E, any arrow
A→ F can be factored uniquely via m, that is the following commutes:

A F

E

(dense)
∃!

∀

m .

In other words, the following is an isomorphism for all dense subobjects m:

HomE (E,F ) HomE (A,F )
−◦m
∼=

.

Remark 13.4.2.2. The full subcategory of sheaf objects is denoted

ShjE.

A weaker condition of the above definition would gives us the following definition which
generalizes separated presheaves15:

Definition 13.4.2.3. (Separated Object in a Topos) Suppose E is a topos and j : Ω −→ Ω is a Lawvere-
Tierney topology on it. An object G in E is called separated if for all dense subobjects m : A ↣ E, the
following is a monomorphism:

HomE (E,G) HomE (A,G)
−◦m

.

Remark 13.4.2.4. The full subcategory of separated objects is denoted

SepjE.
15To remind, a presheaf is separated if every matching family has an amalgamation (not necessarily unique).
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13.4.3 ShjE is a Topos

As in the case of sheaves over a site, ShjE is a topos. We begin with proving that ShjE has finite
limits and exponentials.

Lemma 13.4.3.1. Let E be a topos. The full subcategory ShjE has all finite limits and exponentials with
any object in E.

Proof. To show finite limits, we just have to show that it has terminal object, equalizers and binary
products. The terminal object 1 of E is clearly a sheaf. To show equalizer of any two parallel
arrows of sheaves is a sheaf, take any parallel pair and it’s equalizer in E

E A B
f

g

e

take any dense subobject m : S ↣ C and any arrow kA : S → A and kB : S → B. Take any arrow
kE : S → E. We then have the following diagram due to A and B being sheaf objects and m being
dense:

S A

(dense)

C B

m

e◦ke

ue◦ke
gf

ug◦e◦ke

uf◦e◦ke

It can be seen now that the arrows f ◦ ue◦kE = g ◦ ue◦kE . Hence, ∃!v : C −→ E by universality of
equalizer such that e◦v = ue◦kE . Therefore e◦v◦m = e◦kE and since e is monic, hence v◦m = kE .
Binary products can also be seen as above. Therefore finite limits exists.
To see about exponentials, we can see that for any sheaf object F and any object B, FB is a sheaf
by the following; Suppose m : A↣ E is a dense subobject, therefore we have:

HomE (E,F ) ∼= HomE (A,F )

Now, because m is dense, then m × 1B : A × B ↣ E × B is dense because A×B ∼= (π)−1 (A) ∼=
(π)−1 (A) = (π)−1 (E) = E ×B where π : E ×B −→ E is the first projection. Using the density of
m× 1B and the fact that F is a sheaf, we can now see the following:

HomE (E ×B,F ) HomE
(
E,FB

)

HomE (A×B,F ) HomE
(
A,FB

)
HomE(m×1,F ) HomE(m,FB)

∼=

∼=

where the HomE (m× 1, F ) is an isomorphism and since the square commutes, so HomE
(
m,FB

)
is an isomorphism, proving that FB is a sheaf. This shows exponentials exists in ShjE.
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Next, the subobject classifier of ShjE is given by the mono-epi factor (image) of j : Ω −→ Ω:

Lemma 13.4.3.2. Suppose E is a topos, j : Ω −→ Ω is an LT topology in E and Ω is it’s subobject classifier.
Then the equalizer of j and 1Ω, denoted Ωj classifies the j-closed subobjects, that is, for any object E in E,
there is an isomorphism

HomE (E,Ωj) ∼= ClSubE (E)

where ClSubE (E) is the sub-lattice of j-closed subobjects of E.

Proof. The object Ωj is constructed, as stated above, by the equalizer of j and 1Ω can equivalently
be realized by the mono-epic factor of j, i.e. the following commutes:

Ωj Ω

Ωj Ω

r

m

j

1Ωj

m

.

This follows from the fact that j ◦ j = j and therefore Ω itself forms a cone over the equalizer
diagram of 1Ω and j. Now, the main result follows as from the fact that for any closed subobject
s : A↣ E of E, we have Ā = A, that is

j ◦ char s = char s
m ◦ r ◦ char s = char s

and hence char s is factored via the unique arrow r ◦ char s.

Now if we ought to show that Ωj is the subobject classifier of ShjE, then Ωj must be a sheaf
first of all:

Lemma 13.4.3.3. Suppose E is a topos, æ : Ω −→ Ω is an LT topology in E and Ωj is the equalizer of j
and 1Ω. Then for any dense subobject m : A↣ E, the pullback functor along m:

(m)−1 : ClSubE (E) ClSubE (A)

(k : C ↣ E) (m)−1 (k)

is an isomorphism.

Proof. We only wish to find a map τ : ClSubE (A) −→ ClSubE (E) such that τ ◦ (m)−1 = 1 and
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(m)−1 ◦ τ = 1. Consider the following candidate for τ :

τ : ClSubE (A) ClSubE (E)

h : B ↣ A B

Im(B) E

Im(B) E

um◦h

em◦h m◦h

um◦h

To show that τ ◦ (m)−1 = 1, take any closed subobject k : C ↣ E of E, then τ
Ä
(m)−1 (C)

ä
=

im (() (m)−1 (C)). Now since um◦((m)−1(k)) : im (() (m)−1 (C)) ↣ E is as given below:

char im (() (m)−1 (C)) = j ◦ char im (() (m)−1 (C))
= j ◦ ∧⟨char m, char k⟩
= ∧ ◦ (j × j) ◦ ⟨char m, char k⟩
= ∧ ◦ ⟨j ◦ char m, j ◦ char k⟩
= char m̄ ∩ char k̄
= char Ā ∩ char C̄
= char E ∩ char C
= char C

and therefore τ ◦ (m)−1 = 1. For (m)−1 ◦ τ = 1, take a closed subobject h : B ↣ A, so that
(m)−1 (τ(h)) = (m)−1 (im (()B)) ∼= (m)−1 (im (()B)) = B̄ = B where the second-to-last equality
is obtained via what is called Beck-Chevalley condition, which we hadn’t discussed here. Hence
(m)−1 ◦ τ = 1.

Now we can safely say that Ωj is a sheaf object:

Corollary 13.4.3.4. Suppose E is a topos and j : Ω −→ Ω is an LT topology in E, then Ωj , the equalizer of
j and 1Ω, is a j-sheaf in E.

Proof. Take any dense subobject m : A↣ E. Then:

HomE (E,Ωj) ∼= ClSubE (E) By Lemma 13.4.3.2
∼= ClSubE (A) By Lemma 13.4.3.3
∼= HomE (A,Ωj) By Lemma 13.4.3.2

Hence proved.

Lemma 13.4.3.5. Suppose E is a topos. If E is a sheaf in E, then

m : A↣ E is closed in E ⇐⇒ A is also a sheaf.
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Proof. (L =⇒ R) Let E be a sheaf in E and m : A ↣ E be closed. Take any dense subobject
k : S ↣ B and let f : S → A be any arrow. Since E is a sheaf, therefore ∃!b : B → E such that
b ◦ k = m ◦ f . Let’s now take the following pullback:

(b)−1 (A) Ā = A

B E

m̄=m

b

π1

π2

⌟

and since b ◦ k = m ◦ f , therefore ∃!u : S → (b)−1 (A) such that π1 ◦ u = k and π2 ◦ u = f . Now
S ⊂ (b)−1 (A) =⇒ S̄ ⊂ (b)−1 (A) = (b)−1 (Ā) = (b)−1 (A) =⇒ B ⊂ (b)−1 (A) where the last
implication is drawn from the fact that B = S̄ (k is dense). Therefore ∃g : B −→ (b)−1 (A) such
that π1 ◦ g = 1. Hence (π1 ◦ g) ◦ k = k =⇒ π1 ◦ u = k = (π1 ◦ g) ◦ k =⇒ u = g ◦ k and so
π2 ◦ g : B → A is the required arrow.
(R =⇒ L) Suppose A is a sheaf. We need to show that m : A ↣ E is closed, i.e. Ā = A, where E
itself is a sheaf. Take the trivially dense subobject d : A ↣ Ā. Since A and E are sheaves, then we
have that ∃!ud : Ā → A such that ud ◦ d = 1 and ∃!um : Ā → E such that um ◦ d = m. Now since
(m◦ud)◦d = m◦1 = m and since um is unique such that um ◦d = m, therefore um = m◦ud. Since
the closure of m is such that m̄ ◦ d = m, therefore m̄ = um as um is unique with the property that
um ◦ d = m. But m̄ is a monic and also (m̄ ◦ d) ◦ ud = (m) ◦ ud = m̄, we get d ◦ ud = 1, therefore
Ā ∼= A.

Lemma 13.4.3.6. Suppose E is a topos and j : Ω −→ Ω is an LT topology in it. Then the truej : 1 −→ Ωj
is the subobject classifier of ShjE which is given as composition of true with the epic part of the mono-epi
factorization of j as follows:

1

Ωj Ω

true

m

truej :=r◦true .

Proof. By Lemma 13.4.3.4, we have that Ωj is a j-sheaf object in E. Now if truej ought to be the
subobject classifier of ShjE, then for each subobject m : A ↣ E of sheaves (that is A and E are
sheaves), we must have a unique arrow char m : E → Ωj such that the following is a pullback:

A 1

E Ωj

m truej

char m

⌟
.

But by Lemma 13.4.3.2, A must equivalently be closed! Therefore we would be done if we could
show that any subobject of sheaves m : A ↣ E is always closed. This just follows from Lemma
13.4.3.5.

We finally can prove that ShjE is a topos:

Theorem 13.4.3.7. Suppose E is a topos and let j : Ω −→ Ω be any Lawvere-Tierney topology in E. Then
the full subcategory ShjE of sheaf objects in E is a topos.
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Proof. ShjE has finite limits and exponentials by Lemma 13.4.3.1. Subobject classifier of ShjE is
truej as showed in Lemma 13.4.3.6.

13.4.4 The Sheafification Functor a : E −→ ShjE

We will now construct a left adjoint to the inclusion functor i : ShjE ↪→ E where E is a topos and
j : Ω −→ Ω is a Lawvere-Tierney topology in E. We would achieve our task in two steps. First, we
would take any object E of E to a separated object E′ and then we would take a separated object
to a sheaf object E′. In essence, we would need to construct two functors, L1 : E −→ SepjE and
L2 : SepjE −→ ShjE, where L1 and L2 both must be left adjoints of the corresponding inclusions.
We begin with constructing the separated object E′:

From an object E to a separated object E′

To construct such a separated object E′, we first note the following definition and the lemmas:

Definition 13.4.4.1. (Graph of an arrow) Suppose E is a topos and f : A −→ B is an arrow in it. The
graph of f is defined to be the following subobject:

A A×B
⟨1,f⟩

.

We also write this subobject as G(f) := ⟨1, f⟩.

Now, we show that any subobject of a separated object is also separated:

Lemma 13.4.4.2. Suppose E is a topos and m : B ↣ C is a subobject. If C is separated, then so is B.

Proof. Take any dense subobject k : S ↣ E. We then have the following

HomE (E,C) HomE (S,C)

HomE (E,B) HomE (S,B)

HomE(E,m) HomE(S,m)

HomE(k,C)

HomE(k,B)

where both the left and right vertical arrows are injective. Now, the bottom arrow HomE (k,B) is
injective because if for two x, y ∈ HomE (E,B) we have x ◦ k = y ◦ k, then since HomE (k,C) is
injective because C is separated, therefore we will have

m ◦ x ◦ k = m ◦ y ◦ k
=⇒ m ◦ x = m ◦ y because − ◦ k of top arrow is injective

=⇒ x = y

Hence proved.

We next show the equivalent conditions for graph of any arrow to be a closed subobject:

Lemma 13.4.4.3. Suppose E is a topos. Let C be any object in E and j : Ω −→ Ω is an LT topology in E.
Then, the following are equivalent:
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1. C is separated.
2. The diagonal ∆C ∈ SubE (C × C) is a closed subobject.
3. The following commutes

C ΩC

ΩC

{·}C

jC
{·}C

.

4. For any f : A −→ C, the graph f , G(f), is a closed subobject of A× C.

Proof. (1 =⇒ 2) If C is separated, then because ∆C ⊂ ∆C , and so we have the usual dense
subobject k : C → C. Therefore, we have HomE (k,C) : HomE

Ä
C,C

ä
↣ HomE (C,C). Take

π1 ◦ ∆̄C and π2 ◦ ∆̄C ∈ HomE
(
C̄, C

)
where π1, π2 : C × C ⇒ C are the projections. But then

π1 ◦ ∆̄C ◦ k = π2 ◦ ∆̄C ◦ k =⇒ π1 ◦ ∆̄C = π2 ◦ ∆̄C as − ◦ k is injective as C is separated.
Therefore ∆̄C forms a cone over π1, π2 : C×C ⇒ C, therefore there exists unique l : C̄ −→ C with
∆C ◦ l = ∆̄C which means that ∆̄C ⊂ ∆C so that ∆̄C = ∆C .
(2 =⇒ 3) This is trivial because if ∆C : C × C ↣ C is a closed subobject, then j ◦ char ∆C =
char ∆C . This commuting diagram gives rise to another commuting diagram obtained by it’s
P -transpose, which proves the result:

C × C Ω C PC ∼= ΩC

Ω PC ∼= ΩC

char ∆C

j
char ∆C

ˆchar ∆C

ˆchar ∆C

jC
P−Transpose

.

(2 =⇒ 4) For f : A→ C, the graph G(f) = ⟨1, f⟩ : A↣ A× C is obtained by the pullback of ∆C

along f × 1. The naturality of the closure operator proves the rest.
(4 =⇒ 1) Suppose for f : A → C the graph G(f) = ⟨1, f⟩ : A ↣ A × C is closed. Take a dense
subobject m : S ↣ B and let b1, b2 : B ⇒ C be such that b1 ◦m = b2 ◦m. We wish to prove that
b1 = b2. Next, let’s look at the graph of b1 and b1 ◦m:

S B C

S × C B × C C × C

∆C

b1×1

b1

⟨1,b1⟩
⌟

m×1

⟨1,b1◦m⟩

m

where ∆C is closed, ⟨1, b1⟩ is then closed and then ⟨1, b1 ◦m⟩ is also closed. Right and the whole
square are pullbacks, therefore left one is, and m × 1 is dense, which means ⟨1, b1 ◦m⟩ = ⟨1, b1 ◦
m⟩ = ⟨1, b1⟩. Hence b1 ◦m = b2 ◦m =⇒ ⟨1, b1⟩ = ⟨1, b2⟩ =⇒ b1 = b2.

We now construct the separated object E′ for each object E in a topos E, in the following
lemma:

Lemma 13.4.4.4. Suppose E is a topos and j : Ω −→ Ω is an LT topology in it. For any object E in E,
there is an epimorphism

θE : E −→ E′

where E′ is a separated object in E.
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Proof. Consider the arrow

E ΩE ΩEj
{·}E rE

where as usual, the Ωj is the mono-epic factor of j or equivalently the equalizer of 1 and j. Now
denote E′ as the mono-epic factor of rE ◦ {·}E , as shown below:

E′

E ΩEjrE◦{·}E

θE .

Now, by Lemma 13.4.4.2, E′ is a separated object because ΩEj is.

The left adjoint of i : SepjE ↪→ E

Remember our aim is to construct first a left adjoint of inclusion i : SepjE ↪→ E. To this end, we
have found a way to form a separated object for any object of E. We now wish to show that this
construction of separated object is indeed a left adjoint to inclusion. For which we have to check
it’s universality. For that, we have the following lemmas

Lemma 13.4.4.5. Suppose E is a topos. For any object E of E, there exists an epimorphism θE : E −→ E′

such that the kernel pair of θE is the closure ∆E of the subobject ∆E : E ↣ E × E.

Proof. Section 5.3, p.p. 229, Lemma 5, [MacMoer].

An immediate corollary of the above lemma proves the universality of the construction in
Lemma 13.4.4.4:

Corollary 13.4.4.6. Suppose E is a topos and j : Ω −→ Ω is an LT topology in it. For each object E of E,
the corresponding epimorphism to a separated object E′

θE : E −→ E′

is universal amongst all arrows from E to a separated object.

Proof. If there is an arrow f : E → S where S is separated, then by Theorem 13.3.4.7 and Lemma
13.4.4.5, the epic θE : E −→ E′ is given as the following coequalizer

S

Ē E E′
π1◦∆̄E

π2◦∆̄E
θE

f .

Now, because f ◦ π1 ◦∆E = f = f ◦ π2 ◦∆E , therefore f ◦ π1 ◦ ∆̄E ◦ k = f ◦ π2 ◦ ∆̄E ◦ k, where
k : E ↣ Ē, so, because − ◦ k : HomE

(
Ē, S

)
−→ HomE (E,S) is injective because S is separated,

therefore, f ◦ π1 ◦ ∆̄E = f ◦ π2 ◦ ∆̄E and hence ∃! : l : S → E′.
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Finally, we can now conclude that indeed, the construction of separated object E′ is the left
adjoint of inclusion:

Corollary 13.4.4.7. Suppose E is a topos and j : Ω −→ Ω is an LT topology in it. Then there is an
adjunction as given below:

E SepjE

L1

i

⊣

where L1 is given by:

L1 : E −→ SepjE
E 7−→ E′

(f : E → F ) 7−→ (f ′ : E′ → F ′)

where f ′ is given by the following universal arrow because of θF ◦f forming a cocone over the top coequalizer
diagram as in the following:

Ē E E′

F̄ F F ′

π1◦∆̄E

π2◦∆̄E

θE

p1◦∆̄F

p2◦∆̄F

θF

f f ′ .

Proof. To show that L1 as above is indeed the left adjoint, take any object E and a separated object
G and then take any arrow f : E −→ iG in E, and then just observe that the following commutes:

E

iL1(E) = i(E′) i(G)

f
ηE

By Coroll. 13.4.4.6

Hence proved that L1 is left adjoint of inclusion.

The left adjoint of i : ShjE ↪→ SepjE

And finally, we have the left adjoint of the inclusion i : ShjE ↪→ SepjE:

Lemma 13.4.4.8. Suppose E is a topos and j : Ω −→ Ω is an LT topology. Then there is an adjunction as
given below:

SepjE ShjE

i

L2

⊣
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where L2 is given by:

L2 : SepjE −→ ShjE
E 7−→ Ē

(f : E → F ) 7−→ (f̄ : Ē → F̄ )

where the closure of a separated subobject is a sheaf because rE ◦ {·}E : Ē ↣ ΩEj is a closed subobject of
the sheaf ΩEj and so by Lemma 13.4.3.5, Ē is a sheaf.

Proof. To show that L2 is indeed the left adjoint of inclusion, take any f : E −→ i(F ) in SepjE
where E is separated and F is a sheaf. We then have the following commuting diagram, which
establishes the result:

E

iL2(E) = i(Ē) = Ē i(F )

f
(dense)

(sheaf)
by sheaf condition of F

Hence proved.

Finally, we have the sheafification functor:

Theorem 13.4.4.9. Suppose E is a topos and j : Ω −→ Ω is an LT topology in it. Then the full-subcategory
ShjE is reflective. That is, there is a left adjoint of inclusion:

E ShjE

a

i

⊣

where a = L2 ◦ L1 as in Lemma 13.4.4.8 and Corollary 13.4.4.7.

Proof. Take any f : E −→ i(F ) in E where E is any object in E and F is any sheaf. We then have:

E′ E

a(E) = Ē′ i(F )

f

θE

(dense)

(sep.)

(sheaf) by sheaf cond. of F

.

Hence proved.

The following shows, like all sheafification adjunction studied previously, that the left adjoint
a is left-exact:

Proposition 13.4.4.10. Suppose E is a topos and j : Ω −→ Ω is an LT topology in it. Then a in the
adjunction i ⊢ a of Theorem 13.4.4.9 is left exact.

Proof. Section 3.3, p.p. 232, [MacMoer].
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13.5 Geometric Morphisms

One of the important aspect that we are witnessing continuously in the above sections is the repet-
itive rise of left exactness of the left adjoint in the sheafification adjunction. This is a general phe-
nomenon for maps between two topoi, the study of which leads to a natural notion of points of a
topos and generalization of tensor product. We hence define a geometric morphism between two
topoi as an adjoint pair where the left adjoint is left exact:

Definition 13.5.0.1. (Geometric Morphism) Suppose E and F are two topoi. An adjunction

E F

f∗

f∗

⊣
where the left adjoint f∗ is also left exact (preserves finite limits) is then called a geometric morphism and is
denoted as

F E
f

.

The left adjoint f∗ is called the inverse-image part and the right adjoint f∗ is called the direct-image part of
the geometric morphism f .

Example 13.5.0.2. A trivial example is that of direct and inverse image of sheaves. Take two
topological spaces X and Y and a continuous map f : X → Y . Then there is the following
adjunction

Sh (Y ) Sh (X)

f∗

f∗

⊣

where

f∗ : Sh (X) −→ Sh (Y )
F 7−→ F ((f)−1 (−))

and

f∗ : Sh (Y ) −→ Sh (X)
F −→ Γ(f∗(ΛF )).

Note that the f∗ in sub-script is the pullback functor. The functors Γ(−) and Λ− in the adjunction
Λ(−) ⊢ Γ(−) are as follows:

Γ(−) : Bund (X) −→ Sh (X)
(p : Y → X) 7−→ (F : O(X)op → Sets)

U 7→ {s : U → Y | p ◦ s = ι : U ↪→ X} .
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and

Λ(−) : Sh (X) −→ Bund (X)
F 7−→ (p : ΛF → X)

where ΛF := {germxs | ∀s ∈ FU,∀U ∈ U (x) ,∀x ∈ X}. Hence Γ is just the sheaf of cross-sections
functor and the Λ is the trivial étale bundle of germs functor.

We have the following characterization of geometric morphisms between two sheaf topoi
Sh (X) and Sh (Y ):

Lemma 13.5.0.3. Consider two topological spaces X and Y where Y is Hausdorff and their corresponding
sheaf topoi Sh (X) and Sh (Y ). Then there is a bijection between geometric morphisms between Sh (X) and
Sh (Y ) and continuous maps between X and Y .

Proof. Take any continuous map f : X −→ Y . The above example shows that we get a geometric
morphism f : Sh (X) −→ Sh (Y ). For a geometric morphism f : Sh (X) −→ Sh (Y ), where Y is
Hausdorff, we wish to find a continuous mapping f̂ : X → Y . We first note that because f∗ is left
exact, therefore all subobjects of 1 of Sh (Y ) are preserved, that is, a subobject F ↣ 1 in Sh (Y )
is mapped to a subobject f∗F ↣ 1 in Sh (X). But a subobject of 1 in Sh (Y ) is an open set of Y
(Proposition 20.6.3.3). Therefore we have the map f∗ : O(Y ) → O(X). Now define a function
f̂ : X −→ Y which takes x ∈ X to that y ∈ Y for which x ∈ f∗(V ) ∀V ∈ U (y). Let’s first show that
this function f̂ is well defined. If y1 ̸= y2 ∈ Y are such that ∃x ∈ X with f̂(x) = y1 and f̂(x) = y2,
then x ∈ f∗(V )∀V ∈ U (y1) and similarly for y2. Since Y is Hausdorff, therefore ∃ open V1 ∋ y1
and V2 ∋ y2 such that V1 ∩ V2 = φ, which means that x ∈ f∗(V1) ∩ f∗(V2) = f∗(V1 ∩ V2) = φ
which is a contradiction, where the first equality holds because f∗ preserves limits and − ∩ − is
the pullback of subobjects. Similarly, if x ∈ X , then ∃y ∈ Y such that f̂(x) = y because if it’s not
∀y ∈ Y , ∃Vy ∈ U (y) such that x /∈ f∗(V ). But then if we collect all such open Vy ∋ y ∀y ∈ Y as
in

⋃
y∈Y Vy, then clearly

⋃
y∈Y Vy = Y and f∗(Y ) = X ∋ x, which is a contradiction. This proves

that f∗ is well defined. We now wish to show that this function f̂ is continuous. For this, take any

open V ⊆ Y . We have
Ä
f̂
ä−1

(V ) = {x ∈ X | f̂(x) ∈ V } = {x ∈ X | x ∈ f∗(V )} = f∗(V ) which is
clearly open.

Example 13.5.0.4. There are other examples of geometric morphisms, like the change of base ad-
junction, sheafification adjunction and global sections adjunction among others. More succinctly,
the following adjunctions are geometric morphisms:

E/A E/B E ShjE Sets E

k∗:=(k)−1

k∗:=
∏
k

i∗:=a

i∗:=i

∆(−):=
∐
s∈(−) 1E

Γ(−):=HomE(1,−)

⊣ ⊣ ⊣ .

It is interesting to note that the collection of all topoi and geometric morphisms is a 2-category:

Definition 13.5.0.5. (2-Category of Topoi & Geometric Morphisms) Consider the category Topoi
whose objects are topoi and arrows are geometric morphisms between them. Then,
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• HomTopoi (E,F) is a category where objects are geometric morphisms f : E −→ F and an arrow
between two geometric morphisms f and g is given by a natural transformation η∗ : f∗ ⇒ g∗ or
equivalently by a natural transformation η∗ : g∗ ⇒ f∗.

• The 2-category Topoi is formed by noticing that any geometric morphism g : G −→ F induces a
functor HomTopoi (g,E) for any topoi E as follows:

HomTopoi (g,E) : HomTopoi (F,E) −→ HomTopoi (G,E)
(f : F→ E) 7−→ (f ◦ g : G→ E)
(η : h→ f) 7−→ (η ◦ g : h ◦ g → f ◦ g)

where (η ◦ g)∗ : (h ◦ g)∗ → (f ◦ g)∗ is same as g∗ ◦ η∗ : g∗ ◦ h∗ ⇒ g∗ ◦ f∗.

Therefore the 2-category Topoi is where objects are topoi E,F, . . . , 1-cells are geometric mor-
phisms f : F→ E, . . . and 2-cells are natural transformations between 1-cells η : f → g.

13.5.1 Tensor Products

We now study the generalization of tensor products of modules to that of arbitrary contravariant
and covariant functors. First, let us note the famous ⊗-hom adjunction of modules:

HomR (XS ⊗ SZR, YR) ∼= HomS

(
XS ,HomR(SZR, YR)

)
where XS , SZR, YR is a left S-module, left S right R-module and a right R-module respectively.
Moreover, HomR(SZR, YR) is the right S-module of R-linear maps SZR → YR. It is important
to note here that the above adjunction is not a geometric morphism. But tensor products would
subsequently help us in making new geometric morphisms.
The tensor product above is, in essence, between two functors because the right S-module XS

can be represented as the contravariant functor F : 1op
AbGrp → AbGrp where 1 is the one object

AbGrp enriched category and F as the AbGrp enriched functor and similarly SZR would be a
bifunctor given by the AbGrp enriched functor G : 1op

AbGrp × 1AbGrp −→ AbGrp.
Now, suppose that we have a small category C and a co-complete category E with a functor A :
C −→ E. What is then the meaning of tensor product of a presheaf P : Cop −→ Sets and A?

Cop Sets
⊗

C E
??

P A

To obtain such a general notion of tensor product, we will need to understand the category of
elements (Definition 13.1.2.1) construction in the very first result, the Theorem 13.1.2.2. We would
essentially define the left adjoint L as the tensor product functor − ⊗C A with A. But elaborating
this would make it clear on how one should approach tensor products.
Recall that all colimits can be constructed from coproducts and coequalizers. In particular, takeH :
J −→ E to be a diagram in E of index J . Now consider the coproducts

∐
(u:i→j)∈Ar(J)H(dom (u))

and
∐
i∈Ob(J)H(i). Consider the following two parallel arrows:

∐
(u:i→j)∈Ar(J)H(dom (u))

∐
i∈Ob(J)H(i)

θ

τ

.
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The θ is formed because
∐
i∈Ob(J)H(i) forms a cocone over {H(dom (u))}u∈Ar(J) by injections κi

and τ is formed because
∐
i∈Ob(J)H(i) forms a cocone over {H(dom (u))}u:i→j∈Ar(J) by κj ◦H(u).

The colimit of the diagram H is then given as the coequalizer of θ & τ :

∐
(u:i→j)∈Ar(J)H(dom (u))

∐
i∈Ob(J)H(i) lim−→H

θ

τ

φ
.

Now, replacing H by A ◦ πP , we get the following (where πP :
∫

C P → C is the projection):

∐
(u:(C,p)→(C′,p′))∈Ar(

∫
C
P )A(C)

∐
(C,p)∈Ob(

∫
C
P )A(C) lim−→(A ◦ πP ) =: L(P )

θ

τ

φ
.

We simply define L(P ) := lim−→(A ◦ πP ) as the tensor product of P with A, P ⊗C A. Then, by the
Theorem 13.1.2.2, we have the following adjunction:

SetsCop
E

L:=−⊗CA

R:=HomE(A(·),−)

⊣

.

This adjunction in terms of hom-sets is:

HomE (P ⊗C A,E) HomSetsCop (P,HomE (A(−), E))∼= .

13.5.2 Points of a Topos

Consider a topological space X . Let x ∈ X be a point of it. One can alternatively write x ∈ X as
an arrow x : 1 → X in the Top. But as we saw below Defn. 13.5.0.1, the fact that we then have a
geometric morphism x : Sets −→ Sh (X) as follows:

Sh (X) Sh (1) ∼= Sets

x∗

x∗

⊣ .

Hence we are representing the point x of the underlying space of the sheaf topos Sh (X) as a geo-
metric morphism x : Sets −→ Sh (X). This becomes the motivation for the following definition:

Definition 13.5.2.1. (Points of a Topos) Let E be a topos. A point f of topos E is defined to be a geometric
morphism f : Sets −→ E.

However, the more interesting observations lies in trying to characterize the points of a Grothendieck
topos.
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Points of a Presheaf Topos

We wish to characterize the points of a Grothendieck topos. In order to do so, we begin by study-
ing the points of a presheaf topos SetsCop

. Take a point of SetsCop

f : Sets −→ SetsCop
.

We know that each object in SetsCop
is a colimit of representables by Proposition 13.1.2.3. But f∗

preserves those colimits as it is a left adjoint. Therefore f∗ can be studied by studying f∗◦Yon (−) :
C −→ Sets only. Our aim is now to show that for each point f , the functor −⊗C (f∗ ◦Yon (−)) :
SetsCop

−→ Sets is isomorphic to f∗. To further our discussion, we have to first simplify the
definition of tensor product to set valued functors as it will make analysis easier:

Definition 13.5.2.2. (Tensor Product of Set Functors) Let C be a small category and R : Cop −→ Sets
and A : C −→ Sets. Then the tensor product R⊗C A is alternatively given as:

R⊗C A :=
∐

C∈Ob(C)
RC ×AC/ ∼

where (r, a)C ∼ (r′, c′)C′ if and only if ∃(r0, c0)C0 , (r1, c1)C1 , . . . , (rn, cn)Cn ∈
∐
C∈Ob(C)RC×AC such

that
1. (r0, c0)C0 = (r, a)C and (rn, cn)Cn = (r′, a′)C′ .
2. ∀1 ≤ k ≤ n, ∃uk : Ck −→ Ck−1 in C such that

Ruk(rk−1) = rk

Auk(ak) = ak−1

OR, equivalently, ∃uk : Ck−1 −→ Ck in C such that

Ruk(rk) = rk−1

Auk(ak−1) = ak.

With the above definition, we can see now the following:

Proposition 13.5.2.3. Suppose C is a small category and f : Sets −→ SetsCop
is a point of the SetsCop

.
Then, there exists a unique functor A = f∗ ◦Yon (−) : C −→ Sets such that

f∗ ∼= −⊗C A.

Proof. Take any R : Cop −→ Sets. We then have f∗(R) and R⊗C A both in Sets. But for these two
sets in Sets, we have a canonical map:

eR : R⊗C A −→ f∗(R)
(r ⊗ a)C 7−→ f∗(ηr)(a)

because for any r ∈ RC, ∃! ηr : Yon (C) ⇒ R by Yoneda Lemma where f∗(ηr) : f∗(Yon (C)) =:
AC −→ f∗(R) takes a ∈ AC to f∗(ηr)(a). The well definiteness of eR can be checked readily, that
is, the fact that eR((Rg(r) ⊗ a′)C′) = eR((r ⊗ Ag(a′))C) can be seen via unraveling of definitions
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and Yoneda lemma. Now, we wish to show that eR is an isomorphism. To this extent we just need
to show that eYon(C) is an isomorphism because every presheaf is a colimit of representables and
−⊗C A is itself a colimit construction. In order to show this, we have

eYon(C) : Yon (C)⊗C A −→ f∗(Yon (arg1))

But we have thatA = f∗◦Yon (−) : C −→ Sets and because of the fact that Yon (C)⊗CF ∼= FC for
any F : C→ Sets16, therefore Yon (C)⊗CA ∼= f∗(Yon (C)), hence eYon(C) is an isomorphism.

Now, by the virtue of tensor product, we already have an adjunction:

SetsCop
Sets

−⊗CA

HomSets(A(·),−)

⊣

.

So if we forcefully assume that − ⊗C A is left-exact, a condition we then define as flatness of A,
then, we can safely say that any such flat functor A : C −→ Sets gives a point of the presheaf
topos SetsCop

because we then have the geometric morphism as above. This leads to following
proposition, which we have just proved:

Proposition 13.5.2.4. Suppose C is a small category and A : C −→ Sets is a flat functor, then ∃ a unique
point of SetsCop

f : Sets −→ SetsCop

where f∗ := −⊗C A and f∗ := HomSets (A(·),−).

We therefore have the following equivalence:

Flat(C,Sets) ≡ HomTopoi

Ä
Sets,SetsCopä

where Flat(C,Sets) is the category of flat functors A : C −→ Sets and natural transformations.

16This happens by Adjoint isomorphism and Yoneda Lemma:

HomSets (Yon (C)⊗C A,S) ∼= HomSetsCop (Yon (C),HomSets (A(−), S))
= Nat (HomC (−, C),HomSets (A(−), S))
∼= HomSets (AC,S).

By generalized elements, we have the isomorphism Yon (C)⊗C A ∼= AC.
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13.6 Categorical Semantics

What we have seen so far is the fact that a topos is an another framework/universe in which one
can do sets-like mathematics. But one of the important facets of the category of Sets is that one can
interpret logical theories in it, for example, the interpretation of theory of abelian groups in sets
leads to an abelian group in the usual set-theoretic sense. But we already saw above that one can
interpret abelian groups in a category with enough structure, which was an internal group object.
What we saw there was an example of categorical semantics; interpreting syntactic languages in
a category (with enough structure). In this section we would develop this line of thinking more
formally. We follow the Elephant Section D1.2 [Elephant] for the discussion below.

13.6.1 Σ-Structures

Definition 13.6.1.1. (Σ-Structure in a Category) Suppose Σ is a first order signature of a language and
C is a category with finite products. A Σ-structure on C is a map M from the signature Σ to C which takes:

• Finite list of Sorts A1, . . . , An ∈ Σ− Sort to an object

MA1 × · · · ×MAn

in C. The empty list is mapped to terminal object 1 in C.
• Function symbol f : A1 . . . An −→ B ∈ Σ− Fun to an arrow

Mf :MA1 × · · · ×MAn −→MB

in C.
• Relation Symbol R↣ A1 . . . An ∈ Σ− Rel to a monomorphism

MR↣MA1 ×MAn

in C.

The collection of all Σ-structures over a category themselves form a category:

Definition 13.6.1.2. (Category of Σ-Structures) Suppose Σ is a signature and C is a category with finite
products. We can then form a category denoted

Σ− Str (C)

whose:
• Objects are Σ-structures M,N, . . . .
• Arrows are Σ-structure homomorphisms between two Σ-structures M & N, which are denoted by:

h :M −→ N

and defined as a collection of arrows in C

{hA :MA −→ NA}A∈Σ−Sort

for which the following two conditions hold:
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– The following commutes for each f : A1 . . . AN −→ B in Σ− Fun:

MA1 × · · · ×MAn MB

NA1 × · · · ×NAn NB

Mf

Nf

hA1×···×hAn hB .

– The following commutes for each R↣ A1 . . . An in Σ− Rel:

MR MA1 × · · · ×MAn

NR NA1 × · · · ×NAn

hA1×···×hAnhR .

13.6.2 Terms

The term of some sort of a signature can also be interpreted as an arrow in a category with finite
products:

Definition 13.6.2.1. (Term in a Σ-Structure) Suppose Σ is a signature and M is a Σ-structure over a
category C with finite products. Let x⃗.t be a term in a context x⃗ = {x1, . . . , xn} where xi : Ai, 1 ≤ i ≤ n
and t : B. Then the same term x⃗.t is interpreted in the Σ-structure M as an arrow denoted

MA1 × · · · ×MAn MB
[[x⃗.t]]M

generated by the following conditions:
• If the term t : B is simply a variable of sort B, then t must be some xi : Ai from the context x⃗, and

therefore the corresponding arrow simply becomes the following projection:

[[x⃗.t]]M := πi :MA1 × · · · ×MAn −→MAi.

• If the term t : B is actually the term f(t1, . . . , tm) : B for some f ∈ Σ− Fun and x⃗.ti : Ci are other
terms, then the arrow [[x⃗.t]] would be the composite17:

MA1 × · · · ×MAn MC1 × . . .MCm MB
⟨[[x⃗.t1]]M ,...,[[x⃗.tm]]M ⟩ Mf

Example 13.6.2.2. A term x⃗.t : B in a signature Σ can be constructed by f(g(h(a(x1), b(c(x2)))))
where x⃗ = {x1, x2} and x1, x2 are variables of sortsA1, A2 ∈ Σ−Sort respectively and f, g, h, a, b, c ∈
Σ− Fun with target of f being B. Then the corresponding interpretation [[x⃗.t]] :MA1 ×MA2 −→
MB would be given by the following composition:

MA1 ×MA2 Mcod (a)×Mcod (b) MB
⟨Ma,Mb◦Mc⟩ Mf◦Mg◦Mh

.

17Note that the terms ti, 1 ≤ i ≤ m are also in context x⃗, so the arrows [[x⃗.ti]] : MA1 × · · · ×MAn −→ MCi are the
term arrows in C for them.
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We can also interpret the usual substitution of a term x⃗.t by list of terms s⃗, denoted t[s⃗/x⃗], in a
category by the help of implicit composition in that category.

Proposition 13.6.2.3. Suppose M is a Σ-structure over a category C with finite products. Let y⃗.t : C be a
term of sort C in context y⃗, yi : Bi. Suppose s⃗ is a list of terms and this list has same length and type as y⃗
and let x⃗, xi : Ai be a common context for each term si ∈ s⃗. Then, the term x⃗.t[s⃗/y⃗] is interpreted as the
following arrow given by composition in C:

MA1 × · · · ×MAn MB1 × · · · ×MBm MC.
⟨[[x⃗.s1]]M ,...,[[x⃗.sm]]M ⟩ [[y⃗.t]]M

Proof. Each term is given by a chain of application of function symbols over all or some of the
variables present in context. Therefore, the substitution in term y⃗.t by terms s⃗ is again a term
in which there are more applications of function symbols on some or all the arguments of the
context x⃗. Now, using Definition 13.6.2.1, specifically the second point, we get the desired result
by unrolling the whole chain of application of functions inductively.

We now see that the homomorphism of Σ-structures preserves the interpretation of terms upto
naturality:

Proposition 13.6.2.4. Suppose M & N are two Σ-structures and h : M −→ N is a Σ-structure homo-
morphism. If x⃗.t is term in Σ where t : B and xi : Ai, then, the following commutes:

MA1 × · · · ×MAn MB

NA1 × · · · ×NAn NB

[[x⃗.t]]M

[[x⃗.t]]N

hA1×···×hAn hB

Proof. Denote the term x⃗.t as a chain of application of function symbols as in the example above.
Since the arrow [[x⃗.t]]M would be the composition of all arrows involved, similarly for [[x⃗.t]]N ,
and since each individual arrow in the composition for M would have corresponding arrows
from domain object and target object to that of N for which the natural square would commute by
Definition 13.6.1.2, therefore the whole big rectangle will commute. This big rectangle is clearly
the one required.

13.6.3 Formulae

Definition 13.6.2.1 tells us how to interpret terms of a signature. The next step would thus be
to interpret a formula of some signature in a category. As we know, formulas of some signature
themselves are categorized by several restrictions. These restrictions are atomic, horn, regular,
coherent, first order, geometric & infinitary first order formulas. Each of which would thus be
interpreted in a category which would have enough structure suitable for their residence in it.

Definition 13.6.3.1. (Formula in a Σ-Structure) Suppose Σ is a signature and M is a Σ-structure
in a category C which has finite limits. Let x⃗.φ be a formula in context x⃗, xi : Ai, 1 ≤ i ≤ n. The
formula x⃗.φ would be interpreted in M as the subobject

[[x⃗.φ]] MA1 × · · · ×MAn
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in C and this subobject [[x⃗.φ]] is generated recursively by the following :
1. RELATIONS : If φ is simply R(t1, . . . , tm) where R ∈ Σ − Rel and tj : Bj , 1 ≤ j ≤ m, then

the subobject [[x⃗.φ]] is the following pullback:

[[x⃗.φ]] MR

MA1 × · · · ×MAn MB1 × · · · ×MBm⟨[[x⃗.t1]]M ,...,[[x⃗.tm]]M ⟩

⌟

.

2. EQUALITY : If φ is simply x⃗.s = x⃗.t, an equality of terms of some sort B, then the subobject
[[x⃗.φ]] is the following equalizer:

[[x⃗.φ]] MA1 × · · · ×MAn MB
[[x⃗.s]]M

[[x⃗.t]]M
.

3. TRUTH : If φ is ⊤, i.e. truth, then the subobject [[x⃗.φ]] is simply the top element of the lattice
SubC (MA1 × · · · ×MAn):

[[x⃗.φ]] = ⊤ MA1 × · · · ×MAn .

4. BINARY MEETS : If φ is ψ ∧ χ for other formulas ψ and χ, then the subobject [[x⃗.φ]] is the
following pullback:

[[x⃗.φ]] [[x⃗.χ]]

[[x⃗.ψ]] MA1 × · · · ×MAn

⌟
.

5. FALSITY : If φ is⊥, then the subobject [[x⃗.φ]] is the bottom element of the lattice SubC (MA1 × · · · ×MAn):

[[x⃗.φ]] = ⊥ MA1 × · · · ×MAn .

6. BINARY JOINS : If φ is ψ ∨ χ for other formulas ψ and χ and C is a coherent category18,
then the subobject [[x⃗.φ]] is the join of the two terms as subobjects:

[[x⃗.ψ]]⨿ [[x⃗.χ]] [[x⃗.χ]]

[[x⃗.φ]]

[[x⃗.ψ]] MA1 × · · · ×MAn

i1

i2

!

e

m

18A coherent category is a regular category in which each subobject poset have finite joins and change of base functor
for any arrow preserves these finite joins. Also remember the arrow factorization property in a regular category.
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7. IMPLICATION : If φ is ψ ⇒ χ for other formulas ψ and χ and C is a Heyting category19, then
the subobject [[x⃗.φ]] is the implication [[x⃗.ψ]]⇒ [[x⃗.χ]] in the Heyting algebra SubC (MA1 × · · · ×MAn):

[[x⃗.φ]] = ∀m[[x⃗.ψ]]([[x⃗.ψ]] ∩ [[x⃗.χ]]) MA1 × · · · ×MAn

where ∀m[[x⃗.ψ]] : SubC ([[x⃗.ψ]]) −→ SubC (MA1 × · · · ×MAn).
8. NEGATION : If φ is ¬ψ for some formula ψ and C is a Heyting category, then the subobject

[[x⃗.φ]] is the negation ¬[[x⃗.ψ]] in the Heyting algebra SubC (MA1 × · · · ×MAn):

[[x⃗.φ]] = ([[x⃗.ψ]]⇒ ⊥) MA1 × · · · ×MAn .

9. EXISTENTIAL QUANTIFICATION : If φ is (∃y)ψ where y is a variable of sort B and C is a
regular category, then the subobject [[x⃗.φ]] is the following image20:

[[(x⃗, y).ψ]]

[[x⃗.φ]]

MA1 × · · · ×MAn ×MB MA1 × · · · ×MAnπ

e

m

where π is the unique arrow due to projection onto first n terms.
10. UNIVERSAL QUANTIFICATION : If φ is (∀y)ψ where y is a variable of sort B and C is a

Heyting category, then the subobject [[x⃗.φ]] is the following (see footnote 27):

[[x⃗.φ]] = ∀π ([[(x⃗, y).φ]]) MA1 × · · · ×MAn

11. INFINITARY JOINS : If φ is
∨
i∈I ψi where ψi are other formulas and C is a geometric cate-

gory21, then the subobject [[x⃗.φ]] is the join
⋃
i∈I [[x⃗.ψi]] in the join-semilattice SubC (MA1 × · · · ×MAn):

[[x⃗.φ]] =
⋃
i∈I [[x⃗.ψi]] MA1 × · · · ×MAn .

12. INFINITARY MEETS : If φ is
∧
i∈I ψi where ψi are other formulas and C has arbitrary

meets of subobjects, then the subobject [[x⃗.φ]] is given by the meet
⋂
i∈I [[x⃗.ψi]] in the meet-

semilattice SubC (MA1 × . . .MAn):

[[x⃗.φ]] =
⋂
i∈I [[x⃗.ψi]] MA1 × · · · ×MAn .

19A category C is Heyting if it is coherent and for any arrow f : X → Y , the change of base functor

f∗ : SubC (Y ) −→ SubC (X)

has a right adjoint ∀f : SubC (X) −→ SubC (Y ). It follows that in a Heyting category, as expected, each subobject lattice
is a Heyting algebra.

20x⃗, y denotes that we have extended our initial context x⃗ to now also include y.
21A geometric category is just an infinitary coherent category, meaning that each subobject poset have infinitary joins

and any change of base functor preserves them.
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Remark 13.6.3.2. (Infinitary first order formulas can just be interpreted in a geometric category)
Suppose C is a geometric category. Then C is also a Heyting category. Therefore each subobject
lattice has infinitary meets, hence the heading. However, the change of base functor may not pre-
serve the infinitary meets, i.e., change of base functor in this geometric category may not preserve
non-geometric formulas.

Remark 13.6.3.3. Suppose M is a Σ-structure on a category C and C has enough structure to
interpret a particular formula x⃗.φ. We then call φ to be interpretable in category C.

The substitution property extends from terms to formulas:

Proposition 13.6.3.4. Suppose Σ is a signature and y⃗.φ is a formula in Σ in context y⃗ which can be
interpreted in a category C22 and M is a Σ-structure on C. Let s⃗ be a list of terms with same length and
type as that of context y⃗, where each term si ∈ s⃗ is in common context x⃗. Then, the formula [[x⃗.φ[s⃗/y⃗]]] is
given as the following pullback (Note xi : Ai, 1 ≤ i ≤ n, yi : Bi, 1 ≤ i ≤ m):

[[x⃗.φ[s⃗/y⃗]]]M [[y⃗.φ]]M

MA1 × · · · ×MAn MB1 × · · · ×MBm

⌟

⟨[[x⃗.s1]]M ,...,[[x⃗.sm]]M ⟩

.

Proof. Any formula, as Definition 13.6.3.1 instructs, is fundamentally generated from relations and
equality. The fact that the formula y⃗.φ is substituted by s⃗ to give a new formula x⃗.φ[s⃗/y⃗] just makes
the previous formula stated in new terms. We thus have two formulas, [[y⃗.φ]] and [[x⃗.φ[s⃗/y⃗]]]. If y⃗.φ
is simply a relation or an equality, then by Proposition 13.6.2.3 one can see that the later subobject
[[x⃗.φ[s⃗/y⃗]]] is just the relevant pullback. Since the result hold for atomic formulas, therefore it will
hold for all generated from other constructions.

Unfortunately, not all formulas in context are natural with respect to Σ-structure homomor-
phisms:

Proposition 13.6.3.5. Let C be atleast a cartesian23 category and let x⃗.φ be a geometric formula in context
over Σ which is interpretable in C. Suppose h : M −→ N is a homomorphism of Σ-structures. Then there
is a commutative square (Note xi : Ai, 1 ≤ i ≤ n):

[[x⃗.φ]]M MA1 × · · · ×MAn

[[x⃗.φ]]N NA1 × · · · ×NAn

hA1×···×hAn .

22That is, C has enough structure to interpret y⃗.φ in itself, as instructed in Definition 13.6.3.1.
23One which has all finite limits.
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Proof. Again, we wish to see whether there is a commutative square for relations and equality. For
equality, this can be seen easily; suppose φ is x⃗.s = x⃗.t where s and t are terms of sort B. Then, we
have the following diagram (The two squares on the right commute due to Proposition 13.6.2.4):

[[x⃗.φ]]N NA1 × · · · ×NAn NB

P MA1 × · · · ×MAn MB

[[x⃗.φ]]M

hA1×···×hAn hB

⌟
where the dotted arrow is obtained from universal property of equalizer [[x⃗.φ]]N . Therefore we
have a cone over the pullback P and so there is a unique arrow [[x⃗.φ]]M → P through which the
subobject [[x⃗.φ]]M factors through. Clearly, this arrow [[x⃗.φ]] → P has to be a monic. Hence we
have a commutative square as required. Note that we only needed the universal property of the
equalizer for the equality, hence the same will hold in case of relations. Since a geometric formula
is generated by those basic formulas interpretation of whom preserves finite limits, therefore we
have the required commutative square for all geometric formulas interpretable in C.

The above motivates the following definitions:

Definition 13.6.3.6. Suppose Σ is a signature and h :M −→ N is a homomorphism of Σ-structures over
C. Then,

1. (Elementary Morphism) The morphism h : M −→ N is called an elementary morphism if for
each first-order formula in context x⃗.φ over Σ where xi : Ai, 1 ≤ i ≤ n, there is a commutative
square as shown:

[[x⃗.φ]]M MA1 × · · · ×MAn

[[x⃗.φ]]N NA1 × · · · ×NAn

hA1×···×hAn .

2. (Elementary Embedding) The morphism h : M −→ N is called an elementary morphism if for
each first-order formula in context x⃗.φ over Σ where xi : Ai, 1 ≤ i ≤ n, there is a pullback as
shown:

[[x⃗.φ]]M MA1 × · · · ×MAn

[[x⃗.φ]]N NA1 × · · · ×NAn

hA1×···×hAn

⌟

.

3. (Embedding) The morphism h : M −→ N is called an elementary morphism if for each atomic
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formula in context x⃗.φ over Σ where xi : Ai, 1 ≤ i ≤ n, there is a pullback as shown:

[[x⃗.φ]]M MA1 × · · · ×MAn

[[x⃗.φ]]N NA1 × · · · ×NAn

hA1×···×hAn

⌟

.

13.6.4 Theories and Models

We now come to models of a theory over a signature, defining both:

Definition 13.6.4.1. Suppose Σ is a signature and M be a Σ-structure over a category C. Then,
1. (Satisfiability of a Sequent) Let σ = φ ⊢x⃗ ψ be a sequent over Σ interpretable24 in C. Then the

sequent σ is defined to be satisfiable in the structure M if

[[x⃗.φ]]M ≤ [[x⃗.ψ]]M

in SubC (MA1 × · · · ×MAn) where≤ is the order induced by the subobject lattice. The satisfiability
of the sequent σ in structure M is denoted as:

M ⊨ σ.

2. (Model of a Theory) Let T be a theory over Σ interpretable in C25. Then the structure M over C
is said to be a model of the theory T if all the axioms/sequents of the theory T is satisfiable in M . We
denote a model M of a theory T by:

M |= T.

3. (Category of Models of a Theory) Let T be a theory over a signature Σ. The full-subcategory of
Σ − Str (C) where structures(objects) are all the models of the theory T and structure morphisms
between them is called the category of models of theory T and is denoted as:

T−Mod (C) .

Remark 13.6.4.2. The subcategory of all the models of a theory T over a signature Σ on category
C between whom the structure morphisms are elementary morphisms is denoted as:

T−Mod (C)e .

Before going further, we need to know particularities about functors between two categories
with appropriate structures:

1. If categories C and D are cartesian, then a cartesian functor F : C −→ D is defined to be a
functor which preserves finite limits.

2. If categories C and D are regular, then a regular functor F : C −→ D is defined to be a
functor which preserves finite limits and regular epimorphisms.

24A sequent is interpretable if each formula in the sequent is interpretable in C.
25A theory is interpretable in C if all the sequents of the theory are interpretable.
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3. If categories C and D are coherent, then a coherent functor F : C −→ D is defined to be a
functor which preserves finite limits, regular epimorphisms and finite joins of subobjects.

4. If categories C and D are Heyting, then a Heyting functor F : C −→ D is defined to
be a functor which preserves finite limits, regular epimorphisms and right adjoints ∀f :
SubC (X)→ SubC (Y ) for any arrow f : X → Y in C.

5. If categories C and D are geometric, then a geometric functor F : C −→ D is defined
to be a functor which preserves finite limits, regular epimorphisms and infinitary joins of
subobjects.

The above defined functors preserves satisfiability of a sequent:

Proposition 13.6.4.3. Let T : C −→ D be a cartesian (regular, coherent, Heyting, geometric) functor. Let
M be a Σ-structure over C and let σ be a sequent over Σ interpretable in C. If M ⊨ σ, then, Σ− Str(T ) :
Σ − Str (C) −→ Σ − Str (D), which takes each interpretation through T to get an interpretation over D,
gives a structure over D for which σ is still satisfiable, that is,

Σ− Struc(T )(M) ⊨ σ.

Proof. Take C to be cartesian (respectively, all else). Suppose σ = φ ⊢x⃗ ψ is a sequent satisfiable
in M and interpretable in C, where xi : Ai, 1 ≤ i ≤ n. Hence, we have [[x⃗.φ]]M ≤ [[x⃗.ψ]]M in the
SubC (MA1 × · · · ×MAn). Since for two subobjects S, T in any SubC (A), we say S1 ≤ S2 if and
only if S1∩S2 = S1 where ∩ is the meet of two subobjects given by pullback of them (which exists
since C has finite limits (atleast)). Since T preserves limits as it is cartesian (atleast), therefore if
S1 ∩ S2 = S1, then T (S1) = T (S1 ∩ S2) ∼= T (S1) ∩ T (S2). Hence, if [[x⃗.φ]]M ≤ [[x⃗.ψ]]M , then
T ([[x⃗.φ]]M ) ≤ T ([[x⃗.ψ]]M ), which just means that if M ⊨ σ, then Σ− Struc(T )(M) ⊨ σ.

The converse of the above proposition additionally requires T to be conservative:

Proposition 13.6.4.4. Let T : C −→ D be a cartesian (regular, coherent, Heyting, geometric) functor
which is additionally conservative26. Let M be a Σ-structure over C and let σ be a sequent over Σ inter-
pretable in C. If Σ− Struc(T )(M) ⊨ σ, then, M ⊨ σ.

Proof. If Σ − Struc(T )(M) ⊨ σ, then T ([[x⃗.φ]]M ) ≤ T ([[x⃗.ψ]]M ) which means that T ([[x⃗.φ]]M ∩
[[x⃗.ψ]]M ) ∼= T ([[x⃗.φ]]M ). But [[x⃗.φ ∧ ψ]]M := [[x⃗.φ]]M ∩ [[x⃗.ψ]]M (Definition 13.6.3.1). Therefore
T ([[x⃗.φ ∧ ψ]]M ) ∼= T ([[x⃗.φ]]M ). By conservativity of T , we have that [[x⃗.φ]]M ∼= [[x⃗.φ ∧ ψ]]M , which
is what we wanted.

Example 13.6.4.5. (The Category of Models of the Theory of Abelian Groups over Sets is AbGrp)
We wish to show the following where T is the theory of abelian groups over it’s canonical signa-
ture with one sort G, three function symbols: f : G,G→ G, 1 : []→ G, i : G→ G; and no relation
symbols. We wish to show:

T−Mod (Sets) ∼= AbGrp

First, the theory of abelian groups consists of the following four atomic sequents/axioms:
1. ⊤ ⊢{x,y,z} m(m(x, y), z) = m(x,m(y, z))

26A functor F : C −→ D is conservative if for any f : C → C′ in C, we have that Ff : FC → FC′, then f : C → C′

was an isomorphism.
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2. ⊤ ⊢{x,y} m(x, y) = m(y, z)
3. ⊤ ⊢{x} m(x, 1()) = x
4. ⊤ ⊢{x} m(x, i(x)) = 1()

To show first that each model defines a unique group, take any model M of T over Sets. Since M
is a model, therefore for each axiom ⊤ ⊢x⃗ φ of T, the following is true:

[[x⃗.⊤]]M ≤ [[x⃗.φ]]M .

But this means that

[[x⃗.(⊤ ∧ φ)]]M ∼= [[x⃗.⊤]]M .

Moreover, we know that

[[x⃗.⊤]]M =MA1 × . . .MAn

where xi : Ai. This means that

[[x⃗.⊤]]M ∩ [[x⃗.φ]]M = [[x⃗.(⊤ ∧ φ)]]M = [[x⃗.⊤]]M =MA1 × · · · ×MAn

and so

[[x⃗.φ]]M =MA1 × · · · ×MAn.

Therefore, for associativity of Mm :MG×MG −→MG:

[[{x, y, z}.m(m(x, y), z) = m(x,m(y, z))]]M =MG×MG×MG

which means Mm is associative for all x, y, z in MG. Hence Mm is associative. Similarly, Mm
is commutative, each x in G has inverse and 1() ∈ MG is the identity. Hence (MG,Mm) is an
abelian group determined by the model M . For each Σ-structure homomorphism h : M → N ,
the only component gives rise to a group homomorphism hG : MG → NG in Sets. This follows
because of the natural square of the three function symbols. Similarly, each group homomorphism
h : G → H determines a unique Σ-structure homomorphism because the conditions of group
homomorphism are the ones which make the three natural squares commute.

Proposition 13.6.4.4 has an interesting corollary:

Proposition 13.6.4.6. Let T be a geometric theory over a signature Σ. Then,
1. For any small category C, a Σ-structure M in SetsC is a T-model if and only if the Σ-structure

evC (M) on Sets for each C ∈ Ob(C) is a T-model. The functor evC (−) : SetsC −→ Sets takes a
set-functor to the set obtained by evaluating it at C.

2. For any topological space X and for any element x ∈ X , the inverse image x∗ : Sh (X) −→ Sets of
the geometric morphism:

x : Sets Sh (X)

x∗

x∗

⊣

is such that for a Σ-structure M in the category Sh (X) is a T-model if and only if the Σ-structure
x∗(M) in Sets is a T-model. x∗(M) takes the interpreation of M in Sh (X) to an interpretation in
Sets via composition with x∗.
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Proof. 1. (L =⇒ R) Let M be a T-model over the category SetsC. Now, for a fixed object
C ∈ Ob(C), we have by composition a Σ-structure over the category Sets, evC (M), which takes
each sort, function symbols & relation symbols first to it’s interpretation in SetsC via M and then
to Sets via evaluating that interpretation at C ∈ Ob(C). Note that evC (−) : SetsC −→ Sets is a
geometric functor because limits of set functors is determined point-wise, an epimorphic natural
transform is by definition one whose each component is an epimorphism and join of two subob-
jects in SetsC is join of their corresponding components (colimits are computed point-wise). By
Proposition 13.6.4.3, since each sequent of T is satisfied by M as it is a T-model, therefore evC (M)
is also a Σ-structure over Sets where each sequent of T is satisfiable. Hence evC (M) is also a T-
model, for each C ∈ Ob(C).
(R =⇒ L) It is quite simple to see that evC (−) : SetsC −→ Sets is conservative, because if for some
natural transform η : F ⇒ G in SetsC, the function evC (η) := ηC : FC −→ GC is an isomorphism
for each C ∈ Ob(C), then η is also a natural isomorphism as each natural transform is determined
by it’s components. Therefore by Proposition 13.6.4.4, we have that M is also a T-model.

2. For x : 1 −→ X , we have that the induced geometric morphisms x : Sh (1) ∼= Sets −→ Sh (X) is
such that the inverse image (left-adjoint) x∗ : Sh (X) −→ Sets is a stalk functor, that is, it takes each
sheaf F over X to stalk at x, Fx. Now because x∗ is left adjoint so it preserves small colimits (and
so coequalizers, hence regular epics), x∗ is inverse image of a geomteric morphism so it preserves
finite limits. Therefore x∗ is a geometric functor. Now x∗ : Sh (X) −→ Sets is also conservative
because if for some η : F ⇒ G it s true that x∗(η) : Fx → Gx is an isomorphism for each x ∈ X ,
then η is a natural isomorphism. We can then follow the same argument as in 1 to conclude the
result.

13.7 Topoi and Logic

We now study some of the interconnections between topoi and logic, studying Cohen’s proof of
independence of continuum hypothesis from ZFC axioms and a brief introduction to synthetic
differential geometry, in between.

13.7.1 Natural Numbers Object in a Topos : NE

The axioms of set theory demand existence of an infinite set, the set of natural numbers N. In a
topos, this axiom is interpreted as the existence of the following object:

Definition 13.7.1.1. (Natural Numbers Object) Suppose E is a topos. An object NE in E is defined to
be a natural numbers object if it has two arrows

1 NE NE
0 s

such that for any other object X with arrows 1 x−→ X
f−→ X , there exists a unique arrow h : NE −→ X
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such that the following commutes:

1 NE NE

1 X X

0 s

x f

h h .

Remark 13.7.1.2. (Natural Numbers Objects are unique upto isomorphism) Take any other ob-
ject N in E for which satisfies the condition of an NNO as in Definition 13.7.1.1 with the following

defining arrows: 1 n−→ N
f−→ N . Hence there exists the unique arrows a : NE −→ N and

b : N −→ NE which are universal, for which a ◦ b : N −→ N is such that f ◦ a ◦ b = a ◦ b ◦ f and
a ◦ b ◦ x = x. Now we have another 1 x−→ N

a◦b−→ N , therefore ∃ unique h : N → N with h ◦ x = x
and a ◦ b ◦ h = h ◦ f . But a ◦ b ◦ x = x too and a ◦ b is also unique, therefore a ◦ b = h. Moreover,
because h ◦ f = a ◦ b ◦ h, therefore by uniqueness, f = h =⇒ f = a ◦ b. Hence, h = 1N = a ◦ b.
Similarly, b ◦ a = 1NE .

We first see that each geometric morphism between two topoi in which one has an NNO,
implies that the other one has it too:

Lemma 13.7.1.3. Let E,F be a topoi where E has a natural numbers object NE. Let there be a following
geometric morphism between F and E:

g : F E

g∗

⊣

g∗

.

Then, g∗(NE) is an NNO for F.

Proof. It can be seen, that for each object X of F for which there are arrows 1F
x−→ X

f−→ X , there
exists unique arrow g∗(NE) −→ X which is the transpose of the unique arrow NE −→ g∗(X), and
hence it makes the corresponding square in F commute. This also depends on the fact g∗ preserves
finite limits as it is inverse image of a geometric morphism and so preserves terminals.

This lemma has very important corollaries, first of which shows that each presheaf category
has an NNO:

Corollary 13.7.1.4. For a small category C, the presheaf category SetsCop
has a natural numbers object.

Proof. We have the global sections adjunction (a geometric morphism):

SetsCop
Sets

∆

⊣

Γ

.
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Now use Lemma 13.7.1.3. Therefore the NNO for SetsCop
is the constant to N presheaf, ∆(N) :

Cop −→ Sets.

We now see that each Grothendieck topos has an NNO:

Corollary 13.7.1.5. Let (C, J) be a site. The sheaf topos Sh (C, J) has a natural numbers object, given by:

NSh(C,J) =
∐
n∈N

1Sh(C,J)

Proof. The site (C, J) determines a Lawvere-Tierney topology on SetsCop
, j [REF]. We also know

that there is a geometric morphism (sheafification):

ShjE E

a
⊣

i

.

Now for any E being the presheaf category SetsCop
, we have by Lemma 13.7.1.3 and Corollary

13.7.1.4 that Sh (C, J) has an NNO, given by:

a(∆(N)) : Cop −→ Sets.

Now since N ∼=
∐
n∈N 1 and a & ∆ are left adjoints of geometric morphisms so they preserve the

terminals and the small coproducts to give the desiderata.

13.7.2 The ¬¬ Lawvere-Tierney Topology in a Topos

There is an LT topology in a topos which gives us as it’s sheaf topos, a Boolean topos. To get to that
result, we would need to understand how the operations in the two Heyting lattices SubShjE (F )
and SubE (F ) interacts.

SubShjE (F ) and SubE (F )

The structures of the Heyting algebra structures SubShjE (F ) and SubE (F ) are comparable (where
F is j-sheaf):

Proposition 13.7.2.1. Let E be a topos and let j : Ω −→ Ω be a Lawvere-Tierney topology on it. Then, for
any closed subobjects S, T of a j-sheaf F in E, the following identities hold in SubShjE (F ):

1. 1j = 1
2. S ∧j T = S ∧ T
3. 0j = 0̄
4. S ∨j T = S ∨ T
5. S ⇒j T = S ⇒ T
6. ¬jS = ¬S

where (−)j denotes corresponding operation in the Heyting algebra SubShjE (F ).
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Proof. 1. Because 1 : F → F is closed, hence 1 is also the top element of SubShjE (F ).
2. The meet of two closed subobjects S, T in SubShjE (F ) would be closed by LTT.3. Hence
S ∧ T = S̄ ∧ T̄ = S ∧ T = S ∧j T .
3. 0 is the bottom element of SubE (F ), the closure of 0 would hence be the smallest closed subob-
ject of F .
4. The join of two closed subobjects, S ∨j T , would be the smallest closed subobject containing S
and T , which is S ∨ T .
5. If we could show that S ⇒ T is closed, then we could argue that: Since S ⇒j T is the unique
subobject in SubShjE (F ) with the property for any closed subobjectR thatR ≤ S ⇒j T if and only
if R ∧j S ≤ T , therefore we need to show that the same is true for S ⇒ T :

R ∧j S ≤ T ⇐⇒ R ∧ S ≤ T
⇐⇒ R ≤ S ⇒ T.

Therefore we would be done if we could show that S ⇒ T is also closed. To this extent, for any
subobject W of F in SubE (F ), we have:

W ≤ S ⇒ T ⇐⇒ W ∧ S ⇒ T ⇐⇒ W ∧ S̄ ≤ T̄ ⇐⇒ W ∧ S̄ ≤ ¯̄T ⇐⇒ W̄ ∧ ¯̄S ≤ T̄ ⇐⇒ W̄ ∧ S̄ ≤ T̄

⇐⇒ W̄ ∧ S ≤ T ⇐⇒ W̄ ≤ S ⇒ T ⇐⇒ ¯̄W ≤ S ⇒ T ⇐⇒ W̄ ≤ S ⇒ T ⇐⇒ W ≤ S ⇒ T

where last line follows from the fact that W ≤ W̄ .
6. Negation in a Heyting algebra is simply ¬A := (A ⇒ 0). Hence from the above results (partic-
ularly 3 & 5), ¬jS := (S ⇒j 0j) = (S ⇒ 0) =: ¬S.

To a Boolean Topos from any Topos

A Boolean topos is a topos whose internal/external subobject lattice is an internal/external Boolean
lattice. That is, PX is an internal Boolean lattice or, equivalently, SubE (X) is an external Boolean
lattice for each object X of E. We will now see that, for the negation ¬ : Ω −→ Ω of the internal
Heyting lattice Ω, the arrow ¬¬ := ¬ ◦ ¬ : Ω −→ Ω is a Lawvere-Tierney topology in E and it’s
sheaf topos is in-fact a Boolean topos:

Theorem 13.7.2.2. Suppose E is a topos. Consider the internal Heyting algebra Ω, whose negation operator
is ¬ : Ω −→ Ω. Then, the arrow

¬¬ : Ω −→ Ω

is a Lawvere-Tierney topology in E. Moreover, the following then holds:

Sh¬¬E is a Boolean Topos.

Proof. It’s a basic result that for x, y ∈ H for any Heyting algebra H that the following holds:

x ≤ ¬¬x , ¬¬x = ¬¬¬¬x , ¬¬ (x ∧ y) = ¬¬x ∧ ¬¬y.

So the corresponding requirements for the closure operator in SubE (X) is already satisfied. But
we wish to show that this is also natural. Since for any f : X → Y in E, we have by Proposition
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13.3.5.8 that f∗ : SubE (Y ) −→ SubE (X) is a Heyting algebra homomorphism, therefore the nega-
tion is preserved by f∗. Hence the ¬¬ : SubE (X) −→ SubE (X) is a natural operator. Hence, ¬¬ is
an LT topology.

The latter result can be seen to hold because for any subsheaf S of sheaf X , S has to be ¬¬-closed
in E, i.e. ¬¬S = S in E. But we wish to show the result in Sh¬¬E. Now note that we wish to
show that ¬¬¬¬¬¬S = S (i.e. in ShjE). But by Proposition 13.7.2.1, ¬¬¬S = ¬

(
S̄¬¬

)
= ¬¬¬S, so

¬¬¬¬¬¬S = (¬)6S. Hence, the statement ¬¬S = S in E is equivalent to (¬)6S = S in Sh¬¬E. The
result then follows.

The next result would help us in establishing the independence of axiom of choice with con-
tinuum hypothesis:

Proposition 13.7.2.3. Suppose E is a topos which is generated by the subobjects of 1 and each subobject
lattice SubE (A) is a complete Boolean algebra. Then, E satisfies axiom of choice.

Proof. Take an epimorphism p : X −→ I . Since SubE (I) is a complete Boolean algebra, therefore
the collection of all subobjects n : N ↣ I of I which has a section s : N −→ X with p ◦ s = n,
has a maximal subobject m : M ↣ I . We wish to show that there is a section I −→ X of p. To do
this, we have to argue that the maximal element M of all sections of p must be the I itself. Hence
let us assume that this maximal subobject of sections M is not I . Now, since SubE (I) is a Boolean
algebra so it has ¬M . Now since SubE (1) generates E, therefore there is a monic from a subobject
V ↣ 1 with V → ¬M . Now construct the pullback

X ′ X

V ¬M I

pp′

t

⌟
.

Again, there is a subobject W ↣ 1 which has a monic r : W ↣ X ′. Clearly, p′ ◦ r : W ↣ V is a
monic. Therefore we also have t◦p′ ◦ r :W ↣ ¬M . Hence W ∧¬M = ⊥ and so W ∨M =W ⨿M .
Since we already have W ↣ X and M → X which are sections of p. But M was the greatest
subobject of I which has a section of p, therefore our assumption M ̸= I is wrong, and hence
M = I and hence we have a section I ↣ X .

The ¬¬ sheaves over a poset forms a topos which follows axiom of choice:

Proposition 13.7.2.4. Let P be a poset regarded as a category. Then the topos Sh (P,¬¬) satisfies axiom of
choice.

Proof. We have to just show that Sh (P,¬¬) is generated by SubSh(P,¬¬) (1) because Sh (P,¬¬) has
complete subobject lattices as it is a Grothendieck topos. Now because each presheaf is a colimit
of representables (Proposition 13.1.2.3) and so by the sheafification geometric morphism i ⊢ a,
any sheaf F is such that i(F ) ∼= lim−→D where D : I → SetsPop

is a diagram of representables.
Now, F ∼= a ◦ i(F ) = a(lim−→D) ∼= lim−→ a(D) where last isomorphism comes from the fact that a is
the left adjoint. Hence, Sh (P,¬¬) is generated by the sheafification of representables. But since
Yon (p) ↣ 1SetsPop , and because a is left-exact (geometric morphism), therefore a(Yon (p)) ↣
1Sh(P,¬¬).
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Dense Topology & ¬¬

Let’s first revisit the dense topology:

Definition 13.7.2.5. (Dense Topology on a Poset) Let P be a poset regarded as a category. We first
define a subset Dp ⊆ {q ∈ Ob(P) | q ≤ p} to be dense below p if for any r ≤ p, ∃ q ∈ Dp such that
q ≤ r. We then define a Grothendieck topology J of P given as (for any p ∈ Ob(P)):

J(p) := {Dp | Dp is dense below p} .

Extending the above definition to any category is obvious:

Definition 13.7.2.6. (Dense Topology on a Category) Let C be a small category. The dense topology
on C is defined as follows: for any object C of C,

JC := {S | for any f : D → C , ∃ g : E → D such that f ◦ g ∈ S} .

We will now see that dense topology on the SetsCop
is exactly the ¬¬ topology on it:

Proposition 13.7.2.7. Suppose C is a small category. Then, the ¬¬ Lawvere-Tierney topology on SetsCop

is equivalent to the dense topology on C.

Proof. First note that in SetsCop
, for a subobjectA↣ E, it’s negation (¬A) ↣ E is given as follows:

(¬A)(C) := {x ∈ EC | ∀ f : dom (f)→ C , Ef(x) ̸∈ A(dom (f))}.

Therefore ¬¬A would be:

(¬¬A)(C) := {x ∈ EC | ∀f : dom (f)→ C , ∃ g : dom (g)→ dom (f) such that E(f ◦ g)(x) ∈ A(dom (g))} .

Secondly, for any given site (C, J), the closure operation of LT topology on SetsCop
induced by

Grothendieck topology J is given by: for A↣ E in SetsCop
,

x ∈ Ā(C) ⇐⇒
{
f : dom (f)→ C | Ā(f)(x) ∈ E(dom (f))

}
∈ JC.

In particular, if we let (C, J) to be a dense topology, then the above condition would be:

x ∈ Ā(C) ⇐⇒ ∀ f : dom (f)→ C , ∃ g : dom (g)→ dom (f) such that E(f ◦ g)(x) ∈ A(dom (g))

and this is same as that of ¬¬A.

13.7.3 Axiom of Choice in a Topos

Axiom of choice says that for a collection of non-empty sets {Xi}i∈I , the set
∏
i∈I Xi is also non-

empty. This condition can also be stated equivalently as: A surjective function p : X −→ I has a
section s : I −→ X so that p ◦ s = 1I . We hence define the following:

Definition 13.7.3.1. (Axiom of Choice) Suppose E is a topos. Then E is said to follow axiom of choice if
for each epimorphism

X Y
p

has a section
Y Xs .

That is, for every epis p, there is an arrow s as above such that p ◦ s = 1Y .
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There is a weaker property for AC, called the internal axiom of choice.

Definition 13.7.3.2. (Internal Axiom of Choice) Suppose E is a topos. Consider the functor for any
object E of E:

(−)E : E −→ E

X 7−→ XE

(f : X → Y ) 7−→ (fE : XE → Y E).

The topos E is said to follow the internal axiom of choice if the above functor (−)E for any objectE, preserves
epimorphisms.

Remark 13.7.3.3. (AC =⇒ IAC) If p : X → Y is any epimorphism in E which has a section
s : Y → X , then pE : XE → Y E and sE : Y E → XE are such that pE◦sE = (p◦s)E = (1Y )E = 1Y E ,
because (−)E is a functor, and therefore sE is a section of pE . Hence axiom of choice implies
internal axiom of choice.

An interesting property of Sets is that the terminal object 1 generates the whole category. Here,
a collection of objects G of a category C is said to generate C if and only if for any two non-equal
parallel pair of arrows f ̸= g : A ⇒ B there exists an object G ∈ G and an arrow u : G → A such
that f ◦ u ̸= g ◦ u. A topos E is said to be well-pointed if the terminal 1 generates the E. A topos E
is additionally said to be non-degenerate if 0 ̸∼= 1.
Clearly Sets is a non-degenerate, well-pointed topos. Moreover:

Lemma 13.7.3.4. Suppose E is a non-degenerate topos. Then E is also a well-pointed topos if and only if
the functor

HomE (1,−) : E −→ Sets

is faithful.

Proof. (L =⇒ R) Suppose E is well-pointed and non-degenerate. If we have HomE (1, A) ∼=
HomE (1, B), then since 1 generates E, therefore HomE (X,A) ∼= HomE (X,B) because if f ̸= g :
X ⇒ A, then ∃ u : 1 → X (because 0 ̸∼= 1) such that f ◦ u ̸= g ◦ u : 1 −→ A ∈ HomE (1, A).
Since HomE (X,A) ∼= HomE (X,B) for any object X of E, hence by generalized elements, A ∼= B,
proving that the functor HomE (1,−) is injective over hom-sets.
(R =⇒ L) If HomE (1,−) is faithful, then if we take any two non-equal parallel arrows f ̸= g :
A ⇒ B, because 0 ̸∼= 1, then we can conclude that HomE (1, f) ̸= HomE (1, g) : HomE (1, A) ⇒
HomE (1, B), which means that for any u : 1→ A, HomE (1, f)(u) ̸= HomE (1, g)(u) =⇒ f ◦ u ̸=
g ◦ u. Hence 1 generates E, so E is well-pointed.

13.7.4 Independence of Continuum Hypothesis : The Cohen Topos

We now prove that there is a Boolean topos (a model of set theory) in which the continuum hy-
pothesis doesn’t hold. We show the entire construction in the theorem below:

Theorem 13.7.4.1. (Independence of Continuum Hypothesis) There is a Boolean topos satisfying the
axiom of choice in which continuum hypothesis doesn’t hold.
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Proof. Act 1: Requirement in Sets to follow CH
We first understand what we need in Sets in order for it to follow CH. The continuum hypothesis
says that there is no set whose cardinality is between N and PN = R. If this doesn’t hold, then we
must have a set X such that N ↣ X ↣ PN where the subobjects are strict, that is, there are no
epimorphisms N → X and X → PN. We will construct a Boolean topos (a model of set theory)
where we would indeed have an objectX with the above mentioned monics. In order to construct
this Boolean topos, let us begin with the usual Sets where we take a set B with cardinality strictly
greater than that of PN. We would use27 B to force some other unique set to be in between the
nno and it’s power object in a so constructed Boolean topos. We would then conclude that this so
constructed topos will not follow CH.

Act 2: Construction of the Cohen Poset P
To make this Boolean topos, let’s first analyze our requirement of g : B ↣ PN. We can equiva-
lently state it by the power adjunction:

ĝ : B × N −→ Ω ∼= 2

(b, n) 7−→
®
0 if n ∈ g(b)
1 if n /∈ g(b)

where Ω is the subobject classifier of Sets . If g ought to be a monic, then we must have that

b ̸= b′ =⇒ g(b) ̸= g(b′) ⇐⇒ ∃ n such that ĝ(b, n) ̸= ĝ(b′, n).

or the contrapositive:

ĝ(b, n) = ĝ(b′, n)∀ n =⇒ b = b′

These conditions are particularly important as we would try to reach this condition for two b ̸= b′.
Now, define a condition as a tuple (Fp, p) where Fp ⊆ B × N is finite and p : Fp −→ 2. What
we wish to do is to get closer and closer to the whole B × N gradually, this means that as Fp gets
bigger and bigger, we wish to get the corresponding p closer and closer to ĝ. In order to argue this
more concretely, we construct the following poset, called the Cohen poset:

P := {(Fp, p) | Fp ⊆ B × N is finite & p : Fp → 2}

and the order ≤ in P is given by:

p ≤ q ⇐⇒ Fq ⊆ Fp & p|Fq = q.

For the following we regard the Cohen poset P as a category P.

Act 3: Transferring B × N from Sets to SetsPop

27Note that the idea here is to use B to force another set to be in between them in some other model of set theory
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We now use the adjunction28 given in Definition 13.2.6.2, as follows:

SetsPop
Sets

∆

⊣

Γ

.

The left adjoint ∆ takesB×N to ∆(B×N) but since ∆ is left-exact (footnote 35), hence ∆(B×N) ∼=
∆B×∆N. Now, as we pointed to earlier, we wish to get a p as close to ĝ as possible, so we consider
the following subobject of ∆(B × N):

A↣ ∆(B × N)

which takes a condition p of P to:

A : Pop −→ Sets
p 7−→ {(b, n) ∈ B × N | p(b, n) = 0} .

We now observe the following:

Act 4: A is a closed subobject of ∆(B × N) with respect to ¬¬ topology on SetsPop

The proof of the above statement is as follows: We just wish to show ¬¬A ⊆ A in the lattice
SubP (∆(B × N)) as the other side is trivial. As the proof of Proposition 13.7.2.7 showed, we have
(b, n) ∈ ¬¬A(p) iff ∀q ≤ p, ∃r ≤ q such that ∆(B × N)(r ≤ p)((b, n)) ∈ A(r) or (b, n) ∈ A(r) or
r(b, n) = 0. Assume (b, n) /∈ A(p). Hence p(b, n) ̸= 0. But then we are not sure whether p(b, n) = 1
or p(b, n) is undefined. For the former, if p(b, n) = 1, then clearly for any r ≤ p, r(b, n) = 1 because
r|Fp = p and so (b, n) /∈ ¬¬A(p). For the latter, if p(b, n) is undefined, then for some q ≤ p we
would have q(b, n) = 1, and then for any r ≤ q, r(b, n) = 1 to conclude that (b, n) /∈ A(p). Both
cases suggest (b, n) /∈ ¬¬A(p). Hence proved the fact that if (b, n) /∈ A(p) =⇒ (b, n) /∈ ¬¬A(p)
and it’s contrapositive gives the required result.

Act 5: Yielding an arrow ∆B −→ Ω∆N
¬¬

Since A is a closed subobject of ∆(B × N), therefore the characteristic arrow ∆(B × N) −→ Ω
factors via the LT Topology ¬¬ : Ω −→ Ω and ¬¬ : Ω −→ Ω itself factors via the Ω¬¬ which is the
subobject classifier of Sh (P,¬¬), as shown below:

∆(B × N) Ω

Ω Ω¬¬

char A

char A ¬¬ m

r

.

Therefore, we have an arrow

f := r ◦ char A : ∆B ×∆N −→ Ω¬¬
28As alluded to earlier, this is actually a geometric morphism.
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and hence it’s P -transpose would be:

f̂ : ∆B −→ Ω∆N
¬¬ .

Act 6: f̂ : ∆B −→ Ω∆N
¬¬ is a monomorphism in SetsPop

To show the above, we just have to show that each component f̂p : ∆B(p) = B −→ Ω∆N
¬¬ (p) is a

monomorphism. To this extent, take any two non-equal elements b ̸= b′ from B. We wish to show
that f̂p(b) ̸= f̂p(b′). First, we note that Ω∆N

¬¬ , by Proposition 13.1.3.1, is given as follows:

Ω∆N
¬¬ : Pop −→ Sets

p 7−→ Nat (HomP (−, p)×∆N,Ω¬¬).

Therefore, f̂p(b) is a natural transformation as:

f̂p(b) : HomP (−, p)×∆N⇒ Ω¬¬.

To fulfill our aim, we must show that f̂p(b) ̸= f̂p(b′). Again, as both are natural transforms, so we
would be done if we would show that for each q ≤ p, (f̂p(b))q ̸= (f̂p(b′))q. Again,

(f̂p(b))q : (HomP (−, p)×∆N)(q) ∼= HomP (q, p)×∆N(q) ∼= {⋆} × N ∼= N −→ Ω¬¬(q)
n 7−→ {r ∈ P | r ≤ q & r(b, n) = 0}.

Now consider (f̂p(b))q(n) as above. If r ∈ (f̂p(b))q(n), then r(b, n) = 0 and so all t ≤ r is in
(f̂p(b))q(n). Since all conditions Fr are finite, hence for large enough n, neither (b, n) nor (b′, n)
would be defined for r : Fr → 2. One can now easily construct some t ≤ r with t(b, n) = 0 and
t(b, n) = 1 and so t ∈ (f̂p(b))q(n) but t /∈ (f̂p(b))q(n). Hence we are done.

Act 7: Transferring monic f̂ : ∆B −→ Ω∆N
¬¬ from SetsPop

to a monic in Sh (P,¬¬) via sheafification
Since sheafification is inverse image of a geometric morphism, therefore it would trivially preserve
the monic f̂ . In particular, we would have the following monic:

a(f̂) : a(∆B) ↣ a(Ω∆N
¬¬ )

and because a(XY ) ∼= a(X)a(Y ), therefore a(Ω∆N
¬¬ ) ∼= (a(Ω¬¬))a(∆N) ∼= Ωa(∆N)

¬¬ , we can rewrite
above as (denoting (̂−) := a(∆(−))): “̂

f : “B ↣ ΩN̂
¬¬.

Act 7: Conclusion
We have finally proved that “B is a subobject of ΩN̂

¬¬
∼= P (N̂) where P (N̂) is the power object of

the nno N̂ in Sh (P,¬¬). One can also show that (but we won’t here for space concerns! Refer
to Section 6.3, pp 284 of [MacMoer] instead) the cardinal inequality of our choice of B in Sets as
N < PN < B is preserved in Sh (P,¬¬) as

N̂ < P̂N < “B
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and this, combined with “B < P (N̂), gives us that in the Boolean Grothendieck topos (which is a
model of set theory!) Sh (P,¬¬), we would have the following cardinal inequality:

N̂ < P̂N < P (N̂) in Sh (P,¬¬).

Therefore, Sh (P,¬¬) is a Boolean Grothendieck topos in which continuum hypothesis fails as
above but axiom of choice holds by Proposition 13.7.2.4.

Remark 13.7.4.2. (The Cohen Topos) The Boolean Grothendieck Topos of ¬¬-sheaves over the
Cohen poset P, Sh (P,¬¬), is usually called the Cohen topos.

13.7.5 Integers in a Topos

The concept of Dedekind cuts is usually used to generate irrationals from rationals. One can
essentially extend the idea on to a sheaf topos Sh (X) where X is some topological space.
Let’s first construct the integers from naturals:

From NE to ZE

In the usual category Sets, we have the N. One can construct all integers by collecting all pairs
of naturals whose difference between them is same, that is, Z can be constructed as the following
quotient set:

Z := {(n,m) | n,m ∈ N}/ ∼

where ∼ is the following equivalence relation,

(n,m) ∼ (n′,m′) ⇐⇒ n+m′ = m+ n′.

The relation ∼ essentially collects all the pairs (n,m) whose difference (n − m) are same. More
categorically, we can represent above as an universal construction in Sets as follows:

1. Construct the kernel pair of + : N× N −→ N in Sets:

E N× N

N× N N+

+a

b

⌟
.

2. Then construct the following coequalizer where π1, π2 : N × N ⇒ N are the product projec-
tions:

E N× N Z
⟨π1◦a,π2◦b⟩

⟨π2◦a,π1◦b⟩
.

The fact that this universal description is equivalent to the previous set-theoretic one can be seen
via the observation that E is the collection of 4-tuples (n,m′, n′,m) with n +m′ = m + n′ with a
and b being the respective projections, and the arrows π1 ◦ a takes (n,m′, n′,m) to n, π2 ◦ b takes it
to m, π2 ◦ a takes it to m′ and π1 ◦ b takes it to n′.
With this, we are motivated to state the following:
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Definition 13.7.5.1. (Integer Object in a Topos) Let E be a topos and NE being the natural numbers
object in E. Then, we define the integer object ZE in E as the following coequalizer:

1. Let E be the following pullback:

E NE × NE

NE × NE NE+

+a

b

⌟

2. And then define the ZE is defined as:

E NE × NE ZE

⟨π1◦a,π2◦b⟩

⟨π2◦a,π1◦b⟩
.
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In this chapter we give an overview of the language of∞-categories. The ultimate goal of this
chapter is to define the∞-category of∞-groupoids and state the Yoneda lemma in∞-categorical
setting. Therefore, if you believe that ∞-groupoids are spaces (homotopy hypothesis), then we
would construct the∞-category of spaces by the end of this chapter. In the process, we will learn
about the techniques invovled in manipulating∞-categories. In this chapter, we will only work
with the category of compactly generated spaces and by Top we mean category of compactly
generated spaces.

14.1 Simplicial sets

The goal of simplicial sets is to obtain a combinatorial approximation of topological spaces. We de-
scribe simplicial sets as a presheaf over simplex category. One can motivate themselves why this
definition is the correct definition for combinatorially handling topological spaces by reading the
review paper cite[Bergner’s simplicial set paper]. We give some basic properties of such objects.
We also give a general important result about presheaves, "every presheaf is a colimit of repre-
sentable presheaves". This is of fundamental importance in the development of∞-categories.

429
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Remark 14.1.0.1. (Notations)
1. As we will be frequently constructing and dealing with presheaf category over a category C,

therefore instead of only denoting it by PSh(C), we will also be denoting it by Ĉ, depending
on the convenience of the given situation.

2. We will denote objects of an ordinary 1-category C by lowercase alphabets like a, b, c, .., x, y, z,
morphisms in C by lowercase letters like f, g, h, . . . and functors C → D by uppercase al-
phabets like A,B,C, ...,X, Y, Z and also by lowercase alphabets like f, g, h, . . . .

3. Let C be a category and c ∈ C be an object. We denote by hc : Cop → Set the contravariant
hom-functor given by a 7→ HomC (a, c).

4. We will denote∞-categories by A,B,C, . . . ,X,Y,Z.

Let us also as a reminder put the usual Yoneda lemma.

Lemma 14.1.0.2. (Yoneda lemma) Let A be a category, a ∈ A be an object and F be a presheaf over A.
Then, there is a natural isomorphism

Hom“A (ha, F )
∼=−→ F (a).

Proof. Consider the following maps

ϕ : Hom“A (ha, F ) −→ F (a)
α 7−→ αa(ida).

and

ξ : F (a) −→ Hom“A (ha, F )
x 7−→ β : ha → F

where β is defined as follows. Consider any a′ ∈ A and any f ∈ ha(a′). Define βa′ : ha(a′)→ F (a′)
by mapping as f 7→ F (f)(x).

One then sees that ξ ◦ ϕ = id by naturality of α and that ϕ ◦ ξ = id by funtoriality of F .

Corollary 14.1.0.3. Let A be a category and define Yon : A → “A to be the Yoneda functor given by
a 7→ ha and a→ b 7→ ha → hb. Then, Yon is fully-faithful.

Proof. We have by Yoneda lemma (Lemma 14.1.0.2) that Hom“A (ha, hb) ∼= hb(a) = HomA (a, b).

14.1.1 Extension of functor by colimits-I

The following is a fundamental result in category theory.

Theorem 14.1.1.1. Let A be a small category and C be a locally small category with all small colimits.
Then, for any functor

f : A→ C

we get two functors

f! : “A −→ C
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and

f∗ : C −→ “A
c 7−→ HomC (f(−), c)

such that
1. f! is left adjoint of f∗ “A C

f!

f∗

⊣ .

The functor f! is called the extension of f by colimits.
2. Denoting Yon : A ↪→ “A to be the Yoneda embedding, we get that the following commutes upto a

unique natural isomorphism “A C

A

Yon

f!

f

.

That is, f!(ha) ∼= f(a) where ha = HomA (−, a).

Proof. The main heart of the proof is the fact that every presheaf is a colimit of representables
(Proposition 1.1.8 of cite[Cis]).

1. We define f! : “A→ C as follows. Pick anyX ∈ “A. Consider the functor ϕX : A/X → “A from the
category of elements of X given by (a, s) 7→ ha and on maps by f : (a, s)→ (b, t) by hf : ha → hb.
By Proposition 1.1.8 of cite[Cis], we have lim−→(a,s) ha = X . Define f!(X) = lim−→(a,s) f(a) which exists
in C as C has all small colimits. Consequently, we obtain the following natural isomorphisms by
Yoneda lemma (Lemma 14.1.0.2) and limit preserving properties of contravariant homs

HomC (f!(X), c) ∼= HomC

(
lim−→
(a,s)

f(a), c
)
∼= lim←−

(a,s)
HomC (f(a), c)

∼= lim←−
(a,s)

Hom“A (ha, f∗(c)) ∼= Hom“A( lim−→
(a,s)

ha, f
∗(c)

)
∼= Hom“A (X, f∗(c)).

2. Since HomC (f!(ha), c) ∼= Hom“A (ha, f∗c) ∼= f∗(c)(a) = HomC (f(a), c) for all objects c ∈ C,
therefore the result follows by Corollary 14.1.0.3.

The above theorem will take a central place in constructions of this chapter. Indeed, let us
point the following applications of this theorem before stating its proof.

Corollary 14.1.1.2. Let A be a small category and C be a category with small colimits. If F : “A → C is a
colimit preserving functor. Then

1. there exists f : A→ C such that f! ∼= F naturally,
2. F has a right adjoint.
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Proof. We first define the required f . For any object a ∈ A, define f(a) := F (ha). Then by Theorem
14.1.1.1, 1, it follows that f!(ha) ∼= f(a) = F (ha). Since we know that every presheaf is presented
as a colimit of representable functors indexed by its category of elements, thus we get that for any
X ∈ “A, F (X) ∼= f!(X) naturally. The second conclusion also follows from Theorem 14.1.1.1, 2.

The following result will be important in order to define simplicial mapping spaces.

Proposition 14.1.1.3. For any small category A, the presheaf category “A is Cartesian closed where the
internal hom object is defined by

Hom (X,Y )(a) := Hom“A (X × ha, Y )

and on morphisms as

Hom (X,Y )(f) := Hom“A (X × hf , Y ).

Proof. We wish to show that Hom (−,−) acts as internal hom object in “A. This can be seen by
establishing following natural bijections

Hom“A (T ×X,Y ) ∼= Hom“A (T,Hom (X,Y ))

This follows from contemplating the functor fX : A→ “A for all X ∈ “A given by a 7→ X ×Yon(−),
together with Theorem 14.1.1.1. Indeed, first observe that“A is locally small with all small colimits.
Second, observe from the proof of Theorem 14.1.1.1 that for any Z ∈ “A, we have that fX! : “A→ “A
takes any Z ∈ “A and maps it to fX!(Z) = lim−→(a,s) fX(a) where (a, s) varies over A/Z, the category
of elements of Z. Since fX(a) = X × ha and filtered colimits commute with finite limits, therefore
we get a natural isomorphism fX!(Z) ∼= X × Z. Consequently, the adjunction of Theorem 14.1.1.1
completes the proof.

14.1.2 Categories ∆ and sSet

Consider the category of all finite sets [n] with n + 1 elements with linear order 0 < 1 < · · · < n
and mappings being the non-decreasing maps. Denote this category by ∆ and call it the simplex
category. A simplicial set is then a presheaf over ∆. Let the category of all simplicial sets be denoted
sSet.

There are two important class of maps in ∆.

Definition 14.1.2.1 (Face and degeneracy maps). For each n ∈ N, we have n+ 1 face maps

di : [n− 1]→ [n]

j 7→
®
j if j ≤ i
j + 1 if j > i

where 0 ≤ i ≤ n and n degeneracy maps

si : [n]→ [n− 1]

j 7→
®
j if j ≤ i
j − 1 if j > i

where 0 ≤ i ≤ n− 1.
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Remark 14.1.2.2. By Yoneda embedding, we will allow ourselves to abuse the notation by writing
di : [n − 1] → [n] as the unique map di : ∆n−1 → ∆n and si : [n] → [n − 1] as the unique map
si : ∆n → ∆n−1 in sSet. For a simplicial set X we may thus interpret x ∈ Xn as x : ∆n → X . The
above give maps which we denote as

di : Xn −→ Xn−1

x 7−→ x ◦ di
for each 0 ≤ i ≤ n also called the face maps and

si : Xn−1 −→ Xn

x 7−→ x ◦ si
for each 0 ≤ i ≤ n− 1 also called degeneracy maps.

It is quite easy to observe, but very important for applications, the following relations satisfied
by face and degeneracy maps. All these are immediate from definition given above.

Proposition 14.1.2.3. The following relations hold in ∆ (and thus in sSet ):
1. If i < j, then djdi = didj−1.
2. If i ≤ j, then sjsi = sisj+1.
3. We have

sjdi =


disj−1 if i < j

id if i = j, j + 1
di−1sj if j + 1 < i.

Consequently, for a simplicial set, dual relations hold.

Proposition 14.1.2.4. Let X be a simplicial set. Then the face and degeneracy maps of X satisfies the
following relations:

1. If i < j, then didj = dj−1di.
2. If i ≤ j, then sisj = sj+1si.
3. We have

disj =


sj−1di if i < j

id if i = j, j + 1
sjdi−1 if j + 1 < i.

Remark 14.1.2.5. One may keep the following picture in mind while working with a simplicial set
X :

[0] [1] [2] · · ·

X0 X1 X2 · · ·

d0
d1

s0

d0
d1
d2

s0
s1

di

si

d0
d1

s0

d0
d1

d2

s0
s1

di

si

.
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Remark 14.1.2.6. There is a functor

|−| : ∆ −→ Top
[n] 7−→ |∆n|

where |∆n| is the standard topological n-simplex in Rn+1 and for f : [n]→ [m] in ∆, we have

|f | : |∆n| → |∆m|

(t0, . . . , tn) 7−→

Ñ ∑
i∈f−1(0)

i, . . . ,
∑

i∈f−1(m)
i

é
.

Example 14.1.2.7 (Singular chains). An important example of a simplicial set is that of Sing(X)
defined as

Sing(X) : ∆op → Set
[n] 7→ HomTop (|∆n| , X).

The main point is that Sing(X) as a simplicial set knows all about the homotopy type of space X .
Consequently, we will denote X([n]) := Sing(X)n = HomTop (|∆n| , X).

Example 14.1.2.8 (Nerve of a category). Let C be a category. Define the nerve of C as

NC : ∆op → Set
[n] 7→ HomCat ([n],C)

where [n] is a category as it is a poset. Consequently, NCn is the set of all n-composable arrows of
C.

Theorem 14.1.2.9. Nerve construction is a fully-faithfull embedding of categories into simplicial sets.

14.1.3 Operations on simplicial sets

Define product, coproducts, subspaces, unions, quotients, limits, colimits and mapping objects.TODO!!

Example 14.1.3.1 (Standard ∆n, boundaries ∂i∆n, ∂∆n and horn Λni ). Denote ∆n = N [n] to be the
nerve of the category [n]. That is,

∆n([m]) = ∆n
m = Hom∆ ([m], [n]) = h[n]([m])

which are exactly all representable presheaves over ∆. These are the combinatorial analogues of
the topological n-simplex |∆n| and we tend to think about ∆n using the intuition gained from the
topological one. There are some important simplicial subsets of ∆n.

Let E ⊆ [n] be a totally ordered subset. Define ∆E = NE to be a simplicial subset of ∆n.
From this we derive the following simplicial subsets of ∆n. The first is the ith-boundary of ∆n for
0 ≤ i ≤ n given by

∂i∆n =
⋃

i/∈E⊊[n]
∆E ∼= ∆n−1.
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The second is the boundary of ∆n given by

∂∆n =
⋃

E⊊[n]
∆E =

n⋃
i=0

∂i∆n

The third is the ith-horn of ∆n denoted Λni given by

Λni =
⋃

i∈E⊊[n]
∆E .

Remark 14.1.3.2. Let n ≥ 1, 0 ≤ i ≤ n and m ≥ 0. Note that we have

(∂i∆n)m =


Order preserving maps f : [m] →
[n] which are not surjective and
i /∈ Im (f).


(∂∆n)m =

ß
Order preserving maps f : [m] →
[n] which are not surjective.

™
(Λni )m =


Order preserving maps f : [m] →
[n] which are not surjective and
i ∈ Im (f).

 .

For two simplicial sets, we can define the internal hom using the Proposition 14.1.1.3.

Definition 14.1.3.3 (Homotopy & mapping complex). Let S, T be a simplicial set. Then Hom (S, T )
denotes the following simplicial set

[n] 7→ HomsSet (S ×∆n, T ).

An n-simplex of Hom (S, T ) is defined to be an n-homotopy from S to T . A 1-homotopy H is also
referred to as a homotopy from H|S×{0} =: f to H|S×{1} =: g.
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14.1.4 Basic properties

Do results and exercises from various sources to showcase the combinatorial arguments used while working
with simplicial sets.

We discuss some properties of simplicial sets which would be useful later on. Some of these
might be taken as exercises on combinatorial manipulations with simplicial sets.

We first begin with a simple observation.

Definition 14.1.4.1 (n-degenerate). A simplicial set X is said to be n-degenerate if for all m > n,
all m-simplices in Xm are degenerate.

Example 14.1.4.2. Each standard simplicial sets ∆n are n-degenerate. Indeed, its m-simplices for
m > n are

∆n
m = {Order preserving maps f : [m]→ [n]} .

But as m > n, therefore every such f is necessarily non-injective. It follows that each simplex in
∆n
m is in the image of si : Xm−1 → Xm for some 0 ≤ i ≤ m− 1.

For similar reasons, the ith-boundary ∂i∆n, boundary ∂∆n and horns Λni for 0 ≤ i ≤ n are all
n− 1-degenerate.

Lemma 14.1.4.3. Let X be an n-degenerate simplicial set and Y be a simplicial set. Then any collection of
functions {ϕm : Xm → Ym}0≤m≤n such that for any f : [k] → [l] in ∆ with 0 ≤ k, l ≤ n, the following
square commutes

Xl Yl

Xk Ykϕk

ϕl

f∗ f∗ ,

the collection {ϕm}0≤m≤n lifts to a unique map of simplicial sets ϕ : X → Y .

Remark 14.1.4.4. As a consequence of Lemma 14.1.4.3, in order to give a map of simplicial sets
from an n-degenerate simplicial set S, it suffices to construct the required map only onm-simplices
for 0 ≤ m ≤ n.

Proof of Lemma 14.1.4.3. Let {ϕm}0≤m≤n be as given. We wish to define ϕm′ form′ > n. We proceed
by induction on m′. Suppose ϕm′−1 is given to us. Since we have the following diagram

Xm′−1 Ym′−1

Xm′ Ym′ϕm′

ϕm′−1

si si

and that every element of Xm′ is in image of si (guaranteed by Proposition 14.1.2.4, 3), it follows
that there is a unique choice of ϕm′ to fit in the above diagram, as required.

Lemma 14.1.4.5. Let n ≥ 1 and 0 ≤ i ≤ n. Then,
1. ∂i∆n has exactly 1 non-degenerate n− 1-simplex,
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2. ∂∆n has exactly n+ 1 non-degenerate n− 1-simplices,
3. Λni has exactly n non-degenerate n− 1-simplices.

Proof. These three items are immediate from Remark 14.1.3.2.

The following is an important adjunction which will be consistently used in later sections.
Moreover, it is generally good to keep in mind all the time while working with simplicial sets so
that one transfer intution from topological spaces to that of simplicial sets, as we would need to
do time and time again (for example when dealing with homotopy of simplicial sets).

Theorem 14.1.4.6 (Geometric realization). The singular functor Sing : Top → sSet has a left adjoint
|−| : sSet→ Top

sSet Top
|−|

Sing

⊣ .

The functor |−| is called the geometric realization and for a simplicial set X , we have

|X| =
∐
n≥0

Xn × |∆n| / ∼

where ∼ is generated by (f∗x, t) ∼ (x, |f | t) for all f : [n]→ [m] in ∆, x ∈ Xm and t ∈ |∆n|.

Proof. The main idea is that any map X → Sing(Y ) is a natural transform of presheaves. One
observes that the naturality conditions on this morphism is equivalently represented in terms of a
map |X| → Y . TODO.

Example 14.1.4.7. As an example, one can show that

∆1 ×∆1 ∼= ∆2 ∪∆1 ∆2.

Observe that even though ∆1 has all simplices of dimension ≥ 2 as degenerate, yet ∆1 ×∆1 has
two non-degenerate 2-dimensional simplices.

A consequence of the above isomorphism is that the geometric realization of ∆1×∆1 is exactly
I2, the unit square, which is the product of the geometric realization of ∆1 with itself. Indeed, this
is an instantiation of the general result in Theorem 14.1.4.9.

Remark 14.1.4.8. It is immediate to observe from Theorem 14.1.4.6 that geometric realization of
∆n is exactly the standard topological n-simplex. Similarly, ∂∆n and |Λni | are homeomorphic to
exactly the pictures that we used in our mind to understand them.

Finally, the main result is as follows.

Theorem 14.1.4.9. Let X,Y be simplicial sets. Then the natural map

|X × Y | → |X| × |Y |

is a homeomorphism.

We show that nerve of a category satisfies lifting property which would prove to be useful
later on while discussing∞-categories.
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Proposition 14.1.4.10. Let X = NC be thr nerve of a small category C. Then for any 0 < i < n, the
following lifting problem is uniquely filled:

Λni X

∆n

!
.

Proposition 14.1.4.11. Let S be a simplicial set and X a Kan complex. Then Hom (S,X) is a Kan
complex, denoted Map(S,X).

14.1.5 Eilenberg-Zilber categories

This is an abstraction of the type of combinatorial proofs that we would like to make in the sim-
plex category ∆. Indeed, as we would have to work with surjections and injections in ∆ primarily,
which interacts with the the size of [n] (which we would define to be n in a minute) as an injection
would only increase the size and a surjection would only decrease it, therefore we need a system-
atic toolset to work with these things. In particular, if we denote ∆+ to be the subcategory of all
injective maps, ∆− to be the subcategory of all surjective maps in ∆ and d : Ob(∆) → N the size
map, then we have the following properties about the tuple (∆,∆+,∆−, d):

1. All bijections are in both ∆+ and ∆−.
2. The dimension map d takes bijective cardinals to the same natural.
3. Let σ : [n] → [m] in ∆ which is not bijective. If σ is injective (i.e. in ∆+), then d(a) < d(b)

and if σ is surjective (i.e. in ∆−), then d(a) > d(b).
4. Any map σ : [n]→ [m] in ∆ factors as a surjection followed by an injection.
5. For any surjective map σ : [n] → [m] in ∆, there exists a section π : [m] → [n], i.e. such that
πσ = id[n].

6. If σ : [n]→ [m] is surjective, then the set of sections of σ uniquely determines the map σ.

Remark 14.1.5.1. We need this abstraction of properties of ∆ so that with the same techniques, we
can work with bisimplicial sets, which is important if one wishes to consider simplicial objects in
sSet.

These considerations about ∆ motivates the following definition.

Definition 14.1.5.2. (Eilenberg-Zilber categories) A category A is said to be an Eilenberg-Zilber
category (or much simply, EZ cateogry), if there exists subcategories A+,A− and a function d :
Ob(A)→ N which satisfies the following axioms:

1. All isomorphisms of A are in both A+ and A−.
2. If a, a′ are isomorphic objects in A, then d(a) = d(a′).
3. Let σ : a → a′ not be an isomorphism. If σ is in A+, then d(a) < d(a′). If σ is in A−, then
d(a) > d(a′).

4. For any map σ : a→ a′ in A, there exists unique factorization of σ into maps p : a→ c in A−
and i : c→ a′ in A+

c

a a′

p i

σ

.



14.1. SIMPLICIAL SETS 439

5. If σ : a→ a′ is a map in A−, then there exists a section π : a′ → a, i.e. πσ = ida.
6. If σ, σ′ are two maps in A− such both of them has the same collection of sections, then σ = σ′.

The main thrust of this section is to discuss presheaves over an EZ category A, keeping in
mind the prototypical case of A = ∆. Indeed, the main result and its corollaries will serve first as
a practice for the type of arguments we shall need later and also as a tool to be consistently used
later in constructions with simplicial sets (which are, presheaves over ∆).

Example 14.1.5.3. By previous discussion, it is clear that the simplex category ∆ is an EZ category.
Let A be an EZ category and X a presheaf over A. Then the category of elements of X , A/X ,

is an EZ category again. Indeed, define (A/X)+ exactly as those pairs (a, s) where a ∈ A+ and
(A/X)− exactly as those pairs (a, s) where a ∈ A−. Further for an object (a, s), define d(a, s) =
d(a), where the latter d is coming from the EZ structure on A.

14.1.6 Kan complexes and homotopy groups

In the beginning section, we showed how simplicial sets can be viewed as combinatorial version of
usual spaces. However, in order to do homotopy theory in this combinatorial setting, we need to
isolate a class of simplicial sets which are right for this kind. Indeed, these will be Kan complexes.

We wish to define πn(X,x) where x ∈ X0 is a 0-simplex of a simplicial set. To this end, we
immediately run into problems as π0(X,x) should be the equivalence class of all those 0-simplices
which are boundaries of a 1-simplex. But it is immediately clear that this is not an equivalence
relation! Indeed, consider ∆1. Then the above relation is not symmetric as we have 0 → 1 as a
1-simplex but there is no 1→ 0 in ∆1

1. Similarly, if we try to prove transitivity of the above relation,
we land up in the following situation. Let x → y, y → z be two 1-simplices in X . Then, we wish
to find a 1-simplex x→ z in X . Note that given x→ y and y → z, we have a map Λ2

1 → X and we
wish to wish to fill the following diagram

Λ2
1 X

∆2

.

So we need those simplicial sets, where the above dotted arrow always exists.

Definition 14.1.6.1 (Kan complex). A simplicial set X is a Kan complex if for any n ≥ 0 and any
0 ≤ i ≤ n, the following lifting diagram is filled

Λni X

∆n

.

Example 14.1.6.2. Clearly, ∆n are not Kan complexes for n ≥ 0. Moreover, NC is a Kan complex
if and only if C is a groupoid. This is immediate.

The prototypical (and in some sense, the only example) of Kan complexes are those obtained
by Theorem 14.1.4.6.
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Proposition 14.1.6.3. Let X be a topological space. Then Sing(X) is a Kan complex.

Proof. Let n ≥ 0, 0 ≤ i ≤ n. Then a map Λni → Sing(X) is equivalent to a map |Λni | → X by
adjunction of Theorem 14.1.4.6. Consequently, we wish to fill the following diagram

|Λni | X

|∆n|

.

But this is immediate as |Λni | ↪→ |∆n| is a retraction.

Another example of a Kan complex is the mapping complex.

Definition 14.1.6.4 (Mapping complex). Let X,Y be two spaces. The mapping complex, denoted
Map(X,Y ), is the one whose n-simplices are

[n] 7→ HomTop (X × |∆n| , Y ).

Note that Map(X,Y ) has 0-simplices as continuous maps, 1-simplices as homotopies and so
on. The name is justified by the following result.

Corollary 14.1.6.5. Let X,Y be spaces. Then the mapping complex Map(X,Y ) is a Kan complex.

Proof. As all spaces are compactly generated, therefore we have HomTop (X × |∆n| , Y ) ∼= HomTop
(
|∆n| , Y X

)
.

Consequently, Map(X,Y ) ∼= Sing(Y X), which is a Kan complex by Proposition 14.1.6.3.

One can now check that the relation mentioned in the beginning on X0 is indeed an equiva-
lence relation and would thus yield the definition of π0(X,x), however, we would like to define
all homotopy groups in one go. We first define the notion of two simplicies being homotopic.

Definition 14.1.6.6 (Homotopic rel ∂). LetX be a Kan complex and σ, τ ∈ Xn be two n-simplicies.
Then σ and τ are homotopic rel ∂ if there exists an n + 1-simplex ψ ∈ Xn+1 such that σ|∂∆n =
τ |∂∆n and ∂nψ = σ, ∂n+1ψ = τ and for all 0 ≤ i ≤ n − 1, ∂iψ = σdisn−1 = τdisn−1. We can
diagramatically represent these conditions as the commutativity of the the diagrams

X ∆n

∆n ∂∆n

σ

τ

,

∆n+1 X ∆n+1

∆n ∆n

ψ

dn σ dn+1

ψ

τ

and for 0 ≤ i ≤ n− 1
∆n+1 X ∆n

∆n ∆n−1

ψ

di

τ

di

sn−1

in sSet.
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Indeed, we see that this generalizes our previous notion of homotopy relative to boundary as
follows.

Lemma 14.1.6.7. Let X = Sing(Y ) be the Kan complex associated to a space Y . Then two n-simplices
σ, τ ∈ Xn are homotopic rel ∂ if and only if σ, τ : |∆n| → Y are homotopic relative to |∂∆n| ↪→ |∆n| in
the classical sense.

Proof. Let σ, τ : ∆n → X be two n-simplices. These are homotopic rel ∂ if the diagrams in Def-
inition 14.1.6.6 commutes in sSet. By the adjunction of Theorem 14.1.4.6, this is equivalent to
commutativity of the following diagrams in Top

Y |∆n|

|∆n| |∂∆n|

σ

τ

,

∣∣∆n+1∣∣ X
∣∣∆n+1∣∣

|∆n| |∆n|

ψ

dn σ dn+1

ψ

τ

and for 0 ≤ i ≤ n− 1 ∣∣∆n+1∣∣ Y |∆n|

|∆n|
∣∣∆n−1∣∣

ψ

di

τ

di

sn−1

.

But this is equivalent to the data of a homotopy H : |∆n| × I → Y rel boundary. Indeed, since we
want H0 = σ, H1 = τ and Ht||∂∆n| = σ||∂∆n| = τ |∂∆n for all t ∈ I , therefore we naturally get that
H factors through

∣∣∆n+1∣∣. This can be visualized for a 3-simplex immediately.

Finally, when X is a Kan complex, then this is an equivalence relation. This is where combina-
torial relations between face and degeneracy maps of a simplicial set as provided in Proposition
14.1.2.3 becomes handy.

Proposition 14.1.6.8. Let X be a Kan complex. The homotopy rel ∂ is an equivalence relation on each Xn

for n ≥ 1.

Proof. We first show reflexivity. Consider σ : ∆n → X an n-simplex. We claim that ψ = σsn :
∆n+1 → X works as the homotopy from σ to σ. Indeed, we see that ψdn = σsndn = σ and
ψdn+1 = σsndn+1 = σ by Proposition 14.1.2.3. Similarly, for 0 ≤ i ≤ n− 1, we have ψdi = σsndi =
σdisn−1 by the same result. This establishes reflexivity.

We now show symmetry. Let σ ∼ τ for some σ, τ : ∆n → X with σ|∂∆n = τ |∂∆n . Then, there
exists ψ : ∆n+1 → X with ψdn = σ, ψdn+1 = τ and ψdi = σdisn−1 = τdisn−1 for 0 ≤ i ≤ n − 1.
We wish to show that τ ∼ σ. We will use the fact that X is a Kan complex (so that all horns can
be filled). In particular, we will construct a horn κ : Λn+2

n → X , filling which will give us the
required homotopy from τ to σ. Indeed, let κ be obtained from ψ by adding degeneracies such
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that κdn+2 = ψ and κdn+1 = σsn, that is, the degenerate n + 1-simplex obtained by repeating
the nth-vertex of σ. For 0 ≤ i ≤ n − 1, we keep κdi = ψdisn−1. Filling the horn κ yields an
n + 2-simplex κ̃ : ∆n+2 → X whose nth-face is exactly a homotopy from τ to σ. Indeed, denote
φ = κ̃dn. Then, φdn = κ̃dndn = κ̃dn+1dn = σ. Similarly, φdn+1 = τ . These follow from the
observation that dndn is the unique n-simplex of κ̃ not containing the vertices n and n + 1 in κ̃.
For 0 ≤ i ≤ n − 1, by Proposition 14.1.2.3, we have φdi = κ̃dndi = κ̃didn−1, which in turn is
κdidn−1 = ψdisn−1dn−1 = ψdi = σdisn−1, as needed. This shows symmetry.

Finally, we wish to show transitivity. Let ψ,ψ′ ∈ Xn+1 be homotopies σ ∼ τ and τ ∼ η
respectively for some σ, τ, η ∈ Xn. We wish to construct a homotopy ψ′′ ∈ Xn+1 between σ and η.
Indeed, we obtain a horn κ : Λn+2

n+2 → X whose nth and n+1th boundaries are ψ and ψ′ respectively
and the rest boundaries are required degeneracies. Filling this horn up by the Kan condition gives
κ̃ and its n+ 2th-boundary is the required homotopy.

Consequently, we define homotopy groups of a Kan complex as follows.

Definition 14.1.6.9 (Homotopy groups of a Kan complex). Let X be a Kan complex and x ∈ X0
be a base point. Then for n ≥ 1 define

πn(X,x0) = {σ ∈ Xn | σ|∂∆n = cx0} / ∼

where ∼ is the homotopy rel ∂. For n = 0, define

π0(X) = X0/ ∼

where

x ∼ y ⇐⇒ ∃γ ∈ X1 s.t. γd1 = x & γd0 = y.

We now show that πn(X,x) is indeed a group.

Construction 14.1.6.10 (Composition and group operation on πn(X,x)). Let X be a Kan complex and
x ∈ X be a point in it (i.e a 0-simplex). Let σ, τ ∈ Xn be two n-simplices such that σ|∂∆n =
τ |∂∆n = cx. We construct the composition σ · τ of σ and τ as the following n-simplex. Construct
the following horn κ : Λn+1

n → X whose n − 1th-boundary is σ, n + 1th-boundary is τ 1 and for
0 ≤ i ≤ n − 2, κdi = cx. It follows from horn-filling condition of X that we get an n + 1-simplex
ψ : ∆n+1 → X extending the horn κ. Consequently, we define the concatenation σ · τ as the nth-
boundary of ψ, that is,

σ · τ = ψdn.

We claim that the operation

· : πn(X,x)× πn(X,x) −→ πn(X,x)
([α], [β]) 7−→ [α · β]

1If one is thinking of paths, then it is important to note that σ · τ is the one where τ is traversed first and then σ.
One has to let go of the past notation because here simplices are not merely going to be paths, homotopies and so on,
but rather more general objects like arrows of a category, 2-arrows and so on, so to be consistent with the notion of
composition, it is best that we change the order in which we concatenate paths.
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is a well-defined function, that is, [α · β] only depends on [α] and [β].
Indeed, suppose [α] = [α′] and [β] = [β′] in πn(X,x). Then, we have a homotopy rel ∂ denoted

ψ ∈ Xn+1 from α to α′ and χ ∈ Xn+1 from β to β′. We wish to construct φ ∈ Xn+1 which is a
homotopy rel ∂ from α · β to α′ · β′. As usual, we obtain this homotopy by constructing a higher
horn and filling it by Kan condition.

To correctly denote the simplex to be constructed, we first observe that if δ ∼ ϵ is a homotopy
rel ∂ of two n-simplices with δ|∂∆n = ϵ|∂∆n = x, then δ · x ∼ ϵ. Indeed, consider an n + 2-horn
whose n+2-boundary is the composition simplex δ ·x, n+1-boundary is ϵs0 and all i-boundaries
for 0 ≤ i ≤ n − 1 are degeneracies of δ. Filling this yields the n-boundary as the required homo-
topy.

We now show that if β ∼ β′, then α · β ∼ α · β′. This would complete the proof. Indeed, this is
immediate by considering an n+ 2-horn given by κ : Λn+2

n+1 → X such that κdn+2 is the homotopy
β ∼ β′, κdn is the composition α · β, κdn−1 is the composition α · β′ and the κdi for 0 ≤ i ≤ n − 2
are all x.

Consequently, we get that · is a well defined operation on πn(X,x). We will later show
that · makes πn(X,x) into a group. Moreover, we will show that πn(X,x) ∼= πn(|X| , x) and
πn(Sing(Y ), y) ∼= πn(Y, y0)!

14.1.7 The fundamental group of a Kan complex

LetX be a Kan complex and x0 ∈ X be a 0-simplex. The fundamental group π1(X,x0) is explicitly
given by the following

π1(X,x0) = {σ : ∆1 → X | σ|∂∆1 = x0}/ ∼
= {σ ∈ X1 | d0(σ) = d1(σ) = x0}/ ∼

where σ ∼ τ if and only if there exists a homotopy rel ∂ denoted H : ∆2 → X , from σ to τ . That is,
d1(H) = σ, d2(H) = τ and d0(H) = s0(d0(σ)) = s0(x0) = idx0 . This is a group where the operation
is

· : π1(X,x0)× π1(X,x0) −→ π1(X,x0)
([σ], [τ ]) 7−→ [σ · τ ]

where σ · τ is a 1-simplex which is their composition (Construction 14.1.6.10), obtained by the
1-boundary of the 2-simplex δ obtained by filling the horn

κ : Λ2
1 → X

whose ∂0Λ2
1 = σ and ∂1Λ2

1 = τ . More precisely, we define κ1 as follows (this is sufficient by
Example 14.1.4.2 and Lemma 14.1.4.3):

κ1 : (Λ2
1)1 −→ X1

{0, 1} 7−→ σ

{1, 2} 7−→ τ

{1, 1} 7−→ s0(d0(σ)).
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In this section, following the usual terminology, we will write σ · τ as τ ∗ σ for σ, τ ∈ X1 with
d0(σ) = d1(σ) = x0.

We now prove some basic results about π1(X,x0). It is a good exercise to show that π1(X,x0)
is a group.

Theorem 14.1.7.1. Let X be a Kan complex and x0 ∈ X0. Then π1(X,x0) is a group.

Proof. We first show that for any three α, β, γ ∈ X1 with their boundaries being x0, we have
(α ∗ β) ∗ γ ∼ α ∗ (β ∗ γ). Indeed, let H be the witness of composition α ∗ β, K that of β ∗ γ, L that
of (α ∗ β) ∗ γ and P that of α ∗ (β ∗ γ). Now consider the following horn κ : Λ3

2 → X given by
following on non-degenerate 2-simplices:

κ2 : (Λ3
2)2 −→ X2

{0, 1, 2} 7−→ H

{1, 2, 3} 7−→ K

{0, 2, 3} 7−→ L.

By Kan condition, the above horn is filled and its 2-boundary yields a 2-simplex χ ∈ X2 such that
d0(χ) = β ∗ γ, d1(χ) = (α ∗ β) ∗ γ and d2(χ) = α. We now construct the required homotopy by
filling another 3-horn. Indeed, consider a horn λ : Λ3

1 → X such that d0(λ) = s1(β ∗ γ), d2(λ) = P
and d3(λ) = χ. This fills to give its 1-boundary as the required homotopy.

The identity element being cx0 and the existence of inverses are also immediate results of horn
filling and is thus omitted.

A Kan complex is path-connected if π0(X) = 0.

14.1.8 ∞-categories

14.1.9 Theorem of Boardman-Vogt

14.2 Classical homotopical algebra

14.2.1 Model categories

We discuss now a general setup in which one can "do" homotopy theory.

Definition 14.2.1.1 (Model categories). Let C be a category andW,C,F ⊆ C be subcategories of C
which are called weak equivalences (≈), cofibrations (↣) and fibrations (↠) respectively. We call
W ∩C weak/acyclic cofibrations and W ∩F weak/acyclic fibrations. Then, the tuple (C,W,C, F )
is a model category if it satisfies the following axioms:

1. The category C has all finite limits and colimits.
2. Weak equivalences satisfies 2 out-of 3 property.
3. For any f : X → Y in C, we have two factorizations

X Y X Y

Z Z

f

≈

f

≈
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one a weak cofibration followed by fibration and another one a cofibration followed by a
weak fibration.

4. We have

rlp(W ∩ C) = F

C = llp(W ∩ F )

where for a subcategory S ⊆ C, the collection rlp(S) denotes the collection of all maps
X → Y in C satisfying right lifting property wrt S, i.e., such that for any commutative
square

Z X

W Y

f∈S h

where left vertical arrow is in S, there exists a lift h : W → X as shown which makes all
diagrams commute. Similarly, one defines llp(S).

Definition 14.2.1.2 (Cofibrant/fibrant objects). An object X in a model category C is cofibrant
(fibrant) if the unique map from initial object ∅ → X (to terminal object X → pt.) is a cofibration
(fibration).
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In this chapter, we collect topics from contemporary commutative algebra. The most need of
all this material comes from algebraic goemetry. In particular, in the following, we list out the
topics that we would need for our treatment of basic algebraic geometry.
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1. Dimension theory : For dimension of schemes, Hauptidealsatz, local complete intersection,
etc.

2. Integral dependence : For proper maps between affine varieties, normalization, finiteness of
integral closure, certain DVRs of dimension 1, etc.

3. Field theory : For birational classification of varieties, primitive element theorem, basic al-
gebra in general, etc.

4. Completions : Local analysis of singularities, formal schemes, complete local rings, Cohen
structure theorem, Krull’s theorem, etc.

5. Valuation rings : For curves and their non-singular points (DVRs) and various equivalences,
Dedekind domains, etc.

6. Multiplicities : For intersections in projective spaces, intersection multiplicity, Hilbert poly-
nomials, flat families, studying singularities in an algebraic variety etc.

7. Kähler differentials : For differential forms on schemes, this will be used consistently in
further topics.

8. Depth and Cohen-Macaulay : For local complete intersections, blowing up, etc.
9. Tor and Ext functors : They are tools for other algebraic notions, generizable to global alge-

bra, tor dimension, etc.
10. Projective modules : For vector bundles, projective dimension and Ext, pd + depth = dim for

regular local rings, etc.
11. Flatness : Family of schemes varying continuously, smooth and étalé maps, etc.
12. Lifting properties - Étale, unramified and smooth morphisms : These are used heavily for

the corresponding scheme maps, and beyond.

Notation 16.0.0.1. Let R be a ring and f(x) ∈ R[x] be a polynomial. We will denote cn(f) ∈ R
to be the coefficient of xn in f(x). If f(x, y) ∈ R[x, y], then we will denote cn,m(f) ∈ R to be the
coefficient of xnym in f(x, y). We may also write cxn(f) for cn(f) and cxnym(f) for cn,m(f) if it
makes statements more clear.

Remark 16.0.0.2. We will consistently keep using the geometric viewpoint given by the theory of
schemes (see Chapter 1) in discussing the topics below, as a viewpoint to complement the algebraic
viewpoint. This will also showcase the usefulness of scheme language.

16.1 General algebra

We discus here general results about prime ideals, modules and algebras.

16.1.1 Nakayama lemma

Let R be a ring. Denote the set of all units of R as R×. The Jacobson radical is the ideal r of R
formed by the intersection of all maximal ideals of R. A finitely generated R-module M is a module
which has a finite collection of elements {x1, . . . , xn} ⊂ M such that for any z ∈ M , there are
r1, . . . , rn ∈ R so that z = r1x1 + · · · + rnxn. More concisely, if there is a surjection R-module
homomorphism Rn ↠M . Let’s begin with a simple observation.

Lemma 16.1.1.1. Let R be a ring and M be a simple R-module. Then

M ∼= R/m
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where m ≤ R is a maximal ideal.

Proof. As M is simple, therefore for any non-zero f ∈ M , we have Rf = M . It follows that the
map ϕ : R → M mapping r 7→ rf is surjective. Thus, M ∼= R/Ker (ϕ). If Ker (ϕ) is not maximal,
then R/Ker (ϕ) has a non-trivial submodule, a contradiction to simplicity of M .

We then have the following results about r.

Proposition 16.1.1.2. Let R be a ring and let r denotes it Jacobson radical. Then,
1. x ∈ r if and only if 1− xy ∈ R× for any y ∈ R.
2. (Nakayama lemma) Let M be a finitely generated R-module. If q ⊆ r is an ideal of R such that

qM =M , then M = 0.
3. Let M be a finitely generated module and q ⊆ r. Let N ≤ M be a submodule of M such that
M = N + qM , then M = N .

4. If R is a local ring and M,N are two finitely generated modules, then

M ⊗R N = 0 ⇐⇒ M = 0 or N = 0.

Proof. 1. (L ⇒ R) Suppose there is y ∈ R such that 1 − xy /∈ R×. Since each non-unit element
is contained in a maximal ideal by Zorn’s lemma, therefore 1 − xy ∈ m for some maximal ideal.
Since x ∈ r, therefore x ∈ m. Hence xy, 1− xy ∈ m, which means that 1 ∈ m, a contradiction.
(R ⇒ L) Suppose 1 − xy ∈ R× for all y ∈ R and x /∈ r. Then, again by Zorn’s lemma we have
x ∈ R×. Hence let y = x−1 to get that 1− xy = 1− 1 = 0 ∈ R×, a contradiction.

2. Suppose M ̸= 0. Since M is finitely generated, therefore there is a submodule N ⊂ M such
that M/N is simple (has no proper non-trivial submodule). By Lemma 16.1.1.1, M/N ∼= R/m.
Then, mR ̸= R which is same as mM ̸=M . Since q ⊆ r ⊆ m, hence qM ̸=M , a contradiction.

3. Apply 2. on M/N .

4. The only non-trivial part is L ⇒ R. Since (M ⊗R N)/m(M ⊗R N) = M/mM ⊗R/m N/mN ,
therefore we have M/mM ⊗R/m N/mN = 0. Since R/m is a field therefore M/mM = 0 WLOG.
Hence, M = mM and since R is local, therefore r = m. We conclude by Nakayama.

Note that if a is an ideal, then 1 + a is a multiplicative set. In-fact this is quite a special multi-
plicative set because of the following.

Lemma 16.1.1.3. Let R be a ring and a ≤ R. For the multiplicative set S = 1 + a, S−1a is in Jacobson
radical of S−1R.

Proof. Pick x/s ∈ S−1A and a/t ∈ S−1a. It is equivalent to show that 1 − xa
st is a unit in S−1A by

Proposition 16.1.1.2, 1. Indeed, st = 1+a′ for some a′ ∈ a. Thus 1− xa
st = 1+a′−ax

st where numerator
is in S, hence a unit as required.

Using this observation, we can find a single annihilator for certain modules.

Lemma 16.1.1.4. Let a ≤ R be an ideal such that aM = M for some finitely generated R-module M .
Then, there exists x ∈ R such that xM = 0.
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Proof. Let S = 1 + a, N = S−1M , B = S−1A and b = S−1a. Then N = bN and hence by
Nakayama, we get N = 0. As N is finitely generated, therefore there exists an element x ∈ S such
that xM = 0, as required.

Here’s a simple, but important example.

Lemma 16.1.1.5. Let M,N be A-modules and N be finitely generated. Let a ≤ A be in Jacobson radical
and ϕ :M → N be an A-linear map. If ϕ̄ :M/aM → N/aN is surjective, then ϕ is surjective.

Proof. We wish to show that N = ϕ(M). By Nakayama, it is sufficient to show that N = ϕ(M) +
aN . Pick any n ∈ N . By hypothesis, there exists m ∈ M such that ϕ(m)− n =

∑
i aini ∈ aN . The

result follows.

Corollary 16.1.1.6. Let (R,m, κ) be a local ring and ϕ : M → N be an R-module homomorphism and N
be finitely generated. If ϕ⊗ id :M ⊗ κ→ N ⊗ κ is surjective, then ϕ is surjective.

Here’s another application which is quite interesting arithmetically.

Proposition 16.1.1.7. Let R be a ring whose underlying abelian group is free of finite rank, A be a ring
whose underlying abelian group is finitely generated and ϕ : R → A be a ring homomorphism. Then the
following are equivalent:

1. ϕ is an isomorphism.
2. For each p ∈ Spec (Z), the homomorphism

ϕp : R⊗Z κ(p)→ A⊗Z κ(p)

is an isomorphism.

Proof. By functoriality of tensor products, it is immediate that (1. ⇒ 2.). For the converse, we
proceed as follows. We first show that ϕ is surjective. Let M = CoKer (ϕ). We have the short exact
sequence of finitely generated Z-modules

R A M 0ϕ
.

Suppose ϕ is not surjective. Then M ̸= 0. Consequently, there exists a prime p ∈ Spec (Z) such
that Mp ̸= 0. Localizing the above sequence at this prime, we obtain by exactness the following
sequence of Zp-modules:

Rp Ap Mp 0
ϕp

.

By Corollary 16.1.1.6 applied on the local ring Zp, it follows that ϕp as above is surjective. It follows
by exactness of the sequence above that Mp = 0, a contradiction.

To see injectivity of ϕ, observe that Ker (ϕ) is a submodule of R. Since R is free of finite rank,
therefore by Proposition 16.23.0.8, it follows that K := Ker (ϕ) is a free module of finite rank.
Consequently, the following exact sequence is of free Z-modules:

0 K R A 0ι ϕ

As Z0 = Q = κ(0), thus by exactness of localization, we get the following exact sequence

0 K ⊗Q R⊗Q A⊗Q 0ι⊗id ϕ⊗id
.
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By hypothesis, ϕ ⊗ id is an isomorphism. Conseqeuntly, rankK + rankA = rankR, but the iso-
morphism implies that rankR = rankA. It follows at once that rankK = 0 and since K is free,
therefore K = 0, as required.

As another simple application, here’s a lemma which is a good exercise as well.

Lemma 16.1.1.8. Let (R,m) be a local domain and k = R/m and K = Q(R). Denote Q(M) to be the
fraction module of M ; Q(M) =M ⊗R R0. If M is a finitely generated R-module such that

dimkM/mM = dimK Q(M) = n,

then M ∼= Rn.

16.1.2 Localization

We next consider localization of rings and R-modules. Take any multiplicative set S ⊂ R which
contains 1. Then, localizing an R-module M on S is defined as

S−1M := {m/s | m ∈M, s ∈ S}.

where m/s = n/t if and only if ∃u ∈ S such that u(mt − ns) = 0. We have that S−1M is an
R-module where addition m/s + n/t = (mt + ns)/st. In the case when M = R, we get a ring
structure on S−1R as well where multiplication is given by m/s · n/t := mn/st. There is a natural
map M → S−1M which maps m 7→ m/1 and it may not be an injection if ∃m ∈M and s ∈ S such
that s ·M = 0.

Lemma 16.1.2.1. Let S ⊂ R be a multiplicative set in a ring R and M be an R-module. Then,

S−1M ∼= S−1R⊗RM.

Proof. One can do this by directly checking the universal property of tensor product of S−1R and
M over R for S−1M . We have the map ϕ : S−1R × M → S−1M given by (r/s,m) 7→ rm/s.
Now for any bilinear map f : S−1R ×M → N , we can define the map f̃ : S−1M → N given by
f̃(m/s) := f(1/s,m). Clearly, f̃ is well-defined and f̃ϕ = f . Moreover, if g : S−1M → N is such
that gϕ = f , then g(m/s) = f(1/s,m) = f̃(m/s). Hence f̃ is unique with this property.

Lemma 16.1.2.2. Localization w.r.t a multiplicative set S ⊂ R is an exact functor on Mod(R).

Proof. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of R-modules. Then we have the
localized sequence S−1M ′ → S−1M → S−1M ′′. Since S−10 = 0, therefore this is left exact.
Exactness at middle follows from exactness at middle of the first sequence. The right exactness
can be seen by right exactness of tensor product functor S−1R⊗R − and by Lemma 16.1.2.1.

Lemma 16.1.2.3. Let R be a ring and S ⊂ R be a multiplicative set. Then

{prime ideals of R not intersecting S}
∼=−→ {prime ideals of S−1R}

p 7−→ S−1p

Proof. Trivial.
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Next we see an important property of modules, that is their "local characteristic". This means
that one can check whether an element of a module is in a submodule by checking it locally at each
prime, as the following lemma suggests. This has geometric significance in algebraic geometry (M
induces and is induced by a quasi-coherent sheaf over Spec (R), see ??).

Lemma 16.1.2.4. Let M be an R-module. Then,
1. M ̸= 0 if and only if there exists a point p ∈ Spec (R) such that Mp ̸= 0.
2. If N ⊂ M is a submodule and 0 ̸= x ∈ M , then x ∈ N if and only if x ∈ Np ⊆ Mp for each point

p ∈ Spec (R).

Proof. 1. (L ⇒ R) Since ∃x ∈ M which is non-zero, therefore consider the annihilator ideal
Ann(x) = {r ∈ R | rx = 0} of R. Then, this ideal is contained in a maximal ideal m of R by
Zorn’s lemma. Hence consider Mm, which contains x/1. Now if there exists r ∈ R \ m such that
rx = 0, then r ∈ Ann(x), but since m ⊇ Ann(x), hence we have a contradiction.
(R⇒ L) Let p ∈ Spec (R) be such that x/r ∈ Mp and x/r ̸= 0. Since Mp is an R-module, therefore
r · (x/r) is well-defined in Mp. Hence (rx)/r = x/1 ∈ Mp. If x/1 = 0 in Mp, therefore ϕp(x) = 0
and hence x = 0 as ϕp is injective. Thus, x/r = 0 in Mp, a contradiction. Therefore x/1 ̸= 0 and
hence x ̸= 0 in M .

2. This follows from using 1. on the module (N+Rx)/N . We do this by observing the following
chain of equivalences, whose key steps are explained below:

x ∈ N ⇐⇒ N +Rx = N ⇐⇒ (N +Rx)/N = 0 ⇐⇒ ((N +Rx)/N)p ∀p ∈ Spec (R) ⇐⇒
(N +Rx)p/Np = 0∀p ∈ Spec (R) ⇐⇒ (N +Rx)p = Np∀p ∈ Spec (R) ⇐⇒
Np + (Rx)p = Np∀p ∈ Spec (R) ⇐⇒ (Rx)p ⊆ Np∀p ∈ Spec (R) ⇐⇒ ϕp(x) = x/1 ∈ Np∀p ∈ Spec (R).

For two submodules N,K,L ⊂ M where L ⊆ N and p ∈ Spec (R), we get (N/L)p = Np/Lp by
exactness of localization (Lemma 16.1.2.2) on the exact sequence

0→ L→ N → N/L→ 0.

Finally (N +K)p = Np +Kp in Mp is true by direct checking and where we use the primality of
p.

Remark 16.1.2.5. (Few life hacks) The above proof tells us few ways how one can approach the
problems in ring theory. Note especially that x ∈ N if and only if N + Rx = N , which quickly
turns a set-theoretic relation into an algebraic one, where we can now use various constructions
as we did, like localization.

The following is the universal property for localization.

Proposition 16.1.2.6. Let R be a ring and S be a multiplicative set. If ϕ : R→ T is a ring homomorphism
such that ϕ(S) ⊆ T× where T× is the unit group of T , then there exists a unique map ϕ̃ : S−1R→ T such
that the following commutes

R T

S−1R

i

ϕ

ϕ̃
.
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Proof. Pick any ring map ϕ : R → T . Take any map f : S−1R → T which makes the above
commute. We claim that f(r/s) = ϕ(r)ϕ(s)−1. Indeed, we have that f(r/1) = ϕ(r) for all r ∈ R.
Further, for any s ∈ S, we have f(1/s) = 1/f(s/1) = 1/ϕ(s) = ϕ(s)−1. Consequently, we get for
any r/s ∈ S−1R the following

f
(r
s

)
= f

Å
r

1 ·
1
s

ã
= f

(r
1

)
· f
Å1
s

ã
= ϕ(r)ϕ(s)−1.

This proves uniqueness. Clearly, this is a ring homomorphism. This completes the proof.

Remark 16.1.2.7. As Proposition 16.1.2.6 is the universal property of localization, therefore the
construction S−1R is irrelevant; the property above completely characterizes localization upto a
unique isomorphism.

Lemma 16.1.2.8. Let R be a ring and f ∈ R \ {0}. Then,

Rf ∼=
R[x]
⟨fx− 1⟩ .

In particular, Rf is a finite type R-algebra.

Proof. We shall use Proposition 16.1.2.6. We need only show that R[x]/⟨fx− 1⟩ satisfies the same
universal property as stated in Proposition 16.1.2.6. Indeed, we first have the map i : R →
R[x]/⟨fx − 1⟩ given by r 7→ r + ⟨fx − 1⟩. Let ϕ : R → T be any map such that ϕ(f) ∈ T×.
We claim that there exists a unique map ϕ̃ : R[x]/⟨fx − 1⟩ → T such that ϕ̃ ◦ i = ϕ. In-
deed, take any map g : R[x]/⟨fx − 1⟩ → T such that g ◦ i = ϕ. Thus, for all r ∈ R, we
have g(r + ⟨fx − 1⟩) = ϕ(r). As fx + ⟨fx − 1⟩ = 1 + ⟨fx − 1⟩, therefore we obtain that
g(f+⟨fx−1⟩)·g(x+⟨fx−1⟩) = ϕ(f)·g(x+⟨fx−1⟩) = 1. Hence, we see that g(x+⟨fx−1⟩) = ϕ(f)−1.
Hence for any element p(x) + ⟨fx− 1⟩, we see that f(p(x) + ⟨fx− 1⟩) = p(ϕ(f)−1). This makes g
unique well-defined ring homomiorphism. This completes the proof.

The following is a simple but important application of technique of localization.

Lemma 16.1.2.9. Let R be a ring. Then the nilradical of R, n, the ideal consisting of nilpotent elements is
equal to the intersection of all prime ideals of R:

n =
⋂

p∈Spec(R)
p.

Proof. Take x ∈
⋂

p∈Spec(R) p. We then have x ∈ p for each p ∈ Spec (R). Hence if for each n ∈ N
we have that xn ̸= 0, then we get that S = {1, x, x2, . . . } forms a multiplicative system. Consid-
ering the localization S−1R, we see that it is non-zero. Therefore S−1R has a prime ideal, which
corresponds to a prime ideal p of R which does not intersects S, by Lemma 16.1.2.3. But this is a
contradiction as x is in every prime ideal.
Conversely, take any x ∈ n and any prime ideal p ∈ Spec (R). Since xn = 0 for some n ∈ N,
therefore xn ∈ p for each p ∈ Spec (R). Hence it follows from primality of each p that x ∈ p.

We next give two results which are of prominent use in algebraic geometry. The first result
says that finite generation of a module can be checked locally.
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Lemma 16.1.2.10. Let M be an R-module and suppose fi ∈ R are elements such that
∑n
i=1Rfi = R.

Then, the following are equivalent:
1. M is a finitely generated R-module.
2. Mfi is a finitely generated Rfi-module for all i = 1, . . . , n.

Proof. (1. ⇒ 2.) This is simple, as finite generation is preserved under localization.
(2. ⇒ 1.) Let Mfi be generated by mij/(fi)nij for j = 1, . . . , ni. Let N ≤ M be a submodule
generated by mij for each j = 1, . . . , ni and for each i = 1, . . . , n. Clearly, N is a finitely generated
R-module. Moreover, Nfi for each i = 1, . . . , n is equal to Mfi . We wish to show that (M/N)p = 0.
To this, end, let fi be such that fi /∈ p. As (M/N)p = lim−→f /∈p(M/N)f , so it suffices to show that
there is a cofinal system of f /∈ p such that (M/N)f = 0. Indeed, as (M/N)fi =Mfi/Nfi = 0, so we
need only show that for any basic openD(g) ⊆ D(fi), we have (M/N)g = 0. As by Lemma 1.2.1.4,
2 we have that gn = rfi for some r ∈ R, therefore we deduce that (M/N)g = 0 as (M/N)fi = 0. It
follows that (M/N)p = 0 for all primes p and hence M/N = 0 by Lemma 16.1.2.4, 1, hence M = N
and M is finitely generated.

The second result gives a partial analogous result as to Lemma 16.1.2.10 did, but for algebras.
This is again an important technical tool used often in algebraic geometry.

Lemma 16.1.2.11. Let A be a ring and B be an A-algebra. Suppose f1, . . . , fn ∈ B are such that∑n
i=1Bfi = B. If for all i = 1, . . . , n, Bfi is a finitely generated A-algebra, then B is a finitely gen-

erated A-algebra.

Proof. Let Bfi be generated by ®
bij

f
nj
i

´
j=1,...,Mi

as an A-algebra, for each i = 1, . . . , n. Further, we have c1, . . . , cn ∈ B such that c1f1+ · · ·+ cnfn =
1. We claim that S = {bij , fi, ci}i,j is a finite generating set for B.

Let C be the sub-algebra of B generated by S. Pick any b ∈ B. We wish to show that b ∈ C.
Fix an i = 1, . . . , n. Observe that the image of b in the localized ring Bfi is generated by some
polynomial with coefficients in A and indeterminates replaced by®

bij

f
nj
i

´
j=1,...,Mi

.

We may multiply b by fNii for Ni large enough so that fNii b is then represented by a polynomial
with coefficients in A evaluated in fi and bij for j = 1, . . . ,Mi. Consequently, fNii b ∈ C, for each
i = 1, . . . , n. Observe that f1, . . . , fn in C generates the unit ideal in C. By Lemma 16.23.0.2, 2, we
see that fN1

1 , . . . , fNnn also generates the unit ideal in C. Hence, we have d1, . . . , dn ∈ C such that
1 = d1f

N1
1 + · · · + dnf

Nn
n . Multiplying by b, we obtain b = d1f

N1
1 b + · · · + dnf

Nn
n where by above,

we now know that each term is in C. This completes the proof.

An observation which is of importance in the study of varieties is the following.
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Lemma 16.1.2.12. Let R be an integral domain. Then⋂
m<R

Rm = R

where the intersection runs over all maximal ideals m of R and the intersection is carried out in the fraction
field R⟨0⟩.

Proof. We already have that

R ↪→ Rm

for any maximal ideal m < R. Thus,

R ↪→
⋂

m<R

Rm.

Thus it would suffice to show that
⋂

m<RRm ↪→ R. Indeed, consider the following map⋂
m<R

Rm −→ R

[fm/gm] 7−→ fmgm′

where fm/gm = fm′/gm′ for two maximal ideals m,m′ in R. Thus, fmgm′ = fm′gm. Hence the above
map is well-defined and is injective as fmgm′ = 0 implies fm = 0 as gm′ ̸= 0. The result follows.

One may wonder when localization and Hom commutes. It does when one of the modules is
finitely presented.

Proposition 16.1.2.13. Let M,N be R-modules where M is finitely presented and S ⊆ R be a multiplica-
tive set. Then,

S−1(HomR (M,N)) ∼= HomS−1R

(
S−1M,S−1N

)
.

Proof. Consider the map

θM : S−1(HomR (M,N)) −→ HomS−1R

(
S−1M,S−1N

)
ϕ

s
7−→ m

t
7→ ϕ(m)

st
.

We claim that θM is an isomorphism. To this end, first observe that ifM is free, then it is immediate
from standard Hom identities. Now consider a finite presentation Rm → Rn → M → 0 of
M . Localizing at S we get a finite presentation (S−1R)m → (S−1R)n → S−1M → 0 of S−1M
as an S−1R-module. As Hom is left exact and localization is exact, then we get the following
commutative diagram where rows are exact:

0 HomS−1R

(
S−1M,S−1N

)
HomS−1R

(
(S−1R)n, S−1N

)
HomS−1R

(
(S−1R)m, S−1N

)
0 S−1HomR (M,N) S−1HomR (Rn, N) S−1HomR (Rm, N)

θM θRn ∼= θRm ∼= .

By five-lemma, θM is an isomorphism, as required.
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Local rings

A ring R is said to be local if there is a unique maximal ideal of R. In such a case we denote it by
(R,m). We first study tangent and cotangent space to certain type of regular local rings, which are
important in the study of rational points.

Definition 16.1.2.14. (Zariski (co)tangent space) Let (R,m) be a local ring. Then, we define the
Zariski cotangent space of (R,m) to be T ∗R = m/m2 and the Zariski tangent space to be its dual
TR = Homk

(
m/m2, k

)
.

Remark 16.1.2.15. The Zariski cotangent space T ∗R is a κ-vector space where κ = R/m is the
residue field. Indeed, the scalar multiplication is given by

κ× T ∗R −→ T ∗R

(c+m, x+m2) 7−→ cx+m2

where c ∈ R and x ∈ m. Indeed, this is well-defined as can be seen by a simple check. Conse-
quently, the tangent space TR = Homk

(
m/m2, k

)
is also a κ-vector space.

Definition 16.1.2.16. (Regular local ring) Let (A,m) be a local ring with k = A/m being the residue
field. Then A is said to be regular if dimk m/m

2 = dimA.

There is an important geometric lemma that one should keep in mind about certain local rings.

Definition 16.1.2.17. (Rational local k-algebras) Let k be a field. A local k-algebra (R,m) is said
to be rational if its residue field κ = R/m is isomorphic to the field k.

Rational local k-algebras have a rather simple tangent space.

Proposition 16.1.2.18. Let (A,mA) be a rational local k-algebra. Then,

TA ∼= Homk,loc (A, k[ϵ])

where k[ϵ] := k[x]/x2 is the ring of dual numbers and Homk,loc (A, k[ϵ]) denotes the set of all local k-
algebra homomorphisms.

Proof. Pick any k-algebra homomorphism ϕ : A → k[ϵ]. Denote by mϵ = ⟨ϵ⟩ ⪇ k[ϵ] the unique
maximal ideal of k[ϵ]. Since

k[ϵ]/mϵ
∼= k,

therefore k[ϵ] is a rational local k-algebra as well. By Lemma 16.23.0.7, we may write A = k ⊕ mA

and k[ϵ] = k ⊕mϵ. We now claim that the datum of a local k-algebra homomorphism ϕ : A→ k[ϵ]
is equivalent to datum of a k-linear map of k-modules θ : mA/m

2
A → k.

Indeed, we first observe that for any ϕ : A → k[ϵ] as above, we have ϕ(mA) ⊆ mϵ. Thus,
ϕ(m2

A) ⊆ m2
ϵ = 0. Thus, we deduce that for any such ϕ, Ker (ϕ) ⊇ m2

A. It follows from universal
property of quotients that any such ϕ is in one-to-one correspondence with k-algebra homomor-
phisms

ϕ̃ : A/m2
A
∼= k ⊕ (mA/m

2
A) −→ k[ϵ].
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As ϕ(mA) ⊆ mϵ, therefore ϕ̃(mA/m
2
A) ⊆ mϵ. Thus, we obtain a k-linear map of k-modules

θ : mA/m
2
A −→ k ∼= mϵ

where mϵ
∼= k as k-modules. It suffices to now show that from any such θ, one can obtain a unique

k-algebra map ϕ̃ : k ⊕ (mA/m
2
A) → k[ϵ], which furthermore sets up a bijection between all such ϕ̃

and θ.
Indeed, from k-linear map θ, we may construct the following k-algebra map

ϕ̃ : k ⊕ (mA/m
2
A) −→ k[ϵ]

(k + m̄) 7−→ k + θ(m̄)ϵ.

Then we observe that ϕ̃ is a k-algebra homomorphism as

ϕ̃((k1 + m̄1)(k2 + m̄2)) = ϕ̃(k1k2 + k1m̄2 + k2m̄1 + m̄1m̄2)
= k1k2 + k1θ(m̄2)ϵ+ k2θ(m̄1)ϵ+ θ(m̄1m̄2)ϵ
= k1k2 + k1θ(m̄2)ϵ+ k2θ(m̄1)ϵ
= (k1 + θ(m̄1)ϵ) · (k2 + θ(m̄2)ϵ)
= ϕ̃(k1 + m̄1) · ϕ̃(k2 + m̄2).

Hence, from θ one obtain ϕ̃ back, thus setting up a bijection and completing the proof.

In general, restriction and then extension of scalars wont yield the same module back. The
following gives a criterion when this happens.

Lemma 16.1.2.19. Let ϕ : A→ B be an A-algebra such that B ⊗A B ∼= B. If M is a B-module and MA

is the A-module by restriction, then

MA ⊗A B ∼=M.

Proof. Immediate since

MA ⊗A B ∼= (M ⊗B B)A ⊗A B ∼=M ⊗B (B ⊗A B) ∼=M ⊗B B ∼=M.

16.1.3 Structure theorem

Let M be a finitely generated R-module. We can understand the structure of such modules com-
pletely in terms of the ringR, whenR is a PID (so that it’s UFD). This is the content of the structure
theorem. We first give the following few propositions which is used in the proof of the structure
theorem but is of independent interest as well, in order to derive a usable variant of structure
theorem. The following theorem tells us a direct sum decomposition exists for any finitely free
torsion module over a PID.

Proposition 16.1.3.1. LetM be a finitely generated torsion module over a PIDR. If Ann(M) = ⟨c⟩where
c = pk11 . . . pkrr and pi ∈ R are prime elements, then

M ∼=M1 ⊕ · · · ⊕Mr

where Mi = {x ∈ M | prii x = 0} ≤ M for all i = 1, . . . , r, that is, where Ann(Mi) = ⟨prii ⟩ for all
i = 1, . . . , r.
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The next result tells us that we can further write each of the above Mis as a direct sum decom-
position of a special kind.

Proposition 16.1.3.2. Let M be a finitely generated torsion module over a PID R. If AnnM = ⟨pr⟩ where
p ∈ R is a prime element, then there exists r1 ≥ r2 ≥ · · · ≥ rk ≥ 1 such that

M ∼= R/⟨pr1⟩ ⊕ · · · ⊕R/⟨prk⟩.

The structure theorem is as follows.

Theorem 16.1.3.3. (Structure theorem) Let R be a PID and M be a finitely generated R-module. Then
there exists an unique n ∈ N∪{0} and q1, . . . qr ∈ R unique upto units such that qi−1|qi for all i = 2, . . . , r
and

M ∼= Rn ⊕R/⟨q1⟩ ⊕ · · · ⊕R/⟨qr⟩.

The most useful version of this is the following:

Corollary 16.1.3.4. Let M be a finitely generated torsion module over a PID R. Then, there exists k-many
prime elements p1, . . . , pk ∈ R, nj ∈ N for each j = 1, . . . , k and 1 ≤ r1j ≤ · · · ≤ rnjj ∈ N for each
j = 1, . . . , k such that

M ∼=
k⊕
j=1

Ä
R/⟨pr1jj ⟩ ⊕ · · · ⊕R/⟨p

njj
j ⟩

ä
.

Proof. This is a consequence of Propositions 16.1.3.1 and 16.1.3.2.

This is the famous structure theorem for finitely generated modules over a PID. Note that the
ring Z is PID and any abelian group is a Z-module. Thus, we can classify finitely generated abelian
groups using the structure theorem.

Example 16.1.3.5. An example of a module which is not finitely generated is the polynomial mod-
ule R[x] over a ring R. Indeed, the collection {1, x, x2, . . . }will make it free but not finitely gener-
ated.

Example 16.1.3.6. Classification of all abelian groups of order 360 = 23 · 32 · 5, for example, can be
achieved via structure theorem. Indeed using Corollary 16.1.3.4, we will get that there are 6 total
such abelian groups given by

•
( Z
2Z ⊕

Z
2Z ⊕

Z
2Z
)
⊕
( Z
3Z ⊕

Z
3Z
)
⊕
( Z
5Z
)

•
( Z
22Z ⊕

Z
2Z
)
⊕
( Z
3Z ⊕

Z
3Z
)
⊕
( Z
5Z
)

•
( Z
23Z
)
⊕
( Z
3Z ⊕

Z
3Z
)
⊕
( Z
5Z
)

•
( Z
2Z ⊕

Z
2Z ⊕

Z
2Z
)
⊕
( Z
32Z
)
⊕
( Z
5Z
)

•
( Z
22Z ⊕

Z
2Z
)
⊕
( Z
32Z
)
⊕
( Z
5Z
)

•
( Z
23Z
)
⊕
( Z
32Z
)
⊕
( Z
5Z
)

16.1.4 UFDs

16.1.5 Gauss’ lemma

Add results surrounding primitive polynomials and Gauss’ lemma here from notebook.
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Spectra of polynomial rings over UFDs

We now calculate the prime spectra of polynomial rings over UFDs. For that, we need the follow-
ing two lemmas.

Lemma 16.1.5.1. Let R be a UFD and I ≤ R[x] be an ideal containing two elements with no common
factors. Then I contains a non-zero constant from R.

Proof. Indeed, let f, g ∈ R[x] be two elements with no common factors. Let Q denote the frac-
tion field of R. We first claim that f, g ∈ Q[x] have no common factor as well. Indeed, suppose
h(x) ∈ Q[x] is a common factor of f(x) and g(x). It follows from the result on primitive polyno-
mials that we can write h(x) = ch0(x) where c ∈ Q and h0(x) ∈ R[x] is primitive. Hence, we see
that h0(x) ∈ R[x] is a polynomial such that h0|f and h0|g in Q[x]. Again, by general results in
UFD, we then conclude that h0|f and h0|g in R[x]. As f and g have no common factor, therefore
h0(x) ∈ R[x] is a unit. Hence h(x) ∈ Q[x] is a unit. Thus, there is no common factor of f(x) and
g(x) in Q[x] if there is none in R[x].

Hence, f(x), g(x) in Q[x] have gcd 1, where Q[x] is a PID. Consequently, f(x) and g(x) gener-
ates the unit ideal in Q[x]. It follows that there exists p(x), q(x) ∈ Q[x] such that

1 = p(x)f(x) + q(x)g(x).

By theorem on primitive polynomials, we may write p(x) = a
bp0(x) and q(x) = c

dq0(x) where
a/b, c/d ∈ Q and p0(x), q0(x) ∈ R[x] are primitive. The above equation hence becomes

1 = a

b
p0(x)f(x) +

c

d
q0(x)g(x)

= adp0(x)f(x) + bcq0(x)g(x)
bd

,

which thus yields

bd = adp0(x)f(x) + bcq0(x)g(x)

where RHS is in I ≤ R[x] because ad, p0, bc, q0 ∈ R[x] and f, g ∈ I and LHS is in R. Hence I ∩R is
not zero.

Lemma 16.1.5.2. Let R be a PID and f, g ∈ R[x] be non-zero polynomials such that f and g have no
common factors. Then,

1. any prime ideal p ⪇ R[x] containing f and g is maximal,
2. any maximal ideal m ⪇ R[x] containing f and g is of the form ⟨p, h(x)⟩ where p ∈ R is prime and
h(x) is prime modulo p,

3. there are only finitely many maximal ideals of R[x] containing f and g.

Proof. 1. : Let p ⪇ R[x] be a prime ideal containing f and g. Observe by Lemma 16.1.5.1 that there
exists b ∈ R \ 0 such that b ∈ p ∩ R, that is, p ∩ R ̸= 0. As R is a PID and p ∩ R is a prime ideal of
R, therefore p ∩R = pR for some prime element p ∈ p ∩R. We wish to show that R[x]/p is a field.
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Indeed, we see that (note ⟨p, p⟩ = p as p ∈ p)

R[x]
p
∼=

R[x]
pR[x]
⟨p,p⟩
pR[x]

=
R[x]
pR[x]

p
pR[x]

∼=
R
pR [x]
p

where p = π(p) where π : R[x] ↠ R
pR [x] is the quotient map. As R is a PID and pR is a non-

zero prime ideal, therefore it is maximal. Consequently, R/pR is a field and hence R
pR [x] is a

PID. Suppose p = 0, then f and g have a common factor given by p ∈ R, which is not possible.
Consequently, p is a proper prime ideal of R

pR [x] by correspondence theorem. But in PIDs, non-
zero prime ideals are maximal ideals, hence we obtain that R

pR [x]/p is a field, as required.
2. : Let m ⪇ R[x] be a maximal ideal of R[x] containing f and g. Hence, from Lemma 16.1.5.1

and R being a PID, there exists p ∈ R a prime such that m ∩R = pR. Hence R/pR is a field as R is
a PID and pR a non-zero prime ideal (so maximal). Consequently, we have a quotient map

π : R[x] ↠ R[x]
pR[x]

∼=
R

pR
[x]

As p ∈ m, therefore by correspondence thereom π(m) = m is a maximal ideal of R
pR [x]. AsR/pR is a

field, therefore R
pR [x] is a PID. Hence, m = ⟨h(x)⟩ for some h(x) ∈ R[x] such that h(x) is irreducible

(so it generates a maximal ideal). Again, by correspondence theorem we have π−1(m) = m =
h(x)R[x] + pR[x] = ⟨p, h(x)⟩, as required.

3. : We will use notations of proof of 2. above. Take any maximal ideal m = ⟨p, h(x)⟩ ⪇ R[x]
which contains f(x) and g(x), p ∈ R is prime and h(x) is irreducible modulo p. As R is a PID,
so it is a UFD, hence R[x] is a UFD by Gauss’ lemma. Hence, writing f(x) and g(x) as product
of prime factors in R[x], we observe that there exists distinct primes p(x), q(x) ∈ R[x] such that
p(x), q(x) ∈ m. Replacing f by p and g by q, we may assume f and g are irreducible (or prime) in
R[x].

By Lemma 16.1.5.1, there exists b ∈ R \ 0 such that b ∈ m ∩ R. As the proof of 2. above shows,
p|b in R. As R is a PID, so it is a UFD, hence there are only finitely many choices for p.

Now, going modulo prime p, we see that f(x), g(x) ∈ m ⪇ R
pR [x] has a common factor in R

pR [x],
given by h(x) as m = ⟨h(x)⟩ (by proof of 2.). As h(x) generates a maximal ideal in R

pR [x], therefore

h(x) is a prime element of R
pR [x], which has to divide f(x) and g(x). As R

pR [x] is a PID, therefore

there are only finitely many choices for h(x), and since m = π−1(⟨h(x)⟩), therefore every choice of
p as above, yields finitely many choices for m.

Consequently, there are finitely many choices for p and once p is fixed, there are only finitely
many choices for the ideal m. As m = π−1(m), therefore there are finitely many maximal ideals
containing f and g.

We now classify Spec (R[x]) for a UFD R.

Theorem 16.1.5.3. Let R be a PID. Any prime ideal p ⪇ R[x] is of one of the following forms
1. p = 0,
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2. p = ⟨f(x)⟩ for some irreducible f(x) ∈ R[x],
3. p = ⟨p, h(x)⟩ for some prime p ∈ R and h(x) ∈ R[x] irreducible modulo p and this is also a maximal

ideal.

Proof. Indeed, pick any prime ideal p ⪇ R[x]. If p is 0, then it is prime as R[x] is a domain. We now
have two cases. If p is principal, then p = ⟨f(x)⟩ for some f(x) ∈ R[x]. As ⟨f(x)⟩ is prime therefore
f(x) is a prime element. As R[x] is a UFD by Gauss’ lemma, therefore f(x) is also irreducible.
Consequently, p = ⟨f(x)⟩where f(x) is irreducible.

On the other hand if p is not principal, there exists f(x), g(x) ∈ p such that f(x) ̸ |g(x) and
g(x) ̸ |f(x). As R[x] is a UFD and p is prime, therefore there exists prime factors of f and g which
are in p. Replacing f and g by these prime factors, we may assume f and g are distinct irreducibles
in p. Consequently, by Lemma 16.1.5.2, we see that p = ⟨p, h(x)⟩ for some prime p ∈ R and h(x)
irreducible modulo p. Moreover by Lemma 16.1.5.2 we know that p in this case is maximal.

We now portray their use in the following.

Lemma 16.1.5.4. Let F be an algebraically closed field. Then,
1. every non-constant polynomial f(x, y) ∈ F [x, y] has at least one zero in F 2,
2. every maximal ideal of F [x, y] is of the form m = ⟨x− a, y − b⟩ for some a, b ∈ F .

Proof. 1. : Take any polynomial f(x, y) ∈ F [x, y]. Going modulo y, we see that f(x, y) ∈ F [x, y]/⟨y⟩ =
F [x]. If f(x, y) = 0, then (a, 0) is a root of f(x, y) for any a ∈ F . if f(x, y) ̸= 0, then since F is
algebraically closed, therefore we may write f(x, y) = (x − a1) . . . (x − an). Consequently, any
(ai, 0) is a zero of f(x, y). Hence, in any case, f(x, y) has a root in F 2. 2. : Let R = F [x]. We know
that R is a PID. Take any maximal ideal m ⪇ R[y] = F [x, y]. Then by Theorem 16.1.5.3, we have
that either m = ⟨f(x, y)⟩where f(x, y) is irreducible or m = ⟨p(x), h(x, y)⟩where p(x) ∈ R is prime
and h(x, y) is irreducible modulo p(x).

In the former, we claim that ⟨f(x, y)⟩ is not maximal. Indeed, by item 1, we have that f(x, y)
has a zero in F 2, say (a, b). Dividing f(x, y) by y−b inR[y], we obtain f(x, y) = h(x, y)(y−b)+k(x),
where k(x) ∈ R. Consequently, k(a) = 0. Hence, k(x) = (x − a)l(x). Thus, we have f(x, y) =
h(x, y)(y − b) + (x− a)l(x), showing f(x, y) ∈ ⟨x− a, y − b⟩. By Theorem 16.1.5.3 above, we know
that ⟨x − a, y − b⟩ ∈ R[y] is a maximal ideal and we also know that it contains f(x, y). We hence
need only show that ⟨f(x, y)⟩ ⊊ ⟨x− a, y− b⟩. Indeed, observe that x− a /∈ ⟨f(x, y)⟩ as if it is, then
f(x, y)|x−a. But then f(x, y) is in R, hence y− b /∈ ⟨f(x, y)⟩. So in either case, ⟨f(x, y)⟩ is properly
contained in ⟨x − a, y − b⟩, showing that ⟨f(x, y)⟩ cannot be maximal. Thus, no maximal ideal of
R[y] can be of the form ⟨f(x, y)⟩.

In the latter, where m = ⟨p(x), h(x, y)⟩ where p(x) ∈ R is prime and h(x, y) is irreducible mod-
ulo p(x), we first see that p(x) = x− a for some a ∈ F as R = F [x] and only primes of F [x] are of
this type. Let π : R ↠ R

p(x)R [y] ∼=
R
⟨x−a⟩ [y] ∼= F [y] be the quotient map by the ideal p(x)R[y]. Then

we see that by correspondence theorem, π(m) = m = ⟨h(x, y)⟩ is a prime ideal of F [y]. Hence,
m = ⟨k(y)⟩ for some k(y) ∈ F [y]. Further, since m is prime and F algebraically closed, therefore
k(y) = y − b. Thus, we see that modulo p(x) we have h(x, y) = k(y) = y − b. We then see that
m = π−1(m) = π−1(⟨y − b⟩) = ⟨p(x), y − b⟩ = ⟨x− a, y − b⟩, as required.

Another example gives us finiteness of intersection of two algebraic curves over an alge-
braically closed field.
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Proposition 16.1.5.5. Let F be an algebraically closed field and f, g ∈ F [x, y] be two polynomials with no
common factors. Then, Z(f)∩Z(g) is a finite set, that is, f and g intersects at finitely many points in A2

F .

Proof. We first show that for any h(x, y) ∈ F [x, y], h(a, b) = 0 for some (a, b) ∈ F 2 if and only if
h ∈ ⟨x− a, y− b⟩. Clearly, (⇐) is immediate. For (⇒), we proceed as follows. Going modulo y− b
in F [x, y], we obtain h(x, y) ∈ F [x, y]/⟨y − b⟩ ∼= F [x]. Observe that ⟨y − b⟩ is the kernel of the map
F [x, y] → F [x] taking y 7→ b, hence h(x, y) = h(x, b). As F is algebraically closed, therefore we
may write

h(x, b) = h(x, y) = (x− c1) . . . (x− cn)

for ci ∈ F . As, h(a, b) = 0, therefore (x − a)|h(x, b). Hence, for some i, we must have ci = a. This
allows us to write

h(x, y)− (x− a)k(x) ∈ ⟨y − b⟩

for some k(x) ∈ F [x]. It follows that for some q(x, y) ∈ F [x, y] we have

h(x, y)− (x− a)k(x) = (y − b)q(x, y)

Thus, h(x, y) ∈ ⟨x− a, y − b⟩. This completes the proof of the claim above.
Now, using above claim f(a, b) = 0 = g(a, b) if and only if f, g ∈ ⟨x − a, y − b⟩. By Lemma

16.1.5.2, as f and g have no common factors, therefore there are finitely many maximal ideals
containing f and g. Further, by Lemma 16.1.5.4, we know that each such maximal ideal is of the
form ⟨x− a, y− b⟩. Hence, there are only finitely many maximal ideals containing f and g, each of
which looks like ⟨x − a, y − b⟩. Hence, by above claim, there are finitely many points (a, b) ∈ F 2

such that f(a, b) = 0 = g(a, b).

16.1.6 Finite type k-algebras

We discuss basic theory of finite type k-algebras, that is, algebras of form k[x1, . . . , xn]/I .

Recall that for a field k, we denote by k[x] the polynomial ring in one variable and we denote
the rational function field k(x) to be the field obtained by localizing at prime 0. Further if K/k
is a field extension and α ∈ K, then k[α] is a subring of K generated by α ∈ K and it contains
k. Whereas, k(α) is a field extension k ↪→ k(α) ↪→ K. The following lemma shows that if K is
algebraic, then k(α) = k[α].

Lemma 16.1.6.1. Let k be a field andK/k be an algebraic extension. Ifα1, . . . , αn ∈ K, then k[α1, . . . , αn] =
k(α1, . . . , αn).

Proof. The proof uses a standard observation in field theory. First, let f1(x) ∈ k[x] be the minimal
polynomial of α1. Consequently, by a standard result in field theory, k[α1] = k[x]/f1(x) is a field.
Thus k[α1] = k(α1). Now observe that K/k(α1) is an algebraic extension. Consequently, the same
argument will yield k(α1)[α2] to be a field. By above, we thus obtain k(α1)[α2] = k[α1][α2] =
k[α1, α2] to be a field. Consequently, k[α1, α2] = k(α1, α2). One completes the proof now by
induction.
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Lemma 16.1.6.2. Let k be a field and K/k be an algebraic extension. Then the homomorphism

k[x1, . . . , xn] −→ k(α1, . . . , αn)
xi 7−→ αi

has kernel which is a maximal ideal generated by n elements.

Proof. (Sketch) Use the proof of Lemma 16.1.6.1 to obtain that for each 1 ≤ i ≤ n, we have that
k(α1, . . . , αi−1)[αi] ∼= k(α1, . . . , αi−1)[xi]/pi(α1, . . . , αi−1, xi) and divide an element p ∈ k[x1, . . . , xn]
in the kernel inductively by pi and replacing pi by remainder, starting at i = n.

16.1.7 Primary decomposition

This is a basic topic which allows us to talk about irreducible components of schemes. The main
motivating analogy here is the following: What prime ideals are to prime numbers is what pri-
mary ideals are to prime powers.

Definition 16.1.7.1 (Primary ideals). An ideal q ≤ R is primary if R/q ̸= 0 and every zero-divisor
is a nilpotent.

Example 16.1.7.2. Examples are ⟨pn⟩ ≤ Z for primes p, ⟨xn, y⟩ ≤ k[x, y]. Indeed, Z/⟨pn⟩ has zero-
divisors exactly multiples of p, which are nilpotent. Similarly, as k[x, y]/⟨xn, y⟩ ∼= k[x]/⟨xn⟩ has
zero-divisors exactly multiples of x, which are again nilpotent.

We will now directly state the main results of primary decomposition. For details, see cite[AMD].

Proposition 16.1.7.3. Let R be a ring.
1. If q ≤ R is primary, then

√
q is a prime.

2. If for some a ≤ R,
√
a is maximal, then q is primary.

Due to above result, its beneficial to introduce the following terminology.

Definition 16.1.7.4 (p-primary ideals). Let p ≤ R be a prime ideal. A primary ideal q ≤ R is said
to be p-primary if

√
q = p.

Definition 16.1.7.5 (Primary decomposition). Let R be a ring and a ≤ R be an ideal. We call
a decomposable if a =

⋂n
i=1 qi where each qi is a pi-primary ideal for primes pi. This is called a

minimal primary decomposition if each pi is distinct and qi ̸⊇
⋂
j ̸=i qj for each i. Each of the pi is

called prime belonging to a. The minimal primes amongst {p1, . . . , pn} are called isolated primes
belonging to a. The remaining are called embedded primes of a. Given a primary decomposition of
a =

⋂n
i=1 qi, the primary ideals corresponding to isolated primes belonging to a are called isolated

primary components and primary ideals corresponding to embedded primes belonging to a are
called embedded primary components.

Lemma 16.1.7.6. Every decomposable ideal admits a minimal primary decomposition.

There are three important results about primary decomposition. The first says that decompos-
able ideals have unique isolated primes. Second says that any prime containing a decomposable
ideal a contains a minimal prime belonging to a. Finally, the isolated primary components are
unique. Here are the formal statements.
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Theorem 16.1.7.7 (Weak uniqueness of minimal primary decomposition). Let R be a ring, a ≤ R be
a decomposable ideal and a =

⋂n
i=1 qi be a minimal primary decomposition where qi are pi-primary ideals

for primes pi.
1. The isolated primes belonging to a are uniquely determined by a.
2. If p ⊇ a is a prime containing a, then p contains an isolated prime belonging to a. Consequently, the

minimal primes of A/a are in bijection with isolated primes belonging to a.
3. The isolated primary components of a are uniquely determined by a.

There is a correspondence result for primary ideals under localization.

Proposition 16.1.7.8. Let S ⊆ R be a multiplicative set and q ≤ R be a p-primary ideal. If S∩p = ∅, then
S−1q is an S−1p-primary ideal of S−1R. Consequently, there is a bijection between primary ideals q ≤ R
not intersecting S and primary ideals of S−1R.

The above discussion is for ideals which admit a primary decomposition. The question re-
mains that for which rings does every ideal admit a primary decomposition. One such answer is
given by noetherian rings.

Theorem 16.1.7.9 (Lasker-Noether). Let R be a noetherian ring. Then every ideal a ≤ R admits a
primary decomposition.
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16.2 Graded rings & modules

We now study a very important class of rings, which have an extra structure of having their ad-
ditive abelian group being graded by Z1. These include polynomial algebras and quotient of
polynomial algebras by homogeneous ideals. In particular, they are the algebraic counterparts of
projective varieties. These will also be essential while discussing dimension theory.

Definition 16.2.0.1 (Graded rings & homogeneous ideals). A ring S is said to be graded if the
additive subgroup of S has a decomposition

S =
⊕
d≥0

Sd

where Sd ⊆ S is a subgroup which is called the subgroup of degree d homogeneous elements,
such that for all d, e ≥ 0, we have

Sd · Se ⊆ Sd+e.

An ideal a ≤ S is said to be homogeneous if the additive subgroup of a has a decomposition

a =
⊕
d≥0

a ∩ Sd.

Remark 16.2.0.2. Hence, if S is a graded ring, then for all d ≥ 0, the abelian group Sd is an S0-
module. Moreover, as S =

⊕
d≥0 Sd, therefore S is an S0-algebra.

Polynomial rings S = k[x0, . . . , xn] are graded rings where Sd is the abelian subgroup of all
degree d homogeneous monomials. We will see more examples once we show how to construct
quotients and localizations of graded rings. But first we see some important properties of homo-
geneous ideals.

Proposition 16.2.0.3. Let S be a graded ring and a ≤ S be any ideal. Then,
1. a is homogeneous if and only if there exists G ⊆ S a subset of homogeneous elements such that G

generates a.
2. Let a, b be two homogeneous ideals of S. Then a+ b, a · b and

√
a are again homogeneous ideals.

3. The homogeneous ideal a is prime if and only if for any two homogeneous f, g ∈ a it follows that
fg ∈ a implies either f ∈ a or g ∈ a.

We now define the notion of graded map of graded rings.

Definition 16.2.0.4 (Map of graded rings). Let S, T be graded rings. A ring homomorphism ϕ :
S → T is said to be a graded map if for all d ≥ 0 we get ϕ|Sd : Sd → Td. That is, ϕ preserves
degree.

16.2.1 Constructions on graded rings

We now do familiar constructions on graded rings, like quotients, fraction fields and localizations.

1we choose to not work in excessive generality; Z-grading is sufficient for us.
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Homogeneous localization

Definition 16.2.1.1 (Homogeneous localization). Let S be a graded ring and T ⊆ S be a mul-
tiplicative set consisting only of homogeneous elements of S. Then we define (T )−1S to be the
degree 0 abelian group of the graded ring T−1S. Hence (T )−1S is a commutative ring with 1.

Remark 16.2.1.2. Indeed, T−1S is a graded ring where an element f/g ∈ T−1S for homogeneous
f has degree deg f − deg g. It is immediate to see that this is well-defined and satisfies (T−1S)d ·
(T−1S)e ⊆ (T−1S)d+e, making T−1S a graded ring.

The following is a discussion on localization of a graded ring S at a homogeneous prime ideal
p. Let T denote the multiplicative subset of S consisting of all homogeneous elements not con-
tained in p. Then T−1S is a graded ring whose degree d-elements are a/f where a ∈ Sd+e and
f ∈ T of degree e. These form an additive abelian group where a/f + b/g = ag + bf/fg where
a ∈ Sd+k, b ∈ Sd+l and f, g ∈ T are of degree k and l respectively. Indeed, then ag + bf ∈ Sd+k+l
and fg ∈ T of degree k + l. Consequently, we define

S(p) := (T−1S)0

where (T−1S)0 is the degree 0 elements in the localization T−1S. We call this the homogeneous
localization of the graded ring S at the homogeneous prime ideal p. Thus S(p) = (Sp)0, i.e. homoge-
neous localization just picks out degree 0 elements from the usual localization. Note that the usual
localization T−1S is a graded ring where grading is given by subtracting the degree of numerator
by degree of denominator.

Lemma 16.2.1.3. Let S be a graded ring and p be a homogeneous prime ideal of S. Then, the homogeneous
localization S(p) is a local ring.

Proof. Consider the set m := (p · T−1S) ∩ Sp. Then, m is a maximal ideal of Sp as any element not
in m in Sp is a fraction f/g where deg f = deg g and f /∈ p and thus it is invertible. Consequently,
Sp is local.

Remark 16.2.1.4. Note that if S is a graded domain, then S(⟨0⟩) yields a field whose elements are
of the form f/g where deg f = deg g and f, g g is a non-zero homogeneous element of S. This field
is called the homogeneous fraction field of graded domain S. This is a subfield of usual fraction field
S⟨0⟩.

Remark 16.2.1.5. Let S be a graded ring and g ∈ S be a homogeneous element. The homogeneous
localization of S at g is defined to be the following subring of Sg:

S(g) := {f/gn ∈ Sg | f is homogeneous with deg f = n deg g, n ∈ N} ≤ Sg.

Let S be a graded ring. Then an S-module M is said to be graded S-module if M =
⊕

d∈ZMd where
Md ≤ M is a subgroup of M such that Sd ·Me ⊆ Md+e. Then, for a homogeneous element g ∈ S,
we denote by M(g) the following submodule of Mg:

M(g) := {m/gn | m is homogeneous with degm = n deg g, n ∈ N} ≤Mg.

The following is an important structural result of homogeneous localization of a graded ring
at a homogeneous element.
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Proposition 16.2.1.6. Let S be a graded ring. Fix f ∈ S1, a degree 1 homogeneous element of S. Consider
the homogeneous localization S(f).

1. We have an isomorphism of abelian groups for all e ∈ Z:

(Sf )e ∼= feS(f).

Consequently,

Sf ∼=
⊕
e∈Z

feS(f).

2. We have an isomorphism of graded rings:

Sf ∼= S(f)

ï
t,
1
t

ò
.

This is also an isomorphism of S(f)-algebras.

Proof. 1. Fix e ∈ Z and consider the map

(Sf )e −→ feS(f)
g

fn
7−→ fe · g

fn+e
.

As f ∈ S1, this is well-defined. It is immediate that this is an isomorphism.

2. Consider the map

S(f)

ï
t,
1
t

ò
−→ Sf

t 7−→ f.

This is injective as if p(f, 1/f) = 0 in Sf for some p(t, 1/t) ∈ S(f)
[
t, 1t
]
, then by item 1, it follows

that p(t, 1/t) = 0. Furthermore, this is surjective by construction. This completes the proof.

For each graded S-module M , one can attach a sequence of graded modules.

Definition 16.2.1.7. (Twisted modules) Let S be a graded ring and M a graded S-module. Then,
define

M(l) :=
⊕
d∈Z

Md+l

to be the l-twisted graded module of M .

An important lemma with regards to localization of a graded ring at a positive degree element
is as follows, it will prove its worth in showing that projective spectrum of a graded ring is a
scheme (see Lemma ??).
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Lemma 16.2.1.8. Let S be a graded ring and f ∈ Sd, d > 0. Then we have a bijection

D+(f) ∼= Spec
(
S(f)

)
where D+(f) ⊆ Spec (S) is the set of all homogeneous prime ideals of S which does not contain f and does
not contain S+.

Proof. Consider the following map

ϕ : D+(f) −→ Spec
(
S(f)

)
p 7−→ (p · Sf )0,

that is, the degree zero elements of the prime ideal p · Sf of Sf . Indeed, ϕ(p) is a prime ideal of
S(f). Further, if (p · Sf )0 = (q · Sf )0 for p, q ∈ D+(f), then for any g ∈ p, one observes via above
equality that g ∈ q. Consequently, p = q. Thus ϕ is injective. For surjectivity, pick any prime
ideal p ∈ Spec

(
S(f)

)
. We will construct a prime ideal q ∈ D+(f) such that ϕ(q) = p. Indeed, let

K = {g ∈ S | g is homogeneous & ∃n > 0 s.t. g/fn ∈ p} and consider the ideal

q = ⟨K⟩.

We thus need to check the following statements to complete the bijection:
1. q is not the unit ideal of S,
2. q is homogeneous in S,
3. q is prime in S,
4. q doesn’t contain f ,
5. (q · Sf )0 = p.

Statement 4 tells us that q doesn’t contain S+. Statement 1 follows from a degree argument; if
1 ∈ q, then 1 = a1g1 + · · · + amgm for gi ∈ K and ai ∈ S, but 1 is a degree 0 element whereas
the minimum degree of the right is atleast > 0. Statement 2 is immediate as q is generated by
homogeneous elements. For statement 3, it is enough to check for homogeneous elements h, k ∈ S
that hk ∈ q =⇒ h ∈ q or k ∈ q. This is immediate, after observing that any homogeneous element
of q is in K because K is the set of all homogeneous elements of S of positive degree which is not
a power of f . Statements 4 and 5 are immediate checks.
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16.3 Noetherian modules and rings

Let R be a ring. An R-module M is said to be noetherian if it satisfies either of the following
equivalent properties:

1. Every increasing chain of submodules of M eventually stabilizes.
2. Every non-empty family of submodules of M has a maximal element.
3. Every submodule is finitely generated.

We prove the equivalence of 1 and 3 as in Proposition 16.3.0.3. But before, let us see that noetherian
hypothesis descends to submodules and to quotients:

Lemma 16.3.0.1. Let R be a ring and M be a noetherian R-module.
1. If N is a submodule of M , then N is noetherian.
2. If M/N is a quotient of M , then M/N is noetherian.

Proof. 1. Take any submodule of M which is in N , then it is a submodule of N which is finitely
generated.
2. Take any submodule of M/N , which is of the form K/N where K ⊆ M is a submodule of M
containing N . Hence K is finitely generated and so is N . Thus K/N is finitely generated.

We also have that a finitely generated module over noetherian ring necessarily has to be
noetherian, so every submodule is also finitely generated, which is not usually the case. This
is another hint why having noetherian hypothesis can greatly ease calculations.

Lemma 16.3.0.2. Let R be a noetherian ring and let M be an R-module. Then M is a noetherian module
if and only if M is finitely generated.

Proof. The only non-trivial side is R⇒ L. Since M is finitely generated, therefore there is a surjec-
tion f : Rn ↠M whereRn is noetherian asR is noetherian (you may like to see it as a consequence
of Corollary 16.3.0.5). Now take an increasing chain of submodules N0 ⊆ N1 ⊆ . . . of M . This
yields an increasing chain of ideals f−1(N0) ⊆ f−1(N1) ⊆ . . . , which stabilizes as R is noetherian.
Applying f to the chain again we get that N0 ⊆ N1 ⊆ . . . stabilizes.

Here’s the proof of equivalence as promised.

Proposition 16.3.0.3. Let R be a ring. An R-module M is noetherian if and only if every submodule of M
is finitely generated.

Proof. (L =⇒ R) SupposeR-moduleM is noetherian and let S ⊆M be a submodule ofM . Note S
is also noetherian. This means that any subcollection of submodules of S has a maximal element.
Let such a subcollection be the collection of all finitely generated submodules of S, which clearly
isn’t empty as {0} is there. This would have a maximal element, say N . If N = S, we are done.
If not, then take x ∈ S \ N and look at N + Rx ⊂ S. Clearly this is a submodule of S strictly
containing N and is also finitely generated as N is too. This contradicts the maximality of N .
Hence every submodule of M is finitely generated.
(R =⇒ L) Let every submodule of M be finitely generated. We wish to show that this makes
M into a noetherian module. So take any ascending chain of submodules S0 ⊆ S1 ⊆ S2 ⊆ . . . .
Consider the union S = ∪∞i=0Si. S is also a submodule because for any x, y ∈ S, since {Si} is
an ascending chain, there exists Si such that x, y ∈ Si, and so x + y ∈ Si ⊆ S. By hypothesis,
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S = ⟨x1, . . . , xk⟩. Let Sni be the smallest submodule containing xi. Then Smaxni is a member of
the chain which contains each of the xis, which thus means that the Smaxni is generated by xis
because if it didn’t then S would have either a smaller or a larger generating set, contradicting the
generation by x1, . . . , xk. Hence the chain stabilizes after Smaxni .

The reason one dwells with the noetherian hypothesis is reflected in the following properties
enjoyed by it. Given a short exact sequence of modules, it is possible to figure out whether the
middle module is noetherian or not by checking the same for the other two:

Proposition 16.3.0.4. Let 0 −→ M ′
f−→ M

g−→ M ′′ −→ 0 be a short exact sequence of R-modules.
Then, the module M is noetherian if and only if M ′ and M ′′ are noetherian.

Proof. (L =⇒ R) Let M be noetherian. Then if we consider any ascending chain in M ′ or M ′′,
then we get an ascending chain in M because of the maps f and g. Remember inverse image
of an injective and direct image of a surjective module homomorphism of a submodule is also a
submodule.
(R =⇒ L) Consider an ascending chain of submodules S0 ⊆ S1 ⊆ . . . in M . We then have
two more ascending chains {(f)−1 (Si)} and {g(Si)} in M ′ and M ′′ respectively. Since these are
noetherian, therefore for both of them ∃k ∈ N such that these two chains stabilizes after k. Now,
we wish to show that {Si} also stabilizes after k. For this, we just need to show that Sk+1 ⊆ Sk.
Hence take any m ∈ Sk+1. We have g(m) ∈ g(Sk), therefore ∃s ∈ Sk such that g(m) = g(s) =⇒
g(m − s) = 0 in M ′′. Since the sequence is exact, therefore ∃m′ ∈ M ′ such that f(m′) = m − s,
or, m − s ∈ im (f). Since m ∈ Sk+1 and s ∈ Sk ⊆ Sk+1, therefore m − s ∈ Sk+1. Hence m − s ∈
im (f) ∩ Sk+1 and since im (f) ∩ Sk+1 = im (f) ∩ Sk, therefore m − s ∈ Sk and thus m ∈ Sk. This
proves Sk+1 ⊆ Sk, proving Sk = Sk+1 = . . . .

An easy consequence of the above is that direct sum of finitely many noetherian modules is
again noetherian:

Corollary 16.3.0.5. Suppose {Mi}ni=1 be a collection of noetherian R-modules. Then
⊕n

i=1Mi is also a
noetherian R-module.

Proof. Since the sum
⊕n

i=1Mi sits at the middle of the following short exact sequence:

0 −→M1
f−→

n⊕
i=1

Mi
g−→

n⊕
i=2

Mi −→ 0

where f is given by m 7−→ (m, 0, . . . , 0) and g is given by (m1, . . . ,mn) 7−→ (m2, . . . ,mn). The fact
that this is indeed exact is simple to see. One can next use induction to complete the proof.

An important result in the theory of noetherian rings is the following, which gives us few
more (but highly important) examples of noetherian rings in nature. In particular it tells us that
the one of the major class of rings which are studied in algebraic geometry, polynomial rings over
algebraically closed fields, are noetherian.

Theorem 16.3.0.6. (Hilbert basis theorem) Let R be a ring. If R is noetherian, then
1. R[x1, . . . , xn] is noetherian,
2. R[[x1, . . . , xn]] is noetherian.
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Proof. 1. We need only show that if R is noetherian then so is R[x]. Pick any ideal I ≤ R[x]. We
wish to show it is finitely generated. We go by contradiction, let I not be finitely generated.

Let f1 ∈ I be the smallest degree non-constant polynomial2 and denote I1 = ⟨f1⟩. Let f2 ∈
I \ I1 be the smallest degree non-constant polynomial and denote I2 = ⟨f1, f2⟩. Inductively, we
define In = ⟨f1, . . . , fn⟩ where fn ∈ I \ In−1 is of least degree non-constant. As I is not finitely
generated, therefore for all n ∈ N, In ⪇ I . Let fn(x) = anx

m + other terms for each n ∈ N so that
an ∈ R represents the coefficient of the leading term of fn(x). Consequently, we obtain a sequence
{an} ⊆ R. Let J = ⟨a1, . . . , an, . . .⟩. As R is noetherian, therefore there exists n ∈ N such that
J = ⟨a1, . . . , an⟩. It follows that for some r1, . . . , rn ∈ R we have

an+1 = r1a1 + · · ·+ rnan.

We claim that I = ⟨f1, . . . , fn⟩ =: In.
If not then fn+1 ∈ I \ In is of least degree non-constant. We will now show that fn+1 ∈ In, thus

obtaining a contradiction. Indeed, we have by the way of choice of fn+1 that deg fn+1 ≥ deg fi for
each i = 1, . . . , n. Consequently the polynomial

g =
n∑
i=1

rifi · xdeg fn+1−deg fi

has the property that its degree is equal to deg fn+1 and the coefficient of its leading term is equal
to fn+1. It follows that the polynomial g − fn+1 ∈ I has degree strictly less than that of fn+1.
By minimality of fn+1, it follows that g − fn+1 ∈ In. Note that by construction g ∈ In. Hence
fn+1 ∈ In, as required.

2. TODO : Write it from your exercise notebook.

Any localization of noetherian ring is again noetherian.

Proposition 16.3.0.7. Let R be a noetherian ring and S ⊂ R be a multiplicative set. Then S−1R is a
noetherian ring.

Proof. Any ideal ofR is S−1I where I ⊆ R is an ideal by exactness of localization (Lemma 16.1.2.2).
As I is finitely generated as anR-module, therefore S−1I is finitely generated as an S−1R-module,
as needed.

Lemma 16.3.0.8. Let R be a ring with ⟨f1, . . . , fn⟩ = R. If each Rfi is noetherian, then R is noetherian.

Proof. Pick any ideal I ⊆ R. We wish to show it is finitely generated. By exactness of localization
(Lemma 16.1.2.2), we get Ifi ⊆ Rfi is an ideal, thus finitely generated as Rfi-module. By Lemma
16.1.2.10, I is finitely generated as an R-module.

Corollary 16.3.0.9. LetR be a ring. Then,R is noetherian if and only ifRf is noetherian for all f ∈ R.

2this exists by well-ordering by degree.
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16.3.1 Dimension 0 noetherian rings

We’ll see that they are equivalent to the following.

Definition 16.3.1.1 (Artinian rings). A ring R is said to be artinian if it satisfies descending chain
condition for its ideals.

The following are important properties of artinian rings.

Proposition 16.3.1.2. Let R be an artinian ring. Then,
1. every prime is maximal,
2. there are finitely many maximals,
3. the Jacobson radical is a nilpotent ideal.

There are two characterizations of artinian rings to keep in mind.

Theorem 16.3.1.3. Let R be a ring. Then the following are equivalent:
1. R is artinian.
2. R is noetherian and dimR = 0.
3. R is product of finitely many artinian local rings.

If we allow noetherian hypothesis on R, then we also get the following equivalences.

Theorem 16.3.1.4. Let R be a noetherian ring. Then the following are equivalent:
1. R is artinian.
2. Spec (R) is finite discrete.

For a finitely generated k-algebra, we furthermore have the following.

Proposition 16.3.1.5. Let k be a field and A be a finitely type k-algebra. Then the following are equivalent:
1. A is artinian.
2. A is a finite k-algebra.

16.4 Supp (M), Ass (M) and primary decomposition

Let R be a ring and M be a finitely generated R-module. In the classical case when R is a field and
M is then a finite dimensional R-vector space, if x ∈ M then if even a single element of R annihi-
late x, then all elements of R annihilate x. This luxury is not enjoyed when R is a ring because not
all elements of R may be invertible. What one does then is to study the associated annihilating
ideals corresponding to each element of M . The global version of this idea is exactly the concept
of annihilator ideal of M , i.e. aM := {r ∈ R | rM = 0}. A module M is then called faithful if aM = 0.
The following exposition is taken from cite[LocalAlgebra].

Now, if we have an R-module M , then we get an ideal of R. This gives us a closed subset of
Spec (R) (see Section 1.2). A basic question that then arises is what is the relationship between the
module M and the closed set V (aM ) ↪→ Spec (R). The following answers that.

Lemma 16.4.0.1. Let R be a ring and M be a finitely generated R-module. If p ∈ Spec (R) and aM =
Ann(M) be the annihilator ideal, then the following are equivalent:
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1. Mp ̸= 0.
2. p ∈ V (aM ).

Proof. If we can show that AnnRp(Mp) = (aM )p, then we have the following equivalence

Mp ̸= 0 ⇐⇒ AnnRp(Mp) ̸= Rp ⇐⇒ (aM )p ⪇ Rp ⇐⇒ aM ⊆ p

where last equivalence follows from a modified version of Lemma 16.1.2.3. Hence we reduce
to showing that AnnRp(Mp) = (aM )p. It is easy to see that AnnRp(Mp) ⊇ (aM )p. Let r/s ∈
AnnRp(Mp). We wish to show that r/s ∈ (aM )p. Since M is finitely generated, therefore let
{m1, . . . ,mn} be a generating set of M . We thus reduce to showing that r/s · mi/1 = 0 for each
i = 1, . . . , n. This is exactly the data provided by the fact that r/s ∈ AnnRp(Mp).

The above lemma hence gives us a closed subset of Spec (R) attached to each finitely generated
R-module M . This has a name.

Definition 16.4.0.2. (Support of a module) Let R be a ring and M be a finitely generated R-
module. Let aM be the annihilator ideal of M . Then, the support of the module M is defined to be
the closed set Supp (M) := V (aM ) ↪→ Spec (R). By Lemma 16.4.0.1, it is equivalently given by the
set of all those points p ∈ Spec (R) such that Mp ̸= 0.

We then define prime ideals associated to an R-module.

Definition 16.4.0.3. (Associated prime ideals) Let R be a noetherian ring and M be an R-module.
A prime ideal p ∈ Spec (R) is said to be associated to M if there exits m ∈M such that

p = {r ∈ R | rm = 0}.

The subspace of Spec (R) of all prime ideals associated to M is denoted Ass (M) ↪→ Spec (R).

One can have the following alternate definition of an associated prime ideal.

Lemma 16.4.0.4. Let R be a noetherian ring and M be an R-module. Then,

p ∈ Ass (M) ⇐⇒ ∃N ≤M such that N ∼= R/p.

Proof. L⇒ R is easy, just consider the map R → M given by r 7→ rm where m ∈ M corresponds
to p. Conversely, take any 0 ̸= n ∈ N . Then p = {r ∈ R | rn = 0} as if r ∈ R is such that rn = 0
and n = s + p, then rn = rs + p = p, that is rs ∈ p and since s /∈ p, therefore r ∈ p. Conversely, if
r ∈ p then for all n ∈ N , rn = 0.

One can show that Ass (M) is finite for cases of interest.

Proposition 16.4.0.5. LetR be a noetherian ring andM be a finitely generatedR-module. Then Ass (()M)
is finite.

Moreover, localization behaves very nicely with associated primes.

Proposition 16.4.0.6. Let R be a noetherian ring and M be an R-module. For a multiplicative set S ⊆ R
such that S ∩ p = ∅, we have that S−1p ∈ Ass

(
S−1M

)
if and only if p ∈ Ass (M).
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The above proposition will allow us to define associated points of a coherent module over a
locally noetherian scheme.

So, for an R-module M , we get two subspaces of Spec (R), one is the closed subspace called
support Supp (M) and the other is Ass (M). Support will be used later, but the concept of associ-
ated prime ideals of M have a deeper connection with the ring R. They are not unrelated.

Lemma 16.4.0.7. Let M be an R-module. Then Ass (M) ↪→ Supp (M) ↪→ Spec (R).

Proof. For p ∈ Ass (M) let m ∈ M such that its annihilator is p. Then, for any r ∈ aM , rm = 0 and
hence r ∈ p. Thus p ∈ V (aM ) = Supp (M).

We wish to show the following result from which primary decomposition follows.

Theorem 16.4.0.8. Let R be a noetherian ring and M be a finitely generated R-module. Then there exists
an injective map

M −→
∏

p∈Ass(M)
Ep

where for each p ∈ Ass (M), Ep is an R-module where Ass (Ep) is a singleton given by {p}. We call such
submodules p-primary.

This result clearly tells us that points of Ass (M) are somewhat special. Let us investigate.

Lemma 16.4.0.9. Let R be a noetherian ring and M be a finite R-module3. Then,
1. If N ⊆M is a submodule, then Ass (N) ⊆ Ass (M).
2. If N ⊆M is a submodule, then Supp (N) ⊆ Supp (M).
3. If N ⊆M is a submodule, then Ass (N) ⊆ Ass (M) ⊆ Ass (N) ∪Ass (M/N).
4. For any point p ∈ Spec (R), we have aR/p := Ann(R/p) = p. Thus, Supp (R/p) = V (p) is an

irreducible closed subset of Spec (R).
5. For any point p ∈ Spec (R), we have Ass (R/p) = {p}. Thus, Ass (R/p) is exactly the generic point

of Supp (R/p).
6. For all p ∈ Spec (R), there exists a maximal submodule N ⊆M such that p /∈ Ass (N).
7. For all p ∈ Ass (M), there exists a maximal submodule N ⊊ M such that p /∈ Ass (N) and none of

these maximal submodules are isomorphic to R/p.

Proof. Note that by Lemma 16.3.0.2, M is a Noetherian module.
1. If p ∈ Ass (N), then for some n ∈ N , p = {r ∈ R | rn = 0}. Result follows as n ∈M .
2. If p ∈ Supp (N), then p ⊇ aN . Result follows as aN ⊇ aM .
3. By 1, we need only show Ass (M) ⊆ Ass (N)∪Ass (M/N). Pick p ∈ Ass (M). By the Lemma

16.4.0.4 and it’s proof, the submodule E of M containing of all elements of M who have
annihilator as p is isomorphic to R/p. If E ∩N = ∅, then M/N has a submodule isomorphic
to R/p and hence p ∈ Ass (M/N). Otherwise if E∩N ̸= ∅, then pick x ∈ E∩N . Since x ∈ E,
so annihilator of x is p and thus p ∈ Ass (E ∩N). By another use of Lemma 16.4.0.4, there
is a submodule F ⊆ E ∩N which is isomorphic to R/p. It follows that N has a submodule
isomorphic to R/p. By a final use of Lemma 16.4.0.4, we conclude that p ∈ Ass (N).

4. Ann(R/p) = {r ∈ R | r(R/p) = p}. It follows from primality of p that Ann(R/p) = p.

3this is just another name for finitely generated R-modules.
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5. As above, this reduces to primality of p.
6. The set of all submodules N of M satisfying Ass (N) /∈ p has a maximal element as M is a

noetherian module.
7. If p ∈ Ass (M), then the maximal N obtained from 5 cannot be M . The other fact follows

from 4.

The primary decomposition now is a corollary of the main theorem.

Corollary 16.4.0.10 (Primary decomposition theorem). Let R be a noetherian ring and M be a finitely
generated R-module. If N ≤M is a submodule, then we can write

N =
⋂

p∈Ass(M/N)
Q(p)

where Q(p) is a p-primary submodule of M , that is, Ass (Q(p)) = {p}.

With the above investigation, we are now ready to prove Theorem 16.4.0.8.

Proof of Theorem 16.4.0.8. TODO.
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16.5 Tensor, symmetric & exterior algebras

16.5.1 Results on tensor products

We collect some important results on tensor products in this section which are used all over the
text. The following results are immediate corollaries of definition of tensor product, but are of
immense use in general.

Proposition 16.5.1.1. Following are some basic properties of tensor products.
1. Tensor product is associative and commutative upto isomorphism.
2. If {Mλ} is a family of R-modules and N is an R-module, thenÇ⊕

λ

Mλ

å
⊗R N ∼=

⊕
λ

Mλ ⊗R N.

3. Let ϕ : R → S be a ring homomorphism and M,N be two R-modules. Then the scalar extended
modules M ⊗R S and N ⊗R S satisfy the following

(M ⊗R S)⊗S (N ⊗R S) ∼= (M ⊗R N)⊗R S.

4. Let R be a ring and M be an R-module. If I, J ≤ R are two ideals, then

R/I ⊗R R/J ∼= R/I + J

as rings.
5. If R,S are two rings, then

R⊗S S[x] ∼= R[x]

as rings.

Proof. TODO.

The following is a helpful lemma showing that tensor product commutes with direct limits in
all positions.

Lemma 16.5.1.2. Let Mi, Ni bet Ri-modules where I is directed set and {Mi}, {Ni} and {Ri} are directed
systems of modules and rings. Let M := lim−→i∈IMi, N := lim−→i∈I Ni and R := lim−→i∈I Ri. Then,

lim−→
i∈I

(Mi ⊗Ri Ni) ∼=M ⊗R N

as R-modules.

Proof. We will construct R-linear maps f : lim−→i∈I(Mi ⊗Ri Ni) ←→ M ⊗R N : g which will be
inverses to each other. We first construct f as follows. For each i ∈ I , we have

fi :Mi ⊗Ri Ni →M ⊗Ri N →M ⊗R N
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given by (mi ⊗ ni) 7→ ((mi) ⊗ (ni)) 7→ ((mi) ⊗ (ni)). Note that M,N are Ri-modules canonically.
By universal property of lim−→i∈I , we obtain f as above. To construct g, we need only construct an
R-bilinear map

M ×N −→ lim−→
i∈I

(Mi ⊗Ri Ni)

((mi)i∈I , (ni)i∈I) 7−→ ((mi ⊗ ni)i∈I).

This can be said to be R-bilinear, thus yielding a map g as required. It is straightforward to see
they are inverses to each other.

The following says that localization commutes with tensor products.

Lemma 16.5.1.3. Let M,N be two R-modules and S ⊆ R be a multiplicative set. Then,

S−1(M ⊗R N) ∼= S−1M ⊗S−1R S
−1N.

Proof. We may write by Lemma 16.1.2.1 the following

S−1M ⊗S−1R S
−1N ∼= (M ⊗R S−1R)⊗S−1R (S−1R⊗R N)

∼=M ⊗R (S−1R⊗S−1R (S−1R⊗R N))
∼=M ⊗R (N ⊗R S−1R)
∼= (M ⊗R N)⊗R S−1R
∼= S−1(M ⊗R N).

This completes the proof.

The following is important for calculations of tensor of quotient maps.

Proposition 16.5.1.4. Let R be a ring and f : M → N , g : M ′ → N ′ be two surjective R-linear maps.
Then

Ker (f ⊗ g) = id⊗ j(M ⊗ Ker (g)) + i⊗ id(Ker (f)⊗M ′)

where i : Ker (f) ↪→M and j : Ker (g) ↪→M ′ are inclusions.

Next, we discuss the notion of fiber of a map of rings. This is easily understood in the scheme
language.

Definition 16.5.1.5 (Fiber at a prime ideal). Let ϕ : R→ S be a ring homomorphism and let p ⪇ R
be a prime ideal. Then the fiber of ϕ at p is defined to be S ⊗R κ(p).

One of the fundamental observation about fiber at a prime ideal is that it is indeed the fiber of
the corresponding map of schemes (see Proposition 1.6.5.1), so that the notation makes sense.

Remark 16.5.1.6 (Extension of primes to polynomial ring). If p is a prime of A, then the extension
p⊗A A[x] is isomorphic to a prime of A[x]. Indeed, the following map shows that it is isomorphic
to prime pA[x]:

p⊗A A[x] −→ pA[x]
a⊗ x 7−→ ax.

However, if m is maximal in A, then mA[x] may not be maximal. Indeed, 0 is maximal in a field F ,
but 0⊗F F [x] = 0 is not in F [x].
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Remark 16.5.1.7. Let f : A → B be a ring homomorphism and N be a B-module. Let NA be the
restriction of scalars to A and NB = NA ⊗A B. It is in general not true that NB

∼= N ; in-fact, NB is
larger than N . Indeed we do have a map g : N → NB mapping n 7→ n⊗1 which is injective as can
be seen from universal property of tensor products applied to the bilinear map π : NA×B → NA,
the projection map. Even more is true; we see that the map p : NB → N mapping n ⊗ b 7→ bn
provides a splitting of the following s.e.s.:

0 N NB CoKer (g) 0g

p

.

Thus, we have that in-fact N is a direct summand of NB .

16.5.2 Determinants

Fix a commutative ring R with unity for the remainder of this section. We shall show in this
section that there exists a unique determinant map overMn(R). This will motivate further notions
discussed in later sections.

We begin by defining a multilinear map over Mn(R).

Definition 16.5.2.1. (Multilinear map over Mn(R)) Let n ∈ N and consider Mn(R). An n-linear
map over Mn(R) is a function

D :Mn(R) −→ R

which is linear in each row. That is, if Ai denotes the ith-row of matrix A and c ∈ R, then for each
i = 1, . . . , n, we have

D(A1, . . . , Ai−1, cAi +Bi, Ai+1, . . . , An) = cD(A1, . . . , Ai−1, Ai, Ai+1, . . . , An)
+D(A1, . . . , Ai−1, Bi, Ai+1, . . . , An).

We may abbreviate the above by simply writing D(cAi +Bi) = cD(Ai) = D(Bi).

Example 16.5.2.2. The map

D :Mn(R) −→ R

A 7−→ cA1k1A2k2 . . . Ankn

is an n-linear map where c ∈ R is a constant and 1 ≤ ki ≤ n are n integers.

We first see that linear combination of n-linear maps is again n-linear.

Lemma 16.5.2.3. Let D1, . . . , Dr be n-linear maps and c1, . . . , cr ∈ R. Then c1D1 + · · · + crDr is an
n-linear map.

Proof. By induction, we may assume r = 2. Now this is a straightforward check.

We now come more closer to determinants by defining the following type of n-linear maps.

Definition 16.5.2.4. (Alternating & determinant maps) An n-linear map D : Mn(R) → R is said
to be alternating if
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1. D(A) = 0 if Ai = Aj for any i ̸= j,
2. D(σij(A)) = −D(A) where σij swaps rows Ai and Aj .

An alternating n-linear map D :Mn(R)→ R is said to be determinant if D(In) = 1.

Proposition 16.5.2.5. If D : Mn(R) → R is an n-linear map such that D(A) = 0 whenever Ai = Ai+1
for some 1 ≤ i ≤ n, then D is alternating.

Proof. Let A ∈ Mn(R) and 1 ≤ i ̸= j ≤ n be such that Ai = Aj . We first wish to show that
D(σij(A)) = −D(A). We may assume j > i. We go by strong induction over j − i. We first show
this for j = i+1. Indeed, we then haveD(σi,i+1(A)) = D(Ai+1, Ai). Writing 0 = D(Ai+1+Ai, Ai+
Ai+1) = D(Ai+1, Ai) +D(Ai, Ai+1). Thus we get D(Ai+1, Ai) = −D(Ai, Ai+1).

In the inductive case, suppose D(σij(A)) = −D(A) for all j − i ≤ k. We wish to show that if
j − i = k + 1, then the same holds. As σi,i+k+1(A) = σi+k,i+k+1 ◦ σi,i+k ◦ σi+k,i+k+1(A), therefore
we are done.

To get that D(A) = 0 for A such that Ai = Aj for some j > i, we may simply swap rows till
they are adjacent, which will be zero by our hypothesis.

We now define the main candidate for the determinant function over Mn(R).

Definition 16.5.2.6. (Ej) Let D :Mn−1(R)→ R be an n− 1-linear map. For each 1 ≤ j ≤ n, define
the following map

Ej :Mn(R) −→ R

A 7−→
n∑
i=1

(−1)i+jAijD(A[i|j]).

Further denote Dij(A) := D(A[i|j]).

Theorem 16.5.2.7. Let n ∈ N and D : Mn−1(R) → R be an alternating n − 1-linear map. For each
1 ≤ j ≤ n, the map Ej : Mn(R) → R defined as above is an alternating n-linear map. If moreover D is a
determinant map, then so is each Ej .

Proof. Fix 1 ≤ j ≤ n. We first wish to show that Ej is n-linear. As Dij : Mn(R) → R is linear in
every row except i. Thus A 7→ AijDij(A) is n-linear. It follows from Lemma 16.5.2.3 that Ej is
n-linear.

To show that Ej is alternating, it would suffice from Proposition 16.5.2.5 to show that Ej(A) =
0 if A has any two adjacent rows equal, say Ak = Ak+1. This one checks directly by the definition
of Ej .

To see that Ej is determinant if D is determinant is also easy to see.

We now show the uniqueness of determinants and alternating n-linear maps (upto the value
on In).

Theorem 16.5.2.8. Let D :Mn(R)→ R be an alternating n-linear map over Mn(R). Then,
1. D is given explicitly on A ∈Mn(R) by

D(A) =
(∑
σ∈Sn

sgn(σ)A1σ(1) . . . Anσ(n)

)
D(I),

hence D is unique upto its value over I ,
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2. if D is determinant map, then it is uniquely given by

D(A) = detA :=
∑
σ∈Sn

sgn(σ)A1σ(1) . . . Anσ(n),

3. any alternating map D on Mn(R) is thus uniquely determined by its value on I as

D(A) = (detA) ·D(I).

Proof. The proof is straightforward but tedious. TODO.

Corollary 16.5.2.9. Let n ∈ N.
1. If A,B ∈Mn(R), then det(AB) = det(A) · det(B).
2. If B ∈ Mn(R) is obtained by Bj = Aj + cAi for some fixed 1 ≤ i, j ≤ n and rest of the rows of B

are identical to A, then det(B) = det(A).
3. If M ∈Mr+s(R) is given by

M =
ï
Ar×r Br×s
0 Cs×s

ò
then det(M) = det(A) · det(C).

4. For each 1 ≤ j ≤ n, we have

det(A) = Ej(A) =
n∑
i=1

(−1)i+jAij det(A[i|j]).

Proof. (Sketch) For 1. we can contemplate

D :Mn(R) −→ R

A 7→ det(AB).

One claims that D is an n-linear alternating map. Then apply Theorem 16.5.2.8, 3.

2. Follows by multilinearity of det.

3. As elementary row operations only change determinant upto sign and restricting an r+s-linear
alternating map to first r or last s entries keeps it r-linear and s-linear alternating respectively,
therefore the result follows.

4. Follows from Theorem 16.5.2.7 and Theorem 16.5.2.8.

Construction 16.5.2.10. (Adjoint of a matrix) Let A ∈ Mn(R) be a square matrix. By Corollary
16.5.2.9, the sum Ej(A) = det(A) for each 1 ≤ j ≤ n

det(A) =
n∑
i=1

Aij(−1)i+j det(A[i|j]).



486 CHAPTER 16. COMMUTATIVE ALGEBRA

Hence, let us define Cij := (−1)i+j det(A[i|j]) as the ijth-cofactor of A. Consequently, we get a
matrix (AdjA)ij = Cji, called the adjoint matrix. Hence, we may rewrite the determinant as

det(A) =
n∑
i=1

AijCij

=
n∑
i=1

(AdjA)jiAij .

Thus,

det(A)I = Adj(A) ·A.

This also allows us to write that in the case when A is invertible, we have

A−1 = 1
detAAdj(A).

As similar matrices have same determinant, therefore each linear operator on a finite dimensional
vector space has a unique determinant. Thus determinants are invariants of linear operators upto
similarity.

16.5.3 Multilinear maps

We now put the previous discussion in a more abstract framework where we work with modules
over a commutative ring with 1. We first recall that the rank of a finitely generated module is
the size of the smallest generating set. Further recall that a finitely generated free R-module V
has a well-defined rank and the smallest generating set is moreover a basis of V (i.e. linearly
independent set of generators).

For this section, we would hence fix a commutative ring R with 1.

Definition 16.5.3.1. (r-linear forms over a module) Let V be an R-module. An r-linear form L
over V is a function

L : V r = V × · · · × V −→ R

such that for any c ∈ R, βi ∈ V and (α1, . . . , αr) ∈ V r, we have

L(α1, . . . , cαi + βi, . . . , αn) = cL(α1, . . . , αi, . . . , αn) + L(α1, . . . , βi, . . . , αn)

for any 1 ≤ i ≤ r. An r-linear form is usually also called an r-tensor. A 2-linear form/tensor is also
usually called a bilinear form. Note that an r-linear form may not be linear. Denote the R-module
of all r-linear forms by M r(V ).

Remark 16.5.3.2. Let f1, . . . , fr ∈ V ∗ = HomR (V,R) =M1(V ) be a collection of linear functionals.
We then obtain L ∈M r(V ) given by

L(α1, . . . , αr) = f1(α1) · · · · · fr(αr).

Example 16.5.3.3. We give some examples.
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1. Let V = Rn be a free R-module of rank n. Then for a fixed matrix A ∈Mn(R), the map

V × V −→ R

(x, y) 7−→ xtAy

is a bilinear form over V .
2. Let V = Rn be a free R-module of rank n. Then we obtain the following n-linear form

det : V n −→ R

(α1, . . . , αn) 7−→ det(A)

where A ∈ Mn(R) whose ith-row is αi. Hence, determinant is an n-tensor/n-linear form
over V .

Remark 16.5.3.4. (General expression of an r-linear form) Let L ∈ M r(V ) be an r-form over an
R-module V where V is a free module of rank n. Further denote e1, . . . , en be a basis of V . For any
(α1, . . . , αr) ∈ V r, we may write αi =

∑n
j=1Aijej . Hence we have A ∈ Mr×n(R). This yields by

n-linearity of L that

L(α1, . . . , αr) =
n∑

jr=1
· · ·

n∑
j1=1

A1j1 . . . ArjrL(ej1 , . . . , ejr)

=
∑

J={j1,...,jr}
AJL(eJ)

where J ∈ X where X is the set of all r-tuples with entries in {1, . . . , n}. There are therefore nr

terms in the above sum.

Definition 16.5.3.5. (Tensor product of linear forms) Let M be an R-module. We then define

−⊗− :M r(V )×M s(V ) −→M r+s(V )
(L,M) 7−→ L⊗M

where L⊗M : V r+s → R is given by (α1, . . . , αr, β1, . . . , βs) 7→ L(α1, . . . , αr)M(β1, . . . , βs).

Remark 16.5.3.6. We have following observations about tensor of forms:
1. L⊗ (T + S) = L⊗ T + L⊗ S,
2. (L⊗ T )⊗N = L⊗ (T ⊗N),
3. c(L+ T )⊗ S = cL⊗ S + cT ⊗ S,
4. L⊗ T ̸= T ⊗ L.

We now come to an important theorem about M r(V )

Theorem 16.5.3.7. Let V be a free R-module of rank n and B = {e1, . . . , en} ⊆ V be a basis of V . Let X
denote the set of all r-tuples with entries in {1, . . . , n}. Then,

1. the R-module M r(V ) is free of rank nr,
2. a basis of M r(V ) is given by fJ = fj1 ⊗ . . .⊗ fjr where B∗ = {f1, . . . , fn} ⊆ V ∗ = M1(V ) is the

dual basis of B, where J = {j1, . . . , jr} varies over all elements of X .
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Proof. (Sketch) We claim that {fJ}J⊆X forms a basis of M r(V ). Pick any (α1, . . . , αr) ∈ V r, then by
Remark 16.5.3.4, we first have αi =

∑n
j=1 fj(αi)ej . Consequently,

L(α1, . . . , αr) =
∑

J={j1,...,jr}
L(ej1 , . . . , ejr) · fj1 ⊗ . . .⊗ fjr(α1, . . . , αr)

=
∑

J={j1,...,jr}
L(eJ)fj1 ⊗ . . .⊗ fjr(α1, . . . , αr).

Thus, {fJ}J⊆X spans M r(V ). For linear independence, take any combination

∑
J⊆X

cJfJ = 0.

On the LHS, apply eI to get cI = 0 for each I ⊆ X .

Definition 16.5.3.8. (Alternating r-linear forms) Let V be an R-module. An r-linear form L ∈
M r(V ) is said to be alternating if

1. L(α1, . . . , αr) = 0 if αi = αj for i ̸= j,
2. L(ασ(1), . . . , ασ(r)) = sgn(σ)L(α1, . . . , αr) for all σ ∈ Sr.

The collection of all alternating r-linear forms is denoted by Λr(V ) and its a submodule of M r(V ).
Note that the second axiom follows from 1, but is important to keep it in mind.

Observe that Λ1(V ) =M1(V ) = V ∗.

Remark 16.5.3.9. Consider V = Rn, a free R-module of rank n. We saw earlier that det ∈ Mn(V )
is an n-linear form.. Theorem 16.5.2.8 shows that det is moreover an unique alternating form with
det(e1, . . . , en) = 1. Thus, det ∈ Λn(V ) ⊆ Mn(V ) is the unique alternating n-linear form over V
such that det(e1, . . . , en) = 1, i.e. Λn(V ) is a free R-module of rank 1.

Construction 16.5.3.10. Let V be an R-module. We now construct an R-linear map πr :M r(V )→
Λr(V ). For each L ∈ M r(V ), define Lσ ∈ M r(V ) given by Lσ(α1, . . . , αr) = L(ασ(1), . . . , ασ(r)) for
(α1, . . . , αr) ∈ V r. Consequently, we claim that the following map is well-defined:

πr :M r(V ) −→ Λr(V )
L 7−→

∑
σ∈Sr

sgn(σ)Lσ.

Indeed, we have to show that πrL is an alternating form. Let (α1, . . . , αr) ∈ V r be such that αi = αj
for i ̸= j. We wish to show that πrL(α1, . . . , αr) = 0. Let τ = (ij) be the transposition swapping
i and j. First observe that the map Sr → Sr given by σ 7→ τσ is a bijection. Consequently, if
we let σ1, . . . , σn!

2
to be any n!

2 elements of Sr, then the rest n!
2 are given by τσi, i = 1, . . . , n!/2.
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Consequently,

πrL(α1, . . . , αr) =
∑
σ∈Sr

sgn(σ)L(ασ(1), . . . , ασ(r))

=
∑
σ∈Sr

sgn(σ)L(ασ(1), . . . , ασ(r))

=
n!
2∑
i=1

sgn(σi)L(ασi(1), . . . , ασi(r)) +
n!
2∑
i=1

sgn(τσi)L(ατσi(1), . . . , ατσi(r))

=
n!
2∑
i=1

sgn(σi)L(ασi(1), . . . , ασi(r)) +
n!
2∑
i=1
−sgn(σi)L(ασi(1), . . . , ασi(r))

= 0.

Hence, πr is indeed an R-linear map from M r(V ) into Λr(V ).
Finally note that if L ∈ Λr(V ), then πrL = r!L as Lσ = sgn(σ)L for any σ ∈ Sr.

Example 16.5.3.11. Let V = Rn be the free R-module of rank n. Let e1, . . . , en ∈ V be the standard
R-basis of V . Further, let f1, . . . , fn ∈M1(V ) be the associated dual basis. Note that for any α ∈ V ,
we have α = f1(α)e1 + . . . fn(α)en. Then, we get an n-form

L = f1 ⊗ . . .⊗ fn ∈Mn(V ).

Consequently we obtain an alternating n-form given by

πrL =
∑
σ∈Sn

sgn(σ)(fσ(1) ⊗ . . .⊗ fσ(n)).

Observe that for any (α1, . . . , αn) ∈ V n, we obtain

πrL(α1, . . . , αn) =
∑
σ∈Sn

sgn(σ)
(
fσ(1) ⊗ . . .⊗ fσ(n)

)
(α1, . . . , αn)

=
∑
σ∈Sn

sgn(σ)
(
fσ(1)(α1) · · · · · fσ(n)(αn)

)
.

This is exactly the determinant of the n×nmatrix overR given byA = (fj(αi)). That is, πrL = det.

The following properties of πr will become important later on.

Proposition 16.5.3.12. Let V be an R-module and L ∈ M r(V ) and M ∈ M s(V ) be r and s-forms over
V respectively. Then,

πr+s(πr(L)⊗ πs(M)) = r!s!πr+s(L⊗M).

Proof. TODO : Magnum tedium.

The above has a very nice and useful corollary.
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Corollary 16.5.3.13. Let V be a free R-module of rank n with f1, . . . , fn ∈ V ∗ be a dual basis of V ∗. Let
I ∈ Xr and J ∈ Xs where Xr and Xs are the sets of r and s combinations of {1, . . . , n}, respectively, such
that I and J are disjoint (ik ̸= jl for any 1 ≤ k ≤ r, 1 ≤ l ≤ s). Denote DI = πr(fI) and DJ = πs(fJ)
where fI = fi1 ⊗ . . .⊗ fir ∈M r(V ) and fJ = fj1 ⊗ . . .⊗ fjs ∈M s(V ). Then,

πr+s(DI ⊗DJ) = r!s!DI⨿J .

Proof. Follows immediately from Proposition 16.5.3.12

We now come to the main result about alternating forms.

Theorem 16.5.3.14. Let V be a free module of rank n over R.
1. If r > n, then Λr(V ) = 0.
2. If 0 ≤ r ≤ n, then rank of Λr(V ) is nCr.

Proof. (Sketch) Using Remark 16.5.3.4, statement 1 is straightforward. For 2, observe that we can
write for (α1, . . . , αr) ∈ V r, r ≤ n as follows

L(α1, . . . , αr) =
∑

J={j1,...,jr}∈X
L(eJ)(fj1 ⊗ . . .⊗ fjr)(α1, . . . , αr)

where X is the set of all r-permutations of {1, . . . , n} (as for any repeatitions, the corresponding
term is 0). Now, partitioning the set X into classes in which permutations represent the same
combination, we obtain an indexing set X̂ of size nCr. Again, by the fact that L is alternating, we
observe sgn(σ)L(ej1 , . . . , ejr) = L(ejσ(1) , . . . , ejσ(r)). Consequntly we may write the above sum as

L(α1, . . . , αr) =
∑

J={j1,...,jr}∈X̂

L(ej1 , . . . , ejr)
∑
σ∈Sr

sgn(σ)
Ä
fjσ(1) ⊗ . . .⊗ fjσ(r)

ä
(α1, . . . , αr).

Therefore denote for each J ∈ X̂ the following

DJ =
∑
σ∈Sr

sgn(σ)
Ä
fjσ(1) ⊗ . . .⊗ fjσ(r)

ä
.

One can observe that the DJ for each J ∈ X̂ can alternatively be written as

DJ = πr(fj1 ⊗ . . .⊗ fjr).

The above shows that DJ is in Λr(V ) and that it spans Λr(V ). The claim now is that these are also
linearly independent. Indeed, that follows immediately by using the fact that fjs are dual basis of
ejs.

We can now abstractly obtain the determinant of a linear operator T : V → V on a free R-
module V of rank n.

Corollary 16.5.3.15. Let V be a free R-module of rank n and T : V → V be an R-linear operator. Then,
1. rank of Λn(V ) = 1,
2. there exists a unique cT ∈ R such that for all L ∈ Λn(V ),

L ◦ T = cTL.

This cT is defined to be the determinant of the operator T .

Proof. Statement 1 follows from Theorem 16.5.3.14. For statement 2, one need only observe that
L ◦ T is again an alternating n-tensor and then use statement 1.
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16.5.4 Exterior algebra over characteristic 0 fields

Let us first make the exterior algebra over characteristic 0 fields, before moving to arbitrary ring.

Definition 16.5.4.1. (Wedge product) Let K be a field of characteristic 0 and V be an R-vector
space. For any r, s ∈ N, define

Λr(V )× Λs(V ) −→ Λr+s(V )

(L,M) 7−→ L ∧M := 1
r!s!πr+s(L⊗M).

Observe that DI ∧DJ = 1
r!s!πr+s(πr(fI)⊗ πs(fJ)) =

r!s!
r!s!πr+s(fI ⊗ fJ) and the latter is either 0 if I

and J have a common index or DI⨿J if they are distinct. This follows from Proposition 16.5.3.12.

In the following result, we see that wedge product is a anti-commutative, distributive and
associative operation.

Proposition 16.5.4.2. Let V be a K-vector space over a field K of characteristic 0.
1. Let ω, η ∈ Λk(V ), φ ∈ Λl(V ). Then, wedge product is distributive as

(ω + η) ∧ φ = ω ∧ φ+ η ∧ φ,

2. Let ω ∈ Λk(V ), η ∈ Λl(V ). Then, wedge product is anti-commutative as

ω ∧ η = (−1)klη ∧ ω,

3. Let ω ∈ Λk(V ), η ∈ Λl(V ), φ ∈ Λm(V ). Then, wedge product is associative as

(ω ∧ η) ∧ φ = ω ∧ (η ∧ φ).

Proof. We need only check these identities on the basis elements {DI} of each Λr(V ).
1. Let ω = DI , η = DJ and ϕ = DM . Then,

(DI +DJ) ∧DM = πk+l((DI +DJ)⊗DM ) = πk+l(DI ⊗DM +DJ ⊗DM )
= πk+l(DI ⊗DM ) + πk+l(DJ ⊗DM ) = DI ∧DM +DJ ∧DM

as required.
2. TODO.

Using above, we come to the following definition.

Definition 16.5.4.3. (Exterior algebra) Let V be a K-vector space where K is a field of character-
istic 0. Then the exterior algebra over V is

Λ(V ) = K ⊕ Λ1(V )⊕ Λ2(V ) . . .
= K ⊕

⊕
k≥1

Λk(V )

where the product is given by wedge product which by Proposition 16.5.4.2 is associative, unital,
distributive but non-commutative. This is also sometimes called the Grassmann algebra over V .
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Remark 16.5.4.4. Observe that if V is of dimension n, then

Λ(V ) = K ⊕
n⊕
k=1

Λk(V )

as all the higher forms are automatically 0. Consequently, the dimension of Λ(V ) by Theorem
16.5.3.14 is seen to be

dimK Λ(V ) = 1 +
n∑
k=1

nCk

=
n∑
k=0

nCk

= 2n.

Remark 16.5.4.5. Let V be a K-vector space of dimension n, where K is of characteristic 0. The
exterior algebra Λ(V ) is a gradedK-algebra of dimension 2n overK. Indeed, the grading is correct
as if ω ∈ Λk(V ), η ∈ Λl(V ), then ω ∧ η ∈ Λk+l(V ).

16.5.5 Tensor, symmetric & exterior algebras

We now define the three algebras TM,SM and ∧M associated to a moduleM overR without any
restriction imposed as earlier.

Definition 16.5.5.1 (TM,SM and ∧M ). Let R be a ring and M be an R-module.
1. The tensor algebra over M is defined to be

TM =
⊕
n≥0

TnM

where TnM = M ⊗ . . . ⊗ M n-times and T 0M = R. This is a non-commutative graded
R-algebra where the multiplication is given by tensor product.

2. The symmetric algebra over M is defined to be the quotient

SymM = TM/I =
⊕
n≥0

SnM

where I is the two-sided graded ideal of TM given by

I = ⟨x⊗ y − y ⊗ x|x, y ∈M⟩.

This is a commutative graded R-algebra where SymnM denotes TnM/I ∩TnM . To empha-
size the base ring R, we sometimes write SymR(M) as well. Note that there is a canonical R-
linear map M → SymR(M) given by the composite M → TM ↠ Sym(M) where M → TM
is the inclusion in the first factor.

3. The exterior algebra over M is defined to be the quotient

∧M = TM/J =
⊕
n≥0
∧nM
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where J is the two-sided graded ideal of TM given by

J = ⟨x⊗ x | x ∈M⟩.

This is a skew-commutative4 graded R-algebra where ∧nM denotes TnM/J ∩ TnM .

Symmetric algebra

We begin by discussing the universal property of symmetric algebra.

Proposition 16.5.5.2. Let R be a ring and M be an R-module. Then the R-algebra SymR(M) satisfies the
following universal property: for any commutative R-algebra S and an R-linear map f : M → S, there
exists a unique R-linear map of algebras f̃ : SymR(M)→ S such that the following commutes:

SymR(M) S

M

f̃

f
.

Thus, we have a natural bijection

HomMod(R) (M,S) ∼= HomAlg(R)
(
SymR(M), S

)
.

Using the above property, we have following easy conclusions.

Lemma 16.5.5.3 (Base change). Let R be a ring and R→ S be an R-algebra. If M is an R-module, then
we have an isomorphism of graded rings:

SymR(M)⊗R S ∼= SymR(M ⊗R S)

Lemma 16.5.5.4. Let R be a ring and M,M ′ be R-modules. Then

SymR(M ⊕M
′) ∼= SymR(M)⊗R SymR(M

′).

Exterior algebra

The following are three important properties of exterior powers of modules.

Theorem 16.5.5.5. Let R be a ring.
1. [Free modules]. The exterior power ∧k(Rn) is a free module of rank nCk with basis elements {ei1 ∧
ei2 ∧ · · · ∧ eik} where {ij}j=1,...,k is an increasing sequence from the set 1,. . . , n and eij = δij ∈ Rn.

2. [Tensor product]. Let f : R→ S be a ring map and M be an R-module. Then,

(∧kM)⊗R S ∼= ∧k(M ⊗R S).

3. [Binomial formula]. Let M,N be two R-modules. Then,

∧k(M ⊕N) ∼=
k∑
i=0
∧iM ⊗R ∧k−iN.

4as J contains x⊗ y + y ⊗ x by opening (x+ y)⊗ (x+ y) ∈ J .
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16.6 Field theory

We cover some basic material on Galois theory.

16.6.1 Finite extensions, algebraic extensions & compositum

Recall that a field extension K/F is said to be finite if K/F is a finite dimensional F -vector space
and then we denote [K : F ] := dimF K. It is said to be algebraic if for every α ∈ K, there ex-
ists p(x) ∈ F [x] such that p(α) = 0, that is, the inclusion F ↪→ K is integral. Let I = {p(x) ∈
F [x] | p(α) = 0} ≤ F [x] be an ideal. The generating element mα,F (x) of I is called the minimal
polynomial of α ∈ K. Note that this is irreducible as I is a prime ideal as it is kernel of a map.

The main basic result connecting algebraic and finite extensions is that finitely generated alge-
braic extensions are equivalent to finite extensions. This is immediate from Proposition 16.7.1.9,
but we give an elementary proof. We first begin by elementary observations.

Theorem 16.6.1.1. Let K/F be a field extension and α ∈ K.
1. If K/F is finite, then it is algebraic.
2. If K/L/F are extensions, then

[K : F ] = [K : L] · [L : F ]

where [K : L] or [L : F ] is infinity if and only if [K : F ] is infinity.
3. If α1, . . . , αn are algebraic over F , then F (α1, . . . , αn) = F [α1, . . . , αn].
4. We have [F (α) : F ] = degmα,F .
5. The extension F (α1, . . . , αn)/F is algebraic if and only if α1, . . . , αn are algebraic over F .
6. K/F is a finite-type algebraic extension if and only if K/F is finite.
7. If K/L and L/F are both algebraic, then K/F is algebraic.
8. The set of all algebraic elements in K over F forms a subfield of K containing F denoted Kalg/F .

Proof. 1. Pick any element x ∈ K and consider {1, x, x2, . . . }. Finiteness of K/F makes sure that
there is a finite subset of above which is linearly depenedent.

2. Take bases of K/L and L/F and consider their pairwise product. One sees that this new
collection is linearly independent and its F -span is K.

3. As F [α] is a field as it is isomorphic to F [x]/⟨mα,F (x)⟩ andmα,F (x) is irreducible. By univer-
sal property of quotients, we getF [α] = F (α). By induction, we wish to show thatF (α1, . . . , αn−1)[αn] =
F (α1, . . . , αn−1)(αn) = F (α1, . . . , αn−1, αn), which completes the proof.

4. We have F (α) = F [α] = F [x]
mα,F (x) and this is of dimension degmα,F (x) over F .

5. Forward is immediate. For converse, proceed by induction. Clearly, F (α1)/F is algebraic as
it is finite. Composition of finite is finite, so F (α1, . . . , αn)/F is finite, thus algebraic.

6. Forward is the only non-trivial side. Let K = F (α1, . . . , αn) and by algebraicity, αi are alge-
braic. Now F (α1)/F is finite as algebraic. By induction, we get the result.

7. Pick α ∈ K and consider mα,L(x) ∈ L[x] as mα,L(x) = xn+ cn−1x
n−1+ · · ·+ c1x+ c0, ci ∈ L.

Then, consider F (c0, . . . , cn−1) ⊆ L. As L/F is algebraic, thus ci ∈ L are algebraic and thus by
previous, we get F (c0, . . . , cn−1)/F is algebraic and finite. As F (c0, . . . , cn−1)(α)/F (c0, . . . , cn−1)
is algebraic as it is finite, thus F (c0, . . . , cn−1, α)/F is algebraic as it is composite of two finite ex-
tensions.
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8. Indeed, pick any two algebraic elements α, β ∈ K over F . Then F (α, β) is an algebraic
extension over F and thus F (α, β) ⊆ Kalg/F .

Next, we define compositum, the smallest field containing two subfields.

Definition 16.6.1.2 (Compositum of fields). Let F,K be two fields in a field L. Then compositum
of F and K in L is the smallest field in L containing both F and K. This is denoted by F ·K.

The following are the main results for compositum. We will see more later when needed.

Theorem 16.6.1.3. Let K/F be a field extension and K1,K2 ⊆ K be two subfields containing F . Then,
1. If K1 = F (α1, . . . , αn) and K2 = F (β1, . . . , βm), then K1 ·K2 = F (α1, . . . , αn, β1, . . . , βm).
2. If K1/F and K2/F are algebraic, then K1 ·K2/F is algebraic.
3. If K1/F and K2/F are finite, then K1 ·K2/F is finite.
4. If [K1 : F ] and [K2 : F ] are coprime, then [K1 ·K2 : F ] = [K1 : F ] · [K2 : F ].
5. We have [K1 ·K2 : F ] ≤ [K1 : F ] · [K2 : F ].

Proof. 1. It is clear that K1 · K2 ⊇ F (α1, . . . , αn, β1, . . . , βm) since K1 · K2 contains both K1, K2
and F . For the converse, as K1 · K2 is the smallest field containing both K1 and K2 therefore
K1 ·K2 ⊆ F (α1, . . . , αn, β1, . . . , βm).

2. Let L be the algebraic closure of F in K1 ·K2. By hypothesis, L ⊇ K1,K2. Thus L ⊇ K1 ·K2.
3. By Theorem 16.6.1.1, 6, K1 = F (α1, . . . , αn) and K2 = F (β1, . . . , βm) where αi, βj are al-

gebraic elements over F . By item 1, K1 · K2 = F (α1, . . . , αn, β1, . . . , βm) is a finitely generated
algebraic extension, thus finite, as required.

4. Since we have

[K1 ·K2 : F ] = [K1 ·K2 : K1][K1 : F ]
= [K1 ·K2 : K2][K2 : F ].

By hypothesis, [K1 · K2 : F ] is a multiple of [K1 : F ] · [K2 : F ]. Thus we redude to showing
[K1 ·K2 : F ] ≤ [K1 : F ] · [K2 : F ]. Note by above equations, it suffices to show that

[K1 ·K2 : K1] ≤ [K2 : F ].

To this end, let α1, . . . , αn ∈ K2 be an F -basis of K2. It thus suffices to show that K1-span of
α1, . . . , αn is whole of K1 ·K2, that is, we wish to show

L := K1 · α1 + · · ·+K1 · αn = K1 ·K2.

Note that it suffices to show that L is a field containing both K1 and K2. Indeed, the fact that L
contains K2 is immediate as L contains F and α1, . . . , αn. Further L contains K1 as L contains 1
since L containsK2 and that it is aK1-vector space. Thus, L ⊇ K1,K2. We thus reduce to showing
that L is a field.

To this end, observe that if l ∈ L, then l = c1α1+ · · ·+cnαn for ci ∈ K1. Now, l ∈ K2(c1, . . . , cn).
Thus l−1 ∈ K2(c1, . . . , cn) = K2[c1, . . . , cn], that is, l−1 is a polynomial in ci with coefficients in K2.
But any element of K2 is an F -linear combination of α1, . . . , αn. As K1 ⊇ F , therefore l−1 is a
linear combination of α1, . . . , αn with coefficients in K1 (powers of ci multiplied by elements of F ,
so in K1). Thus, l−1 ∈ L, as needed. The fact that L is multiplicatively closed is immediate. This
completes the proof.

5. Follows from proof of item 4 above.
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We now see that a finite algebra over a domain which is a domain induces a finite extension of
fraction fields.

Lemma 16.6.1.4. Let B ↪→ A be a finite B-algebra where both A,B are domains. Then Q(A) is a finite
extension of Q(B).

Proof. Let α1, . . . , αn ∈ A be a generating set of A as a B-module and let ϕ : B ↪→ A be the
structure map of the finite B-algebra structure on A. Now let S = B − {0}. Now we get a map
S−1ϕ : Q(B) ↪→ S−1A. This is a finite map since S−1A as the Q(B) span of α1, . . . , αn in S−1A is
S−1A. To complete the proof, we need only show that the natural inclusion S−1A ↪→ Q(A) given
by a

b 7→
a
b is a finite map. We see something stronger: Q(A) = S−1A. Indeed, this is true because

S−1A is a field containing A as S−1A is a domain which is finite over the field Q(B), so that by
Lemma 16.7.1.14, we get that S−1(A) is a field. As it contains A, so it also contains Q(A). This
completes the proof.

16.6.2 Maps of field extensions

There are some important results which allow us to extend a field homomorphism from a smaller
field to a bigger field. These come in handy while discussing splitting fields and algebraic closures.

Proposition 16.6.2.1 (Extension-I). Let ϕ : F → F ′ be a field isomorphism. Let p(x) ∈ F [x] be an
irreducible polynomial and let ϕ(p(x)) ∈ F ′[x] be the irreducible polynomial in the image. If α is a root of
p(x) and β is a root of ϕ(p(x)), then there exists a field isomorphism ϕ̃ : F (α) → F ′(β) mapping α 7→ β
and extending ϕ:

F (α) F ′(β)

F F ′ϕ

∼=

ϕ̃

∼=
.

Proof. Since F (α) = F [x]/p(x) and F ′(β) = F ′[x]/ϕ(p(x)), therefore we need only construct an
isomorphism between them via ϕ which takes x̄ to x̄ (as x̄ in F (α) is the root of p(x) in F (α) and
similarly for F (β)).

Indeed, consider the map

ϕ : F [x]→ F ′[x]
x 7→ x.

Then, we get ϕ̃ : F [x]
ϕ−1(ϕ(p(x)))

∼=−→ F ′[x]
ϕ(p(x)) . This completes the proof.

Corollary 16.6.2.2. If p(x) ∈ F [x] is irreducible and α ̸= β are two roots, then there is an isomorphism

F (α) −→ F (β)
α 7−→ β

which is id on F .

Proof. Use ϕ = idF with F ′ = F on Proposition 16.6.2.1 to get the result.
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We next show that transcendental elements are mapped to transcendental elements under a
field homomorphism.

Proposition 16.6.2.3. Let ϕ : F → F ′ be a morphism of fields. If K/F is a field extension, ψ : K → F ′ is
a morphism extending ϕ, then the following are equivalent:

1. α ∈ K is transcendental over F ,
2. ψ(α) ∈ F ′ is transcendental over ϕ(F ) ⊆ F ′.

Proof. The main observation is that for transcendental element α ∈ K over F , we have that F [α] is
isomorphic to polynomial ring F [x]. Using this, we consider the restriction ψ : F (α) → F ′. Note
that α ∈ F (α) is transcendental over F if and only if Ker (ψ) = 0. Further ψ(α) is transcendental
over ψ(F ) if and only if Ker (ψ) = 0. We win.

16.6.3 Splitting fields & algebraic closure

Given a polynomial, we will now construct the smallest field where that polynomial splits into
linear factors. We will then see that splitting fields are exactly what are called normal extensions.

Definition 16.6.3.1 (Splitting field). Let f(x) ∈ F be a field and f(x) ∈ F [x] be a polynomial. The
splitting field of f(x) over F is the smallest field extension K/F such that f(x) ∈ K[x] is product
of linear factors, that is, K is the smallest field containing all roots of f(x).

Theorem 16.6.3.2. Splitting field exists.

Proof. Let f(x) ∈ F be a field and f(x) ∈ F [x] be a polynomial. We wish to construct the smallest
field K/F containing all roots of F . We induct over deg f(x) = n. If n = 1, then K = F will do.
Suppose for every polynomial g(x) of degree n− 1 or lower has a splitting field, which we denote
by Kg/F . Pick f(x) ∈ F [x] be of degree n. We wish to construct the splitting field of f(x). We
have two cases. If f(x) is reducible, then f(x) = g(x)h(x) where deg g,deg h < n. We thus have
splitting fields Kg and Kh for g and h respectively. We claim that Kg · Kh is a splitting field of
f(x). Indeed, Kg ·Kh contains all roots of f(x) so splitting field is a subfield of Kg ·Kh. But since
splitting field of f(x) also contains roots of g(x) and h(x), it follows that it must contain Kg and
Kh and thus Kg ·Kh as well. Hence splitting field is exactly Kg ·Kh.

On the other hand if f(x) is irreducible, then let K = F [x]
⟨f(x)⟩ which is a finite extension of F .

Now, K has atleast one root of f(x), namely x̄, which we label as α ∈ K. Thus, we have that
f(x) = (x − α)g(x) in K[x]. Thus g(x) ∈ K[x] is of degree n − 1. Hence by inductive hypothesis,
there exists a field Lg/K/F such that g(x) splits into linear factor/Lg contains all roots of g(x).
Thus Lg(α) contains all roots of f(x). We claim that Lg(α) is contains a splitting field of f(x).
Indeed, we may take intersection of all sub-fields of Lg(α) which contains all roots of f(x). Such a
collection is non-empty asLg(α) contains all roots of f(x). As intersection of subfields is a subfield,
we win the induction step.

We now show that splitting fields are unique upto isomorphism.

Proposition 16.6.3.3 (Extension-II). Let ϕ : F → F ′ be a field isomorphism and f(x) ∈ F [x] be a
polynomial. Let ϕ(f(x)) ∈ F ′[x] be the image of f(x) under ϕ. Then, ϕ lifts to an isomorphism ϕ̃ : K →
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K ′ where K/F is the splitting field of f(x) and K ′/F ′ is the splitting field of ϕ(f(x)):

K K ′

F F ′ϕ

∼=

ϕ̃

∼=
.

Proof. We will induct on degree of f(x). If deg f(x) = 1, then F has the root of f and thus we
may take ϕ̃ to be ϕ itself. Let deg f = n and suppose that for any polynomial of degree n − 1 or
lower over any extension of F , we have the required map. Let f(x) = p(x)g(x) where p(x) ∈ F [x]
is an irreducible factor of f(x). Thus deg p(x) ≤ n − 1. Now, let α be a root of p(x) and α′ be a
root of ϕ(p(x)). Thus by Extension-I (Proposition 16.6.2.1), it follows that we have an extension
χ : F (α) → F ′(α′) which extends ϕ. Now consider h(x) = f(x)/x − α in F (α)[x]. Then, h(x)
has degree n − 1 over F (α), so by inductive hypothesis, we get an extension ϕ̃ : Kh → K ′h where
Kh/F (α) and K ′h/F

′(α′) are splitting fields of h(x) and χ(h(x)) respectively. We claim that Kh is
the splitting field of f(x). Indeed, Kh has all roots of f(x), so it contains the splitting field. But
roots of h(x) are just those of f(x) except α, so Kh is the splitting field of f(x). This completes the
proof.

Algebraic closure

We now discuss some basic properties of algebraic closure. Note that there is a subtlety to the
definition of an extension being algebraically closed.

Definition 16.6.3.4 (Algebraically closed fields & extensions). A field K is algebraically closed if
every polynomial in K[x] has a root. An extension K/F is called an algebraically closed extension
if K/F is algebraic and K is algebraically closed. In this case, K is called the algebraic closure of
F .

Remark 16.6.3.5. The linguistic subtlety here is that C/Q is not algebraically closed extension as it
is not algebraic. But Q̄/Q is an algebraically closed extension.

We will omit the statement that an algebraic closed extension of any field exists as it can be
found in any standard book. We however state the following important results about equivalence
conditions for a field to be algebraically closed.

Theorem 16.6.3.6. Let F be a field. Then the following are equivalent:
1. F is algebraically closed.
2. Only irreducible polynomial in F [x] are linear.
3. If K/F is algebraic, then K = F .

Proof. The only non-trivial part is that of 3. ⇒ 1. Indeed, pick any f(x) ∈ F [x]. Then, consider the
splitting field K/F of f(x). As K/F is finite, therefore K/F is algebraic and thus by hypothesis
we have K = F . It follows that F has all roots of F , as required.
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16.6.4 Separable, normal extensions & perfect fields

Let us begin with definitions.

Definition 16.6.4.1 (Separable polynomials & extensions). A polynomial f(x) ∈ F [x] is said to
be separable if f(x) has no repeated roots. That is, there doesn’t exists α ∈ F̄ such that (x −
α)2|f(x). An extension K/F is said to be separable if it is algebraic and for all α ∈ K, the minimal
polynomial mα,F (x) ∈ F [x] is separable.

Definition 16.6.4.2 (Normal extensions). An extension K/F is said to be normal if it is algebraic
and for all α ∈ K, the minimal polynomial mα,F (x) ∈ F [x] has all roots in K and is thus a product
of linear factors in K[x].

Remark 16.6.4.3. Note that if K/F is normal, then K contains the splitting field of all f(x) ∈ F [x].
Thus every splitting field of some f(x) ∈ F [x] is an intermediate extension of K/F .

Definition 16.6.4.4 (Frobenius & perfect fields). Let K be a field of characteristic p > 0. Then the
Frobenius is the field map Fr : K → K mapping x 7→ xp. A field K is perfect if either char(K) = 0
or the Frobenius Fr : K → K is an isomorphism.

Basic properties

For finite normal extensions, we essentially have the following as the most important observation.

Theorem 16.6.4.5. Let K/F be a finite normal extension. If α ∈ K and Z(mα,F (x)) ⊆ K is the set of all
F -conjugates of α, then Aut (K/F ) acts on Z(mα,F (x)) transitively.

We prove this using the following statements.

Proposition 16.6.4.6. Let K/F be an algebraic extension and α ∈ K. Then,
1. For any σ ∈ Aut (K/F ), σ(α) ∈ K is an F -conjugate of α.
2. If β ∈ K̄ is an F -conjugate of α, then there exists a map

σ : K −→ K̄

such that σ(α) = β, σ|F = id and σ(α) = β.
3. If K/F is a finite normal extension and σ : K → K̄ is a field homomorphism such that σ|F = idF ,

then σ(K) = K. That is, if σ : K → K̄ is an F -homomorphism, then σ ∈ Aut (K/F ).

Proof. 1. Apply σ on mα,F (α) = 0 to get the desired result.

2. By Extension-I (Proposition 16.6.2.1), we have an extension of id : F → F denoted χ : F (α) →
F (β). By a generalization of Extension-II (Proposition 16.6.3.3) which gives us the same result but
for splitting fields of arbitrary collection, we get an extension of χ to σ̃ : K̄ → K̄ extending χ.
Defining σ = σ̃|K : K → K̄, we get that σ extends idF and σ(α) = β, as required.

3. Pick any α ∈ K. We first wish to show that σ(α) ∈ K. By item 1, σ(α) ∈ K̄ is an F -conjugate
of α. As the minimal polynomial mα,F (x) ∈ F [x] splits linearly in K, this shows that σ(α) ∈ K,
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hence showing that σ(K) ⊆ K. To show equality, we need only show that [K : σ(K)] = 1. Indeed,
since

[K : F ] = [K : σ(K)] · [σ(K) : F ] <∞

and since σ : K → σ(K) is an F -isomorphism, therefore [K : F ] = [σ(K) : F ]. It follows that
[K : σ(K)] = 1, as required.

Theorem 16.6.4.7 is now immediate.

Proof of Theorem 16.6.4.7. Pick any two root β ∈ Z(mα,F (x)). It suffices to show that there exists
σ ∈ Aut (K/F ) which maps α 7→ β. Indeed, by Proposition 16.6.4.6, 2 & 3, we have such an
F -automorphism.

Characterization of normality and separability

Our goal is to study two questions. First is to understand the relationship between splitting fields
and normal extensions (we will see that they are equivalent). Second is to understand the rela-
tionship between separability and the automorphisms of the extension.

Understanding these two problems will give us the tool which will allow us to show when a
field extension is separable or normal, which will come in handy while doing Galois theory.

Let us begin by the first question.

Theorem 16.6.4.7. Let K/F be an extension. Then the following are equivalent:
1. K/F is a splitting field of some S ⊆ F [x].
2. K/F is a normal extension.

Another important characterization of normal extensions in the finite setting is the following.

Theorem 16.6.4.8. Let K/F be a finite extension. Then the following are equivalent:
1. K/F is a normal extension.
2. For every σ ∈ HomF

(
K, F̄

)
, we have σ(K) = K where note that F̄ = K̄.

Proof. (1. ⇒ 2.) This is the content of Proposition 16.6.4.6, 3.

(2. ⇒ 1.) Pick any α ∈ K. We wish to show that every F -conjugate β of α in F̄ = K̄ is in K.
Indeed, by Proposition 16.6.4.6, 2, it follows that there exists σ : K → F̄ such that σ(α) = β. By
our hypothesis, σ(K) = K, thus, σ ∈ Aut (K/F ). Hence, β ∈ K, as required.

We now build towards answering the second question.

Definition 16.6.4.9 (Separable degree). Let K/F be a finite extension. Then the separable degree
of K/F is defined to be

[K : F ]s =
∣∣HomF

(
K, F̄

)∣∣
where HomF

(
K, F̄

)
is finite in size since K/F is finite.

There’s a tower law for separable degree as well.
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Proposition 16.6.4.10. Let L/K/F be field extensions and L/F be finite. Then,

[L : F ]s = [L : K]s · [K : F ]s.

The following is an easy lemma.

Lemma 16.6.4.11. Let K/F be a finite extension. Then

[K : F ]s ≤ [K : F ].

Proof. For K = F (α), this is immediate as any σ ∈ HomF

(
K, F̄

)
takes α to some F -conjugate of

α. Thus, [K : F ]s = # conjugates of α in F̄ ≤ degmα,F (x) = [K : F ]. Now proceed by induction
via tower law (Proposition 16.6.4.10).

Theorem 16.6.4.12. Let K/F be a field extension. Then the following are equivalent:
1. [K : F ]s = [K : F ].
2. K/F is a separable extension.

We can now prove that composition of separable extensions is separable.

Lemma 16.6.4.13. Let L/K and K/F be separable extensions. Then L/F is separable.

Proof. We have [L : F ]s = [L : K]s · [K : F ]s by tower law (Proposition 16.6.4.10). By Theorem
16.6.4.12 we have [L : F ]s = [L : K] · [K : F ] = [L : F ] and thus we conclude that L/F is
separable.

Another important criterion for separability of a polynomial is to check its derivatives. This is
useful in positive characteristic settings.

Lemma 16.6.4.14. Let f(x) ∈ F [x] be a polynomial where F is a field. If f(x) is irreducible, then the
following are equivalent.

1. f(x) is separable.
2. f ′(x) ̸= 0.

Proof. (1. ⇒ 2.) If f ′(x) is zero, then f(x) and f ′(x) will have a common root, which implies that
f(x) has a repeated root, a contradiction.

(2. ⇒ 1.) Suppose f(x) is inseparable, that is, it has a repeated root. This is equivalent to stat-
ing that there is a non-trivial common factor of f ′(x) and f(x), say p(x), which we may assume
to be the gcd of f(x) and f ′(x). As f(x) is irreducible and p(x)|f(x), therefore p(x) = f(x). But
p(x)|f ′(x), so f(x)|f ′(x). This is not possible as deg f ′ ≤ deg f − 1.

Using the above theorems, we obtain the following useful criterion usually used in induction
steps and allows us to reduce to checking the separability and normality for a single element.

Proposition 16.6.4.15. Let K/F be a field extension and α ∈ K be an algebraic element. If the minimal
polynomial mα,F (x) ∈ F [x]

1. is a separable polynomial, then F (α)/F is a separable extension,
2. has all roots in F (α), then F (α)/F is a normal extension.
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Proof. 1. Note that since mα,F (x) is separable, we get

[F (α) : F ]s = |S(id, F (α)/F )| = #conjugates of α = degmα,F (x) = [F (α) : F ].

By Theorem 16.6.4.12, we win.

2. We claim that F (α)/F is the splitting field of mα,F (x) in this case. Indeed, F (α)/F is the
smallest field containing F and α. By hypothesis, it contains all the roots of mα,F (x), of which α is
one. It follows that F (α)/F is the smallest field containing all roots of mα,F (x), as required.

One can further define the separable closure of algebraic extensions.

Definition 16.6.4.16 (Separable closure). Let K/F be an algebraic extension. Consider the set of
elements

L = {α ∈ K | α is separable over F}.

Then L is a field and L/F is said to be the separable closure of F in K.

Remark 16.6.4.17. Indeed, separable closure L of F in K is a field as if α, β ∈ L then F (α, β)/F is
a separable extension by Proposition 16.6.4.15, 1 (applied twice). It follows that F (α, β) ⊆ L and
thus L contains α± β, α · β and α−1, β−1.

Perfect fields

There are essentially two main results here. The first one saying any finite field is perfect and the
second saying some important equivalent criterion to be perfect.

Theorem 16.6.4.18 (Finite fields are perfect). Let Fpn be a finite field of characteristic p. Then Fpn is
perfect.

Theorem 16.6.4.19 (Perfect equivalence theorem). Let F be a field. Then the following are equivalent:
1. F is a perfect field.
2. Every algebraic extension of F is separable.
3. Every irreducible polynomial in F [x] is separable.

16.6.5 Galois extensions

For simplicity, let us only work with finite Galois extensions.

Definition 16.6.5.1 (Galois extensions & Galois group). An extension K/F is Galois if it is finite,
separable and normal. That is, for all α ∈ K, the minimal polynomial mα,F (x) ∈ F [x] has all
roots in K and each of them is distinct. The Galois group of a Galois extension K/F , denoted
Gal (K/F ), is defined to be the automorphism group Aut (K/F ).

Let us first see that every splitting field of a separable polynomial is a Galois extension over
the base.

Proposition 16.6.5.2. Let F be a field and f(x) ∈ F [x] be a separable polynomial. Let K/F be the
splitting field of f(x) over F . Then K/F is a Galois extension and Gal (K/F ) is called the Galois group of
the polynomial f(x).



16.6. FIELD THEORY 503

Proof. We first establish that K/F is Galois. Indeed K/F is finite as it is a splitting field of a
polynomial. As it is a splitting field, so it is normal (Theorem 16.6.4.7). To show separability, it
suffices to show that the separable degree [K : F ]s = [K : F ] (Theorem 16.6.4.12). To this end, we
first have K = F (α1, . . . , αn) for αi ∈ K elements algebraic over F . Consequently, by the tower
law for separable degree (Proposition 16.6.4.10), we obtain

[K : F ]s = [K : F (α1, . . . , αn−1)]s · · · · · [F (α1, α2) : F (α1)]s · [F (α1) : F ]s.

By Proposition 16.6.4.15, it suffices to show that mαi,F (α1,...,αi−1)(x) ∈ F (α1, . . . , αi−1)[x] is a sepa-
rable polynomial for each i. Indeed, since f(αi) = 0, thusmαi,F (α1,...,αi−1)(x)|f(x) inF (α1, . . . , αi−1)[x].
As f(x) is separable, and F (α1, . . . , αi−1) = F , it follows that mαi,F (α1,...,αi−1)(x) is separable, as
required.

There’s a converse to the above result as well.

Proposition 16.6.5.3. Let K/F be a Galois extension. Then there exists f(x) ∈ F [x] a separable polyno-
mial whose splitting field is K.

Proof. As K/F is Galois, therefore finite and hence we may write K = F (α1, . . . , αn) for αi ∈
K such that no αi and αj are conjugate for i ̸= j (by normality of K/F , this is possible). As
K/F is separable, therefore each mαi,F (x) ∈ F [x] is a distinct separable polynomial. Let f(x) =∏n
i=1mαi,F (x). This is a separable polynomial as no αi are conjugates. Moreover, f(x) splits into

linear factors over K. It follows that the splitting field of f(x), denoted L, is contained in K. As L
contains each of the αi and F , it follows that L = K, as required.

Thus, for the purposes of clarity, we summarize the above two results in the following corol-
lary.

Corollary 16.6.5.4. Let K/F be a field extension. Then the following are equivalent.
1. K/F is a Galois extension.
2. There is a separable polynomial f(x) ∈ F [x] whose splitting field is K.

Proof. Follows from Proposition 16.6.5.2 and 16.6.5.3.

We have the following equivalent criterion to be Galois.

Theorem 16.6.5.5. Let K/F be a finite extension. Then the following are equivalent:
1. K/F is a Galois extension.
2. |Aut (K/F )| = [K : F ].

An extremely important result to keep in mind is the following, telling us that a fixed field by
a finite subgroup of the automorphism group always gives a Galois extension(!)

Theorem 16.6.5.6. Let K be a field and G ≤ Aut (K) be a finite subgroup. Then,
1. The extension K/KG is a Galois extension.
2. The Galois group of K/KG is equal to G;

Gal
Ä
K/KG

ä
= G.
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Théorème fondamental de la théorie de Galois

Theorem 16.6.5.7 (Fundamental theorem). Let K/F be a Galois extension with Galois group G =
Gal (K/F ). Then the maps

{L | K/L/F is an intermediate extension}

{H | H ≤ G is a subgroup}

Gal(K/−)K(−)

establish a bijection. Moreover, we have the following:
1. For any intermediate K/L/F , the extension K/L is a Galois extension.
2. Both the maps above are antitone, i.e. they reverse the order.
3. For any intermediate extension K/L/F , the following are equivalent:

(a) L/F is a Galois extension.
(b) Gal (K/L) is a normal subgroup of G and in this case,

Gal (L/F ) ∼=
G

Gal (K/L) .

4. For any intermediate extension K/L/F 5 we have a bijection (where F̄ is an algebraic closure of F
containing K)

[L : F ]s = HomF

(
L, F̄

)
= {σ : L→ F̄ | σ|F = idF } ∼=

G

Gal (K/L)

where the RHS is the set of cosets of Gal (K/L) ≤ G.
5. For any two intermediate extensions K/L1, L2/F with Hi = Gal (K/Li), we have

(a) Gal (K/L1 · L2) = H1 ∩H2 in G,
(b) Gal (K/L1 ∩ L2) = ⟨H1, H2⟩ in G.

16.6.6 Consequences of Galois theory

We now portray several consequences of Galois theory (not just fundamental theorem, but field
theory in general as well). We begin from observing that finite fields are Galois theoretically quite
simple.

For mental clarity, we mention below the topics we cover in this section.
• Galois group of finite fields
• Primitive element theorem
• Compositum & Galois closure
• Norm & trace of a finite separable extension
• Norm & trace in general
• Galois group of ≤ 4 degree polynomials
• Solvability by radicals
• Linearly disjoint extensions

5even if L/F is not Galois, i.e. Gal (K/L) is not normal.
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Galois group of finite fields

The important result in finite fields is that any finite extension of a finite field is a Galois extension.

Theorem 16.6.6.1. Let F = Fpm be a finite field of characteristic p. Let K/F be an algebraic extension.
Then the following are equivalent.

1. K/F is a finite extension.
2. K/F is a Galois extension.

Proof. (1. ⇒ 2.) As K/F is a finite dimensional F -vector space, say of dimension n, therefore
K is the finite field Fpnm . As Fpnm is by definition the splitting field of xp

nm − x ∈ Fp[x] which
is separable as its derivative is −1 and xp

nm − x has no roots in common with −1. It follows by
Corollary 16.6.5.4 that Fpnm/Fp is a Galois extension. As Fpn is an intermediate extension, therefore
by fundamental theorem (Theorem 16.6.5.7), it follows that Fpnm/Fpn is a Galois extension. (2. ⇒
1.) A Galois extension is always finite.

Next, we show that the Galois group of any finite extension of a finite field is cyclic.

Proposition 16.6.6.2. Let Fpm be a characteristic p finite field. If K/Fpm is a finite extension of degree n,
then K/Fpm is a Galois extension with Galois group

Gal (K/Fpm) ∼= Z/nZ.

Proof. We have seen by Theorem 16.6.6.1 that K/F is a Galois extension. By Theorem 16.6.5.5, it is
further clear that |Gal (K/Fpm)| = n. It hence suffices to show that there exists an element of order
n in Gal (K/Fpm). Indeed, consider the following automorphism

σ : K −→ K

α 7−→ αp
m
.

We show that σ is of order n in Gal (K/Fpn). Indeed if σk(α) = αp
mk = α for α the generating

element of the multiplicative cyclic group of order pnm− 1 of Fpn , then we conclude that n = k, as
required. This completes the proof.

Corollary 16.6.6.3. Let F be a finite field and f(x) ∈ F [x] be a polynomial. If α is a root of f(x), then
F (α) is the splitting field of f(x).

Proof. As F (α)/F is an extension of degree deg f(x), therefore by Theorem 16.6.6.1, it follows that
F (α)/F is Galois, thus it has all conjugates of α and thus is a field containing all roots of f(x).
Clearly, F (α) is the smallest field containing all roots of f(x), thus, F (α) is the splitting field of
f(x).

Primitive element theorem

An important theorem in Galois theory is the observation that a finite separable extension is al-
ways simple. In particular, every Galois extension is a singly generated field extension.

Theorem 16.6.6.4 (Primitive element theorem). Let K/F be a finite separable extension. Then there
exists α ∈ K such that K = F (α).

Proof. Omitted.
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Compositum & Galois closure

We now study how Galois extensions behave with compositums. One calls it the sliding lemma as
it says that Galois extensions slides through arbitrary extensions.

Proposition 16.6.6.5 (Sliding lemma). Let K/F be a Galois extension and F ′/F be an arbitrary exten-
sion such that K,F ′ ⊆ Ω where Ω is some large field. Then,

1. The extension K · F ′/F ′ is a Galois extension.
2. There is an injective group homomorphism

Gal
(
K · F ′/F ′

)
↪→ Gal (K/F )

whose image is Gal (K/F ′ ∩K). That is,

Gal
(
K · F ′/F ′

) ∼= Gal
(
K/F ′ ∩K

)
.

Proof. 1. We first observe by primitive element theorem (Theorem 16.6.6.4) that K = F (α) for
some α ∈ K. We hence have K · F ′ = F ′(α). As α is algebraic over F and F ⊆ F ′, thus, F ′(α)/F ′
is algebraic. As F ′(α) is finitely generated as well, thus F ′(α)/F ′ is finite, as required.

Next, we show that F ′(α)/F ′ is separable. Indeed, by Proposition 16.6.4.15, 1, it suffices to
show that mα,F ′(x) is a separable polynomial in F ′[x]. As mα,F ′(x)|mα,F (x) and the latter is sepa-
rable, hence mα,F ′(x) is separable.

Finally, we wish to show that F ′(α)/F ′ is normal. Again by Proposition 16.6.4.15 and the fact
that mα,F ′(x)|mα,F (x) where the latter has all roots in F (α) ⊆ F ′(α), we conclude the proof.

2. Consider the map

ϕ : Gal
(
K · F ′/F ′

)
−→ Gal (K/F )

σ 7−→ σ|K .

This is well-defined since K = F (α), so σ restricted to F (α) maps inside F (α) as all F ′-conjugates
of α are F -conjugates of α. Now ϕ can easily be seen to be an injective group homomorphism.
We need only find its image now. Indeed, we first claim that for every σ ∈ Gal (K · F ′/F ′), the
element σ|K fixes F ′ ∩ K. Indeed, σ fixes F ′ and K = F (α). Thus F ′ ∩ K ⊆ F ′ ∩ F , the latter
of which is fixed. By item 1 and fundamental theorem (Theorem 16.6.5.7), K/F ′ ∩ K is Galois.
Thus, ϕ : Gal (K · F ′/F ′) → Gal (K/F ′ ∩K). We need only show that it is surjective. To this end,
we need only show that Gal (K/F ′ ∩K) = Im (ϕ). By fundamental theorem (Theorem 16.6.5.7),
it suffices to show that their fixed fields are same. Let Gal (K/F ′ ∩K) = H1 and Im (ϕ) = H2, so
that H2 ≤ H1. We already have by fundamental theorem that KH2 ≥ KH1 = F ′ ∩K. On the other
hand, if x ∈ KH2 , then x ∈ K ∩ (K · F ′)Gal(K·F ′/F ′) = K ∩ F ′, as required.

The following tells us that compositum and intersections of Galois is Galois.

Proposition 16.6.6.6 (Compositum & intersection of Galois). Let K1/F and K2/F be Galois exten-
sions where K1,K2 ⊆ Ω for some large field Ω. Then,

1. Extension K1 ·K2/F is Galois.
2. Extension K1 ∩K2/F is Galois.
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3. There is an injective group homomorphism

ϕ : Gal (K1 ·K2/F ) ↪→ Gal (K1/F )×Gal (K2/F )
σ 7→ (σ|K1

, σ|K2
)

whose image is

Im (ϕ) = {(σ, τ) | σ|K1∩K2
= τ |K1∩K2

}
= Gal (K1/F )×Gal(K1∩K2/F ) Gal (K2/F ) .

Hence, in particular, if K1 ∩K2 = F , then

Gal (K1 ·K2/F ) ∼= Gal (K1/F )×Gal (K2/F ) .

Proof. 1. By Lemma 16.6.4.13 and sliding lemma (Proposition 16.6.6.5), we deduce that K1 ·K2/F
is a separable extension. By primitive element theorem (Theorem 16.6.6.4) or otherwise, we may
deduce that K1 ·K2/F is finite as well. We need only show that K1 ·K2/F is normal. To this end,
we show that K1 ·K2 is a splitting field of some polynomial in F [x]. Indeed, consider K1 = F (α)
and K2 = F (β) by primitive element theorem (Theorem 16.6.6.4) so that K1 · K2 = F (α, β). As
Ki = F (αi) are normal over F , therefore Fi is splitting field of polynomial fi(x) ∈ F [x], for i = 1, 2.
Thus, we claim that f1 · f2 ∈ F [x] has splitting field K1 ·K2. Indeed, f1 · f2 splits in K1 ·K2 as both
f1 and f2 splits in it. Thus if K is the splitting field of f1 ·f2, then K ⊆ K1 ·K2. As K ⊇ Ki for each
i = 1, 2 since Ki are splitting fields of fi and fi splits in K, thus we also have K ⊇ K1,K2 and thus
K ⊇ K1·K2. It follows thatK = K1·K2 and thusK1·K2 is normal by Theorem 16.6.4.7, as required.

2. Observe that K1 ∩ K2 is finite and separable over F . We now show that it is normal as well.
Indeed, for any α ∈ K1 ∩ K2, we have mα,F (x) ∈ F [x] is such that it has all roots in K1 and K2
since both are Galois over F . It follows thatmα,F (x) has all roots inK1∩K2, showing thatK1∩K2
is normal, as required.

3. Injectivity is immediate. For surjectivity, use sliding lemma (Proposition 16.6.6.5) in conjunction
with a size argument via Theorem 16.6.5.5.

We now show that any finite separable extension admits a Galois closure.

Lemma 16.6.6.7. Let K/F be a finite separable extension. Then there exists a Galois extension L/F such
that L ⊇ K which is smallest with respect to containing K.

Proof. We first show that there exists a Galois extension of F containing K. Indeed, consider
K = Fα1 + · · · + Fαn and let mαi,F (x) ∈ F [x] be minimal polynomial of αi. As K is separable,
each ofmαi,F (x) is a separable polynomial in F [x]. Thus letKi/F be the splitting field ofmαi,F (x).
By Proposition 16.6.5.2, it follows that Ki/F are all Galois. By compositum of Galois (Proposition
16.6.6.6), we deduce that L = K1 · · · · ·Kn is a Galois extension of F which containsK as it contains
α1, . . . , αn. Thus we have found a Galois extension of F containing K, as required.

We now wish to show that there is a smallest Galois extension of F containing K. Indeed,
consider E =

⋂
L/A/K/F A where A/F is a Galois extension containing K. By fundamental the-

orem (Theorem 16.6.5.7), it follows that there are only finitely many intermediate extensions of



508 CHAPTER 16. COMMUTATIVE ALGEBRA

L/F , thus finitely many such A. Thus E is Galois by intersection of Galois (Proposition 16.6.6.6).
Clearly, by construction E is the smallest field extension of F containing K and is Galois. This
completes the proof.

The above lemma allows us to define the following.

Definition 16.6.6.8 (Galois closure of a finite separable extension). Let K/F be a finite separable
extension. Then the smallest extension L/F containing K such that L/F is Galois is called the
Galois closure of K/F . Lemma 16.6.6.7 shows that it always exists.

Norm & trace of a finite separable extension

Let K/F be an extension. A main technique in field theory is to construct non-trivial elements in
K not in F . To this end one of the important set of tools available are those provided by norm &
trace of a finite separable extension.

Definition 16.6.6.9 (Norm & Trace). Let K/F be a finite separable extension. Consider a fixed
algebraic closure F̄ of F . Define

NK/F (α) =
∏

σ∈HomF (K,F̄)
σ(α)

and

TrK/F (α) =
∑

σ∈HomF (K,F̄)
σ(α)

which we respectively call the norm and trace of α in K/F . Note that HomF

(
K, F̄

)
is finite by

Lemma 16.6.4.11.

We can give an alternate definition norm and trace.

Lemma 16.6.6.10. Let K/F be a finite separable extension. Let L/K/F be the Galois closure of K/F and
let {σ1, . . . , σk} ∈ Gal (L/F ) be distinct coset representatives of Gal (L/K) in Gal (L/F ). Then

NK/F (α) =
k∏
i=1

σi(α)

and

TrK/F (α) =
k∑
i=1

σi(α).

If K/F is Galois, then NK/F (α) =
∏
σ∈Gal(K/F ) σ(α) and TrK/F (α) =

∑
σ∈Gal(K/F ) σ(α).

Proof. By fundamental theorem 16.6.5.7, 4, we have a bijection of sets (which is an isomorphism
of groups if K/F is Galois by fundamental theorem):

HomF

(
K, F̄

) ∼= Gal (L/F )
Gal (L/K) .

The result now follows from definition of norm and trace.
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We now state some basic properties of these two functions.

Proposition 16.6.6.11. LetK/F be a finite separable extension. Let L/K/F be the Galois closure ofK/F .
1. For any α ∈ K, NK/F (α) ∈ F and TrK/F (α) ∈ F .
2. For any α, β ∈ K, we have

NK/F (αβ) = NK/F (α)NK/F (β)

and

TrK/F (α+ β) = TrK/F (α) + TrK/F (β).

3. If K = F (
√
D) for some D ∈ F , then for a, b ∈ F we have

NK/F (a+ b
√
D) = a2 − b2D

and

TrK/F (a+ b
√
D) = 2a.

Proof. For item 1, since these are coefficients of mα,F (x), so they are in F . Item 2 follows im-
mediately from Lemma 16.6.6.10. For item 3, observe that there is only one other conjugate of
α = a + b

√
D (as minimal polynomial is quadratic) given by ᾱ = a − b

√
D. Now use Lemma

16.6.6.10.

Lemma 16.6.6.12. Let K/F be a finite separable extension of degree n and α ∈ K. Then
1. Element α acting by left multiplication on K is an F -linear transformation, which we denote by
Tα : K → K.

2. The minimal polynomial of element α ∈ K, denoted mα,F (x) is same as the minimal polynomial of
the F -linear map Tα : K → K, denoted p(x) ∈ F [x].

3. The norm NK/F (α) and trace TrK/F (α) are respectively the determinanat and trace of the F -linear
map Tα.

Proof. 1. Indeed, Tα : K → K is given by x 7→ αx which F -linear as Tα(x + cy) = α(x + cy) =
αx+ cαy = Tα(x) + cTα(y) where c ∈ F .

2. As mα,F (x) is irreducible, we need only show that p(x)|mα,F (x). Note that mα,F (Tα) = 0
since for any z ∈ K, we have

mα,F (Tα)(z) = mα,F (α)z = 0.

Hence p(x)|mα,F (x), as required.

3. Let mα,F (x) = xd + ad−1x
d−1 + · · · + a1x + a0 in F [x] and [K : F ] = n. By item 2, the minimal

polynomial p(x) of Tα is also mα,F (x). Determinant of Tα is the product of all eigenvalues (with
repetitions) and trace of Tα is the sum of all eigenvalues. One can then deduce6 that

NK/F (α) = (−1)nan/d0

6by Questions 17 and 18 of Section 14.2 of DF, cite[DummitFoote]
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and

TrK/F (α) =
−n
d
ad−1.

As K/F is separable, therefore we may write p(x) = mα,F (x) = (x − λ1) · · · · · (x − λd) where λi
are distinct eigenvalues of Tα or equivalently, F -conjugates of α. It is now sufficient to show that
each eigenvalue λi has algebraic multiplicity n/d.

Let Φ(x) ∈ F [x] be the characteristic polynomial of Tα. Since p(x) and Φ(x) have same irre-
ducible factors and p(x) is irreducible, it follows that Φ(x) = p(x)k for some k ≥ 1. As Φ(x) has
degree n and p(x) has degree d, therefore we conclude that k = n/d, as required.

Norm & trace in general

We now define norm and trace for an arbitrary finite extension using the observation made in
Lemma 16.6.6.12.

Definition 16.6.6.13 (Norm & trace). Let K/F be a finite extension and α ∈ K. Let Tα : K → K
be the F -linear transformation obtained by multiplication by α. Then, we define

NK/F (α) = detTα
TrK/F (α) = TrTα.

The main theorem here is the following characterization of separability of a finite extension.

Theorem 16.6.6.14 (Trace pairing & separability). Let K/F be a finite extension. Then the following
are equivalent.

1. K/F is separable.
2. The trace pairing

⟨−,−⟩ : K ×K −→ F

(α, β) 7−→ TrK/F (αβ)

is a non-degenerate bilinear map.

Recall that a bilinear map T : V × V → k on a k-vector space V is non-degenerate if for any
k-basis {vi}ni=1 of V , the matrix (T (vi, vj))1≤i,j≤n is a non-singular matrix.

In order to prove the above theorem, we would require transitivity of trace. To this end, we
first have the following basic results.

Lemma 16.6.6.15. Let K/F be a finite extension of degree n. Then, for any x, y ∈ K and c ∈ F , we have
1. TrK/F (x+ y) = TrK/F (x) + TrK/F (y).
2. TrK/F (cx) = cTrK/F (x).
3. NK/F (xy) = NK/F (x)NK/F (y).
4. NK/F (cx) = cnNK/F (x).

Proof. Immediate.

The following result can be used for inductive arguments.
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Proposition 16.6.6.16. Let K/F be a finite extension and x ∈ K. Then, for any intermediate extension
K/L/F such that x ∈ L, we have

TrK/F (x) = [K : L] · TrL/F (x)

NK/F (x) =
(
NL/F (x)

)[K:L]
.

Proof. Let {w1, . . . , we} be an L-basis of K. It then follows that the linear operator Tx : K → K
obtained by multiplication by x is such that it restricts to an operator on each Lwi, i = 1, . . . , e.
Hence the matrix of Tx will be a diagonal block matrix where the block Mi will be the matrix of
Tx|Lwi . Taking trace, we deduce that

TrK/F (x) =
e∑
i=1

Tr(Mi) =
e∑
i=1

TrL/F (x) = TrL/F (x) · e = [K : L] · TrL/F (x),

as required. Similarly for determinant.

The following states how to calculate trace of x in F (x)/F .

Lemma 16.6.6.17. LetK/F be a finite extension and x ∈ K. Letmx,F (z) = zd+ad−1zd−1+· · ·+a1z+a0
where d = [F (x) : F ]. Then,

TrF (x)/F (x) = −ad−1
NF (x)/F = (−1)da0.

Proof. Omitted.

We can now state an important formula for calculation of norm and trace in terms of conjugates
and inseparability index (see §16.6.8).

Proposition 16.6.6.18. Let K/F be a finite extension and x ∈ K. Then we have

TrK/F (x) =

Ñ ∑
σ∈HomF (K,F̄)

σ(x)

é
· [K : F ]i

NK/F (x) =

Ñ ∏
σ∈HomF (K,F̄)

σ(x)

é[K:F ]i

.

Proof. Note that in both the claims above, we need only show the above equality for K/F being
inseparable. Indeed, for separable case, we can deduce this equality from Lemma 16.6.6.12.

Let K/F be inseparable and thus let F be of characteristic p > 0. By Lemma 16.6.8.15, we
deduce that [K : F ]i = pn and thus RHS = 0 in the first equation above. We thus need only see
that TrK/F (x) = 0 as well. Indeed, by Lemma 16.6.6.17, we need only show that the sum of all
conjugates is a multiple of p. Indeed, by Corollary 16.6.8.9, we have that each root of mx,F has
common multiplicity pn. Thus sum of roots of mx,F will be a multiple of pn, thus 0, as required.
One similarly proceeds for showing the same for norm.
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The following is an important result.

Theorem 16.6.6.19 (Transitivity of trace & norm). Let L/K/F be finite extensions and α ∈ L.

TrK/F (TrL/K(α)) = TrL/F (α)
NK/F (NL/K(α)) = NL/F (α).

Proof. Applying Proposition 16.6.6.18 in our case, we get

TrL/K(α) = [L : K]i ·
∑

σ∈homK(L,K̄)

σ(α).

Applying TrK/F onto above, we yield (note that F̄ = K̄ as K/F is finite and Lemma 16.6.8.14):

TrK/F
(
TrL/K(α)

)
= TrK/F

Ñ
[L : K]i ·

∑
σ∈homK(L,K̄)

σ(α)

é
= [L : K]i[K : F ]i ·

∑
τ∈homF (K,F̄ )

τ

Ñ ∑
σ∈homK(L,K̄)

σ(α)

é
= [L : F ]i ·

∑
τ∈homF (K,F̄ )

∑
σ∈homK(L,K̄)

τ̃(σ(α))

where τ̃ is an extension of τ : K → F̄ to τ̃ : K̄ → F̄ . We now define a bijection

ϕ : homK(L, K̄)× homF (K, F̄ ) −→ homF (L, F̄ )
(σ, τ) 7−→ τ̃ ◦ σ.

Note that τ̃ ◦ σ is id on F and τ on k. This is injective as if τ̃ ◦ σ = τ̃1 ◦ σ1, then restricting to K we
get τ = τ1 and thus, σ = σ1. Moreover, this is surjective as the size of domain is [L : K]s · [K : F ]s
which is same as the size of codomain [L : F ]s. It follows that ϕ is a bijection.

We can now write the above equation as

TrK/F (TrL/K(α)) = [L : F ]i ·
∑

κ∈homF (L,F̄ )

κ(α)

= TrL/F (α),

as required. One can follow exact same procedure to show that

NK/F (NL/K(α)) = NL/F (α),

as required.

We may now prove the main theorem stated at the beginning of the section.
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Proof of Theorem 16.6.6.14. (2. ⇒ 1.) Suppose K/F is inseparable such that char(F ) = p > 0. Then
[K : F ]i = pn by Lemma 16.6.8.15. Hence, by Proposition 16.6.6.18, it follows that ⟨α, β⟩ = 0 for
each α, β ∈ K. Hence ⟨−,−⟩ is a degenerate bilinear map, a contradiction.
(1. ⇒ 2.) Suppose K/F is separable. Note it suffices to show that for each non-zero α ∈ K, there
exists β ∈ K such that TrK/F (αβ) = ⟨α, β⟩ ̸= 0. Indeed, we first show this for L/K/F the Galois
closure of K/F . Observe that if for some α ∈ K non-zero we have that for all α′ ∈ L we get
TrL/F (αα′) = 0, then

TrL/F (αα′) =
∑

σ∈Gal(L/F )
σ(α)σ(α′).

By linear independence of characters, we deduce that σ(α) = 0 for all σ ∈ Gal (L/F ), a contradic-
tion as each σ is an automorphism and α ̸= 0 in K. It follows that there exists α′ ∈ L such that
TrL/F (αα′) ̸= 0. By transitivity of trace (Theorem 16.6.6.19), we deduce

0 ̸= TrL/F (αα′) = TrK/F
(
TrL/K(αα′)

)
= TrK/F (α · TrL/K(α′)).

Letting β = TrL/K(α′), we conclude the proof.

Galois groups of ≤ 4 degree polynomials

Recall that an elementary symmetric function si is the sum of the products of {x1, . . . , xn} taken i at
a time, that is, s1 = x1 + · · ·+ xn, s2 = x1x2 + . . . xn−1xn, sn = x1 . . . xn. Further recall that Sn acts
on F (x1, . . . , xn) by permuting xi. A symmetric function is a rational function invariant under the
action of Sn. We first have the fundamental theorem of symmetric functions.

Theorem 16.6.6.20. LetF be a field. The fixed field ofF (x1, . . . , xn) under the action of Sn isF (s1, . . . , sn).
Thus every symmetric function is a rational function in s1, . . . , sn.

This has major consequences.

Corollary 16.6.6.21. Let F be a field. Then, F (x1, . . . , xn)/F (s1, . . . , sn) is a Galois extension with Galois
group Sn.

Proof. Follows from Theorem 16.6.6.20 and 16.6.5.6.

Next result tells us that if a polynomial has algebraically independent elements/indeterminates
as roots, then that polynomial is special in that its Galois group has maximal symmetry. This is an
important result as if we wish to find a closed form solution of roots in terms of the coefficients,
then we ought to take coefficients as algebraically independent elements. In such a situation, the
following result then tells us the Galois group of a "general" n-degree polynomial whose roots we
assume to be indeterminates.

Theorem 16.6.6.22. Let x1, . . . , xn be indeterminates and F be a field. Then,
1. The polynomial f(x) = (x− x1) . . . (x− xn) can be expressed as

f(x) = xn − s1xn−1 + s2x
n−2 − · · ·+ (−1)n−1sn−1x+ (−1)nsn

where si are elementary symmetric polynomials in x1, . . . , xn.
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2. The polynomial f(x) as above is separable and its splitting field over F (s1, . . . , sn) is F (x1, . . . , xn)
with Galois group Sn.

3. If a polynomial g(x) has indeterminates as coefficients, then its roots are also indeterminates.

Remark 16.6.6.23. As Corollary 16.6.5.4 guarantees, the above theorem tells us exactly the polyno-
mial whose splitting field is the Galois extension F (x1, . . . , xn)/F (s1, . . . , sn) of Theorem 16.6.6.20.

We now use discriminants of a polynomial to get information about its Galois group.

Definition 16.6.6.24 (Discriminant). Let f(x) ∈ F [x] be a polynomial with roots x1, . . . , xn. Then
the discriminant of f(x) is defined to be

Df :=
∏
i<j

(xi − xj)2.

Before beginning, we need some observations.

Lemma 16.6.6.25. Let F be a field and f(x) ∈ F [x] be a separable polynomial (so that Df ̸= 0). Let K/F
be the splitting field of f(x) over F . Then,

1. Df ∈ F .
2.
√
Df ∈ K.

Proof. Let α1, . . . , αn ∈ K be the distinct roots of f(x). Then, for any σ ∈ Gal (K/F ), σ(Df ) = Df

as σ(αi) = αj bijectively. This proves item 1. Item 2 is immediate.

Remark 16.6.6.26. Let f(x) ∈ F [x] be a separable polynomial and let K/F be the splitting field of
f(x). For any σ ∈ Gal (K/F ), we get a permutation of Z(f) ⊆ K, the zero set of f(x), that is, Z(f)
is a Gal (K/F )-set. If there are n roots of f(x), then we get a group homomorphism

Gal (K/F ) ↪→ Sn

which is furthermore injective as if any σ ∈ Gal (K/F ) gives the identity permutation of roots,
then it is the identity map K → K. We now always view Galois group of a separable polynomial
f(x) as a subgroup of Sn where n is the number of roots of f(x), all of which are distinct as f(x) is
separable.

We make the most important statement about the discriminants now.

Proposition 16.6.6.27. Let f(x) ∈ F [x] be a separable polynomial with splitting field K/F . Then the
following are equivalent.

1. Gal (K/F ) is a subgroup of An.
2. Df ∈ F is a square of an element in F and that element is

√
Df . That is,

√
Df ∈ F .

Proof. (1. ⇒ 2.) As any σ ∈ An fixes
∏
i<j(xi − xj) ∈ Z[x1, . . . , xn] where x1, . . . , xn are the roots of

f(x), therefore σ ∈ Gal (K/F ) fixes
√
Df . It follows by fundamental theorem (Theorem 16.6.5.7)

that
√
Df ∈ F .

(2. ⇒ 1.) Pick any element σ ∈ Gal (K/F ). To show that σ ∈ An, we wish to show the cri-
terion mentioned above. This critetion is equivalent to showing that σ(

√
Df ) =

√
Df . This is

equivalent by fundamental theorem to showing that
√
Df ∈ F , which is what we are given.
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Solvability by radicals

We next discuss the various results surrounding solvability of a polynomials.

Definition 16.6.6.28 (Elements & polynomials solvable by radicals). Let K/F be an extension.
An algebraic element α ∈ K over F is solvable by radicals if there exists simple radical extensions

F = K0 ⊆ K1 ⊆ · · · ⊆ Ki ⊆ Ki+1 ⊆ · · · ⊆ Kn ∋ α

where Ki+1 = Ki(a1/nii ) where ai ∈ Ki−1, ni ≥ 1. The field Kn are called roots extensions. A
polynomial f(x) ∈ F [x] is solvable by radicals if all its roots are solvable by radicals.

Remark 16.6.6.29. Note that if f(x) is solvable, then its root extension contains the splitting field.

Definition 16.6.6.30 (Solvable extensions). An extension K/F is solvable if it is Galois and the
Galois group Gal (K/F ) is solvable7.

We have the following main theorem.

Theorem 16.6.6.31 (Solvability by radicals). Let F be a characteristic 0 field and f(x) ∈ F [x]. Then the
following are equivalent:

1. f(x) is solvable by radicals.
2. If K/F is the splitting field of f(x), then K/F is a solvable extension.

Corollary 16.6.6.32 (Abel-Ruffini). Let F be a characteristic 0 field. For n ≥ 5, the general polynomial
f(x) = xn− sn−1xn−1+ sn−2xn−2−· · ·+(−1)ns0 where si are elementary symmetric functions of roots
x1, . . . , xn, is not solvable over F (s1, . . . , sn).

Proof. By Theorem 16.6.6.22, we deduce that its splitting field isK(x1, . . . , xn) and its Galois group
is Sn. For n ≥ 5, we know that Sn is not solvable. It follows by Theorem 16.6.6.31 that f(x) is not
solvable by radicals, that is, there is no root extension of f(x). This means that the roots of f(x)
are not obtained by radicals in coefficients.

Linearly disjoint extensions

We begin by following observation.

Lemma 16.6.6.33. Let L/F and K/F be two finite extensions of F contained in some large field Ω. Then
the following conditions are equivalent.

1. Any F -basis of L/F is a K-basis of LK/K.
2. Any F -basis of K/F is an L-basis of LK/L.
3. [LK : K] = [L : F ].
4. [LK : F ] = [L : F ] · [K : F ].

Proof. Fairly standard arguments, hence omitted.

This allows us to define the following.

7A group G is solvable if there exists a normal series with prime cyclic factors.
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Definition 16.6.6.34 (Linearly disjoint extensions). Let L/F and K/F be two finite extensions of
F contained in some large field Ω. Then L/F andK/F are said to be linearly disjoint if they satisfy
any of the equivalent conditions of Lemma 16.6.6.33.

The name is motivated by the following observation.

Lemma 16.6.6.35. LetL/F andK/F be two finite extensions which are linearly disjoint. ThenL∩K = F .

Proof. As we have an isomorphism Gal (K · L/L) ∼= Gal (K/L ∩K) by Proposition 16.6.6.5, hence
it follows that we have an equality in degree [K · L : L] = [K : L ∩ K]. By linear disjointness,
[K · L : L] = [K : F ]. As L ∩ K ⊇ F , thus by tower law we deduce that [L ∩ K : F ] = 1, as
required.

The following shows that above criterion is necessary, but not sufficient.

Example 16.6.6.36. Here is an example of extensions K/F and L/F such that L ∩K = F but still
they are not linearly disjoint. For F = Q, take K = Q(21/3) and L = Q(ω21/3). Observe that
K ∩ L = F . However, as [K · L : F ] = 6 and [K : F ] = 3 = [L : F ], we deduce that L/F and K/F
are not linearly disjoint.

The following theorem shows a sufficient criterion which when satisfied together with L∩K =
F , makes L/F and K/F linearly disjoint.

Lemma 16.6.6.37. Let L/F and K/F be two finite extensions. If K/F is Galois and L ∩ K = F , then
L/F and K/F are linear disjoint.

Proof. By Proposition 16.6.6.5, we have that K · L/L is Galois and we have an isomorphism
Gal (K · L/L) ∼= Gal (K/L ∩K) = Gal (K/F ). Thus, we have an equality [K · L : L] = [K : F ],
hence K/F and L/F are linearly disjoint.

Hence, we may summarize this discussion as follows.

Corollary 16.6.6.38. Let K/F and L/F be two finite extensions. If K/F and L/F are linearly disjoint,
then K ∩ L = F . The converse holds if any of the K/F or L/F is a Galois extension.

16.6.7 Cyclotomic extensions

We discuss the extension Q(ζn)/Q where ζn is an nth-root of unity, that is, a solution of xn − 1
in C. We will see that nth-roots of unity form a cyclic group µn ∼= Z/nZ, therefore we define a
primitive nth root of unity to be a generator of Z/nZ. Thus, there are ϕ(n) many primitive n-th
roots of unity, where ϕ is the Euler totient function. We also discuss the main theorems of abelian
and cyclic extensions (Kronecker-Weber and Kummer).

We denote the group of n-th roots of unity as µn. Some basic facts about µn are as follows.

Lemma 16.6.7.1. Let n ∈ N. Then,
1. µn is a finite cyclic group isomorphic to Z/nZ.
2. If d|n, then µd ↪→ µn.
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Proof. 1. µn is finite of size n since its the set of roots of xn − 1 in C. This is a group since product
of any two n-th roots of unity is an n-th root of unity. Thus µn is a finite subgroup of the multi-
plicative group C×. It follows that µn is cyclic.

2. Consider the map

ϕ : µd −→ µn

ζ 7−→ ζ.

This is well-defined since a d-th root of unity is also an n-th root of unity if d|n. Further, this is
clearly a group homomorphism.

Thus µd ≤ µn is precisely the subgroup of order d-elements of µn.

Definition 16.6.7.2 (nth-cyclotomic polynomial). Let n ∈ N. The nth-cyclotomic polynomial is
defined to be the polynomial Φn(x) =

∏
ζ∈µ×n (x − ζ), that is, the polynomial whose all roots are

the primitive nth-roots of unity.

We immediately have the following observations.

Lemma 16.6.7.3. Let Φn(x) be the nth-cyclotomic polynomial. Then,
1. Φn(x)|xn − 1.
2. xn − 1 =

∏
d|nΦd(x).

Proof. Follows from the observation that xn − 1 =
∏
ζn=1(x− ζ).

Remark 16.6.7.4. Using Lemma 16.6.7.3, we see that we can calculate Φn(x) recursively by finding
Φd for all d|n and d ̸= n. In particular,

Φn(x) =
xn − 1∏

d|n,d ̸=nΦd(x)
.

We now state and prove the following theorem, which in particular tells us that cyclotomic
polynomial Φn(x) is monic irreducible of degree ϕ(n). Once shown, we would be able to conclude
that the the minimal polynomial of a primitive nth-root of unity is Φn(x).

Theorem 16.6.7.5. Let n ∈ N. Then,
1. Φn(x) is a monic polynomial of degree ϕ(n) in Z[x].
2. Φn(x) is an irreducible polynomial in Z[x].
3. Φn(x) is the minimal polynomial of any primitive nth-root of unity ζn ∈ C.
4. If ζn is a primitive nth-root of unity, then Q(ζn)/Q is a degree ϕ(n) extension.

Proof. 1. The fact that degree of Φn)(x) is ϕ(n) follows from the fact that in C it is a product of
ϕ(n) many linear factors. This also shows that Φn(x) is a monic polynomial. We need only show
that coefficients lie in Z. To this end, we proceed by induction. For n = 1, Φn(x) = x − 1 ∈ Z[x].
For n = 2, Φ2(x) = x+ 1 ∈ Z[x]. Now suppose that for all d < n Φd(x) ∈ Z[x]. Then we have

Φn(x) =
xn − 1∏

d|n,d ̸=nΦd(x)
,



518 CHAPTER 16. COMMUTATIVE ALGEBRA

thus f(x) :=
∏
d|n,d ̸=nΦd(x) ∈ Z[x] by inductive hypothesis. As f(x)|xn−1 in Q[x] and f(x) ∈ Z[x],

therefore by results surrounding Gauss’ lemma, we get f(x)|xn − 1 in Z[x], that is, Φn(x) ∈ Z[x].

2. Let Φn(x) = f(x)g(x) in Z[x] where we assume that f(x) is an irreducible factor of Φn(x)
(by Z[x] being an UFD). We claim that f(x) has all primitive nth-roots of unity as a root over C, so
that f(x) = Φn(x) over Z. Indeed, let ζa ∈ µn be any other primitive root, then (a, n) = 1 and so
we may write a = p1 . . . pk where pi are primes not dividing n. We wish to show that ζa is a root
of f(x). It suffices to show that if ζ is a root of f(x), then ζp is a root of f(x) as well for any prime
p not dividing n. This is what we will show now.

Indeed, let ζ ∈ µn a primitive nth-root of unity which is a root of f(x). As f(x) is irreducible
over Z[x], therefore irreducible over Q[x] as well, hence f(x) is the minimal polynomial of ζ over Q.
Consider p a prime not dividing n. We wish to show that ζp is also a root of f(x). Indeed, as Φn(x)
has ζp as a root, therefore either f(ζp) = 0 or g(ζp) = 0 over C. Suppose the latter is true. Thus
g(xp) has ζ as a root. As g(xp) ∈ Q[x], therefore f(x)|g(xp) in Q[x]. As f(x), g(xp) ∈ Z[x], therefore
by results surrounding Gauss’ lemma, we conclude that f(x)|g(xp) in Z[x]. Let g(xp) = f(x) · h(x)
where h(x) ∈ Z[x]. Going modulo p, we get that ḡ(xp) = (ḡ(x))p. Thus, (ḡ(x))p = f̄(x)h̄(x) in Fp[x].
Thus, ḡ and f̄ have a common factor in Fp[x] as both have ζ as a root. Thus, Φ̄n(x) = f̄(x)ḡ(x)
has a repeated factor, thus, Φn(x) is not separable over over Fp. But since Φ′n(x) = nxn−1 ̸= 0 has
only x = 0 as a root, therefore Φn(x) is separable. It follows that we have a contradiction to the
separability of xn − 1 as Φn(x) is a factor of xn − 1, thus ζp cannot be a root of g(x), as required.

3. As Φn(ζn) = 0 for any primitive nth-root of unity, therefore we get that mζn,Q|Φn(x). As mζn,Q
is irreducible and so is Φn(x), thus mζn,Q = Φn, as required.

4. As Φn(x) is the minimal polynomial of ζn which has degree ϕ(n), the result follows.

We now wish to study the Galois group of a cyclotomic extension.

Definition 16.6.7.6 (Cyclotomic extension). Let ζn ∈ C be a primitive nth-root of unity. The exten-
sion Q(ζn)/Q is called a cyclotomic extension.

It is easy to see that every cyclotomic extension is Galois.

Lemma 16.6.7.7. Let Q(ζn)/Q be a cyclotomic extension. Then Q(ζn)/Q is a Galois extension.

Proof. By Theorem 16.6.7.5, 4, it follows that Q(ζn)/Q is finite. Observe that mζn,Q(x) ∈ Q[x] is
Φn(x) by Theorem 16.6.7.5, 3 which is separable. As ζn is the primitive nth-root of unity, therefore
it generates all other roots of unity. Consequently, Q(ζn)/Q is normal as well, as required.

Calculation of Galois group of Q(ζn)/Q is quite easy.

Theorem 16.6.7.8. Let Q(ζn)/Q be a cyclotomic extension where ζn is a primitive nth-root. Then, the map

(Z/nZ)× −→ Gal (Q(ζn)/Q)
a 7−→ σa : ζn 7→ ζan

is an isomorphism.

Proof. Immediate.
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Cyclotomic extensions are a particular example of an abelian extension.

Definition 16.6.7.9 (Abelian extension). Let K/F be a field extension. If K/F is Galois and
Gal (K/F ) is an abelian group, then K/F is called an abelian extension.

Remark 16.6.7.10. If K1,K2/F are abelian extensions, then any subfield K1/L/F is an abelian
extension by fundamental theorem (Theorem 16.6.5.7) and compositum K1 ·K2/F is also abelian
by Proposition 16.6.6.5.

An important result in the theory of finite abelian extensions is the fact that any extension of
Q is abelian if and only if it is contained in a cyclotomic extension. Using this result, one can
heuristically say that finite abelian groups are to groups what are cyclotomic extensions are to
field extensions(!)

Theorem 16.6.7.11 (Kronecker-Weber). Let K/Q be an extension. Then the following are equivalent:
1. K/Q is a finite abelian.
2. K ⊆ Q(ζn) for some n ∈ N.

Moreover, if G is any finite abelian group, then there exists K/Q finite abelian such that Gal (K/Q) ∼= G.

Another important line of thought around cyclotomic extensions is the situation when Galois
group is cyclic. We have seen that Galois groups of finite fields are cyclic (Proposition 16.6.6.2).
Moreover, if p is a prime, then by Theorem 16.6.7.8, the cyclotomic extension Q(ζp)/Q also has
cyclic Galois group for ζp a primitive pth-root of unity. We now see that such Galois extensions are
of a very simple type.

Definition 16.6.7.12 (Cyclic extensions). An extension K/F is said to be cyclic if it is Galois and
Gal (K/F ) is cyclic.

Theorem 16.6.7.13 (Kummer-I). Let F be a characteristic p > 0 field and ζn ∈ F where ζn is a primitive
nth-root of unity for gcd(n, p) = 1.

1. If K = F (a1/n) for some non-zero a ∈ F , then K/F is a cyclic extension of degree d where d|n.
2. If K/F is a cyclic extension of degree n, then K = F (a1/n) for some non-zero a ∈ F .

Proof. 1. We first show that K/F is Galois. Let α = a1/n. Finiteness is clear as mα,F (x)|xn − a.
We wish to show that mα,F (x) is separable. Indeed, since xn − a has derivative nxn−1 which is a
non-zero polynomial (as gcd(n, p) = 1) whose only root is 0, therefore xn− a is separable and thus
so is mα,F (x). Finally, as all roots of xn− a are {ζknα}k=0,...,n−1, which are in K as ζn ∈ F , therefore
xn − a splits in K into linear factors, and hence so does mα,F (x). Indeed, K is the splitting field of
xn − a over F .

Next, we show that K/F is cyclic. Indeed, consider the map

ϕ : Gal (K/F ) −→ µn

σ 7−→ σ(α)
α

.

This is well defined as σ(α) = ζkσn α, some conjugate of α. Thus, ϕ(σ) = ζkσn . We claim that this is
an injective group homomorphism, and thus Gal (K/F ) is cyclic.

Indeed, this is a group homomorphism as ϕ(σ ◦ τ) = σ(τ(α)) = σ(ζkτn α)/α = ζkσn ζkτn . Hence,
it is a group homomorphism. It is moreover injective as if ζkσn = ζkτn , then σ(α) = τ(α). As σ, τ
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are F -automorphisms of K = F (α) mapping α to the same element, therefore σ = τ , as needed.
Furthermore, as |Gal (K/F )| | |µn|, therefore [K : F ] = d where d|n.

2. We wish to find an nth-root of some a in K and show that it generates K. As Gal (K/F ) = ⟨σ⟩
is cyclic, therefore consider the following element of K constructed out of any α ∈ K:

β = α+ ζnσ(α) + ζ2nσ
2(α) + · · ·+ ζn−1n σn−1(α).

Observe that

σ(β) = σ(α) + ζnσ
2(α) + ζ2nσ

3(α) + · · ·+ ζn−1n α

= ζn−1n β.

Similarly, we get for each 0 ≤ k ≤ n− 1 the following relation:

σk(β) = ζn−kn β.

Hence, we see that p(x) = xn − βn has all roots in K given by {ζn−kn β}0≤k≤n−1.
We claim that βn ∈ F . Indeed, we show that for G = Gal (K/F ) = ⟨σ⟩, the element βn is in

KG and since KG = F by fundamental theorem (Theorem 16.6.5.7), hence we will be done. As
σ(βn) = (ζn−1n β)n = βn, therefore βn ∈ KG = F , as required. Hence, β = a1/n for a = βn ∈ F .

We finally claim that F (β) = K. Indeed, as K/F (β)/F is an intermediate extension and
Gal (K/F ) is cyclic hence abelian, therefore F (β)/F is Galois by fundamental theorem (Theo-
rem 16.6.5.7). As σ ∈ Gal (F (β)/F ), therefore |Gal (F (β)/F )| ≥ n. But by fundamental theo-
rem, Gal (F (β)/F ) = Gal(K/F )

Gal(K/F (β)) , thus, |Gal (K/F (β))| = [K : F (β)] = 1, thus, [K : F ] = [K :
F (β)][F (β) : F ] = [F (β) : F ], thus showing that F (β) = K, as required.

An important corollary strengthening the second statement of Kummer is as follows.

Corollary 16.6.7.14 (Kummer-II). Let F be a field of characteristic p > 0 and ζn ∈ F be a primitive nth-
root of unity where gcd(n, p) = 1. If K/F is a cyclic extension of degree d where d|n, then K = F (a1/d)
for some a ∈ F non-zero8.

Proof. Note that as ζn ∈ F , therefore µn ⊆ F×. Recall from Lemma 16.6.7.1 that µd ↪→ µn. It
follows that F contains a primitive dth-root of unity. As gcd(n, p) = 1, it follows that gcd(d, p) = 1.
By Kummer-I (Theorem 16.6.7.13, 2), it follows that K = F (a1/d) ⊆ F (a1/n), for some non-zero
a ∈ F , as required.

Remark 16.6.7.15. Assuming the hypothesis of Corollary 16.6.7.14, we see that if K/F is cyclic of
degree d where d|n, then K = F (a1/d). Now note that we can write K = F ((an/d)1/n) = F (b1/n)
where b = an/d.

8Note that as d|n, hence F (a1/d) ⊆ F (a1/n).
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16.6.8 Inseparable & purely inseparable extensions

We now study a type of extension which is prevalent in the study of varieties of characteristic
p > 0. Recall that an extension K/F is inseparable if it is not separable, that is, there is some ele-
ment in K whose minimal polynomial over F is inseparable.

Some of our main results are characterizations of irreducible and minimal polynomials in char-
acteristic p > 0 fields as stated in Proposition 16.6.8.2 and Corollary 16.6.8.9.

Definition 16.6.8.1 (Purely inseparable extension). Let F be a field of characteristic p > 0 and
K/F be an extension. An element α ∈ K is said to be purely inseparable if for some n ≥ 0, we
have

αp
n ∈ F.

If every element of K is purely inseparable, then K/F is said to be purely inseparable.

Before beginning the study of purely inseparable fields, we need a fundamental result about
irreducible polynomials in positive characteristic fields.

Proposition 16.6.8.2 ("Polynomial Frobenius"). Let F be a field of characteristic p > 0. If f(x) ∈ F [x]
is an irreducible polynomial, then there exists an irreducible and separable polynomial g(x) ∈ F [x] such
that

f(x) = g(xpn)

for some n ≥ 0.

Proof. Suppose that f(x) is separable. Then g = f and n = 0 would do. Hence we may assume
that f(x) is inseparable. Thus, by Lemma 16.6.4.14, it follows that f ′(x) = 0. Writing

f(x) =
m∑
j=0

ajx
j ,

we deduce that j = pkj . Thus, we may write

f(x) =
m∑
j=0

ajx
pkj = h(xp)

where h(x) =
∑m
j=0 ajx

kj ∈ F [x]. As f(x) is irreducible, therefore it follows that h(x) is irreducible.
Note that degree of h is deg f

p . If h is separable, then we are done. If not, then we repeat the process,

starting from h(x), to yield h1(x) satisfying h1(xp) = h(x) and thus h1(xp
2) = f(x). As at each step

the resulting polynomial has degree strictly smaller than that of previous, hence the process has
to stop. As the process at a separable polynomial, we thus obtain g(x) separable and irreducible
such that g(xpn) = f(x), as required.

There are some other restatements of the definition, which are important to keep in mind. All
of these uses the "Polynomial Frobenius" (Proposition 16.6.8.2) in a crucial manner.
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Theorem 16.6.8.3. Let F be a characteristic p > 0 field and K/F be an algebraic extension. The following
are equivalent:

1. K/F is purely inseparable.
2. For every α ∈ K not in F , the minimal polynomial mα,F (x) in F [x] is an inseparable polynomial.
3. For every α ∈ K, the minimal polynomial mα,F (x) in F [x] is of the form

mα,F (x) = xp
n − a

for some a ∈ F .

Proof. (1. ⇒ 2.) For some n ∈ N, we have αp
n = a ∈ F . Thus, mα,F (x)|xp

n − a. As f(x) = xp
n − a

and derivative f ′(x) = 0 as char(F ) = p, therefore xp
n − a has repeated roots. Now suppose

xp
n − a = f1(x) . . . fk(x) where each fi(x) ∈ F [x] is an irreducible factor of xp

n − a. Since
xp

n − a = (x − α)pn in K[x], it follows that each fi(x) divides (x − α)mi in K[x]. In particular,
each fi(x) is inseparable. As mα,F (x) = fi(x) for some i as mα,F (x) is irreducible dividing xp

n − a
in F [x], it follows that mα,F (x) is inseparable.

(2. ⇒ 1.) Pick any α ∈ K. We wish to find n ≥ 0 such that αp
n ∈ F . This is equivalent to showing

that mα,F (x)|xp
n − a for some a ∈ F . If α ∈ F , we are done. We may thus assume α ∈ K \ F .

Consider the minimal polynomial mα,F (x) ∈ F [x]. As it is irreducible, by Proposition 16.6.8.2 it
follows that mα,F (x) = f(xpn) where f(x) ∈ F [x] is irreducible and separable. As f(αpn) = 0, it
follows that mαpn ,F (x)|f(x). As both are irreducible, it follows at once that mαpn ,F (x) = f(x). We
deduce that mαpn ,F (x) is separable. By our hypothesis, it follows that αp

n ∈ F , as required.

(2. ⇒ 3.) Pick any α ∈ K. If α ∈ F , there is nothing to do. We may thus assume α ∈ K \ F .
Consider mα,F (x) ∈ F [x] which is irreducible and by hypothesis is inseparable. Observe by Poly-
nomial Frobenius (Proposition 16.6.8.2) that there exists g(x) ∈ F [x] irreducible and separable
such that for some n ≥ 0 we get

mα,F (x) = g(xpn).

It follows that g(αpn) = 0 and thus mαpn ,F (x) = g(x). We thus further deduce that mαpn ,F (x) is
irreducible and separable. By our hypothesis, we must have αp

n = a ∈ F and thus mαpn ,F (x) =
g(x) = x− a. As mα,F (x) = g(xpn) = xp

n − a, hence we get the desired result.

(3.⇒ 1.) Pick any element α ∈ K not in F . Asmα,F (x) = xp
n−a and a ∈ F , therefore αp

n = a ∈ F ,
as required.

It is clear from above that any non-trivial purely inseparable extension is inseparable. A simple
corollary states that perfect fields don’t have non-trivial inseparable extensions.

Corollary 16.6.8.4. Let F be a field. Then, the following are equivalent:
1. An algebraic extension K/F is inseparable9.
2. F is not a perfect field10.

9that is, there is an element whose minimal polynomial is inseparable.
10see Definition 16.6.4.4
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Proof. This is just the contrapositive of Theorem 16.6.4.19.

Corollary 16.6.8.5. Let F be a perfect field. If K/F is purely inseparable, then K = F .

Proof. Suppose K/F is non-trivial. By Corollary 16.6.8.4, it follows that F is not perfect, a contra-
diction.

The following shows that the subfield generated by a purely inseparable element is purely
inseparable.

Proposition 16.6.8.6. Let F be a characteristic p > 0 field and K/F be a field extension and α ∈ K be an
algebraic element which is a purely inseparable element over F . Then F (α)/F is purely inseparable.

Proof. As α ∈ K is algebraic over F , therefore F (α) = F [α]. Pick any β ∈ F [α]. We may write

β = amα
m + · · ·+ a1α+ a0.

As αp
n ∈ F , thus we get

βp
n = ap

n

m α
mpn + · · ·+ ap

n

1 α
pn + ap

n

0 ∈ F,

as needed.

The following result is important for it says that the separable closure of an algebraic extension
completely divides the extension into separable and a purely inseparable part.

Proposition 16.6.8.7. Let F be a field of characteristic p > 0 and K/F be an algebraic extension. Let L/F
be the separable closure11 of F in K. Then, K/L is purely inseparable.

Proof. Pick any element α ∈ K not in L. We wish to show that αp
n ∈ L for some n ≥ 0. Consider

mα,F (x) ∈ F [x]. Observe that mα,F (x) is inseparable as α /∈ L. By Polynomial Frobenius (Propo-
sition 16.6.8.2), it follows that mα,F (x) = f(xpn) for some irreducible separable f(x) ∈ F [x]. It
follows that mαpn ,F (x) = f(x) and thus αp

n
is a separable element, that is, αp

n ∈ L, as needed.

Inseparability index

Our goal now is tom understand the deviation of an algebraic extension from separability. Recall
that perfect fields have no deviation (Theorem 16.6.4.19). Hence, answering this question would
shed light on characteristic p > 0 algebra.

We first begin by observing that separable degree always divides the degree in characteristic
p > 0(!)

Proposition 16.6.8.8. Let K/F be a finite extension where char(F ) = p > 0. Then

[K : F ]s | [K : F ].
11see Definition 16.6.4.16.
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Proof. By Proposition 16.6.4.10, it suffices to show the above statement for K = F (α) for some
α ∈ K. Now since

[F (α) : F ]s =
∣∣HomF

(
F (α), F̄

)∣∣
= # of distinct roots of mα,F (x) in F̄ .

Further, since

[F (α) : F ] = degmα,F (x)
= # of total roots of mα,F (x) in F̄ ,

therefore it suffices to show that each root mα,F (x) is repeated same no. of times in F̄ , that is, mul-
tiplicity of each root of mα,F (x) is same. Indeed, by Polynomial Frobenius (Proposition 16.6.8.2),
we have an irreducible and separable f(x) ∈ F [x] such that

mα,F (x) = f(xpn)

for some n ≥ 0. Let α1, . . . , αm ∈ F̄ be the distinct roots of mα,F (x). Observe that αp
n

i is a root of
f(x) for each i = 1, . . . ,m. It is clear that the function

{Roots of mα,F (x)} −→ {Roots of f(x)}
αi 7−→ αp

n

i

is surjective. Indeed, since degmα,F (x) ≥ deg f(x). Thus, every root of f(x) is of the form αp
n

i .
Thus, we get

f(x) = (x− αp
n

1 ) . . . (x− αpnm ).

Thus

mα,F (x) = f(xpn) = (xpn − αp
n

1 ) . . . (xpn − αpnm )
= (x− α1)p

n
. . . (x− αm)p

n
,

as needed. This completes the proof.

We state one of the important consequences of the proof above.

Corollary 16.6.8.9 (Minimal polynomials in char p). Let K/F be a finite extension where char(F ) =
p > 0. If α ∈ K, then every root ofmα,F (x) has same multiplicity equal to pn for some n ≥ 0. In particular,
p|degmα,F (x).

Proof. In the proof of Proposition 16.6.8.8, we deduced that if α1, . . . , αm ∈ F̄ are roots of mα,F (x),
then

mα,F (x) = (x− α1)p
n
. . . (x− αm)p

n

as required.
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Remark 16.6.8.10. The Corollary 16.6.8.9 generalizes the statement in Theorem 16.6.8.3, 3, in the
sense that a purely inseparable extension is a finite extension of F with char(F ) = p > 0 such that
every element has minimal polynomial with only one root with multiplicity pn. In precise terms,
we have the following result.

Corollary 16.6.8.11. Let K/F be a finite extension where char(F ) = p > 0. Then the following are
equivalent:

1. K/F is a purely inseparable extension.
2. Every element α ∈ K not in F has minimal polynomial which has only one distinct root.

Proof. (1. ⇒ 2.) This is clear from Theorem 16.6.8.3.

(2. ⇒ 1.) As K/F is finite, therefore by Corollary 16.6.8.9, we have

mα,F (x) = (x− α)pn = xp
n − αpn

inK[x]. However, comparing the equality above in F [x], we deduce that αp
n ∈ F , as required.

Remark 16.6.8.12. Now consider K = F (α) over F where char(F ) = p > 0 and α algebraic over
F . Then we saw in Corollary 16.6.8.9 that mα,F (x) has every root repeated pn many times for
some n ≥ 0. We can capture this common multiplicity of roots as [K : F ]/[K : F ]s since [K : F ]
is the total number of roots of mα,F (x) and [K : F ]s is the number of distinct roots of mα,F (x),
so that the ratio will yield us the common multiplicity which is pn. If pn = 1 (i.e. n = 0), then
we see that mα,F (x) has no repeated roots. It follows that F (α)/F would then be separable. This
fraction is thus storing information about separability of an extension. We now generalize this for
not necessarily principal extensions.

Definition 16.6.8.13 (Inseparability index). Let K/F be a finite extension where char(F ) = p > 0.
Then the inseparability index of K/F is defined to be

[K : F ]i :=
[K : F ]
[K : F ]s

.

As both usual degree and separable degree satisfies tower law, therefore inseparability index
also satisfies tower law.

Lemma 16.6.8.14. Let L/K/F be finite extensions where char(F ) = p > 0. Then,

[L : F ]i = [L : K]i · [K : F ]i.

Proof. Immediate.

Using the tower law, we observe that inseparability index is always a power of characteristic.

Lemma 16.6.8.15. Let K/F be a finite extension where char(F ) = p > 0. Then [K : F ]i = pk for some
k ≥ 0.

Proof. As K/F is finite and inseparability index satisfies tower law (Lemma 16.6.8.14), we may
reduce to showing that [F (α) : F ]i is a power of p. Indeed, observe that [F (α) : F ] = degmα,F

and [F (α) : F ]i = # distinct roots of mα,F . By Corollary 16.6.8.9, we deduce that degmα,F =
(# distinct roots of mα,F ) · (pn) where pn is the common multiplicity of each root of mα,F . Hence,
[F (α) : F ]i is pn, as required.



526 CHAPTER 16. COMMUTATIVE ALGEBRA

It should be clear that if K/F is purely inseparable, then [K : F ]i = 1. We now correctly prove
it.

Lemma 16.6.8.16. Let K/F be a finite and purely inseparable extension where char(F ) = p > 0. Then,

[K : F ]s = 1.

Proof. By tower law for separable degree (Proposition 16.6.4.10), we may assume that K = F (α).
As [F (α) : F ]s is the number of distinct zeroes of mα,F (x), therefore by Corollary 16.6.8.11, we
win.

The following is a simple, yet enlightening observation.

Lemma 16.6.8.17. Let F be a field of characteristic p > 0. If K/F a purely inseparable extension, then it
is normal.

Proof. Indeed, as α ∈ K is such that mα,F (x)|xp
n − a for some a = αp

n ∈ F , therefore all distinct
roots ofmα,F (x) are distinct roots of xp

n−a as well. However, overK we have xp
n−a = xp

n−αpn =
(x − α)pn . Thus, xp

n − a has only one distinct root, it follows that mα,F (x) has only one distinct
root, α ∈ K. Since α ∈ K is arbitrary, hence K/F is normal, as required.
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16.6.9 Transcendence degree

Definition 16.6.9.1. (Transcendence) Let K/k be a field extension.
1. A collection of elements {αi}i∈I of K is said to be algebraically independent if the map

k[xi | i ∈ I] −→ K

xi 7−→ αi

is injective.
2. A transcendence basis of K/k is defined to be an algebraically independent set {αi | i ∈ I} of
K/k such that K/k(αi | i ∈ I) is an algebraic extension.

3. The extension K/k is said to be purely transcendental if K ∼= k(xi | i ∈ I) for some indexing
set I .

Lemma 16.6.9.2. Let K/k be a field extension. Then, {αi}i∈I is a transcendence basis of K/k if and only
if {αi}i∈I is a maximal algebraically independent set of K/k.

Proof. (L⇒ R) If {αi}i∈I is not maximal, then there exists S ⊂ K containing {αi}i∈I such that S is
algebraically independent. Let β ∈ S \ {αi}i∈I . But since K/k({αi}i∈I) is an algebraic extension
and β /∈ k({αi}i∈I) by algebraic independence of S, therefore we have a contradiction to algebraic
nature of the extension K/k({αi}i∈I).
(R⇒ L) Suppose K/k({αi}i∈I) is not algebraic. Then there exists β ∈ K which is transcendental
over k({αi}i∈I). Thus the set {αi}i∈I ∪ {β} is a larger algebraically independent set, contradicting
the maximality.

Lemma 16.6.9.3. LetK/k be a field extension. Then any two transcendence basis have the same cardinality.

Proof. See Tag 030F of cite[Stacksproject].

Definition 16.6.9.4. (Transcendence degree) Let K/k be a field extension. The cardinality of any
transcendence basis is said to be the transcendence degree, denoted trdeg K/k. Furthermore, if A
is a domain containing k, then we define trdeg A/k to be the transcendence degree of A0, the field
of fractions of A, over k.

Remark 16.6.9.5. Let K/k be a field extension. If trdeg K/k = 1, then there exists α ∈ K such
that α is not an algebraic element over k but K/k(α) is algebraic. In particular, for any transcen-
dental element α ∈ K over k, the set {α} is algebraically independent over k. Precisely, there is a
one-to-one bijection between the set of all singletons which are algebraically independent and all
transcendental elements of K/k.

Example 16.6.9.6. There are some basic examples which reader might have encountered. For
example, one knows that Q(π)/Q is transcendental as π ∈ Q(π) is not algebraic over Q. Conse-
quently, trdeg Q(π)/Q is 1, as Q(π)/Q(π) is algebraic.

For another example, consider the next obvious situation of Q(e, π)/Q. Since {e} and {π} are
algebraically independent sets over Q, therefore trdeg in this case is ≥ 1. But it is an unknown
problem whether {e, π} forms an algebraically independent set over Q(!) Consequently, if they
do, then trdeg Q(e, π)/Q = 2 and if they don’t, then the best we can say is trdeg Q(e, π)/Q ≥ 1.
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Example 16.6.9.7. We have trdeg k(x1, . . . , xn)/k = n as {x1, . . . , xn} forms a maximal algebraically
independent set.

We observe some basic first properties of transcendence degree. First, transcendence degree
satisfies additive tower law.

Lemma 16.6.9.8 (Additive tower law). Let L/K/k be field extensions. Then

trdeg L/k = trdeg L/K + trdeg K/k.

The following shows that that whatever transcendence degree of a k-algebra may be, there will
be that many transcendental elements in it.

Lemma 16.6.9.9. Let A = k[α1, . . . , αn] be an integral domain where αi ∈ K for some field extension
K/k. If trdeg A/k = r > 0, then there exists αi1 , . . . , αir which are transcendental over k.
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16.7 Integral dependence and normal domains

The main topic of interest of study in this section is the following question: "let R be a ring and S
be an R-algebra. How do all those elements of S behave like which satisfy a polynomial with coefficients in
R?".

16.7.1 Definitions and basic theory

In order to investigate this further, let us bring some definitions.

Definition 16.7.1.1. (Integral elements and integral algebra) Let R be a ring and S be an R-
algebra. An element s ∈ S for which there exists p(x) ∈ R[x] such that p(s) = 0 in S is said to be
an integral element over R. Further, S is said to be integral over R if every element of S is integral
over R.

To begin deriving properties, we would need a fundamental result about endomorphisms of
finitely generated modules.

Theorem 16.7.1.2 (Cayley-Hamilton). Let R be a ring, M be a finitely generated R-module generated by
n elements and I ≤ R be an ideal. If ϕ :M →M is an R-linear map such that

ϕ(M) ⊆ IM,

then there exists a monic polynomial

p(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

in R[x] such that p(ϕ) = 0 in HomR (M,M) and ak ∈ Ik for k = 1, . . . , n.

Proof. See Theorem 4.3, pp 120, [cite Eisenbud].

There are two immediate corollaries of Cayley-Hamilton which will remind the reader of finite-
dimensional vector space case.

Corollary 16.7.1.3. LetR be a ring andM be a finitely generatedR-module. If φ :M →M is a surjective
R-module homomorphism, then φ is an isomorphism.

Proof. Using φ, we may regard M as an R[z]-module. Note that M is a finitely generated R[z]-
module. Let I = ⟨z⟩ ≤ R[z]. Since the action of z on M is by φ and φ is surjective, therefore
IM =M . We may use Cayley-Hamilton with ϕ = id to deduce that there is a polynomial p(x, z) ∈
R[x, z] such that p(z, id) = 0 and p(x, z) is a monic polynomial in R[z][x]. Consequently, we can
write 0 = p(z, id) = 1 + q(z)z for some q(z) ∈ R[z]. It follows that −q(z) is the inverse of z in R[z].
Since z ∈ R[z] denotes the endomorphism φ, so we have found an R-linear inverse of φ, namely
the one corresponding to −q(z), as required.

Corollary 16.7.1.4. Let R be a ring and M be a finitely generated R-module. If M ∼= Rn, then any
generating set of n elements of M is linearly independent. In particular, any generating set of n elements
of M is a basis.
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Proof. Denote f : M → Rn to be the given isomorphism. Pick S = {s1, . . . , sn} to be a generating
set of M . This yields a surjection g : Rn →M . We wish to show that g is an isomorphim. Observe
that gf :M →M is surjective. It follows from Corollary 16.7.1.3 that gf is an isomorphism. Since
f is an isomorphism, hence it follows that g is an isomorphism, as required.

Here is an another application of Cayley-Hamilton.

Corollary 16.7.1.5. Let R ̸= 0 be a ring. If ϕ : Rm → Rn is an injective R-linear map, then m ≤ n12.

Proof. Assuming to the contrary, assume that m > n and ϕ is injective. Then we have the compos-
ite which is also injective:

ψ : Rm ϕ→ Rn ↪→ Rm,

where the latter is the inclusion into first n-coordinates. By Cayley-Hamilton, we get that ψ satis-
fies a monic polynomial in R:

ψk + rk−1ψ
k−1 + · · ·+ r1ψ + r0 = 0.

We may assume that k is least possible. If r0 = 0, then by injectivity of ψ, we would have an even
smaller degree polynomial which annihilates ψ, not possible. Hence r0 ̸= 0 and thus applying the
above polynomial at em = (0, 0, . . . , 0, 1) gives that r0 = 0, a contradiction.

The fundamental result which drives the basic results about integral algebras is the following
equivalence.

Proposition 16.7.1.6. Let R→ S be an R-algebra and s ∈ S. Then the following are equivalent.
1. s ∈ S is integral over R.
2. R[s] ⊆ S is a finite R-algebra.
3. R[s] ⊆ S is contained in a finite R-algebra.
4. There is a faithful R[s]-module M which when restricted to R is finitely generated as an R-module.

Proof. 1 ⇒ 2 ⇒ 3 ⇒ 4 follows at once. We do 4 ⇒ 1. Indeed, let I = ⟨s⟩ ≤ R[s] be the ideal
generated by s ∈ R[s]. Consequently, s induces an endomorphism ms : M → M by scalar
multiplication. Observe that ms(M) = IM . It follows by Cayley-Hamilton (Theorem 16.7.1.2)
that there exists a monic p(x) ∈ R[s][x] such that p(ms) = 0 as an R[s]-linear map M → M .
Consequently, for any a ∈M , we have p(ms)(a) = 0, where upon expanding one sees that p(ms) =
mq(s) for some q(s) ∈ R, q(x) ∈ R[x]. But since M is faithful, therefore q(s) = 0, as required.

Lemma 16.7.1.7. Let R → S be an R-algebra and s1, . . . , sn ∈ S be integral over R. Then R[s1, . . . , sn]
is a finite R-algebra.

Proof. We proceed by induction over n. Base case follows from Proposition 16.7.1.6. Assume that
Rk = R[s1, . . . , sk] is a finite R-algebra. Since sk+1 ∈ S is integral over R, therefore it is integral
overRk. It follows from Proposition 16.7.1.6 thatRk[sk+1] is a finiteRk-algebra. SinceRk is a finite
R-algebra, therefore Rk[sk+1] = R[s1, . . . , sk+1] is a finite R-algebra, as required.

12proof is taken from here.

https://mathoverflow.net/questions/136/atiyah-macdonald-exercise-2-11
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One then obtains that finite generation of an algebra by integral elements as an algebra is
equivalent to finite generation as an R-module.

Lemma 16.7.1.8. Any finite R-algebra is integral over R.

Proof. Let S be a finite R-algebra and let s ∈ S be an element. Let ms : S → S be the R-linear
given by multiplication by s. As S is a finitely generated R-module, then by Cayley-Hamilton
(Theorem 16.7.1.2), it follows that there is a monic p(x) ∈ R[x] such that p(ms) = 0 as an R-linear
map. Applying p(ms) to 1 ∈ S yields p(s) = 0, as required.

Proposition 16.7.1.9. Let R be a ring and S be an R-algebra. Then the following are equivalent.
1. S is a finite R-algebra.
2. S = R[s1, . . . , sn] where s1, . . . , sn ∈ S are integral over R. In particular, S is integral over R.

That is, an R-algebra is finite if and only if it is a finite type and integral R-algebra.

Proof. Observe that 2. ⇒ 1. is just Lemma 16.7.1.7. For 1. ⇒ 2. proceed as follows. By Lemma
16.7.1.8, it follows that S is integral over R. Let s1, . . . , sn ∈ S be a generating set of S as an
R-module. It is now clear that R[s1, . . . , sn] = S as S is finitely generated.

The following result show that all integral elements form a subring of S.

Proposition 16.7.1.10. Let R be a ring and S be an R-algebra. The set of all elements of S integral over R
forms a subalgebra of S, called the integral closure of R in S.

Proof. Let s, t ∈ S be integral over R. Then R[s, t] is a subalgebra of S. It suffices to show that
every element of R[s, t] is integral over R. By Proposition 16.7.1.9, the algebra R[s, t] is integral
over R as it is finite by Lemma 16.7.1.7.

With this, a natural situation is when every element of S is integral over R.

Definition 16.7.1.11. (Normalization & integral extension) LetR be a ring and S be anR-algebra.
The subalgebra A of all integral elements of S over R is said to be the integral closure of S over R.
One also calls A the normalization of R in S. If S is fraction field of R, then A is also denoted by R̃.
Further, if R ↪→ S is a ring extension and every element of S is integral over R, then S is said to
be an integral extension of R. If f : R → S is an integral R-algebra, then the map f is said to be
integral.

Composition of integral maps is integral.

Lemma 16.7.1.12. Let R→ S and S → T be integral maps. Then the composite R→ S → T is integral.

Proof. Pick any element t ∈ T . We wish to show that R[t] is contained in a finite R-algebra by
Proposition 16.7.1.6. As S → T is integral, there exists p(x) ∈ S[x] monic such that p(t) = 0. So we
have

tn + sn−1t
n−1 + · · ·+ s1t+ s0 = 0

in T where si ∈ S. Let S′ = R[s0, . . . , sn−1]. As R→ S is integral, therefore S′ is a finite R-algebra
by Lemma 16.7.1.7. Note that R ⊆ S′. By the above equation, it then follows that S′[t] is a finite
S′-algebra. As composition of finite maps is finite, therefore S′[t] is a finite R-algebra containing
R[t], as required.
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Another trivial observation is that a map which factors an integral map becomes integral.

Lemma 16.7.1.13. Let A→ C be an integral map. If there is a map A→ B such that

A C

B

commutes, then B → C is an integral map.

Proof. Pick any element c ∈ C. There exists non-zero monic p(x) ∈ A[x] such that p(x) is non-zero
in C[x] and p(c) = 0 in C. Observe that p(x) ∈ B[x] is also a non-zero monic as if not then p(x)
would be zero in C[x] because the above triangle commutes. The result then follows.

The following observation is simple to see, but comes in very handy while handling interme-
diate rings that pop-up while subsequent localizations.

Lemma 16.7.1.14. Let k be a field and A be an integral k-algebra. Then A is a field.

Proof. Pick any element a ∈ A. By integrality, there exists ci ∈ k such that

an + cn−1a
n−1 + · · ·+ c1a+ c0 = 0

in A. Consider this equation in the fraction field Q(A) to multiply by a−1, so that we may get

an−1 + cn−1a
n−2 + · · ·+ c2a+ c1 + c0a

−1 = 0

in Q(A). It thus follows that a−1 is a polynomial in A with coefficients in k, that is, a−1 ∈ A, as
required.

16.7.2 Normalization & normal domains

A special situation in Definition 16.7.1.11 is when R is a domain and S is its fraction field. These
domains will play a crucial role later on, especially in arithmetic.

Definition 16.7.2.1. (Normal domain) Let R be a domain and S be its fraction field. If the normal-
ization of R in S is R itself, then R is said to be a normal domain.

Example 16.7.2.2. Let R be a domain, K its fraction field and R̃ be the normalization of R in K. It
follows that R̃ ↪→ K is a normal domain. Indeed, let R̂ be normalization of R̃ in K. Then, we have
maps

R ↪→ R̃ ↪→ R̂

where both inclusions are integral maps by construction. It follows from Lemma 16.7.1.12 that the
inclusion R ↪→ R̂ is integral, forcing R̂ ⊆ R̃ which further implies R̃ = R̂.

Further investigation into normal domains lets us identify all UFDs as normal domains.

Proposition 16.7.2.3. All unique factorization domains are normal domains.
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Proof. Let R be a UFD and K be its fraction field. Let a
b ∈ K with gcd(a, b) = 1. Suppose a

b is
integral over R so that there exists p(x) = xn+ cn−1x

n−1+ . . . c1x+ c0 ∈ R[x] such that p(a/b) = 0.
It follows by rearrangement that

an + cn−1ba
n−1 + . . . c1b

n−1 + c0b
n = 0.

Hence, b|an. As gcd(a, b) = 1, hence we deduce thay b|a, a contradiction.

Example 16.7.2.4. Consequently, Z and Z[x1, . . . , xn] are normal as well. Moreover, as Gauss’
lemma states that R is UFD if and only if R[x] is UFD, therefore we deduce that R[x1, . . . , xn] is a
normal domain if R is UFD.

We have something similar to Gauss’ lemma for normal domains.

Proposition 16.7.2.5. A ring R is normal if and only if R[x] is normal.

Proof. TODO.

Further, we can obtain a generalization of the fact that a monic irreducible in Z[x] is irreducible
in Q[x].

Proposition 16.7.2.6. Let R ↪→ S be a ring extension and let f ∈ R[x] be a monic polynomial. If f = gh
in S[x] where g and h are monic, then the coefficients of g and h are integral over R.

We also obtain that any monic irreducible in the polynomial ring in one variable over a normal
domain is prime.

Lemma 16.7.2.7. Let R be a ring and f(x) ∈ R[x] be a monic irreducible. If R is a normal domain, then
f(x) is a prime element.

Thus, for normal domains R, monic irreducible and monic prime polynomials are equivalent
concepts.

We now show that normalization is a very hereditary process as it preserves many properties
of the original ring. Indeed, we first show that normalization and localization commutes.

Proposition 16.7.2.8. Let f : R→ S be an R-algebra and M ⊆ R be a multiplicative set. If A ⊆ S is the
integral closure of R in S, then M−1A is the integral closure of M−1R in M−1S.

Proof. We may assume that f is inclusion of a subring of S by replacingR by f(R) andM by f(M).
Consequently, we have inclusions R ↪→ A ↪→ S which induces inclusions M−1R ↪→ M−1A ↪→
M−1S. We wish to show that M−1A is the integral closure of M−1R in M−1S. Pick an element
s/m ∈ M−1S where m ∈ M which is integral over M−1R. Consequently, there exists ri/mi ∈
M−1R for 0 ≤ i ≤ k − 1 such that( s

m

)k
+ rk−1
mk−1

( s
m

)k−1
+ . . .

r1
s1

( s
m

)
+ r0
m0

= 0

in M−1S. Multiplying by product of denominators and absorbing coefficients into ri, we get

m′sk + rk−1s
k−1 + · · ·+ r1s+ r0 = 0
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which we may multiply by (m′)k−1 to get

(m′s)k + rk−1(m′s)k−1 + · · ·+ r1(m′)k−2(m′s) + r0(m′)k−1 = 0.

It follows that m′s ∈ A, thus s/1 ∈M−1A and thus s/m ∈M−1A.
Conversely, pick an element a/m ∈M−1A. We wish to show that it is integral over M−1R. As

a ∈ A, therefore we have

an + rn−1a
n−1 + . . . a1r + a0 = 0

for ri ∈ R. This equation in M−1S can be divided by mn to obtain( a
m

)n
+ rn−1

m

( a
m

)n−1
+ · · ·+ r1

mn−1

( a
m

)
+ r0
mn

= 0.

It follows that a/m is integral over M−1R, as required.

An immediate, but important corollary of the above is the following.

Corollary 16.7.2.9. Let A be a domain, K be its fraction field and Ã be its normalization. Then, for all
g ∈ A, we have Ãg = Ãg in K.

Another important corollary is that being a normal domain is a local property.

Proposition 16.7.2.10. Let R be a domain. Then the following are equivalent:
1. R is a normal domain.
2. Rp is a normal domain for each prime p ∈ Spec (R).
3. Rm is a normal domain for each maximal m ∈ Spec (R).

Proof. By Proposition 16.7.2.8, we immediately have that (1. ⇒ 2.) and (1. ⇒ 3.). The (2. ⇒ 3.) is
immediate. We thus show (3. ⇒ 1.). Let K be the fraction field of R. Observe that each Rm is a
domain and have fraction field K again, where m ∈ Spec (R) is a maximal ideal. Thus we have
R ↪→ Rm ↪→ K. Pick x ∈ K which satisfies a monic polynomial over R. It follows that x satisifes
a monic polynomial over Rm for each maximal m ∈ Spec (R). Thus x ∈ Rm for each m as Rm is a
normal domain. We thus deduce from Lemma 16.1.2.12 that x ∈

⋂
m̸=RRm = R, as required.

Remark 16.7.2.11 (Normalization is a strongly local construction). LetA be an arbitrary domain. Then
we get an inclusion ϕA : A ↪→ Ã where Ã is the normalization of A in its fraction field. We claim
that the collection of maps {ϕA : A ↪→ Ã} one for each domain is a construction which is strongly
local on domains (see Definitions 1.6.2.3 & 1.6.2.4).

Indeed, first {ϕA : A ↪→ Ã} is a construction on domains as if η : A → B is an isomorphism,
then we have an isomorphism η̃ : Ã→ B̃ given as follows: we have an isomorphism η̄ : KA → KB

between their fraction fields, given by a/a′ 7→ η(a)/η(b). Now a/a′ ∈ KA is integral over A if
and only if η(a)/η(a′) ∈ KB is integral over B. This shows that η̄ : KA → KB restricts to an
isomorphism η̃ : Ã → B̃. Moreover, if η : A → A is id, then so is η̃ and it satisfies the square and
cocycle condition as well of Definition 1.6.2.3. We now claim that normalization is strongly local.

Indeed, pick g ∈ A non-zero. Then, the localization of the inclusion ϕA : A ↪→ Ã at element g
yields (ϕA)g : Ag ↪→ Ãg = Ãg which is equal to the normalization of the domain ϕAg : Ag ↪→ Ãg.
It follows that any integral scheme X admits a normalization in light of Theorem 1.6.2.10. Indeed,
this is what is the content of Theorem 1.6.6.3.
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We have a universal property for normalization of domains.

Proposition 16.7.2.12. Let A be a domain and Ã be the normalization of A in its fraction field. Then for
any normal domain B and an injective map A ↪→ B, there exists a unique map Ã→ B such that following
commutes:

Ã B

A

.

Proof. Let f : A ↪→ B. This, by universal property of fraction fields, induces a unique injective
map ϕ : K ↪→ L from fraction field of A to that of B such that ϕ|A = f . Let x ∈ Ã. Then

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

holds in K where ai ∈ A. Applying ϕ on the above equation yields

ϕ(x)n + f(an−1)ϕ(x)n−1 + · · ·+ f(a1)ϕ(x) + f(a0) = 0

inL. It follows thatϕ(x) is an integral element ofL overB. AsB is normal it follows thatϕ(x) ∈ B.
Consequently, we have a unique map

ϕ|Ã : Ã→ B

such that the triangle commutes, as required.

In certain situations (especially those arising in geometry and arithmetic), normalization pre-
serves noetherian property. TODO.

16.7.3 Noether normalization lemma

Finally, as a big use of normalization in geometry, we obtain the following famous result.

Theorem 16.7.3.1. 13 Let k be a field and A be a finite type k-algebra. Then, there exists elements
y1, . . . , yr ∈ A algebraically independent over k such that the inclusion k[y1, . . . , yr] ↪→ A is an inte-
gral map.

Proof. Let us assume that k is infinite. Let x1, . . . , xn ∈ A be generators of A as a k-algebra. Sup-
pose there is no algebraically independent subset of {x1, . . . , xn}. Thus, each x1, . . . , xn is integral
over k. As A = k[x1, . . . , xn], therefore by Proposition 16.7.1.9 it follows that A is integral over k,
so there is nothing to show here.

Consequently, we may assume that there is a largest algebraically independent subset of {x1, . . . , xn},
denoted {x1, . . . , xr}. It follows that each xr+1, . . . xn is integral/algebraic over k. If r = n, then A
is the affine n-ring over k, so there is nothing to show. Consequently, we may assume that n > r.
We now proceed by induction over n.

In the base case, we have n = 1, and thus r < 1. It follows that A = k[x] where x ∈ A is
algebraically dependent over k, that is, x is integral over k. Consequently, A is integral over k by

13Exercise 5.16 of AMD.
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Lemma 16.7.1.7 and there is nothing to show. We now do the inductive case.
Assume that every finite type k-algebraB ⊆ Awith n−1 generators have elements {y1, . . . , ym} ⊆

B algebraically independent over k such that B is integral over k[y1, . . . , ym]. Denote An−1 =
k[x1, . . . , xn−1] ⊆ A. It now suffices to find a finite type k-algebra B ⊆ A generated by n − 1
elements not containing xn such that the following two statements hold about B:

1. xn ∈ A is integral over B,
2. B[xn] = A.

For if such a B exists, then we have integral maps k[y1, . . . , ym] ↪→ B and B ↪→ B[xn] = A
(Proposition 16.7.1.6). Then, by Lemma 16.7.1.12, it follows that k[y1, . . . , ym] ↪→ A is integral, as
needed.

Indeed, first observe that since xn is algebraic over k and k ⊆ An−1, therefore xn is algebraic
overAn−1. Consequently, there is a polynomial f(z1, . . . , zn−1, zn) ∈ k[z1, . . . , zn] of total degreeN
such that f(x1, . . . , xn−1, xn) = 0. Using this, we now construct the required algebra B as follows.
Let F be the highest degree homogeneous part of f and denote it by

F (z1, . . . , zn) =
∑

i1+···+in=N
ci1...inz

i1
1 . . . z

in
n

where ci1...in and is 0 for those indices which are not present in F and is 1 for those which are
present. Let (λ1, . . . , λn−1) ∈ kn−1 be a tuple such that F (λ1, . . . , λn−1, 1) ̸= 0. Such a tuple exists
because the field is infinite (n might be arbitrarily large). Consequently, for each 0 ≤ i ≤ n − 1,
consider the following elements of A:

x′i = xi − λixn.

Let B = k[x′1, . . . , x′n−1] ⊆ A. We now show that above two hypotheses are satisfied by B.
This will conclude the proof. First, we immediately have the second hypothesis as B[xn] =
k[x′1, . . . , x′n−1, xn] = k[x1, . . . , xn] = A. We thus need only show that xn is integral over B. This
also follows by the way of construction of B; consider the polynomial

g(z1, . . . , zn−1, zn) := f(z1 + λ1zn, . . . , zn−1 + λn−1zn, zn)

in k[z1, . . . , zn−1, zn]. We wish to show the following two items
1. g(z1, . . . , zn−1, zn) is monic in zn,
2. g(x′1, . . . , x′n−1, xn) = 0.

This would suffice as a polynomial in B[zn] is just a polynomial in k[x′1, . . . , x′n−1, zn]. Indeed, we
see that

g(z1, . . . , zn−1, zn) = f(z1 + λ1zn, . . . , zn−1 + λn−1zn, zn)
= F (z1 + λ1zn, . . . , zn−1 + λn−1zn, zn) + · · ·
=

∑
i1+···+in=N

ci1...in(z1 + λ1zn)i1 . . . (zn−1 + λn−1zn)in−1zinn + · · ·

=
( ∑
i1+···+in=N

ci1...inλ
i1
1 z

i1
n . . . λ

in−1
n−1 z

in−1
n zinn

)
+ . . .

= zNn

( ∑
i1+···+in=N

ci1...inλ
i1
1 . . . λ

in−1
n−1

)
+ · · ·

= zNn F (λ1, . . . , λn−1, 1) + · · · .
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It follows that g is monic in zn and g(x′1, . . . , x′n−1, xn) = f(x1, . . . , xn−1, xn) = 0. This completes
the proof.

16.7.4 Dimension of integral algebras

We will cover Cohen-Seidenberg theorems about primes in an integral extension. The main the-
orem will allow us to deduce that, apart from other things, dimension of an integral R-algebra is
equal to that of R.
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16.8 Dimension theory

We will discuss the notion of dimension of rings and how that notion corresponds to dimension
of the corresponding affine scheme. Further, the notion of dimension applied to algebraic geom-
etry will garnish us with a concrete geometric intuition to situations which otherwise may feel
completely sterile.

16.8.1 Dimension, height & coheight

As usual, all rings are commutative with 1.

Definition 16.8.1.1. (Dimension of a ring) Let R be a ring. Then dimR is defined as follows

dimR := sup
r
{p0 ⊋ p1 ⊋ · · · ⊋ pr | pi are prime ideals of R}.

Definition 16.8.1.2. (Height/coheight of a prime ideal) Let R be a ring and p ⪇ R be a prime
ideal. Then height of p is defined as follows:

ht p := sup
r
{p = p0 ⊋ p1 ⊋ · · · ⊋ pr | pi are prime ideals of R}.

Similarly, the coheight of p is defined by

coht p := sup
r
{p = p0 ⊊ p1 ⊊ · · · ⊊ pr | pi are prime ideals of R}

Remark 16.8.1.3. Note that the dimension of a prime ideal p as a ring may not be same as its
height in R, as there might be many more primes in p which may fail to be primes in the ring R.
But clearly, dim p ≥ ht p.

Recall that the dimension of a topological space X is defined as

dimX = sup
r
{Z0 ⊋ Z1 ⊋ · · · ⊋ Zr | Zi are irreducible closed subsets of X}.

We now have some immediate observations about height, coheight and dimension.

Lemma 16.8.1.4. Let R be a ring. Then,
1. ht p = dimRp,
2. coht p = dimR/p,
3. ht p+ coht p ≤ dimR.

Proof. Prime ideals of R/p are in one-to-one order preserving bijection with prime ideals of R
containing p. Prime ideals of Rp are in one-to-one order preserving bijection with prime ideals of
R contained in p. Let Y denote the length of all chains of prime ideals of R passing through p.
Consequently, supY ≤ dimX . But supY = ht p+ coht p.

Lemma 16.8.1.5. Let R be a PID. Then, dimR = 1. Consequently, Z and k[x] are one dimensional rings
for any field k14.

14as the intuition agrees!
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Proof. Any chain is either of the form ⟨0⟩ or ⟨x⟩ ⊋ ⟨0⟩.

Further, by Theorem 16.1.5.3 we see the following.

Lemma 16.8.1.6. If R is a PID which is not a field, then dimR[x] = 2.

Proof. Indeed, by Theorem 16.1.5.3, the longest chain of prime ideals of the form 0 ⪇ ⟨f(x)⟩ ⪇
⟨p, h(x)⟩ where f(x) is irreducible and h(x) is irreducible modulo prime p ∈ R, as one can see
immediately.

The following is also a simple assertion, which basically is why one introduces dimension of a
ring.

Lemma 16.8.1.7. Let R be a ring. Then,

dim Spec (A) = dimA.

Proof. Immediate from definitions and Lemma 1.2.1.1.

Let us now give some more helpful notions, especially the dimension of an R-module.

Definition 16.8.1.8. (Dimension of a module and height of ideals) Let M be an R-module. Then
the dimension of M is defined as

dimM := dimR/Ann(M).

Further, for an ideal I ≤ R, we define the height of I as the infimum of heights of all prime ideals
above I :

ht I := inf{ht p | p ⊇ I, p ∈ Spec (R)}.

We have the corresponding topological result.

Lemma 16.8.1.9. Let R be a ring and M be a finitely generated R-module. Then,

dimM = dim Supp (M)

where Supp (M) ⊆ Spec (R) is the support of the module M .

Proof. The result follows as Supp (M) is the closed subset V (AnnM) so that any irreducible closed
set in Supp (M) will be irreducible closed in Spec (R) and then we can use Lemma 1.2.1.1.

16.8.2 Dimension of finite type k-algebras

In algebraic geometry, one is principally interested in finite type algebras over a field. Thus it is
natural to engage in the study of their dimensions. We discuss some elementary results in this
direction in this section. See Section 16.1.6 for basics of finite type k-algebras.

The main results are as follows.
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Theorem 16.8.2.1. Let k be a field and A be a finite type k-algebra which is a domain15. Then,

dimA = trdeg A/k.

Theorem 16.8.2.2. Let k be a field and A be a finite type k-algebra which is a domain and let p ⪇ A be a
prime ideal. Then,

ht p+ dimA/p = dimA.

16.8.3 Fundamental results

We begin with the fundamental theorem of dimension theory.

Theorem 16.8.3.1 (Fundamental theorem).

The following is the famous principal ideal theorem.

Theorem 16.8.3.2 (Krull’s Hauptidealsatz). Let R be a noetherian ring. If I ≤ R is a principal ideal,
then any minimal prime p containing I is such that

ht (p) ≤ 1.

In particular, if I ̸= 0 and R a domain, then any minimal prime containing I has height 1.

15note that such algebras are exactly the ones which correspond to affine algebraic varieties.
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16.9 Completions

Do from Chapter 7 of Eisenbud

16.9.1 Hensel’s lemma

Theorem 16.9.1.1 (Hensel). Let (A,m) be a noetherian local ring and (Â, m̂) be the m-adic completion
of A. Let f ∈ Â[x1, . . . , xn]. If f̄ has a solution (ā1, . . . , ān) in Â/m̂ = A/m, then (ā1, . . . , ān) can be
extended to (a1, . . . , an) in Ank on which f vanishes.
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16.10 Valuation rings

We begin with the basic theory of valuation rings.

16.10.1 Valuations & discrete valuations

Definition 16.10.1.1. (Valuation on a field) LetK be a field andG be an abelian group. A function
v : K → G ∪ {∞} is said to be a valuation of K with values in G if v satisfies

1. v(xy) = v(x) + v(y),
2. v(x+ y) ≥ min{v(x), v(y)},
3. v(x) =∞ if and only if x = 0.

Let Val(K,G) denote the set of all valuations over K with values in G.

Few immediate observations are in order.

Lemma 16.10.1.2. Let K be a field, G be an abelian group and v ∈ Val(K,G) be a valuation. Then,
1. R = {x ∈ K | v(x) ≥ 0} ∪ {0} is a subring of K,
2. m = {x ∈ K | v(x) > 0} ∪ {0} is a maximal ideal of R,
3. (R,m) is a local ring,
4. R is an integral domain,
5. R⟨0⟩ = K,
6. ∀x ∈ K, x ∈ R or x−1 ∈ R.

Proof. Items 1 and 4 are immediate from the axioms of valuations. Items 2 and 3 are immediate
from the observation that {x ∈ K | v(x) = 0} ∪ {0} is a field in R. For items 5 and 6, we need to
observe that v(1) = 0 and for any x ∈ K×, v(x−1) = −v(x).

Remark 16.10.1.3. We call the subring R ⊂ K above corresponding to a valuation v over K to be
the value ring of v.

Definition 16.10.1.4. (Valuation rings) Let R be an integral domain. Then R is said to be a valua-
tion ring if it is the value ring of some valuation over K = R⟨0⟩.

Definition 16.10.1.5. (Domination) Let K be a field and A,B ⊂ K be two local rings in K. Then
B is said to dominate A if B ⊇ A and mB ∩A = mA.

There is an important characterization of valuation rings inside a field K with respect to all
local rings in K.

Theorem 16.10.1.6. Let K be a field and R ⊂ K be a local ring. Denote Loc(K) to be the set of all local
rings in K together with the partial order of domination. Then, the following are equivalent,

1. R is a valuation ring.
2. R is a maximal element of the poset Loc(K).

Furthermore, for every local ring S ∈ Loc(K), there exists a valuation ring R ∈ Loc(K) which dominates
S.

Proof. See Tag 00I8 of cite[Stacksproject].

An important type of valuation rings are where the value group is the integers.
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Definition 16.10.1.7. (Discrete valuation rings) Let R be a valuation ring. Then R is said to be a
discrete valuation ring (DVR) if the value group of R is the integers Z.

It turns out that noetherian local domains of dimension 1 have some important characteriza-
tions, one of them being that they are exactly local Dedekind domains.

Theorem 16.10.1.8. Let A be a noetherian local domain of dimension 1. Then the following are equivalent
1. A is a DVR.
2. A is a normal domain (that is, a local Dedekind domain).
3. A is a regular local ring.
4. The maximal ideal of A is principal and the generator t is called the "local parameter" of A.

Proof. Do it from Atiyah-Macdonald page 94.

It is a simple fact to see the following.

Proposition 16.10.1.9. Let R be a DVR with local parameter t ∈ R and F = Q(R). Then,
1. Every element of R is of the form utn for u ∈ R× = R \ tR and n ∈ N ∪ {0}.
2. We have that R is a PID. In particular, every ideal is generated by some power of the local parameter.
3. The discrete valuation of R is given by (note that F = {utn | n ∈ Z})

ν : F −→ Z
utn 7−→ n.

Proof. 1. Let a ∈ R which is not a unit, hence a ∈ tR, thus a = rt where r ∈ R. As r ∈ tR, then
r = r1t and thus a = r1t

2. Doing the same on r1 and continuing, we get an ascending chain, which
terminates by noetherian condition, yielding us the factorization a = utn where u ∈ R is a unit
and n ∈ N, as required.

2. By Theorem 16.10.1.8, (R, tR) is a local ring. Let I be a proper ideal. We wish to show that
it is generated by some tn. To this end, we first show that I is a free R-module. Indeed, as R
is a Dedekind domain (Theorem 16.10.1.8), we deduce that any ideal is a line bundle (Theorem
16.11.0.4, 5). As projective modules over local rings are free, it follows that I ∼= R. Consequently,
I = aR and we conclude by 1.

3. We need only check that ν is a valuation and its value ring is R. Indeed the latter is imme-
diate by item 1. The former is immediate by definition.

Example 16.10.1.10. (Z⟨p⟩ and k[x]⟨p(x)⟩) Let p ∈ Z be a prime and p(x) ∈ k[x] be irreducible. Then
both Z⟨p⟩ and k[x]⟨p(x)⟩ are DVRs as they are local rings of PIDs (see Theorem 16.10.1.8). Moreover,
their local parameters are p ∈ Z⟨p⟩ and p(x) ∈ k[x]⟨p(x)⟩.

Example 16.10.1.11 (p-adic integers, Ẑp). Let p be a prime and consider the p-adic integer ring
Ẑp = lim←−n Z/p

nZ. An element x of Ẑp can be written as

x = (x1, . . . , xn, . . . )

such that for all k < l, xk = xl mod pk. This defines Ẑp as a quotient of
∏
n≥1 Z/pnZ. We will

follow the above characterization of elements of Ẑp.
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Then we claim that Ẑp is a DVR. Indeed, we first show that Ẑp is a domain. Let x = (x1, . . . , xn, . . . )
and y = (y1, . . . , yn, . . . ) be two p-adic integers. If none of x or y is zero, we claim that xy =
(x1y1, . . . , xnyn, . . . ) ̸= 0 as well. Indeed, let k = ν(x), that is, the largest k such that xk = 0
mod pk and similarly let l = ν(y). Then, it is easy to see that xk+lyk+l is the largest term of xy
which is non-zero. Thus, xy ̸= 0. This shows that Ẑp is a domain.

We also denote by Q̂p the fraction field of Ẑp, the field of p-adic rationals. We construct a
discrete valuation on Q̂p with value ring being Ẑp. Indeed, consider

νp : Q̂p −→ Z
x

y
7−→ νp(x)− νp(y)

where νp(x) for x ∈ Ẑp is the largest n such that xn = 0 mod pn. It can easily be seen that this
defines a discrete valuation whose value ring is Ẑp, thus showing that Ẑp is a DVR. As ν(p) = 1
where p = (0, p, p, . . . , p, . . . ) ∈ Ẑp, hence the local parameter of Ẑp is p.

16.10.2 Absolute values

We discuss the basics of absolute values and places, which will be used to state Ostrowski’s theo-
rem which classifies the places of Q.
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16.11 Dedekind domains

We will now discuss a class of rings which forms the right context for doing number theory in
more abstract setting. We give here the barebones, rest will be developed as needed elsewhere.

Definition 16.11.0.1 (Dedekind domain). A noetherian normal domain of dimension 1 is defined
to be a Dedekind domain.

The following are some of the many equivalent characterizations of a Dedekind domain.

Theorem 16.11.0.2. Let R be a noetherian domain of dimension 1. Then the following are equivalent:
1. R is normal (equivalently, Dedekind).
2. Every primary ideal q of R is of the form q = pn for some prime ideal p and n ≥ 0.
3. Rp is a DVR for each non-zero prime p.

Theorem 16.11.0.3. Let R be a domain. Then the following are equivalent:
1. R is a Dedekind domain.
2. Every fractional ideal of R is invertible.

The following are some of the striking consequences of Dedekind condition.

Theorem 16.11.0.4. Let R be a Dedekind domain.
1. Any finitely generated torsion-free R-module is projective.
2. Any ideal I ≤ R is a unique product of positive prime powers upto permutation, that is,

I = pn1
1 . . . pnrr , ni ≥ 1.

3. Any invertible ideal I ∈ Cart(R) is a unique product of prime powers upto permutation, that is,

I = pn1
1 . . . pnrr , ni ∈ Z \ {0}

where a negative power of pi has the obvious meaning.
4. Cart(R) is the free abelian group generated by Spec (R) \ {0}:

Cart(R) ∼= Z(Spec (R) \ {0}).
5. Pic(R) is the group of isomorphism classes of ideals of R under multiplication:

Pic(R) ∼= {0 ̸= I ≤ R upto R-linear isomorphism}.
Remark 16.11.0.5 (The Dedekind philosophy). Let R be a Dedekind domain. Then, the ideals
are "generalized numbers of R with multiplication" and they are upto isomorphism given by the
Picard group Pic(R), which are the line bundles upto isomorphism. Hence the analogy

"Generalized numbers of R upto isomorphism" ↭ Line bundles on R upto isomorphism.

Similarly, the invertible ideals of R, that is, Cartier divisors of R16 are "generalized fractions of R
with multiplication" and they are given by the Cartier group Cart(R). Hence the analogy

"Generalized fractions of R" ↭ Cartier divisors on R.

Proof of Theorem 16.11.0.4, 1. Let F = Q(R) and M a finitely generated torsion-free module over
R. We proceed by induction on dimF M ⊗R F . If dimF M ⊗R F = 0, then M ⊗R F = M0 = 0,
thus any non-zero element of M is torsion, which is not possible and thus M = 0, which is free
so projective17. Now suppose all finitely generated torsion-free modules with dimF M ⊗R F ≤ n

16which, we would like to remind, are codimension-1 cycles on R(!)
17Essentially this is where we will be using the torsion-free hypothesis, the rest can be done without it, as can be seen.
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are projective. Let M be torsion-free finitely generated with dimF M ⊗R F = n + 1. Hence,
M ⊗R F ∼= Fn+1 as F -vector spaces. Now observe that as M is torsion-free, therefore the map

M −→M⊗RF ∼=M0

m 7−→ m⊗ 1 7→ m

1

is an injection. Consequently, we may consider M ⊆ Fn+1. Consider any projection map Fn+1 →
F . As any finitely generated submodule ofF is a fractional ideal, therefore I = Im

(
M ↪→ Fn+1 → F

)
is a fractional ideal. As R is Dedekind, so I is invertible (Theorem 16.11.0.3). As we have a sur-
jection M ↠ I and I is projective (see Cart-Pic sequence, Theorem 1.10.4.5), thus, the surjection is
split and we have M ∼= N ⊕ I . As I is rank 1 projective, therefore by additivity of dimension, we
have dimF N ⊗R F = n. As M is torsion-free, so is N . By inductive hypothesis, N is projective,
hence M ∼= N ⊕ I is projective as well.

The following are some basic examples of Dedekind domains.

Example 16.11.0.6 (PIDs are Dedekind). Let R be a PID. Then R is Dedekind as PIDs are noethe-
rian, normal (since UFD) and of dimension 1 as every finite prime chain has length 1.

If R = Z, then by Theorem 16.11.0.4, 4 & 5, we deduce that

Pic(Z) = 0
Cart(Z) ∼= Q×.

Similarly, if R = k[x] for some field k, then,

Pic(k[x]) = 0
Cart(k[x]) ∼= k(x)×.

Example 16.11.0.7 (Local Dedekind domains (i.e. DVRs)). By Theorem 16.10.1.8, local Dedekind
domains are equivalent to DVRs, so DVRs forms another class of important Dedekind domains.
Indeed, by Theorem 16.11.0.2, DVRs are exactly the local rings of Dedekind domains.

Hence for Z, the local rings Z⟨p⟩ for each prime p ∈ Z give local Dedekind domains and so does
k[x]⟨p(x)⟩ for each irreducible polynomial p(x) ∈ k[x].
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16.12 Tor and Ext functors

We discuss two important functors in this section.

16.12.1 Some computations

Do exercises from Bruzzo.
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16.13 Projective and injective modules

In this section we define an important object in the study of algebraic K-theory, projective mod-
ules. These generalize finitely generated free R-modules. This notion is further used in a very
important geometric concept called depth and Cohen-Macaulay condition. In order to reach there,
we would need a concept called projective dimension, which we cover here.

16.13.1 Projective modules

All rings will be associative with 1, but may not be commutative, unless stated otherwise. We
denote Proj(R) to be the category of finitely generated projective left R-modules. Below are some
easy to prove equivalent characterizations of projective modules and some of their properties.

Proposition 16.13.1.1. Let R be a ring and P be a left R-module. Then the following are equivalent:
1. P is finitely generated projective.
2. Any short exact sequence 0→M → N → P → 0 is split exact.
3. There exists a module Q such that P ⊕Q ∼= Rn.
4. There exists a surjection π : Rn ↠ P which splits.
5. The functor HomR (P,−) : Mod(R) → Ab is an exact functor, where Mod(R) is the category of

left R-modules.

Proposition 16.13.1.2. Let P,Q ∈ Proj(R) be two finitely generated projective modules. Then18,
1. P ⊕Q is a finitely generated projective module,
2. Any direct summand of P is a finitely generated projective module.
3. If R is commutative, then P ⊗R Q is a finitely generated projective R-module.
4. If R is commutative, then P is flat.
5. ♣We have that P̌ = HomR (P,R) is a projective Rop-module. If R is commutative, then P̌ is a

projective R-module.
6. ♣If R is commutative, then rank(P̌ ) = rank(P ).
7. ♣If R is commutative, then trace of P , that is τP := Im

Ä
ev : P̌ ⊗R P → R

ä
, is an idempotent ideal

of R.

Proof. † Item 1. and 2. are immediate from Proposition 16.13.1.1. For item 3, observe that if
P ⊕P ′ = R⊕n, then (P ⊗RQ)⊕ (P ′⊗RQ) = (P ⊕P ′)⊗RQ = R⊕n⊗RQ = Q⊕n. AsQ is projective,
therefore Q⊕n is projective by item 1. We conclude by item 2.

For item 4, we need only show that for an injective map f : M ′ → M , the map f ⊗ id :
M ′ ⊗R P → M ⊗R P is also injective. As P is projective, so there exists Q f.g. projective module
such that P ⊕Q = Rn. Consequently, we get the commutative diagram as below:

(M ′ ⊗R P )⊕ (M ′ ⊗R Q) M ′ ⊗R (P ⊕Q) (M ′)⊕n

(M ⊗R P )⊕ (M ⊗R Q) M ⊗R (P ⊕Q) M⊕n

∼=

(f⊗id)⊕(f⊗id)

∼=

f⊗id f⊕n

∼= ∼=

.

The right vertical map is injective by hypothesis. By commutativity of the diagram above, the rest
of the two vertical maps are also injective. Hence, f ⊗ id :M ′⊗R P →M ⊗R P is injective as well,

18We put ♣ wherever finite generation of P and Q are not needed, i.e. if only projectivity of P and Q are needed.
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as required.
Item 5 follows from existence of Q such that P ⊕ Q ∼= Rn and that direct sum in first variable

commutes with hom.
For item 6, first observe that P ⊗R κ(p) ∼= Pp/pPp. Since HomR (P,R)p ∼= HomRp (Pp, Rp) = P̌p

as one of the modules in the hom is finitely presented (see Proposition 16.1.2.13), therefore we need
only show that Pp

∼= HomRp (Pp, Rp). To this end, as localization of projective modules is projec-
tive since localization is exact, we deduce that Pp is projectiveRp-module. Consequently, Pp is free
as Rp is local (see Theorem 16.23.0.9). Hence the required isomorphism Pp

∼= HomRp (Pp, Rp) is
immediate.

For item 7, the fact that τP is an ideal is immediate from definition of ev as ϕ ⊗ x 7→ ϕ(x).
We now show that τ2P = τP . To this end, we need only show that τP ⊆ τ2P . It can be seen that
it is sufficient to show that any element x ∈ P can be written as x =

∑n
i=1 ψi(x)xi for xi ∈ P

and ψi ∈ P̌ . Indeed, as there exists Q such that P ⊕ Q = RF , therefore for any x ∈ P , we may
write x =

∑n
i=1 rixi where ri = fi(x) where {fi}i∈F is the dual basis of (RF )̌. This completes the

proof.

Recall that an R-module M is locally free if for all p ∈ Spec (R), there exists a basic open
p ∈ D(f) ⊆ Spec (R) such that Mf is a free Rf -module19. An important local characterization of
projective modules is the following.

Theorem 16.13.1.3. Let R be a commutative ring and M be an R-module. Then the following are equiva-
lent:

1. M is finitely generated projective.
2. M is locally free of finite rank.

Proof. (1.⇒ 2.) Pick p ∈ Spec (R). Then,Mp is a finitely generatedRp-module which is also projec-
tive as localization is exact. It follows from Theorem 17.1.2.3 that Mp = (Rp)⊕n. Let {mi/si}i=1,...,n
be an Rp-basis of Mp. It follows by multipliying by s1 . . . sn that we have a map f : Rn → M
which may not be surjective, however, fp : Rnp → Mp is surjective. Denoting N = CoKer (f), we
deduce that Np = 0. As N is finitely generated, it follows that there exists s ∈ R such that Ns = 0.
But since Ns = CoKer (fs), where fs : Rns → Ms, thus, we deduce that fs is surjective. Since
Ms is a projective Rs-module, therefore Ms ⊕ P = Rns where P is a finitely generated projective
Rs-module. Localizing at p again, we see that Mp ⊕ Pp = Rnp , but since Mp = Rnp , thus, Pp = 0. It
follows by finite generation that there exists t ∈ R such that t · P = 0 and thus Pt = 0. It follows
that Mst ⊕ Pt = Rnst and thus Mst = Rnst so that f = st will do the job.

(2. ⇒ 1.) The proof is in two steps. In step 1, one shows that a locally free module of finite
rank is finitely presented with free stalks. This follows from faithfully flat descent. In step 2, one
shows that finitely presented modules with free stalks are projective. Indeed, let M be such a
module. Then, we have an exact sequence

Rm → Rn
π→M → 0.

By Proposition 16.13.1.1, it suffices to show that π splits. To this end, it is sufficient to show that
π∗ : HomR (M,Rn) → HomR (M,M) is surjective, as then idM will have a section, as required.

19That is, M̃ is locally free, i.e. a vector bundle over Spec (R).
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Indeed, as surjectivity of maps of modules is a local property (fp :Mp → Np is surjective for all p ∈
Spec (R) if and only if f :M → N is surjective), thus we reduce to showing that (π∗)p is surjective.
As Hom and localization commutes if one of the modules is finitely presented (see Proposition
23.1.2.13 of [FoG]), therefore we wish to show that πp∗ : HomRp

(
Mp, R

n
p

)
→ HomRp (Mp,Mp) is

surjective. This is true as the map πp : Rnp →Mp is surjective by exactness of localization and since
Mp is a projective Rp-module as it is free by our hypothesis. This concludes the proof.

Remark 16.13.1.4. By Theorem 16.13.1.3, it follows that vector bundles over Spec (R) are in one-
to-one bijection with projective modules over R.

Using the above result, we can show that rank of a projective module is a continuous function
from Spec (R) to Z.

Proposition 16.13.1.5. Let R be a commutative ring and M be a projective R-module. Then rank :
Spec (R)→ Z is a continuous map.

Proof. † By discreteness of Z, it suffices to show that each fibre of rank is an open set. Indeed,

rank−1(n) = {p ∈ Spec (R) | dimκ(p)M ⊗R κ(p) = n}
= {p ∈ Spec (R) | dimκ(p)Mp/pMp = n}.

By Theorem 16.13.1.3, M is locally free, hence Mp
∼= Rkp for all p in some largest open set U ⊆

Spec (R). Consequently, dimκ(p)Mp/pMp = dimκ(p)(Rp/pRp)k = dimκ(p) κ(p)k = k for all p ∈ U .
Thus the above fibre is either empty or non-empty open set, as required.

A simple example shows that Proj(R) cannot be abelian.

Example 16.13.1.6. Let Z be free Z-module of rank 1. Observe that 2Z ⊆ Z is also a free module
of rank 1. Hence both Z and 2Z are projective Z-modules. However, Z/2Z is not a projective
Z-module as it cannot be a direct summand of Z⊕n for any n ∈ N since Z⊕n doesn’t have any
2-torsion element. Consequently, Proj(R) is not abelian.

One observes that rank of a constant rank projective module remains same under extension of
scalars.

Proposition 16.13.1.7. Let f : R → S be a ring homomorphism between commutative rings. If P is a
finitely generated projective R-module, then

rank(P ⊗R S) = rank(P ) ◦ f∗.

Hence, if P is constant rank n, then so is P ⊗R S.

Proof. Let q ∈ Spec (S) and f∗(q) = f−1(q) = p ∈ Spec (R). We need only show that if P ⊗R κ(p) ∼=
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κ(p)n, then (P ⊗R S)⊗S κ(q) ∼= κ(q)n. Indeed, as

(P ⊗R S)⊗S κ(q) ∼= P ⊗R κ(q)
∼= P ⊗R Sq ⊗S S/q
∼= P ⊗R Rp ⊗Rp Sq ⊗S S/q
∼= Pp ⊗Rp Sq ⊗S S/q
∼= Rnp ⊗Rp Sq ⊗S S/q
∼= Snq ⊗S S/q
∼= (Sq ⊗S S/q)n
∼= κ(q)n,

as required.

It is quite intuitive to claim that finite rank projective modules ought to be finitely generated.
Indeed it is true.

Proposition 16.13.1.8. Let R be a commutative ring and M be a finite rank projective module. Then M is
finitely generated.

Proof. † A result of Kaplansky states that a module over commutative ring R is projective if and
only if it is locally free (we have done the finite case above in Theorem 16.13.1.3). Since by Theorem
16.13.1.3, it is sufficient to show that M is locally free of finite rank, where by above we already
know it is locally free, we need only show that M is also finitely locally free. Let f ∈ R be such
thatMf

∼= RFf . We wish to show that |F | <∞. AsM is finite rank, therefore for each p ∈ Spec (R),
dimκ(p)M ⊗R κ(p) < ∞. If f /∈ p, then since Mp = (Mf )p ∼= (RFf )p ∼= RFp , we deduce that
M ⊗R κ(p) ∼=Mp/pMp

∼= (Rp/pRp)F = κ(p)F . Thus |F | <∞, as required.

An important conceptual result which will guide us in defining higher K-groups is the cofi-
nality of free modules in projective modules.

Lemma 16.13.1.9. Let R be a ring and let Free(R)∼= be the isomorphism classes of finitely generated free
R-modules. This is a monoid under direct sum with identity 0. Then Free(R)∼= is cofinal in Proj(R)∼=.

There is also a characterization of finitely generated projective modules in terms of flatness.

Proposition 16.13.1.10. Let R be a commutative ring and M be an R-module. Then the following are
equivalent:

1. M is a finitely presented flat R-module.
2. M is a finitely generated projective R-module.

Proof. (1. ⇒ 2.) As M is finitely generated, thus to show that it is flat, it suffices to show that Mp

is a free Rp-module for each p ∈ Spec (R). As localization is exact, we reduce to assuming that R
is a local ring and M is a finitely presented flat R-module. By Corollary 6.6 of cite[Eisenbud], it
follows that M is projective R-module. As projective modules over local rings are free (Theorem
16.23.0.9), thus M is free, as required.

(2. ⇒ 1.) As M is finitely generated projective, then it is finitely presented as if M ⊕ N ∼= Rn

where N is thus also finitely generated projective, then we get a presentation N → Rn →M → 0,
as required. Clearly, M is flat by Proposition 16.13.1.2, 4.
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16.13.2 Divisible modules and Baer’s criterion

Baer’s criterion gives a characterization of injectiveR-modules. It consequently helps to show that
divisible modules are injective in Mod(R) and thus that Mod(R) has enough injectives.

Definition 16.13.2.1 (Divisible modules). An R-module M is said to be divisible if for every
r ∈ R, the multiplication by r map µr :M →M is surjective.

Theorem 16.13.2.2. (Baer’s criterion) Let R be a ring and M be an R-module. The following are equiva-
lent:

1. M is an injective R-module.
2. For any ideal a ≤ R and any map f : a → M , there exists an extension g : R → M such that the

following commutes:
0 a R

M

f
g

.

That is, one needs to check injectivity condition along inclusions of submodules of R.

Proof. 1. ⇒ 2. is immediate from definition. For 2. ⇒ 1. we proceed as follows. Pick i : A → B
an injection of submodule A ≤ B and a map f : A → M . We wish to extend this to g : B → M .
Indeed, consider the poset P of tuples (A′, f ′), f ′ : A′ → M an extension of f with (A′, f ′) ≤
(A′′, f ′′) such that A′ ⊆ A′′ and f ′′ extends f ′. By Zorn’s lemma, we have a maximal extension f̄ :
Ā→M . We reduce to showing that Ā = B. If not, then there is b ∈ B\Ā. Consider Ã = Rb+Ā. We
claim that there is a map f̃ : Ã→M extending f . Indeed, consider the ideal a = {r ∈ R | rb ∈ Ā}.
The map f̄ defines a map a → M given by r 7→ f̄(rm). By hypothesis, this has an extension, say
κ : R → M . Thus, we may define g : Ã → M as rb + ā 7→ κ(r) + f̄(ā). This extends f as if
rb + ā ∈ A, then rb ∈ Ā. Consequently, κ(r) + f̄(ā) = f̄(rb) + f̄(ā) = f̄(rb + ā) = f(rb + ā), as
needed.

As a corollary, we see that injective R-modules are divisible.

Corollary 16.13.2.3. Let R be a ring and M be an R-module. If M is injective, then M is divisible.

Proof. Pick any m ∈ M and r ∈ R. Then, we have an R-linear map µr : ⟨r⟩ → M given by
r 7→ m. By Theorem 16.13.2.2, 2, this extends to an R-linear homomorphism g : R → M where
µr(r) = g(r) = rg(1) = m, Thus g(1) ∈M is such that rg(1) = m, as needed.
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16.14 Multiplicities

We study Hilbert polynomial and multiplicity of a graded module at a prime. This is useful to do
intersection theory in projective spaces. In the general setting, we will assign a Hilbert polynomial
to each projective variety, which yields invariants of the variety in question.

16.14.1 Length

We begin by studying length of modules.

Definition 16.14.1.1 (Length of a module). Let R be a ring and M be an R-module. Then the
length of M is given by the length of the longest ascending chain of submodules of M :

lenR(M) := sup{r ∈ N |M0 ⊊M1 ⊊M2 ⊊ · · · ⊊Mr is a chain of submodules of M}.

A finite chain M0 ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mr is called a maximal length chain if it cannot be
extended, that is, each factor Mi/Mi−1 is a simple module. A maximal length chain is also called a
composition series. Consequently, length of a module M is defined to be the length of the longest
composition series.

An important result about length of modules is the fact that over a local ring R, any two
composition series have the same length and composition factors.

Theorem 16.14.1.2 (Jordan-Hölder). Let R be a local ring and M be an R-module which contains a
composition series. Then any other composition series has the same length and composition factors. That is,
length of M is equal to length of any composition series.

The following are essential properties of length which one uses while dealing with maps.

Lemma 16.14.1.3. Let f : R → S be a map of rings and M be an S-module. Then lenR(M) ≥ lenS(M)
and equality holds if f is surjective.

Proof. Follows from correspondence of submodules via a quotient map.

We wish to characterize finite length modules over a noetherian ring. We begin with a lemma.

Lemma 16.14.1.4. Any finite length R-module is finitely generated.

Proof. If M is not finitely generated, then let {fα}α∈I be a generating set of M and let {fn}n be a
subsequence. Then, the chain

0 ⊊ ⟨f1⟩ ⊊ ⟨f1, f2⟩ ⊊ . . .

is a chain of submodules of M which doesn’t stabilizes, a contradiction to finite length.

Using results on artinian rings (§16.3.1), we see an important characterization of artinian rings
and finite length rings.

Theorem 16.14.1.5. Let R be a ring. The following are equivalent:
1. R is artinian.
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2. R has finite length.

Proof. (1. ⇒ 2.) By Theorem 16.3.1.3, 3, we reduce to assuming R is local artinian, (R,m). By
Proposition 16.3.1.2, 3, Jacobson radical of R is nilpotent, which is just m. We construct a chain of
ideals of R, where each subquotient has finite length. Indeed, consider the chain

0 = mn ⊊ mn−1 ⊊ · · · ⊊ m2 ⊊ m ⊊ R.

Note that mi−1/mi is an κ = R/m-module. If any one of mi/mi−1 is infinite dimensional as an
κ-vector space, then the above chain of ideals can be refined to an infinite chain of strictly decreas-
ing ideals, a contradiction to artinian condition. Hence each subquotient is a finite dimensional
κ-module and hence its length as an R-module is equal to its dimension as a κ-module (Lemma
16.14.1.3).

(2. ⇒ 1.) Take any descending chain of ideals I0 ⊋ I1 ⊋ I2 ⊋ . . . . If it doesn’t stabilize, then
we have an infinite length chain, so that len(R) is not finite, a contradiction.

The following is an essential result which we’ll use later.

Proposition 16.14.1.6. Let R be a noetherian ring and M be a finitely generated R-module. If p ∈
Supp (M) is a minimal prime of M , then Mp is a finite length Rp-module.

Proof. As Supp (M) = V (Ann(M)), therefore a minimal prime p ∈ Supp (M) is an isolated/minimal
prime of Ann(M). As Mp is an Rp-module, therefore it suffices to construct a composition series
of Mp. Let M be generated by f1, . . . , fn ∈ M , so that Mp is also generated by their respective
images. We thus get the following chain:

0 ⊆ ⟨f1⟩ ⊆ ⟨f1, f2⟩ ⊆ · · · ⊆ ⟨f1, . . . , fn⟩ =Mp.

It suffices to show that ⟨f1,...,fi⟩
⟨f1,...,fi−1⟩ is a finite length Rp-module. Indeed, we have a surjection

⟨fi⟩↠
⟨f1, . . . , fi⟩
⟨f1, . . . , fi−1⟩

,

hence it suffices to show that ⟨fi⟩ is a finite length Rp-module. To this end, pick any x ∈ M . We’ll
show that xRp is a finite length Rp-module. Observe that ⟨x⟩ = xRp is isomorphic to Rp/I where
I is the annihilator of x in Rp. We may write I = aRp where a ≤ R is contained in p. Hence,
we wish to show that S = Rp/aRp is a finite length Rp-module, that is S is a finite length ring.
Indeed, as S = (R/a)p and p is a minimal prime in Supp (M), that is, minimal prime containing
Ann(M), and since Ann(M) ⊆ a ⊆ p, therefore p is a minimal prime of a as well. It follows that
S = (R/a)p is a dimension 0 ring. Since R is noetherian and noetherian property is inherited by
quotients and localizations, therefore S is a noetherian ring of dimension 0, hence artinian. From
Theorem 16.14.1.5, it follows that S is of finite length, as required.

Proposition 16.14.1.7. Let R be a noetherian ring and M be an R-module. Then the following are equiv-
alent:

1. M has finite length.
2. M is finitely generated and dimR/Ann(M) = 0, i.e. R/Ann(M) is an artinian ring.
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Proof. (1. ⇒ 2.) By Lemma 16.14.1.4, M is finitely generated. Let 0 = M0 ⊊ M1 ⊊ M2 ⊊
· · · ⊊ Mr = M be a composition series of M , which exists as len(M) < ∞. We thus get that
Mi/Mi−1 ∼= R/mi for some maximal ideals mi by Lemma 16.1.1.1. Note that dimR/Ann(M) = 0
if and only if Supp (M) consists only of maximal ideals. So let p ∈ Supp (M). Thus Mp ̸= 0. It
follows that for some i, (Mi/Mi−1) ̸= 0. As (Mi/Mi−1) = (R/mi)p, therefore this can only happen
if mi ⊆ p, i.e. mi = p, as required. This also shows that Supp (M) = {m1, . . . ,mr}.

(2. ⇒ 1.) We need only construct a composition series of M . We have Supp (M) consists only
of maximal ideals. Consider Supp (M) ⊆ Spec (R). As M is finitely generated, say by f1, . . . , fn.
Then we get a chain of submodules

0 ⊊ ⟨f1⟩ ⊊ ⟨f1, f2⟩ ⊊ · · · ⊊ ⟨f1, . . . , fn⟩ =M.

We need only show that each subquotient is a finite length R-module. Indeed, as we have a
surjection

⟨fi⟩↠
⟨f1, . . . , fi⟩
⟨f1, . . . , fi−1⟩

,

so it suffices to show that ⟨fi⟩ is a finite length R-module. To this end, it suffices to show that for
each x ∈M , the submodule Rx is of finite length. Indeed, we have Rx ∼= R/I where I = Ann(x).
As I ⊇ Ann(M), therefore

R/I ∼=
R/Ann(M)
I/Ann(M) .

As R/Ann(M) is an artinian ring and any quotient of artinian ring is an artinian ring, it follows at
once that R/I is an artinian ring. By Theorem 16.14.1.5, R/I ∼= Rx is of finite length, as required.

16.14.2 Degree of a graded module

We begin by studying multplicity at a prime.

Definition 16.14.2.1 (Multiplicity at a prime). Let R be a ring and M be an R-module. The mul-
tiplicity of M at prime p ∈ Spec (R) is given by

µp(M) := lenRp Mp.

Definition 16.14.2.2 (Hilbert function). Let R be a ring and M be a graded k[x0, . . . , xn]-module.
The Hilbert function of M is defined to be the following

ϕM : Z −→ Z
d 7−→ dimkMd.

The main theorem on Hilbert functions is that it is actually a numerical polynomial (a rational
polynomial which on large integers give integers), and that this polynomial is unique.
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Theorem 16.14.2.3 (Hilbert-Serre). Let S = k[x0, . . . , xn] and M be a finitely generated graded S-
module. Then, there exists a polynomial PM (x) ∈ Q[x] such that it is unique with respecto the following
properties:

1. there exists D ∈ N such that for all d ≥ D, we have

ϕM (d) = PM (d),

that is, PM is a numerical polynomial,
2. the degree of PM (x) is equal to dimV (AnnR(M))20.

The PM (x) is called the Hilbert polynomial of M .

Proof. See Theorem 7.5 of cite[Hartshorne].

We will now define the degree of a graded S = k[x0, . . . , xn]-module. This will allow us to do
define the notion of degree of projective schemes over k.

Definition 16.14.2.4 (Degree of a graded S-module). Let S = k[x0, . . . , xn] and M be a graded
S-module. Then, we define

degSM := deg(PM )! · c↑(PM )

where c↑(PM ) denotes the leading coefficient of the Hilbert polynomial PM .

Remark 16.14.2.5. Let r = deg(PM ). We may alternatively view the degree of M as

degSM = P
(r)
M (x),

that is, the rth-derivative of PM .

20It is a simple exercise to see that the annihilator ideal of a graded S-module is homogeneous.
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16.15 Kähler differentials

We study analogues of tangent and cotangent bundles of topology in commutative algebra.

Definition 16.15.0.1 (Derivations & Kähler differentials). Let S be an R-algebra and M be an
S-module. An R-linear derivation d : S → M is a group homomorphism such that it satisfies
Leibnitz’s rule:

d(fg) = fd(g) + gd(f).

The set of all R-linear derivations S →M forms an S-module denoted DerR(S,M). We define the
S-module of Kähler differentials of S/R as the follows. Define X = {d(f) | f ∈ S} be a set of free
symbols one for each f ∈ S. Then define Käh(S) to be the S-submodule of S⊕X generated by

d(fg)− fd(g)− gd(f), d(af + bg)− ad(f)− bd(g)

for all a, b ∈ R and f, g ∈ S. We then define ΩS/R to be the following quotient:

0→ Käh(S)→ S⊕X → ΩS/R → 0.

Observe that d(a) = 0 in ΩS/R for all a ∈ R, thus if R ↠ S is surjective, then ΩS/R = 0. The
canonical map

d : S −→ ΩS/R
f 7−→ d(f)

is an R-linear derivation of S in ΩS/R called the universal R-linear derivation.

We immediately have the following helpful characterization.

Proposition 16.15.0.2 (Universal property of ΩS/R). Let S be an R-algebra. The for any S-module M
and any R-linear derivation e : S → M , there exists a unique S-linear homomorphism d̃ : ΩS/R → M
such that the following commutes:

ΩS/R M

S

ẽ

d e
.

Proof. Consider the S-linear map

e⊕X : S⊕X −→M
n∑
i=1

fidgi 7−→
n∑
i=1

fiegi.

It follows at once that Ker
(
e⊕X

)
⊇ Käh(S). By universal property of cokernels, we thus obtain a

unique S-linear map

ẽ : ΩS/R −→M

such that the required triangle commutes.
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Corollary 16.15.0.3. Let S be anR-algebra andM be an S-module. Then there is an S-linear isomorphism

DerR(S,M) ∼= HomS

(
ΩS/R,M

)
.

Proof. The S-linear isomorphism is given by e 7→ ẽ, which is injective by universal property and
surjective by composition with universal R-linear derivation d.

Remark 16.15.0.4. Just as tensor product is the representing object of bilinear maps from M ×N ,
similarly ΩS/R is the representing object of R-linear derivations from S.

Example 16.15.0.5. Let R be a ring and S = R[x1, . . . , xn]. Then we claim that ΩS/R is free S-
module of rank n given by

ΩS/R = Sdx1 ⊕ · · · ⊕ Sdxn.

Indeed, as ΩS/R is a finitely generated S-module by dx1, . . . , dxn via Leibnitz’s rule, therefore we
have an S-linear surjection

S⊕n −→ ΩS/R

(p1, . . . , pn) 7−→
n∑
i=1

pidxi.

This has an inverse given by the unique maps ∂i : ΩS/R → S induced by the R-linear derivations
∂i : S → S mapping p 7→ ∂

∂xi
p. This completes the proof.

Remark 16.15.0.6 (Relative cotangent functor). The assignment of Kähler differentials is functorial.
Indeed, by universal properties, we have

S S′ ΩS/R ΩS′/R′

R R′ S S′

ϕ ϕ̃

d

ϕ

d
.

Moreover, the S-linear map

ϕ̃ : ΩS/R → ΩS′/R′

is equivalent to the S′-linear map

S′ ⊗S ΩS/R −→ ΩS′/R′

f ′ ⊗ fdg 7−→ f ′ϕ(f)dϕ(g).

We have two fundamental exact sequences aiding computations.

Proposition 16.15.0.7 (Cotangent sequence/First sequence). Let R be a ring and R → S → T be
ring homomorphisms. Then the following is an exact sequence of T -modules where the maps are the obvious
ones:

T ⊗S ΩS/R −→ ΩT/R −→ ΩT/S −→ 0.
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Proof. Kernel on the right is exactly the T -submodule generated by ds for s ∈ S. This is exactly
the image of the left as well.

Proposition 16.15.0.8 (Conormal sequence/Second sequence). Let S be an R-algebra and I ≤ S be
an ideal. Denote T = S/I to be the quotient S-algebra. Then the following is an exact sequence

I/I2
d−→ T ⊗S ΩS/R −→ ΩT/R −→ 0.

The map d : x+ I2 7→ 1⊗ dx and the other is the natural map corresponding to π : S → S/I .

It is wise to discuss the following result immediately, so that one can see how the geometric
discussion of differentials might be carried.

Theorem 16.15.0.9 (Diagonal criterion). Let S be an R-algebra and ϕ : S ⊗R S → S be the structure
morphism. Let I = Ker (ϕ) which is an S-module as it is a submodule of S-module S ⊗R S. Then, for the
R-linear derivation e : S → I/I2 mapping s 7→ 1⊗ s− s⊗ 1, the pair (I/I2, e : S → I/I2) is isomorphic
to (ΩS/R, d : S → ΩS/R):

(I/I2, e) ∼= (ΩS/R, d).

Proof. We need only prove that both the pairs satisfy the same universal property as stated in
Proposition 16.15.0.2. TODO

Kähler differentials behaves nicely with tensor products and localizations. The main idea be-
hind both proofs is to use functoriality of Kähler differentials and the resulting maps and then
form their inverses (see Remark 16.15.0.6).

Proposition 16.15.0.10 (Base change). LetR be a ring andR′ and S beR-algebras. Consider the pushout
square

S S ⊗R R′

R R′

⌜

.

Then,

ΩS⊗RR′/R′ ∼= ΩS/R ⊗S (S ⊗R R′).

Proposition 16.15.0.11 (Localization). Let S be an R-algebra and M ⊆ S be a multiplicative set. Con-
sider the following commutative square

S M−1S

R R
id

.

Then

ΩM−1S/R
∼=M−1ΩS/R.
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16.16 Depth, Cohen-Macaulay & regularity

We now study some homological properties of commutative rings with 1.

16.16.1 Regular rings, projective & global dimension

Definition 16.16.1.1 (Regular ring, projective and global dimension). A noetherian ringR is said
to be regular if every R-module M has a finite length projective resolution. That is, if for every
R-module M , there exists an exact sequence

0→ Pn → Pn−1 → · · · → P0 →M → 0

such that Pi are projective R-modules where n is the length of the projective resolution. The
projective dimension of an R-module M is defined as

pd(M) := inf{length of projective resolution of M}.

Further we define global dimension of R as

gl dim(R) := sup{pd(M) |M ∈Mod(R)}.

By far the most important class for us is the regular local rings. We first establish the following
to resolve the tension made in Definition 16.1.2.16, amongst other goals.

Theorem 16.16.1.2. Let (R,m) be a local ring with k = R/m. Then the following are equivalent:
1. R is a regular local ring21.
2. dimk m/m

2 = dimR.
3. If m has minimal generating set as {a1, . . . , an}, then dimA = n.
4. gl dim(A) = dimA <∞.

Some more properties of regular local rings are as follows.

Proposition 16.16.1.3. Let (R,m) be a regular local ring.
1. R is a noetherian normal domain, in particular, a Krull domain (see Definition 1.10.2.1).
2. If x ∈ m \m2, then xR is a prime ideal.

Localization of a regular ring at a prime is a regular local ring.

Lemma 16.16.1.4. Let A be a regular ring. For any p ∈ Spec (A), the local ring Ap is regular.

Proof. Take any Ap-module M . We wish to show that M has a finite length projective resolution
by Ap-modules. To this end, consider the localization map A → Ap. By restriction, we have an
A-module MA. By Lemma 16.1.2.19, we have MA ⊗A Ap

∼= M . Consequently, as MA has a finite
length resolution by projective A-modules, localizing at p, we get a finite length resolution of M
by projective Ap-modules, as localization of projective modules is projective.

Our first goal is to show that regular local rings are UFD. This will help us in showing that on
a locally factorial domain (more generally locally factorial noetherian integral separated scheme),
Weil and Cartier divisor groups agree. We will do this using the theory of Weil and Cartier divisors
themselves.

21in the sense of Definition 16.16.1.1.
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Theorem 16.16.1.5. Let R be a regular local ring. Then R is a UFD.

First observe the following important reduction.

Proposition 16.16.1.6. Let R be a noetherian domain. Then the following are equivalent:
1. R is a UFD.
2. All height 1 primes of R are principal.

Proof. (1. ⇒ 2.) Let p be a non-zero prime ideal. Pick any non-zero a ∈ p. As R is a UFD, we may
write a = pn1

1 . . . pnkk where pi ∈ R are primes. Assume k ≥ 2. As p is a prime and a ∈ p, it follows
that there exists pi ∈ p. Thus, piR ⊊ p, which is a contradiction to height 1 of p. It follows that
k = 1, and thus p = piR, as required.

(2. ⇒ 1.) Observe that a noetherian domain is in particular a factorization domain. Consequently,
we need only show that any irreducible element is prime. Let f ∈ R be irreducible. We wish
to show that fR is a prime ideal. By Krull’s Hauptidealsatz (Theorem 16.8.3.2), if p is a minimal
prime containing fR, then since R is a domain, we deduce that p is of height 1. By our hypothesis,
p = pR is principal where p ∈ R is a prime element. As fR ⊆ pR, we deduce that p|f , i.e. f = pr
for some r ∈ R. But f is irreducible, therefore either p or r is a unit. As p is prime, so r is a unit
and thus fR = pR is a prime ideal, as required.

Proof of Theorem 16.16.1.5. By Proposition 16.16.1.6, we need only show that height 1 primes of R
(prime divisors of R) are principal. We do this by induction on dim(R). If dim(R) = 1, then
by Theorem 16.10.1.8, we deduce that R is a DVR and thus is PID, so a UFD. Now assume that
dim(R) = n and any regular local ring of dimension < n is UFD. Let f ∈ m \ m2. By relative Weil
divisors (Proposition 1.10.2.22), as fR is principal (Proposition 16.16.1.3, 2), we get that Cl(R) ∼=
Cl(Rf ). By R UFD iff Cl(R) = 0, we reduce to showing that S = Rf is a UFD. By Proposition
16.16.1.6, it suffices to show that all height 1 primes of S are principal, which is same as showing
that all height 1 primes are free of rank 1.

Let p be a height 1 prime of S. As R is regular, p is obtained by localizing a prime of R at
f and localization being exact, we deduce that we have a free resolution of p (finitely generated
projective modules over local ring R) as

0→ Skn → · · · → Sk0 → p→ 0.

For any prime q ∈ S, pq is a prime ideal of Sq of height 1 where Sq is a regular local ring of dim
< n, so that by inductive hypothesis, it is UFD and thus by Proposition 16.16.1.6, it follows that pq
is principal and thus free. Hence pq is free at each prime of S, hence p is projective module of rank
1 i.e. a line bundle.

By above resolution, we deduce that p is a stably free line bundle over S. As stably free line
bundles are free22, we get that p is free, as required.

22if M is a line bundle such that M ⊕Rn = Rn+1, then taking ∧n+1 both sides, we deduce that ∧n+1(M ⊕Rn) ∼= R.
Now ∧n+1(M ⊕ Rn) ∼=

⊕n+1
i=0 ∧iM ⊕ ∧n+1−iRn =

⊕n+1
i=1 ∧iM ⊕ ∧n+1−iRn =

⊕n+1
i=1 (∧

iM)
nCn+1−i . Localizing at p,

we deduce that Rp
∼=

⊕n+1
i=1 (∧

iRp)
nCn+1−i , from which we deduce that

⊕n+1
i=2 (∧

iM)
nCn+1−i is zero at each prime p

and is thus 0 module. It follows that R ∼= ∧1M ∼= M , as required.
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16.16.2 Depth

We begin with the notion of depth of an R-module.

Definition 16.16.2.1 (I-depth). Let R be a ring, I ≤ R be an ideal and M a finitely generated
R-module such that IM ⊊M . Define the I-depth of M as

depthI(M) := min{i ≥ 0 | ExtiR(R/I,M) ̸= 0}.

For a local ring (R,m, κ) and a finitely generated R-module M , we define

depth(M) := depthm(M) = min{i ≥ 0 | ExtiR(κ,M) ̸= 0},

that is, depth of M is just the m-depth of M as an R-module23.

The main theorem about depth is the famous Auslander-Buchsbaum theorem.

Theorem 16.16.2.2 (Auslander-Buchsbaum). Let R be a noetherian local ring. For a non-zero finitely
generated R-module M with pdR(M) <∞, we have

pdR(M) + depth(M) = depth(R).

23One might as well call the depth of a local ring as its Ext-dimension.
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16.17 Filtrations

Do from Chapter 5 of Eisenbud

16.18 Flatness

This is one of the important parts of commutative algebra, as this notion corresponds to the idea
of a continuous family of schemes, in some sense, as is discussed in the respective part above.

Definition 16.18.0.1. (Flat modules and flat map of rings) Let R be a ring. An R-module M is
said to be flat if for any short exact sequence of R-modules

0 N1 N2 N3 0

the following sequence is exact

0 M ⊗R N1 M ⊗R N2 M ⊗R N3 0 .

A map ϕ : A → B is a flat map if B is a flat A-module. In this case one also calls B to be a flat
A-algebra.

Remark 16.18.0.2. 1. By right exactness of tensor products, it is sufficient to check that the s.e.s.
0→ N1 → N2 is taken to s.e.s 0→M ⊗R N1 →M ⊗R N2.

2. Since localisation is an exact functor (Lemma 16.1.2.2), thus the natural map A → S−1A is a
flat map for any multiplicative set S ⊆ A.

Recall that TorRi (M,−) is the ith-left derived functor of N 7→ M ⊗R N . A module M is said to
be flat if the tensor functor N 7→M ⊗R N is exact. Here are equivalent notions of flatness:

Theorem 16.18.0.3. Let R be a ring and M be an R-module. Then the following are equivalent:
1. M is a flat R-module.
2. TorRi (M,N) = 0 for all i ≥ 1 and R-modules N .
3. TorR1 (M,N) = 0 for all R-modules N .
4. TorR1 (M,N) = 0 for all finitely generated R-modules N .
5. TorR1 (M,R/I) = 0 for every ideal I ≤ R.
6. I ⊗RM →M is injective for every ideal I ≤ R.
7. I ⊗RM → IM is an isomorphism for every ideal I ≤ R.
8. Mp is a flat Rp-module for every p ∈ Spec (R).

Proof. (1. ⇔ 2.) Pick any projective resolution of N as P•
ϵ→ N → 0 and consider the complex

M ⊗ P•. As TorRi (M,N) = Ker (di ⊗ id)/Im (di+1 ⊗ id), therefore to show (1 ⇒ 2), it suffices to
show that Im (di+1 ⊗ id) = Ker (di ⊗ id). By applying−⊗M on 0→ Im (di+1) = Ker (di)

ιi+1→ Pi
di→

Im (di)→ 0, we get that Ker (di ⊗ id) = Im (ιi ⊗ id), so that we reduce to showing Im (ιi+1 ⊗ id) =
Im (di+1 ⊗ id). This is provided by tensoring the following diagram with M and using flatness of
M :

0 Im (di+1) Pi

Pi+1

ιi+1

di+1
di+1 .
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The converse is immediate by the long exact sequence of a derived functor associated to a short
exact sequence. Note that (2. ⇒ 3.) is easy.

(3. ⇔ 1.) If TorR1 (M,N) = 0 for any N , then M is flat as for any short exact sequence 0 →
N1 → N2 → N3 → 0, the corresponding l.e.s. of Tor gives exactness of 0→M ⊗N1 →M ⊗N2 →
M ⊗N3 → 0.

(4. ⇔ 3.) If N is any R-module, then we have a

Some more properties of flat modules are as follows.

Theorem 16.18.0.4. Let R be a ring and M be an R-module.
1. If M is projective, then M is flat.
2. If R is local and M is flat, then M is free.
3. If M is finitely generated, then M is projective if and only if M is flat.
4. If M,N are flat R-modules, then so is M ⊗R N .
5. If M = ⊕iMi, then M is flat if and only if Mi are flat.
6. If S ⊆ R is a multiplicative set, then S−1A is flat.
7. If 0→M ′ →M →M ′′ → 0 is exact and M ′′ is flat, then M is flat if and only if M ′ is flat.
8. (Extension of scalars) If f : R → S is a ring homomorphism and M is flat, then M ⊗R S is a flat
S-module.

9. (Restriction of scalars for flat maps) If f : R → S is a flat ring homomorphism and N is a flat
S-module, then N is a flat R-module.

10. Rings R[x1, . . . , xn] is a flat R-module.
11. If R is a PID, then M is flat if and only if M is torsion free.

Proof. 3. Follows from associativity of tensor products at once.

4. (⇒) Take any s.e.s. 0 → P → Q → P ′ → 0. Tensoring with M gives 0 → ⊕iP ⊗ Mi →
⊕iQ ⊗Mi → ⊕iP ′ ⊗Mi → 0. It is clear that 0 → P ⊗Mi → Q ⊗Mi → P ′ ⊗Mi → 0 is exact as
Ker (⊕iP ⊗Mi → ⊕iQ⊗Mi) = ⊕iKer (P ⊗Mi → Q⊗Mi). The other side (⇐) is easy.

5.

6.

7. Let 0 → P → Q be injective map of R-modules. By flatness of S as an R-module, we have
0 → P ⊗R S → Q ⊗R S is an exact sequence of S-modules. By flatness of N as an S-module, we
have 0 → (P ⊗R S) ⊗S N → (Q ⊗R S)SN is exact. By associativity and S ⊗S N ∼= N , the result
follows.

8. Note that R[x1, . . . , xn] is isomorphic as R-module to
⊕

i∈NR. The proof then follows from
item 4.
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16.19 Lifting properties : Étale maps
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16.20 Lifting properties : Unramified maps
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16.21 Lifting properties : Smooth maps
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16.22 Simple, semisimple and separable algebras

These algebras are at the heart of the Galois phenomenology, i.e. all things related to polynomials
splitting in a bigger field or not. Our study of these objects will thus motivate the study of the
corresponding geometrical picture.Find and write more

about these algebras,
Chapter 16. 16.22.1 Semisimple algebras

Definition 16.22.1.1. (Semisimple algebras over a field k) Let A be a k-algebra. Then A is a
semisimple k-algebra if the Jacobson radical of A is 0.

16.22.2 Separable algebras

We will first study a rather special type of separable algebras, which are finitely generated and
free as modules. Let us first give an example of such an algebra which is motivating our definition
given later.

Example 16.22.2.1. Consider a ring A and the A-algebra An. There is something special about An;
it is “separated” into finitely pieces which looks like A. This can be formalized. Indeed, we have
the most obvious fact about such algebras that the obvious map

ϕ : An −→ HomA (An, A)
(a1, . . . , an) 7−→ ei 7→ ai

is an isomorphism of A-algebras. More specifically, the map ϕ takes (ai) = (a1, . . . , an) to the
following mapping

ϕ((ai)) : An −→ A

(b1, . . . , bn) 7−→ a1b1 + · · ·+ anbn.

We now wish to generalize this. That is to say, taking above phenomenon as a definition we want
to generalize when an A-algebra B “separates” into simple pieces. For this to work, we need to
find an alternate characterization of the above phenomenon. For this, a little bit of thought shows
that the above map is obtained as the dual map of the φ ∈ HomA (An,HomA (An, A)) under the
⊗-Hom adjunction

HomA (An ×An, A) ∼= HomA (An,HomA (An, A))

where the isomorphism is given by

(An ×An f→ A) 7−→ ((ai) 7→ ((bi) 7→ f((ai), (bi)))) .

Now, consider the map

φ̃ : An ×An −→ A

((ai), (bi)) 7−→
n∑
i=1

aibi.
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The tensor-hom isomorphism tells us that φ̃ is the dual map of φ above. Now notice that this dual
map φ̃ has a very simple description; it is given by the following commutative diagram:

An ×An A

HomA (An, An)

φ̃

Tr
.

It is this dual map that we shall generalize to the setting of arbitrary A-algebra B which is finitely
generated and free of rank n. Indeed, for any A-algebra B and chose any generating set of B as
an A-module, so that for any element b ∈ B, we can write b = (b1, . . . , bn) ∈ An. We thus get a
natural map φ̃ as in the diagram below

(b, c) B ×B A

(bicj)1≤i,j≤n HomA (B,B)

φ̃

κ
Tr

.

Now, consider the tensor-hom dual of φ̃ to obtain

φ : B −→ HomA (B,A)
b 7−→

(
c 7→ φ̃(b, c)

)
.

In order to mimic the case of An, we would require the map φ to be an isomorphism. Indeed, this
is what we do in the definition given below.

Before defining a nice class of separable algebras, let us define an A-algebra B to be finitely free
if B is finitely generated and free as an A-module.

Definition 16.22.2.2. (Free separable algebras) Let A be a ring and B be a finitely free A-algebra
of rank n and chose a generating set of B, so for b ∈ B, we can write b = (b1, . . . , bn) for bi ∈ A.
Define ϕ̃ to be the following map

(b, c) B ×B A

(bicj)1≤i,j≤n HomA (B,B)

ϕ̃

κ
Tr

.

Then B is said to be a separable A-algebra if the tensor-hom dual map ϕ : B → HomA (B,A) is an
isomorphism of A-algebras.

We would now like to show how separable algebras become familiar in the case of algebras
over a field.

Proposition 16.22.2.3. Let k be a field and A be an k-algebra. Then, the following are equivalent
1. A is a free separable k-algebra.
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2. A =
∏n
i=1Ki where Ki are finite separable extensions of field k.

Proof. Important exercise,
Chapter 16.

Another characterization of separable algebras is as follows.

Lemma 16.22.2.4. Let A be a ring and B be a finitely free A-algebra. Then the following are equivalent.
1. B is a separable A-algebra.
2. For all {w1, . . . , wn} in B which is a generating set of free A-module B, we have

det (Tr(wiwj)1≤i,j≤n) ∈ A×.

Proof.Important exercise,
Chapter 16.

16.23 Miscellaneous

We collect in this section results which so far doesn’t fit in any other prior section. Perhaps this
means our arrangement of material is not optimal.

The following result is a generalization of Lagrange interpolation formula.

Lemma 16.23.0.1. Let K/F be an algebraic field extension. Then for any α1, . . . , αn ∈ K, such that αi is
not equal to any αj nor any of its conjugate, and for any choice β1, . . . , βn ∈ K, there exists a polynomial
f(x) ∈ F [x] such that f(αi) = βi for all i = 1, . . . , n.

Proof. Let α1, . . . , αn ∈ K be such that αj is not equal to αi nor any of its conjugates for any j ̸= i.
Let β1, . . . , βn ∈ K[αi]. We wish to find a polynomial f(x) ∈ F [x] such that f(αi) = βi for each
i = 1, . . . , n.

We first observe that as K is an algebraic extension of F , therefore there exists pi(x) ∈ F [x]
which is the minimal polynomial of αi ∈ K. This polynomial is obtained by looking at the kernel
of evaluation at αi, ϕi : F [x] → K where x 7→ αi. Consequently, pi(x) is a monic irreducible
polynomial of least degree in F [x] such that pi(αi) = 0, for each i = 1, . . . , n.

As mi := ⟨pi(x)⟩ ≤ F [x] are maximal ideals and pi(x) ̸= pj(x) because αi ̸= αj , αj
24, therefore

mi + mj = F [x] for all i ̸= j. Hence mi are comaximal. Consequently, we obtain by Chinese
remainder theorem that

F [x] F [x]
m1...mn

F [x]
m1
× · · · × F [x]

mn
F [α1]× · · · × F [αn]

f(x) f(x) +m1 . . .mn (f(x) +mi)i (f(α1), . . . , f(αn))

∼= ∼=

.

Consequently, by above diagram, for the elements (β,1 . . . , βn) ∈ F [α1]× · · · × F [αn], there exists
a polynomial f(x) ∈ F [x] such that (f(α1), . . . , f(αn)) = (β1, . . . , βn). Hence f(αi) = βi for each
i = 1, . . . , n. This completes the proof.

The following is a general exercise in basic ideal theory.

24because conjugates have same minimal polynomials.
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Lemma 16.23.0.2. Let R be a commutative ring with unity. Let p ⪇ R be a prime ideal and I, J ≤ R be
ideals. Then,

1. Ik ⊆ p for some k ≥ 0 implies I ⊆ p,
2. the following are equivalent:

(a)
√
I +
√
J = R,

(b) I + J = R,
(c) Ik + J l = R for all k, l > 0.

Proof. 1. Let I ≤ R be an ideal and p ⪇ R be a prime ideal. Then, we wish to show that Ik ⊆ p =⇒
I ⊆ p for any k ∈ N.

Indeed, pick any x ∈ I . As xk ∈ I , therefore xk ∈ p. As xk = x · xk−1 ∈ p, therefore either
x ∈ p of xk−1 ∈ p. If the former, then we are done. If the latter, then we have xk−1 = x · xk−2 ∈ p.
Continuing in this manner, we eventually reach to the conclusion that x ∈ p.
2. ((a)⇒ (b)) : As we have x ∈

√
I and y ∈

√
J such that x + y = 1, therefore for some n,m ∈ N

we have xn ∈ I and ym ∈ J . Now, observe that

1 = 1n+m = (x+ y)n+m =
n+m∑
r=0

n+mCrx
ryn+m−r

=
n∑
r=0

n+mCrx
ryn+m−r +

n+m∑
r=n+1

n+mCrx
ryn+m−r.

If 0 ≤ r ≤ n, then yn+m−r ∈ J and if n+1 ≤ r ≤ n+m, then xr ∈ I . Hence
∑n
r=0

n+mCrx
ryn+m−r ∈

J and
∑n+m
r=n+1

n+mCrx
ryn+m−r ∈ I . This shows that there exists a ∈ I and b ∈ J then a+ b = 1.

((b)⇒ (c)) : As we have x ∈ I and y ∈ J such that x + y = 1, thus writing 1 = 1k+l again, we
see

1 = 1k+l = (x+ y)k+l

=
k+l∑
r=0

k+lCrx
ryk+l−r

=
k∑
r=0

k+lCrx
ryk+l−r +

k+l∑
r=k+1

k+lCrx
ryk+l−r.

If 0 ≤ r ≤ k, then yk+l−r ∈ J l and if k + 1 ≤ r ≤ k + l, then xr ∈ Ik. Consequently, we have∑k
r=0

k+lCrx
ryk+l−r ∈ J l and

∑k+l
r=k+1

k+lCrx
ryk+l−r ∈ Ik. Hence there exists a ∈ Ik and b ∈ J l

such that a+ b = 1.
((c)⇒ (a)) : Setting k = l = 1, we have that there exists x ∈ I and y ∈ J such that x + y = 1. As√
I ⊇ I and

√
J ⊇ J , therefore x ∈

√
I and y ∈

√
J such that x+ y = 1. Hence

√
I +
√
J = R. This

completes the proof.

The following is a counterexample to the claim that a sub-algebra of a finite type algebra is a
finite type algebra.

Lemma 16.23.0.3. Let R be a ring. The ring R[t, tx, tx2, . . . , txi, . . . ] is neither a finite type R-algebra
nor a finite type R[t]-algebra.
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Proof. Let S = R[t, tx, tx2, tx3, . . . ]. We wish to show that S is not a finitely generated R or R[t]
algebra.

a) We first show that S is not finitely generated R-algebra. Indeed, let p1, . . . , pn ∈ S be
generators of S as an R-algebra. Then, we have that pi ∈ R[t, tx, . . . , txmi ] as a polynomial
can atmost be in finitely many indeterminates. Hence, letting M = maximi, we obtain that
p1, . . . , pn ∈ R[t, tx, . . . , txM ]. It then follows that the R-algebra generated by p1, . . . , pn will only
be inside R[t, tx, . . . , txM ]. We consequently reduce to showing that R[t, tx, . . . , txM ] ̸= S.

Let txM+1 ∈ S. We claim that txM+1 /∈ R[t, tx, . . . , txM ]. Assuming to the contrary, we have
that for some ak0,...,kM ∈ R

txM+1 =
∑

k0,...,kM

ak0,...,kM t
k0 . . . (txM )kM

=
∑

k0,...,kM

ak0,...,kM t
k0+···+kM · xk1+2k2+···+MkM .

We thus deduce that ak0,...,kM ̸= 0 if and only if k0 + · · · + kM = 1. As ki ∈ Z≥0, we further de-
duce that the only non-zero coefficients are a1,0,...,0, a0,1,...,0, . . . , a0,0,...,1. Hence, the above equation
reduces to

txM+1 = a1,0,...,0t+ a0,1,...,0tx+ · · ·+ a0,0,...,1tx
M .

Clearly, for no choice of coefficients a1,0,...,0, a0,1,...,0, . . . , a0,0,...,1 in R can we make both sides equal
in R[t, x]. This is a contradiction.
b) We now wish to show that S is not finitely generated as an R[t]-algebra. Assuming to the
contrary, there exists p1, . . . , pn ∈ S such that S is generated by them as an R[t]-algebra. Again
for the same reason as in a), we see that p1, . . . , pn ∈ R[t, tx, . . . , txM ] for some M ∈ Z>0. Now,
as R[t, tx, . . . , txM ] = R[t][tx, tx2, . . . , txM ], therefore the R[t]-algebra generated by p1, . . . , pn will
only be inside R[t][tx, tx2, . . . , txM ]. Hence, we reduce to showing that R[t][tx, tx2, . . . , txM ] ̸= S.
To this end, the exact same technique as in part a) works verbatim, as we need only show that
txM+1 /∈ R[t][tx, tx2, . . . , txM ] = R[t, tx, . . . , txM ].

This completes the proof.

The following result characterizes all ideals of F [[x]], yielding that F [[x]] is a local PID, i.e. a
DVR, and tells us that localization of F [[x]] at the local parameter x yields the Laurent series ring,
i.e. the fraction field of F [[x]].

Proposition 16.23.0.4. Let F be a field and R = F [[x]].
1. An element in a = a0 + a1x+ · · · ∈ R is a unit if and only if a0 ̸= 0.
2. Every non-zero ideal of R is of the form xkR.
3. R[x−1] = Q(R) = F ((x)).

Proof. 1. (⇒) Since
∑
i≥0 aix

i is a unit in F [[x]], therefore there exists
∑
i≥0 bix

i which is an inverse
of

∑
i≥0 aix

i. Consequently, we have

(a0 + a1x+ . . . ) · (b0 + b1x+ . . . ) = 1
(a0b0 + (a1b0 + a0b1)x+ . . . ) = 1.
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Comparing the degree 0 term both sides, we obtain a0b0 = 1. Therefore, if a0 = 0, then a0b0 = 0
and we would thus obtain a contradiction.
(⇐) Suppose a0 ̸= 0. We wish to find

∑
i≥0 bix

i such that
(∑

i≥0 aix
i
)
·
(∑

j≥0 bjx
j
)
= 1. We can

calculate what bis should be by observing the following:(∑
i≥0

aix
i

)
·

(∑
j≥0

bjx
j

)
=

∑
k≥0

ckx
k

where ck =
∑
i+j=k aibj . We now claim that there exists a unique solution for each bi in the

equations given by setting c0 = 1 and ck = 0 for all k ≥ 1. We show this by strong induction.
Indeed, for c0 = a0b0 = 1 yields that b0 = a−10 . For k = 1, we have c1 = a1b0 + a0b1 = 0 which thus
yields b1 = −a−10 a1b0. We now wish to show that if bl has a unique solution for all l = 0, . . . k − 1,
then bk has a unique solution as well. Indeed, bk satisfies the following equation coming from
ck = 0:

0 =
∑
i+j=k

aibj

= a0bk +
∑

i+j=k,j<k
aibj .

By inductive hypothesis, for all 0 ≤ j < k, bj has a unique solution. Consequently by the above,
bk has a unique solution as well. This completes the induction which yields the required formal
power series.

∑
j≥0 bjx

j which acts as the inverse of
∑
i≥0 aix

i. 2. We wish to show that any non-zero ideal
I ≤ R is of the form I = xkR where k ∈ N. Pick any ideal I ≤ R. For any power series
p(x) = cnx

n + cn+1x
n+1 + . . . where cn ̸= 0, we define n to be the co-degree of p(x). Then, let

p(x) = ckx
k + ck+1x

k+1 + . . . be the element of I with least co-degree (such an element exists by
virtue of well-ordering of N). Consequently, we obtain p(x) = xk(ck + ck+1x+ . . . ).

We thus claim that I = xkR. Indeed, pick any f(x) ∈ I . Then, f(x) = dnx
n + dn+1x

n+1 + . . .
where dn ̸= 0. Hence, we may write f(x) = xn(dn + dn+1x + . . . ). By item 1, we know that
dn+ dn+1x+ . . . is a unit in R, so that we may write f(x) = xnu, u ∈ R is a unit. Now, as f(x) ∈ I ,
thus co-degree of f is atleast k as p(x) ∈ I with co-degree k is the least co-degree element. Conse-
quently, we may write f(x) = xkxn−ku. Hence f(x) ∈ xkR. Conversely, pick any xkg(x) ∈ xkR.
Since p(x) = xk(ck+ck+1x+. . . ) where ck ̸= 0, therefore ck+ck+1x+. . . is a unit, hence p(x) = xkv
for some unit v ∈ R. Thus, xk ∈ I and hence xkg(x) ∈ I . This completes the proof.

3. We wish to show that R[ 1x ] = Q(R), the fraction field of R, i.e. F ((x)). Indeed, as x ∈ R is
a non-zero element, therefore 1/x ∈ Q(R) and consequently, R[ 1x ] ⊆ Q(R). We now wish to show
that converse also holds.

Pick any f(x)
g(x) ∈ Q(R) where f(x), g(x) ∈ R are power series. Let f(x) have co-degree n and

g(x) have co-degree m. We may then write

f(x)
g(x) = cnx

n + cn+1x
n+1 + . . .

dmxm + dm+1xm+1 + . . .
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where cn, dm ̸= 0. We may further write above as

f(x)
g(x) = xnu

xmv

for units u = cn + cn+1x+ . . . , v = dm + dm+1x+ · · · ∈ R (by item 1).
If n > m, then f(x)

g(x) = xn−mw
1 for some unit w ∈ R and we know that xn−m

1 ∈ R[ 1x ]. If n < m,

then f(x)
g(x) = w

xm−n for some unit w ∈ R and we know that 1
xm−n ∈ R[ 1x ]. Finally if n = m, then f(x)

g(x)
is a unit of R and hence of R[ 1x ].

Hence in all cases, f(x)g(x) ∈ R[
1
x ]. We thus conclude Q(R) ⊆ R[ 1x ], completing the proof.

In the following theorem, we show some important properties of the ring Z[ω], where ω is a
third root of unity.

Theorem 16.23.0.5. Let R = Z[ω] where ω = e
2πi
3 is a cube root of unity.

1. R is a Euclidean domain.
2. The function given by

f : Spec (Z[ω]) −→ Spec (Z)

π 7−→
®
p if π = p upto associates,
ππ̄ else.

is surjective such that f−1(p) is either {π, π̄} or {p} (upto associates) for any prime p ∈ Spec (Z).
3. Let p ∈ Z be a prime. The following are equivalent:

(i) p splits in Z[ω], that is p = αᾱ for some α ∈ Z[ω],
(ii) x2 ± x+ 1 has a root in Fp, that is, ∃a ∈ Fp such that a ̸= 1 and a3 = ±1,

(iii) either p = 3 or p = 1 mod 3.
4. Take any n ∈ Z. The following are equivalent:

(i) n = a2 ± ab+ b2 for some a, b ∈ Z,
(ii) primes 2 mod 3 occurs evenly many times in the prime factorization of n.

Proof. 1. We first wish to show that R is a Euclidean domain. We claim that the following
function

d : R \ {0} −→ N ∪ {0}
α = a+ bω 7−→ αᾱ = a2 + b2 − ab

satisfies the axiom of size function for R. Indeed, pick any α, β ∈ R where β ̸= 0. We may
then write

α

β
= αβ̄

ββ̄
= αβ̄

c
= a+ ib

where a, b ∈ Q. As any rational x ∈ Q can be written as x = n + q where n ∈ Z and
0 ≤ q ≤ 1/2, therefore we may write

α

β
= a+ ib = (n1 + r1) + ω(n2 + r2)
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where n1, n2 ∈ Z and 0 ≤ r1, r2 ≤ 1/2. Thus,

α = β(n1 + ωn2) + β(r1 + ωr2) (1.1)

As α, β(n1 + ωn2) ∈ R, therefore by (1.1) we deduce that β(r1 + ωr2) ∈ R.
Note that since the size function d is the norm map, which is actually a multiplicative map
defined on whole of C as

C −→ R
z 7−→ zz̄,

hence, we see that

d(β(r1 + ωr2)) = ββ̄(r21 + r22 − r1r2)

≤ ββ̄
Å 1
22 + 1

22

ã
= ββ̄

2
< ββ̄

= d(β).

Thus, Eq. (1.1) is the required division of α by β. This proves that R is a Euclidean domain.
2. Let R be an arbitrary Euclidean domain and let Spec (R) denote the set of all prime ideals

of R. As R is a Euclidean domain, therefore it is a PID. Consequently, Spec (R) is in one-
to-one bijection with prime/irreducible elements of R together with 0. Hence, we write
p ∈ Spec (R) to mean a prime element ofR. We know that Z[ω] and Z are Euclidean domains.
We wish to show that there is a surjective map

f : Spec (Z[ω]) −→ Spec (Z)

π 7−→
®
p if π = p upto associates,
ππ̄ else.

such that f−1(p) is either {π, π̄} or {p} (upto associates) for any prime p ∈ Spec (Z) where
π ∈ Spec (Z[ω]) is a prime element.
We first observe that Z[ω] has a non-trivial automorphism given by α = a+bω 7→ ᾱ = a+bω2.
Pick π ∈ Spec (Z[ω]) a non-zero prime element. Observe that automorphisms takes a prime
element to a prime element. As Z is a UFD, therefore for p1, . . . , pl ∈ Spec (Z) non-zero
primes, and π1, . . . , πk ∈ Spec (Z[ω]) non-zero primes, we may write

ππ̄ = a2 + b2 − ab
= p1 . . . pl

= π1 . . . πk

where the last equality comes from writing prime factorization of each pi in Z[ω].
Now, as Z[ω] is a UFD, therefore k = 2 and hence l ≤ 2. We now have two cases
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(i) If l = 2, then ππ̄ = p1p2. Expanding each pi into product of primes in Z[ω], we imme-
diately deduce by unique factorization in Z[ω] that p1 = π and p2 = π̄ upto associates
(wlog). Hence, π̄ = p2 = p1. That is,

ππ̄ = p2.

(ii) If l = 1, then

ππ̄ = p

for some non-zero prime p ∈ Spec (Z).
This defines the function f : Spec (Z[ω]) → Spec (Z). Next, we wish to show that this is
surjective. Indeed, pick any non-zero p ∈ Spec (Z). Using prime factorization in Z[ω], we
obtain primes π1, . . . , πk in Z[ω] such that

p = π1 . . . πk.

Again using the conjugation automorphism yields us

p2 = (π1π̄1) . . . (πkπ̄k).

Note πiπ̄i ∈ Z. Hence, by unique factorization of Z, we obtain k ≤ 2. We now have two cases
(i) If k = 2, then p2 = (π1π̄1)(π2π̄2). As πi are not units, we deduce that p = π1π̄1 and

p = π2π̄2. Consequently, we have π1π̄1 = π2π̄2. Thus, by unique factorization of Z[ω],
we further deduce that π1 = π2 or π̄2. Hence, p = ππ̄ for a unique π ∈ Spec (Z[ω]).

(ii) If k = 1, then

p2 = ππ̄

for some π ∈ Spec (Z[ω]). Writing p as a product of primes in Z[ω], we immediately
deduce of unique factorization of Z[ω] that p = π′ upto units for some non-zero prime
π′ ∈ Spec (Z[ω]). Consequently, p2 = π′π̄′ = ππ̄. Again by unique factorization of Z[ω],
we immediately deduce that π = π′ upto units.

This shows the surjectivity of the map f .
3. (i) ⇐⇒ (ii) : By part b), p splits in Z[ω] iff p is not prime in Z[ω]. This happens iff Z[ω]/p is

not a domain. We now observe

Z[ω]
pZ[ω]

∼=
Z[x]

⟨x2+x+1⟩
⟨p,x2+x+1⟩
⟨x2+x+1⟩

∼=
Z[x]

⟨p, x2 + x+ 1⟩

∼=
Z[x]
pZ[x]

⟨p,x2+x+1⟩
pZ[x]

∼=
Fp[x]

⟨x2 + x+ 1⟩ .
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Hence, p is not prime in Z[ω] iff x2 + x + 1 is reducible in Fp[x]. As a polynomial of degree
2 or 3 over a field is reducible iff it has a root in the field, therefore p is not prime in Z[ω]
iff x2 + x + 1 has a root in Fp. Similarly, since ω2 has minimal polynomial x2 − x + 1 and
Z[ω] = Z[ω2], hence repeating the above yields p is not prime in Z[ω] iff x2 − x+ 1 has a root
in Fp[x].

(ii) ⇒ (iii) : If p = 2, then x2 ± x + 1 has no roots in F2. Consequently, let p ̸= 2, 3. We
then wish to show that p = 1 mod 3. Let a ∈ Fp be the root of f(x) = x2 ± x + 1. Thus,
a3 = ±1. Observe that a ̸= ±1 as if a = 1, then f(1) and f(−1) are either 1 or 3 and since
p ̸= 3, therefore f(1), f(−1) ̸= 0, a contradiction.
As a3 = ±1 and a ̸= ±1, therefore the order of a ∈ F∗p is either 3 or 6. In either case, as∣∣F∗p∣∣ = p− 1, therefore by Lagrange’s theorem, 3|p− 1 or 6|p− 1. But in both cases, we have
p = 1 mod 3.

(iii) ⇒ (ii) : If p = 3, then 1 ∈ F3 is root of x2 + x + 1 and 2 is the root of x2 − x + 1. If
p = 1 mod 3, then we proceed as follows. As F∗p is a cyclic group of order p − 1 and since
p− 1 = 3k for some k ∈ Z, hence there exists an element a ∈ Fp of order 3. Consequently, we
have a3 = 1 and thus x3 − 1 in Fp[x] has a root. As x3 − 1 = (x − 1)(x2 + x + 1) and a ̸= 1,
hence a is a root of x2 + x+ 1.
Now since

Fp[x]
⟨x2 + x+ 1⟩

∼=
Fp[x− 1]

⟨(x− 1)2 + (x− 1) + 1⟩ =
Fp[x]

⟨x2 − x+ 1⟩

therefore if x2 + x+ 1 has a root in Fp, then so does x2 − x+ 1.
4. (i)⇒ (ii) : Write the prime factorization of n in Z[ω] as follows

n = (a+ bω)(a+ bω2)
= (π1 . . . πk)(π̄1 . . . π̄k)
= (π1π̄1) . . . (πkπ̄k).

From parts b) and c), we know that for any prime element π ∈ Z[ω], we have ππ̄ = p iff p = 3
or 1 mod 3 and ππ̄ = p2 iff p = 2 mod 3. Consequently, we have

n = (p1 . . . pm)(p2m+1 . . . p
2
k)

where we call primes p1, . . . , pm which are either 3 or 1 mod 3 of split type. Similarly, we
call the primes pm+1, . . . , pk which are 2 mod 3 of unsplit type. From above it is clear that
unsplit type primes appear evenly many times (they appear in squares) in the prime factor-
ization of n.

(ii)⇒ (i) : Let n ∈ Z be such that its prime factorization in Z is as follows

n = (p1 . . . pm)(q2k11 . . . q2knn )

where qi are primes of unsplit type, that is, qi = 2 mod 3 and pi are of split type, that is, 3
or 1 mod 3. Now, by part b), we may write pi = πiπ̄i as they split in Z[ω] and qi = ξi, where
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ξi, πi are primes in Z[ω].
It follows that we may write

n = (π1π̄1 . . . πmπ̄m)
Ä
ξ2k11 . . . ξ2knn

ä
= (ξk11 . . . ξknn )(π1 . . . πm) · (ξk11 . . . ξknn )(π̄1 . . . π̄m)
= αᾱ

where α = (ξk11 . . . ξknn )(π1 . . . πm) = a+ bω, as required.
This completes the proof.

Example 16.23.0.6. As an example use of above we may now find all ordered tuples (a, b) ∈ Z2

such that 2100 = a2 − ab+ b2.
Observe that

2100 = 22 · 3 · 52 · 7
= 22 · 52 · (2 + ω)(2 + ω2)(3 + ω)(3 + ω2).

We now wish to find the distinct α ∈ Z[ω] such that 2100 = αᾱ. For this, we first need to find all
units of Z[ω].

Indeed, we claim that the units of Z[ω] are 1,−1, ω,−ω, 1 + ω,−1− ω. We give a terse proof of
this fact as follows. Let a+bω ∈ Z[ω] be a unit, so that there exists c+dω such that (a+bω)(c+dω) =
1. Then, the multiplicative map

Z[ω]→ Z
α 7→ αᾱ

yields in Z that (a2 + b2 − ab)(c2 + d2 − cd) = 1. This forces a2 + b2 − ab = 1 = c2 + d2 − cd. From
these equations one can deduce that c+dω = (a−b)−bω. Hence, a+bω is a unit iff a2+b2−ab = 1.
It follows by AM-GM inequality on a2 and b2 that ab ≤ 1. Hence, we deduce that a = 1, b = 1
or a = −1, b = −1 or a = 0 or b = 0. Correspondingly, we get the six units of Z[ω] as mentioned
above.

In order to count the number of distinct pairs (a, b) ∈ Z2 such that n = a2+b2−ab = (a+bω)(a+
bω2) properly, let us bring some notations. Let Xn = {(a + bω) | (a + bω)(a + bω2) = n} ⊆ Z[ω].
Denote f : Z[ω] → Z to be the multiplicative map α 7→ αᾱ. We thus have Xn = f−1(n). Now
observe that

1. for each a+ bω ∈ Xn, we have b+ aω ∈ Xn,
2. for each a+ bω ∈ Xn, we have a+ bω2 ∈ Xn,
3. for each a + bω ∈ Xn and u ∈ Z[ω] a unit, we have u(a + bω) ∈ Xn. This is because in Z[ω],

inverse of a unit is its conjugate.
Our goal is to count ordered tuples (a, b) ∈ Z2 such that n = a2+ b2−ab. Immediately, we see that
such ordered tuples are in bijection with Xn. Hence, we reduce to counting Xn.

From the above discussion, we see the elements in Xn obtained by multiplying by units are
• 2 · 5 · 1 · (2 + ω)(3 + ω) = 50 + 40ω,
• 2 · 5 · −1 · (2 + ω)(3 + ω) = −50− 40ω,
• 2 · 5 · ω · (2 + ω)(3 + ω) = −40 + 10ω,
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• 2 · 5 · (−ω) · (2 + ω)(3 + ω) = 40− 10ω,
• 2 · 5 · (1 + ω) · (2 + ω)(3 + ω) = 10 + 50ω,
• 2 · 5 · (−1− ω) · (2 + ω)(3 + ω) = −10− 50ω,
• 2 · 5 · 1 · (2 + ω2)(3 + ω) = 40− 10ω.
• 2 · 5 · −1 · (2 + ω2)(3 + ω) = −40 + 10ω,
• 2 · 5 · ω · (2 + ω2)(3 + ω) = 10 + 50ω,
• 2 · 5 · (−ω) · (2 + ω2)(3 + ω) = −10− 50ω,
• 2 · 5 · (1 + ω) · (2 + ω2)(3 + ω) = 50 + 40ω,
• 2 · 5 · (−1− ω) · (2 + ω2(3 + ω) = −50− 40ω.

Similarly, those obtained by swapping are
• 40 + 50ω,
• −40− 50ω,
• 10− 40ω,
• 50 + 10ω,
• −50− 10ω.

Hence, there are 12 such ordered tuples (a, b) ∈ Z2 given by (40, 50), (−40,−50), (10,−40), (50, 10), (−50, 10), (50, 40), (−50,−40), (−40, 10), (10, 50), (−10,−50).

The following is a simple but powerful lemma about certain type of k-algebras.

Lemma 16.23.0.7. Let k be a field and A be a k-algebra such that there is a maximal ideal m ⪇ A for which
A/m ∼= k. Then,

A ∼= k ⊕m

where k ⊕m obtains the k-algebra structure from A.

Proof. Consider the triangle
A k

A/m

π ∼=
.

Pick any a ∈ A. We have π(a) ∈ A/m ∼= k, so let π(a) ∈ k by identifying under that isomorphism.
Consequently, we may write a = π(a) + (a − π(a)). Note since π(a − π(a)) = π(a) − π(π(a)) =
π(a) − π(a) = 0 by the commutativity of the above, therefore a ∈ m. Furthermore m ∩ k = 0 is
immediate as m is a proper ideal. It follows thatA = k⊕m as k-linear subspaces, and thus k⊕m is a
k-algebra as well, isomorphic toA, where, since (k1+m1) ·(k2+m2) = k1k2+k1m2+k2m1+m1m2
inside of A, hence we may define the k-algebra structure on k ⊕m as

(k1,m1) · (k2,m2) = (k1k2, k1m2 + k2m1 +m1m2)

for (ki,mi) ∈ k ⊕m.

The following proposition shows that any submodule of a free module over a PID is free
(which is not true in general). This is also a main ingredient in computation of K0 of a PID (that it
is Z).

Proposition 16.23.0.8. Let R be a PID and X an indexing set. Then any submodule of R⊕X is free.
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Proof. Let M ≤ R⊕X be a submodule. For each Y ⊆ X , consider the submodule

MY :=M ∩R⊕Y .

Denote by T the following partially ordered set

T =
{
(B, Y ) | Y ⊆ X, B ⊆M s.t. MY =

⊕
b∈B

Rb

}

where (B1, Y1) ≤ (B2, Y2) if and only if B1 ⊆ B2 and Y1 ⊆ Y2.
We first claim that T is non-empty. Indeed, consider any finite subset Y ⊆ X . We claim that

M ∩R⊕Y is free. To this end, first observe thatM ∩R⊕Y ≤ R⊕Y . As finite direct sum of noetherian
modules is noetherian, thereforeR⊕Y is noetherian. As a module is noetherian if and only if every
submodule is finitely generated, therefore M ∩R⊕Y is finitely generated.

By structure theorem of finitely generated modules over a PID, we deduce that

M ∩R⊕Y ∼=
R

d1R
⊕ · · · ⊕ R

dkR
⊕Rn. (5.1)

As R is a PID, so in particular a domain, therefore R⊕Y has no R-torsion element. Consequently,
in Eq. (5.1), we conclude that di = 1 for each i = 1, . . . , k, that is, M ∩R⊕Y ∼= Rn. Hence, M ∩R⊕Y
is free, as required. More generally this argument shows that any submodule of RX where X is
finite is free. This shows that T is non-empty.

We next wish to show that T has a maximal element. We will use Zorn’s lemma on T for this.
Pick any totally ordered subset T ⊆ T. We wish to show that T has an upper bound. Indeed,
denote

C =
⋃

(B,Y )∈T
B & Z =

⋃
(B,Y )∈T

Y.

We claim that

MZ :=M ∩R⊕Z =
⊕
c∈C

Rc.

For (⊆), pick an element m ∈MZ . We may write

m = (mα)α∈Z

where mα ∈ R for each α ∈ Z and mαi ̸= 0 only for i = 1, . . . , k. As αi ∈ Z and T is totally
ordered, therefore for some (B, Y ) ∈ T , we have αi ∈ Y for each i = 1, . . . , k. Thus,m ∈M∩RY =⊕

b∈B Rb. In particular, m ∈
⊕

b∈B Rb ⊆
⊕

c∈C Rc as B ⊆ C. This shows (⊆). For (⊇), pick any
(mc)c∈C ∈

⊕
c∈C Rc. Then mc = 0 for all but finitely many c1, . . . , ck. As T is totally ordered and

mci ∈ Rci, therefore there exists (B, Y ) ∈ T such that all ci ∈ B for i = 1, . . . , k. We then conclude
that m ∈

⊕
b∈B Rb =M ∩R⊕Y ⊆M ∩R⊕Z , as needed. This shows that (C,Z) ∈ T.

It is clear that for any (B, Y ) ∈ T , we have (B, Y ) ≤ (C,Z) by construction. Hence we have
produced an upper bound for any toset of T. It follows by Zorn’s lemma that T has a maximal
element. Let it be denoted by (B̃, Ỹ ).
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It now suffices to show that Ỹ = X as it would imply M = M ∩ R⊕X ∈ T, and hence is
free. To this end, suppose Ỹ ⊊ X . Then there exists Ỹ ⊊ Y ′ such that Y ′ \ Ỹ is finite. We shall
now construct an element (B′, Y ′) ∈ T such that (B̃, Ỹ ) ≤ (B′, Y ′) and (B̃, Ỹ ) ̸= (B′, Y ′), thus
contradicting the maximality of (B̃, Ỹ ).

We first have the following exact sequence

0 M ∩R⊕Ỹ M ∩R⊕Y ′
CoKer (()i) 0i π (5.2)

We claim that CoKer (()i) is a free module. To this end, we first claim that

CoKer (i) = M ∩R⊕Y ′

M ∩R⊕Ỹ
∼= K

where K ≤ R⊕Y
′\Ỹ is a submodule. Indeed, consider the map ϕ̃ obtained by the universal prop-

erty of quotients

M ∩R⊕Y ′
R⊕Y

′\Ỹ

M∩R⊕Y ′

M∩R⊕Ỹ

ϕ

ϕ̃

where ϕ is the R-linear map which takes (mα)α∈Y ′ 7→ (mα)α∈Y ′\Ỹ . It is clear that Ker (ϕ) =
M ∩R⊕Ỹ . Consequently, ϕ̃ is an inclusion and let K ≤ R⊕Y ′\Ỹ be its image.

As Y ′ \ Ỹ is finite and we showed above that every submodule of a finitely generated free
module is free, therefore

K =
⊕
z∈Z

Rz ∼= R⊕Z .

where Z ⊆ R⊕Y ′\Y . This shows that CoKer (()i) ∼= R⊕Z is a free R-module. In particular, it is pro-
jective. Consequently, the exact sequence of (5.2) is split exact so that there exists j : CoKer (()i) ↪→
M ∩R⊕Y ′

such that πj = idCoKer(()i). It now follows immediately that

M ∩R⊕Y ′ = Ker (π)⊕ j (CoKer (i))

=
Ä
M ∩R⊕Ỹ

ä
⊕ j (CoKer (i))

where j (CoKer (i)) ∼= R⊕Z so it is free. Hence, we see that B′ ⊇ B̃. This shows that (B′, Y ′) ≥
(B̃, Ỹ ), completing the proof.

A similar result to the above yields that projective modules over a local ring are free.

Theorem 16.23.0.9. Let (R,m) be a local ring25. If P is a finitely generated projective R-module, then P
is free. Moreover, rankP = dimR/m P/mP .

Let us digress for a moment and first show a crucial property of local rings which is the tech-
nical heart of the proof.

25the argument works also for non-commutative local rings.
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Proposition 16.23.0.10. Let (R,m) be a local ring. If {x̄1, . . . , x̄n} is an R/m-basis of (R/m)⊕n for
xi ∈ R, then {x1, . . . , xn} is an R-basis of R⊕n.

Proof. Let xi = (ai1, . . . , ain) ∈ Rn. Consequently, we get a matrix A = (aij) ∈ Mn(R) whose
rows are xi. Note that it is sufficient to show that A is invertible, that is A ∈ GLn(R). Denote
Ā ∈ Mn(R/m) to be the matrix reduced mod m. Note that Ā is invertible, that is, Ā ∈ GLn(R/m),
as it is a basis of (R/m)n. Consequently, there exists B ∈Mn(R) such that Ā · B̄ = In = B̄ · Ā. We
now construct an inverse of A in GLn(R). Note that we have A · B = (cij) where cii ∈ R× and
cij ∈ m for i ̸= j. Doing an elemeantry column operations on A · B, we deduce that there exists
E ∈ GLn(R) such that (A · B) · E is a diagonal matrix with diagonal entries being units of R, as
required.

The proof is now immediate.

Proof of Theorem 16.23.0.9. Let P be a finitely generated projective R-module. Denote κ = R/m be
the residue field of (R,m). Let dimκ P/mP = n and {x̄i}i=1,...,n ∈ P/mP be a κ-basis of P/mP
for xi ∈ P . We claim that {xi}i=1,...,n is an R-basis of P . Indeed, as P is projective, there exists a
projective module Q such that P ⊕ Q = Rm+n. Going modulo m, we get that dimκQ/mQ = m.
Let {x̄n+i}i=1,...,m be a κ-basis of Q/mQ for xn+i ∈ Q. Consequently, {xi}i=1,...,n+m ⊆ Rn+m is
such that {x̄i}i=1,...,n+m forms a κ-basis of (R/m)n+m. By Proposition 16.23.0.10, it follows that
{xi}i=1,...,n+m is an R-basis of Rn+m = P ⊕Q. It is clear from Rm+n = P ⊕Q that {x1, . . . , xn} ⊆
Rn+m spans P and are linearly independent, as required.
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17.1 K0

We study the first K-group, which is also the easiest to construct and understand. We begin by
studying this for rings, before looking at it more geometrically via schemes.
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17.1.1 K0 of a ring & basic properties

Definition 17.1.1.1 (K0(R)). Let R be a ring and consider F (R) to be the free abelian group gener-
ated by objects of skeleton of Proj(R), denoted Proj(R)∼=. Consider the subgroup of F (R)

E = ⟨{[P ⊕Q]− [P ]− [Q] | P,Q ∈ Proj(R)}⟩

Then we define

K0(R) := F (R)/E.

That is,

Proj(R)∼= ↪→ F (R) ↠ K0(R).

Consequently, K0(R) is an abelian group as it is quotient of the free abelian group F (R). In par-
ticular, the addition in K0(R) of P,Q ∈ Proj(R) is [P ] + [Q] = [P ⊕Q].

Some observations from the definitions are as follows.

Lemma 17.1.1.2. Let R be a ring and P,Q ∈ Proj(R) be two finitely generated projective left R-modules.
Then, the following are equivalent:

1. [P ] = [Q] in K0(R).
2. There exists P ′ ∈ Proj(R) such that P ⊕ P ′ ∼= Q⊕ P ′1.
3. There exists n ≥ 0 such that P ⊕Rn ∼= Q⊕Rn.

Proof. (1. ⇒ 2.) Unravelling the definition, we deduce that there exists Pi, Qi, P ′j , Q
′
j ∈ Proj(R)

such that

P −Q =
n∑
i=1

Pi ⊕Qi − Pi −Qi −

(
m∑
j=1

P ′j ⊕Q′j − P ′j −Q′j

)

in F (R). By rearrangement, we deduce that P is either isomorphic to Pi ⊕Qi or Pi or Qi and Q is
either isomorphic to P ′j ⊕Q′j or P ′j or Q′j . Conseuqently, the summand may be taken as P ′ can be
taken to be the direct sum of all Pi, Qi, P ′j , Q

′
j which will be projective.

(2. ⇒ 3.) As P ′ ∈ Proj(R), thus, there exists Q′ ∈ Proj(R) such that P ′ ⊕Q′ = Rn for some n ∈ N.
Hence taking direct sum withQ′ in the given isomorphism will give us the required isomorphism.

(3. ⇒ 1.) As [P ] = [P ⊕ Rn] − [Rn] = [Q ⊕ Rn] − [Rn] = [Q] in K0(R), hence we get the de-
sired result.

A simple corollary yields the precise meaning of [P ] = [Rn] in K0(R).

Corollary 17.1.1.3. Let R be a ring and P be a finitely generated projective module. If [P ] = [Rn], then P
is stably free.

Proof. By Lemma 17.1.1.2, we deduce that P ⊕Rk ∼= Rn+k, as required.

1This is at times also called stable isomorphism of two modules.
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We now establish that K0 is a functor on Ring to Ab.

Construction 17.1.1.4 (Functor K0). Let f : A → B be a map of rings. We define f∗ : K0(A) →
K0(B) by extension of scalars:

f∗ : K0(A) −→ K0(B)
[P ] 7−→ [P ⊗A B].

As (f ◦ g)∗ = f∗ ◦ g∗, therefore K0 is a functor.

The following shows that if R is a commutative ring then K0(R) is a commutative ring.

Lemma 17.1.1.5. Let R be a commutative ring. Then the operation ([P ], [Q]) 7→ [P ⊗R Q] for P,Q ∈
Proj(R) defines a commuative ring structure on K0(R).

Proof. Indeed, this is immediate by commutativity of ⊗ upto isomorphism for commutative rings
and distributivity of ⊗ over ⊕.

The following states that K0 preserves products.

Lemma 17.1.1.6. Let R,R1, R2 be rings. If R = R1 ×R2, then

K0(R) ∼= K0(R1)×K0(R2).

Proof. We need only show a bijection Proj(R)∼= ∼= Proj(R1)
∼= × Proj(R2)

∼=. Indeed, consider the
function P 7→ (P ⊗R R1, P ⊗R R2). We claim that the map P1 ⊕ P2 ←[ (P1, P2) is an inverse of
above. Indeed, we see (P ⊗R R1) ⊕ (P ⊗R R2) = P ⊗R (R1 ⊕ R2) = P ⊗R R ∼= P . Similarly,
(P1 ⊕ P2)⊗R R1 = (P1 ⊕ P2)⊗R R

0×R2
∼= P1⊕P2

(0×R2)·(P1⊕P2)
∼= P1⊕P2

P2
∼= P1, as required.

The following result says that K0 is invariant of reducing the structure.

Proposition 17.1.1.7. Let R be a ring and I ≤ R be a nilpotent ideal. Then K0(R) ∼= K0(R/I). In
particular, K0(R) ∼= K0(Rred).

Proof. It is sufficient to show that Proj(R)∼= ∼= Proj(R/I)∼=. Indeed, this is true by idempotent
lifting (see Exercise I.2.2 of [WeibK]).

The following is a simple characterization of units of the commutative ring K0(R).

Proposition 17.1.1.8. Let R be a commutative ring. Then

Pic(R) ↪→ K0(R)×

and every element of the form [P ] ∈ K0(R)× is in Pic(R).

Proof. † Consider the map

ϕ : Pic(R) −→ K0(R)×

[P ] 7−→ [P ]
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which takes the isomorphism class of a line bundle to its K0-class in K0(R). This is a group
homomorphism as ϕ([P ] · [Q]) = ϕ([P ⊗RQ]) = [P ⊗RQ] = [P ] · [Q]. Now take any [P ] ∈ K0(R)×,
then there is [Q] ∈ K0(R)× such that [P ⊗R Q] = [R]. It follows by Lemma 17.1.1.2 that P ⊗R Q is
stably free, i.e. (P ⊗R Q)⊕Rn ∼= Rn+1. Comparing the rank, we see that P ⊗R Q is constant rank
1. Thus, P ⊗R Q is a line bundle which is stably free, so by an argument involving top exterior
power, we deduce that P ⊗RQ is free of rank 1. By another rank argument, we deduce that P and
Q are line bundles. Thus ϕ([P ]) = [P ].

This is injective as if P is a line bundle such that [P ] = [R] in K0(R), then P is stably free
by Lemma 17.1.1.2, and thus is free of rank 1, i.e. P ∼= R and is thus the identity of Pic(R), as
required.

17.1.2 Computations

There are few main computations for K0 of a ring; PIDs, local rings and more generally, Dedekind
domains. We recall that rings may not be commutative.

Theorem 17.1.2.1 (K0 of a PID). Let R be a PID. Then the map

ϕ : Z 7−→ K0(R)
1 7−→ [R]

is an isomorphism.

Proof. Observe that ϕ(n) = [Rn] = [R] + · · ·+ [R] n-times. To see injectivity, observe that if ϕ(n) =
[0], then [Rn] = [0]. It follows by Lemma 17.1.1.2, 3, that Rn+m ∼= Rm. Going modulo any maximal
ideal of R, we deduce that we have an R/m-vector space isomorphism (R/m)⊕m+n ∼= (R/m)⊕m.
It follows at once that n = 0, as required.

To see surjectivity, we need only show that Im (ϕ) contains the image of Proj(R)∼= in K0(R).
To this end, take any P ∈ Proj(R)∼=. We need only show that for some n ∈ N, [P ] = [Rn] in
K0(R). It suffices to show that every projective module over a PID is free. Indeed, this is true (see
Proposition 16.23.0.8).

As a field is a PID, we deduce the following.

Corollary 17.1.2.2 (K0 of a field). Let F be a field. Then K0(F ) ∼= Z.

Theorem 17.1.2.3 (K0 of a local ring). Let (R,m) be a local ring. Then the group homomorphism

ϕ : Z −→ K0(R)
1 7−→ [R]

is an isomorphism.

Proof. Observe that the map ρ′ : F (R) → F (R/m) given by P 7→ P ⊗R R/m = P/mP defines a
group homomorphism ρ : K0(R)→ K0(R/m) = Z. Note that ρ([Rn]) = [Rn/mRn] = [(R/mR)⊕n]
which yields n ∈ Z under ρ. Consequently, ρ is surrjective. We need only show that ρ is injective.
To this end, observe that it is sufficient to show that any finitely generated projective R-module is
free, as ρ is injective over this subset of K0(R). Indeed, this is true (see Theorem 16.23.0.9).
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The next computation is for Dedekind domains.

Theorem 17.1.2.4 (K0 of a Dedekind domain). Let R be a Dedekind domain. Then

K0(R) ∼= Z⊕ Cl(R)

is an isomorphism of groups where Cl(R) is the ideal class group of R.

However, we will show something general, which will showcase to us the use of geometric
viewpoint. Recall that H0(X) = Z⊕r where r is the number of path-components of X . Note that
we may interpret H0(X) = C(X,Z), the set of all continuous functions from X to the discrete
space Z. We denote H0(R) = H0(Spec (R)). Let R be a commutative ring. Then, any finitely
generated projective module P gives a continuous map rank(P ) : Spec (R) → Z given by p 7→
dimκ(p) P ⊗R κ(p) (see Exercise I.2.11 of [WeibK]). Thus, we get the following result.

Lemma 17.1.2.5 (The rank map). Let R be a commutative ring. Then, the map

rank : K0(R) −→ H0(R)
[P ] 7−→ rank(P )

is a ring homomorphism.

Proof. We need only show that rank(P ⊕Q) = rank(P ) + rank(Q) and rank(P ⊗R Q) = rank(P ) ·
rank(Q). The former is immediate. For the latter, we need only observe that P ⊗R Q ⊗R κ(p) ∼=
(P ⊗R κ(p)) ⊗κ(p) (κ(p) ⊗R Q), then the result follows from the basic fact of dimension of tensor
product of vector spaces.

Lemma 17.1.2.6. Let R be a commutative ring. If R is noetherian, then H0(R) is a direct summand of
K0(R). We write

K0(R) ∼= H0(R)⊕ K̃0(R),

where K̃0(R) = Ker (rank).

Proof. By Exercise I.2.4 of [WeibK], we have that for any continuous map f : Spec (R) → Z, there
is a decomposition R = R1 × . . . Rk where on each Spec (Ri), f is constant ni, say. Thus, for each
such f , we construct the R-module

Rf = Rn1
1 × · · · ×R

nk
k

which we claim is finitely generated projective R-module. Indeed this can be seen by observing
that if P1 is projective R1 and P2 is projective R2 modules, then P1 ⊕ P2 is projective R1 × R2-
module, by making P1 ⊕ P2 a direct summand of an R1 × R2-free module. Thus, we define a
map

H0(R) −→ K0(R)
f 7−→ [Rf ].

Now observe that the composite

H0(R) −→ K0(R)
rank−→ H0(R)

is such that f 7→ [Rf ] 7→ rank(Rf ). Since rank(Rf ) = f by definition of Rf , thus the composite is
id. It follows that we have a decomposition K0(R) ∼= H0(R)⊕ Ker (rank), as required.
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As a Dedekind domain is noetherian, this gives us a hint towards the above result (Theorem
17.1.2.4).

Construction 17.1.2.7 (Picard group and determinant bundle). Next map that we wish to discuss
is the determinant map for a commutative ring, which will be a map from K0(R) to Pic(R), the
Picard group of scheme Spec (R), which may be described as the commutative group of isomor-
phism classes of all finitely generated projective modules2 of constant rank 1, where the group
operation is ⊗ and inverse is taking dual module.

For a projective module P , we may define a rank 1 projective module given as follows. If P
has constant rank, then det(P ) = ∧rank(P )P , the top exterior power of P , which has rank 1 and
is projective as it is locally free (since exterior powers commute with tensoring). Whereas if P
doesn’t have constant rank, then writing R = R1 × · · · ×Rn such that rank(P ) is constant on each
Spec (Ri). We thus get a decomposition P = P1×· · ·×Pn where each Pi is a projectiveRi-module.
We then define det(P ) = ∧rank(P1)P1 × · · · × ∧rank(Pn)Pn. As an R-module, this has rank 1 by a
simple tensor calculation.

The main observation here is the following.

Lemma 17.1.2.8 (The det map). Let R be a commutative ring. Then the map

det : K0(R)→ Pic(R)

is a surjective group homomorphism.

Proof. We need only show that det is a group homomorphism on the generators of F (R). That is,
we wish to show that det([P ⊕ Q]) = det([P ]) ⊗R det([Q]). To this end, by above discussion, we
may reduce to assuming P has constant rank n andQ has constant rankm. Now, by binomial sum
formula, we get, det(P ⊕ Q) = ∧n+m(P ⊕ Q) =

⊕n+m
i=0 ∧iP ⊗ ∧n+m−iQ. All of the terms except

∧nP ⊗R∧mQ are zero above. Consequently, we get the required result. To see surjectivity, observe
that any rank 1 projective module P is such that det([P ]) = ∧1P ∼= P .

We come to the main theorem.

Theorem 17.1.2.9. Let R be a commutative ring. Then the map

rank⊕ det : K0(R) −→ H0(R)⊕ Pic(R)

is surjective with kernel being the ideal

SK0(R) = ⟨[P ]− [Rm] | P ∈ Proj(R)∼= of constant rank m & ∧mP ∼= R ⟩.

Proof. Indeed, SK0(R) is in the Ker (rank⊕ det). Conversely, as Ker (rank⊕ det) ⊆ K̃0(R) =
Ker (rank) and K̃0(R) is the filtered limit of the setFn(R) = {[P ] | P ∈ Proj(R)∼= of constant rank n}
via the map Fn(R) → K̃0(R) mapping as [Q] 7→ [Q] − [Rn] (see Lemma 2.3.1 of [WeibK]), thus
we deduce that any [P ] ∈ Ker (rank⊕ det) is of form [P ] = [Q] − [Rm] where Q is projective of
constant rank m.

As [P ] ∈ Ker (rank⊕ det), therefore ∧mQ = R, as can be seen easily.
2also called algebraic line bundles over Spec (R).
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Corollary 17.1.2.10. Let R be a commutative noetherian ring of dimension one. Then

rank⊕ det : K0(R) −→ H0(R)⊕ Pic(R)

is an isomorphism.

The proof of Theorem 17.1.2.4 is immediate as Pic(R) of a Dedekind domain is the ideal class
group.

Proof. By classification of finitely generated projective modules over a commutative noetherian
ring of dimension one, it follows that if P ∈ Proj(R)∼= is of constant rank, then it is isomorphic to
det(P ) ⊕ Rrank(P )−1. Consequently, the ideal SK0(R) = 0 and we conclude by Theorem 17.1.2.9.

Another simple calculation is of Artin rings.

Proposition 17.1.2.11. Let R be an Artinian ring with |mSpec (R)| = n. Then

K0(R) ∼= Z⊕n.

Proof. † By structure theorem for Artinian rings, we know that A ∼=
∏n
i=1A/m

k
i for some k > 0

where mSpec (R) = {m1, . . . ,mn} and each A/mk
i is an Artin local ring (see Theorem 8.7, pp 90,

[AMD]). By Lemma 17.1.1.6, we deduce that

K0(R) ∼=
n∏
i=1

K0(A/mk
i ).

By Theorem 17.1.2.3, we have that K0(A/mk
i ) ∼= Z, giving the required result.

There is a famous important calculation of K0 done by Quillen and Suslin around the same
time.

Theorem 17.1.2.12 (Quillen-Suslin). Let R be a PID (for example, a field). Then all projective modules
over R[x1, . . . , xn] is free. In particular,

K0(R[x1, . . . , xn]) ∼= Z.

17.1.3 Homological properties of K0

We have already seen the reduced K0, denoted K̃0 in Lemma 17.1.2.6. We thus discuss some other
homology-type results for K0.

Relative exact sequence for K0

To discuss excision and Mayer-Vietoris, we first need to understand what will be the analogue of
union of two subspaces in this context. It is perhaps not that surprising that the right answer is
geometrically motivated.
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Lemma 17.1.3.1 (Milnor squares). Let f : R → S be a ring homomorphism and I ≤ R be an ideal such
that f |I : I → f(I) is a bijection onto an ideal f(I) ≤ S which we also denote by I . Then the following is
a pullback square of rings:

R S

R/I S/I

f

⌟

f̄

.

We call them Milnor squares.

Proof. Recall that

R/I ×f̄ S := R/I × S
⟨(r + I, s) ∈ R/I × S | f(r)− s ∈ I⟩ .

Consider the map

R −→ R/I ×f̄ S
r 7−→ (r + I, f(r)).

This is injective as if r ∈ I and f(r) = 0 ∈ I , then since f |I is bijective, then r = 0. This is
surjective as for any (r+ I, s) ∈ R/I×f̄ S, we have that f(r)−s = f(i), i ∈ I and thus s = f(r− i).
Consequently, r − i 7→ (r − i+ I, f(r − i)) = (r + I, s), as required.

Remark 17.1.3.2. A Milnor square equivalently yields the following pushout diagram of affine
schemes:

Spec (R) Spec (S)

Spec (R/I) Spec (S/I)

⌜

f∗

f̄∗

.

Consequently, we get that Spec (R) is obtained by gluing Spec (R/I) to Spec (S) along the closed
subspace Spec (S/I) ↪→ Spec (S) via the map f̄∗, that is,

Spec (R) = Spec (S)⨿f̄∗ Spec (R/I).

Remark 17.1.3.3 (Milnor squares and excisive triples). By the above remark, it is clear that Milnor
squares behave as excisive triples as seen in topology. That is a Milnor square

R S

R/I S/I

f

⌟

f̄

can be seen as the excisive triple (Spec (R), Spec (S), Spec (R/I)) for the space Spec (R).

Using the above idea, we can now define K-groups relative to an ideal I as follows.
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Definition 17.1.3.4 (Relative K0). Let R be a commutative ring and I ≤ R be an ideal. Consider
the commutative ring R⊕ I with 1 whose operation is

(r, x) · (s, y) := (rs, ry + sx+ xy),

where identity is (1, 0). We call this the augmented ring. Consider the projection homomorphism
p : R⊕ I → R. This induces the map p∗ : K0(R⊕ I)→ K0(R). We thus define

K0(R, I) := Ker (p∗ : K0(R⊕ I)→ K0(R)).

We call K0(R, I) the relative K0-group w.r.t ideal I . As the composite of the ring homomorphisms
R → R ⊕ I → R is identity, therefore after applying K0, we get K0(R) → K0(R ⊕ I) → K0(R) is
identity. It follows by splitting lemma that we have

K0(R⊕ I) ∼= K0(R)⊕K0(R, I).

We define now a group which we will meet consistently.

Definition 17.1.3.5 (GL(R)). Let R be a ring and GLn(R) = Aut (Rn), the group of R-linear au-
tomorphisms of the free module Rn where the group operation is composition. We may think of
GLn(R) as n× n invertible matrix over R. Observe that we have injective maps

GLn(R)
ιn
↪→ GLn+1(R)

gn 7−→
ï
gn 0
0 1

ò
.

Consequently we have a directed system {GLn(R), ιn}n. We define

GL(R) := lim−→
n

GLn(R)

An element [gn] ∈ GL(R) for some gn ∈ GLn(R) is an equivalence class where gn ∼ hm for some
hm ∈ GLm(R) if and only if ιn,k(gn) = ιm,k(hm) in GLk(R) for some k ≥ n,m. Observe that the
group operation of GL(R) is as follows: for gn, hm ∈ GL(R), [gn] · [hm] = [ιn,p(gn) · ιm,p(hm)] for
some p ≥ n,m. It is clear that [gn] only consists of all the elements ιn,k(gn) for all k ≥ n, i.e. [gn] is
the infinite invertible matrix obtained by padding by 1 on diagonals.

The main theorem here is the following:

Theorem 17.1.3.6. LetR,S be commutative rings and let I ≤ R be an ideal. Then we have a natural exact
sequence

GL(R)→ GL(R/I) ∂→ K0(R, I)→ K0(R)→ K0(R/I).

Excision for K0

A main observation here yields the independence of K0(R, I) on R.

Theorem 17.1.3.7. Let R be a ring and I ≤ R be an ideal. If f : R → S is a ring homomorphism which
maps ideal I isomorphically to an ideal f(I) of S (which we denote by I again), then

K0(R, I) ∼= K0(S, I).

Proof. See Exercise II.2.3 of [WeibK].



592 CHAPTER 17. K-THEORY OF RINGS

Mayer-Vietoris for K0

We begin by constructing a Mayer-Vietoris sequence for K0, which will be later extended to a
long-exact sequence while discussing higher K-groups, just like in homology theory. We do this
essentially by using excision, as is usually done in singular homology.

Theorem 17.1.3.8 (Mayer-Vietoris). Consider a Milnor square

R S

R/I S/I

f

⌟

f̄

.

Then there is a long exact sequence

GL(S/I)→ K0(R)→ K0(S)⊕K0(R/I)→ K0(S/I).

Proof. Observe that we have maps relative sequences of Theorem 17.1.3.6 as follows:

GL(R) GL(R/I) K0(R, I) K0(R) K0(R/I)

GL(S) GL(S/I) K0(S, I) K0(S) K0(S/I)

∂

∼=

∂

where the middle vertical map is the excision isomorphism of Theorem 17.1.3.7. By Barrat-Whitehead
lemma (Lemma 14.6, [HarpAT]), we get an exact sequence

GL(S/I)→ K0(R)→ K0(S)⊕K0(R/I)→ K0(S/I),

as required.

17.1.4 K0 of a scheme

LetX be a scheme. We will define the 0th K-group ofX in essentially the same manner as we have
done for rings, by keeping in mind the fact that the finite rank algebraic vector bundles over X
are analogues of finitely generated projective modules (in the affine case, both are indeed same).
Using this we will define and prove some basic properties of K0(X).

Definition 17.1.4.1 (K0 of a scheme X). TODO.

We begin by observing that K0 of a ring R is same as K0 of the affine scheme Spec (R).

17.1.5 Applications

We present some applications of the K0 and its calculations.
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Wall’s finiteness obstruction

Construction 17.1.5.1 (0th-Whitehead group of a groupG). LetG be a group and Z[G] be the group
ring of G3. Then we have the following commutative diagram of rings:

Z Z[G] Zι

id

ϵ .

Applying K0, we get the following commutative diagram of groups:

K0(Z) K0(Z[G]) K0(Z)
ι∗

id

ϵ∗ .

It hence follows that ι∗ : K0(Z) ↪→ K0(Z[G]) is an injective map. We define the 0th-Whitehead
group of G to be the cokernel of ι∗:

Wh0(G) := CoKer (ι∗) = K0(Z[G])/K0(Z).

Moreover, as ϵ∗ ◦ ι∗ = id∗, therefore the following s.e.s. is split on the left:

0 K0(Z) K0(Z[G]) Wh0(G) 0ι∗

ϵ∗

.

Consequently, we get the following decomposition of K0(Z[G]):

K0(Z[G]) ∼= K0(Z)⊕Wh0(G).

Remark 17.1.5.2 (Information in Wh0(G).). Observe that the map ι∗ : K0(Z) → K0(Z[G]) maps
the generator [Z] to [Z[G]]. As Wh0(G) := CoKer (ι∗), thus we deduce that Wh0(G) is that part
of K0(Z[G]) which stores the information of non-stably free projective f.g. Z[G]-modules (see
Corollary 17.1.1.3). Thus, we deduce that

Wh0(G) = 0 =⇒ K0(Z[G]) ∼= Z.

Moreover, if [P ] = [Q] in Wh0(G), then [P ]− [Q] ∈ K0(Z) and thus [P ]− [Q] = [Z[G]n] inK0(Z[G]).
It follows that [P ] = [Q ⊕ Z[G]n] and hence by Lemma 17.1.1.2, we deduce that P ⊕ Z[G]k ∼=
Q⊕ Z[G]n+k. We thus deduce that

[P ] = [Q] in Wh0(G) ⇐⇒ ∃n, k ∈ N s.t. P ⊕ Z[G]k ∼= Q⊕ Z[G]n+k.

The information stored in Wh0(G) is thus quite non-trivial (K0-classes of non-stably free f.g. pro-
jective Z[G]-modules).

The following theorem explains the interest in Wh0(G). Recall that a CW-complex X is dom-
inated by a complex K if there is a map f : K → X which exhibits X as a homotopy retract of
K.

3Note that if G is infinite cyclic group with generator x, then Z[G] = Z[x], the polynomial ring.
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Theorem 17.1.5.3 (Wall’s finiteness obstruction). Let X be a CW-complex which is dominated by a
finite CW-complex K. Denote G = π1(X).

1. The tuple (X,K,G) determines an element w(X) ∈ Wh0(G) which is independent of dominating
complex K.

2. The following are equivalent:
(a) X is homotopy equivalent to a finite CW-complex.
(b) w(X) = 0 in Wh0(X).
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17.2 K1

It is said that the Grothendieck group K0(R) is orthogonal to all higher K-groups in the sense
that the former looks at the spread of projective modules while the rest only look at the eventual
behaviour as the size of those modules grows.

Hyman Bass’s group K1(R) is the intended “value group for the determinant” of an invertible
matrix over R and can be defined as the abelianization of the direct limit of automorphism groups
of finitely generated projective modules. Gaussian elimination and Dieudonne’s determinant map
will help us to compute K1(R) in familiar examples.

17.2.1 K1 of a ring & basic properties

We begin by defining K1(R).

Definition 17.2.1.1 (K1(R)). Let R be a ring. We define K1(R) to be the abelianisation of GL(R):

K1(R) :=
GL(R)

[GL(R),GL(R)] .

We immediately have a decomposition of K1(R) as follows.

Construction 17.2.1.2 (Dieudonné’s det for K1). Let R be a commutative ring. Consider the map

det : GLn(R)→ R×

which is the determinant map. As det ◦ιn = det by the determinant of block diagonals, therefore
we obtain a map

det : GL(R)→ R×

[gn] 7→ det(gn).

It is easy to see that this is a group homomorphism. Moreover, this map is surjective. Observe that
since det of an element in the commutator is 1, thus by universal property of quotients, we get a
surjective group homomorphism

det : K1(R) −→ R×

[gn] 7−→ det(gn)

which is called Dieudonné’s determinant4. We further denote its kernel as

SK1(R) := Ker
(
det : K1(R) ↠ R×

)
.

As the composite R× → K1(R) → R× given by u 7→ [u] 7→ det(u) = u is identity, it follows that
we have a splitting:

K1(R) ∼= R× ⊕ SK1(R).

Note that the kernel of det : GLn(R)→ R× is exactly SLn(R).
4We sometimes call det : GL(R) → R× as Dieudonné’s determinant as well.
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The K1 of a ring commutes with product.

Lemma 17.2.1.3. Let R = R1 ×R2 be a ring where Ri are rings. Then

K1(R) ∼= K1(R1)×K1(R2).

Proof. Since GLn(R) ∼= GLn(R1)×GLn(R2) via the map (m1
ij ,m

2
ij) 7→ ((m1

ij), (m2
ij)), therefore this

yields an isomorphism GL(R) ∼= GL(R1) × GL(R2). Moreover, under the same isomorphism, it
can be checked that [GL(R) : GL(R)] ∼= [GL(R1) : GL(R1)] × [GL(R2) : GL(R2)]. This completes
the proof.

We next see that K1 of a ring and matrix ring are equivalent.

Proposition 17.2.1.4. Let R be a ring and n ∈ N. Then

K1(R) ∼= K1(Mn(R)).

Proof. To this end, it suffices to show that GL(R) ∼= GL(Mn(R)). We do this via basic Morita
theory. We know that R and Mn(R) are Morita equivalent, where the Morita functors are

Mod(R)↔Mod(Mn(R))
M 7→M ⊗R Rn

N ⊗Mn(R) R
n ←[ N

where M ⊗R Rn ∼= Mn is an Mn(R)-module by matrix multiplication: (rij) · (m1, . . . ,mn) =(∑
j r1jmj , . . . ,

∑
j rnjmj

)
. Similarly, N ⊗Mn(R) R

n is an R-module. The equivalence thus takes
the Mn(R)-module to the R-module Mn(R)m to Mn(R)m ⊗Mn(R) R

n ∼= Rnm ∼= Rn ⊗R Rm. Conse-
quently, the equivalence of categories gives an isomorphism of the endomorphism groupsMmn(R) ∼=
EndR(Rn⊗RRm) ∼= EndMn(R)(Mn(R)m) =Mm(Mn(R)). Thus, the group of units are also isomor-
phic, yielding

GLmn(R) ∼= GLm(Mn(R)).

As the multiples of n are cofinal in N, thus we get an isomorphism in the direct limit

GL(R) ∼= GL(Mn(R)).

Thus the commutators are also isomorphic and the above isomorphism thus extends to the iso-
morphism K1(R) ∼= K1(Mn(R)).

We will later see that actually K1 is a Morita invariant.

Remark 17.2.1.5 (Information in K1(R)). While K0(R) tells us about the spread of f.g. projective
R-modules,K1(R) tells us about the eventual spread of automorphisms of f.g. projective modules.
The latter may not be evident as of now, but the next few results will showcase exactly this, as will
be seen by Whitehead’s lemma and Bass’ theorem.

Our first task is to show that the commutator of GL(R) is a familiar object.
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Definition 17.2.1.6 (E(R)). Consider the subgroup of GLn(R) denoted En(R) generated by ele-
mentary n-matrices of type 1, that is, the invertible matrices eij(r) ∈ GLn(R) where i ̸= j such that
their diagonal is all 1, eij = r at (i, j) entry and 0 in the rest. Thus we have an injection

En(R) ↪→ GLn(R).

Taking direct limits, we get an injection

E(R) ↪→ GL(R).

A simple exercise shows that En(F ) = SLn(F ) for F a field.

Lemma 17.2.1.7. Let R be an Euclidean domain. Then

En(R) = SLn(R).

Consequently, E(R) = SL(R) in GL(R).

Proof. We proceed by induction on n ∈ N. Indeed, for n = 1, we have E1(R) = SL1(R). For the
inductive step, fix n ∈ N. We wish to show that SLn(R) ⊆ En(R). Pick g ∈ SLn(R) and write

g =

g11 g12 . . .
g21 g22 . . .

...

 .
As R is a Euclidean domain, therefore by Euclidean division, we get

g21 = g11q1 + r1

g11 = r1q2 + r2

r1 = r2q3 + r3
... =

...
rk−1 = rkqk+1

Note all the above operations can be done by type 1 row operations. Consequently, by doing these
row and column operations we can reduce g to

ege′ =

g
′
11 0 . . .
0 g′22 . . .
...

 =
ï
g′11 0
0 Mn−1

ò
Now, by inductive hypothesis, there exists en−1, e′n−1 ∈ En−1(R) ↪→ En(R) such that en−1Mn−1e

′
n−1 =

1n−1. Taking the image of en−1, e′n−1 in En(R), we get en, e′n ∈ En(R) such that

enege
′e′n =

ï
g′11 0
0 In−1

ò
.

As det(enege′e′n) = 1, therefore we deduce that g′11 = 1, and thus

enege
′e′n = In,

hence g = e−1e−1n e′−1n e′−1 ∈ En(R), as required. This completes the proof.
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Theorem 17.2.1.8 (Whitehead’s lemma). Let R be a ring. Then E(R) = [GL(R),GL(R)]. Conse-
quently,

K1(R) =
GL(R)
E(R) .

Remark 17.2.1.9. It follows thatK1(R) consists of all classes of all infinite invertible matrices which
are not similar to each other by type 1 elementary matrices. Recall that two matrices g, h ∈Mn(R)
are similar to each other if there exists e, e′ an elementary matrix (not necessarily only of type 1)
such that g = e′he. Thus, it is in this sense does K1(R) measures the eventual spread of automor-
phisms of free modules. In the next section, we will see that more is true.

Remark 17.2.1.10 (E(R) is perfect in GL(R)). Observe the following three basic relations for ele-
ments in En(R) for n ≥ 3:

e
(n)
ij (λ) · e(n)ij (µ) = e

(n)
ij (λ+ µ)

[e(n)ij (λ), e(n)kl (µ)] = 1, i ̸= l, j ̸= k

[e(n)ij (λ), e(n)jk (µ)] = e
(n)
ik (λµ), i ̸= k.

The last relation combined with Theorem 17.2.1.8 immediately tells us that En(R) is perfect and
hence so is E(R).

Basic computations

Using Whitehead’s lemma and Dieudonné’s determinant, we can do some basic computations.

Lemma 17.2.1.11. Let R be an Euclidean domain. Then,

K1(R) ∼= R×.

Proof. Using Dieudonné’s determinant, we have a surjective map

det : GL(R) ↠ R×.

As Ker (det) = SL(R) and by Lemma 17.2.1.7, SL(R) = E(R), thus by Whitehead’s lemma (Theo-
rem 17.2.1.8), we conclude that K1(R) ∼= GL(R)/Ker (det) ∼= R×.

Corollary 17.2.1.12. Let F be a field. Then K1(F ) = F×.

Proposition 17.2.1.13. Let D be a division ring (a non-commutative field). Then,

K1(D) ∼=
D×

[D×, D×] .

Proof. This follows from Dieudonné’s theorem that for a division ring,

GLn(D)
En(D)

∼=
D×

[D×, D×]

for n ≥ 3. This induces the required isomorphism.
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Proposition 17.2.1.14. Let R be a semilocal ring. Then SK1(R) = 1 and thus

K1(R) ∼= R×.

Proof. See Lemma 1.4, pp 202 of [WeibK].

Corollary 17.2.1.15. Let R be an Artinian ring. Then, K1(R) ∼= R×.

17.2.2 More properties of K1

We study some properties of K1(R) which depends on R-modules. We begin by relating group
homology and K1(R).

Characteristic map & Bass’ result

We now see how K1(R) is actually the eventual spread of automorphisms of f.g. projective R-
modules. We first show that every P ∈ Proj(R) yields a group homomorphism Aut (P )→ K1(R).

Construction 17.2.2.1 (χP : Aut (P )→ K1(R)). Let P be a f.g. projective R-module. We construct
a characteristic map

χP : Aut (P ) −→ K1(R).

For each Q ∈ Proj(R) and n ∈ N such that P ⊕Q ∼= Rn via a map θ : P ⊕Q→ Rn, we get a map

χθ,Q,n : Aut (P ) −→ K1(R)
ϕ 7−→ [θ ◦ (ϕ⊕ idQ) ◦ θ−1]

We first show that χθ,Q,n is independent of θ if n and Q are fixed. Indeed, it is immediate to see
that if we take θ′ : P ⊕ Q → Rn a different isomorphism, then χθ,Q,n and χθ′,Q,n are conjugates
by an θ ◦ θ′−1 ∈ GLn(R). Thus, in K1(R), χθ,Q,n determines a unique class for each ϕ ∈ Aut (P ),
independent of θ. We may thus write

χQ,n : Aut (P ) −→ K1(R).

Next we show that χQ⊕Rk,n+k = χQ,n, that is, χ is stable. Indeed, this is immediate as the image
of the above maps factor through GL(R).

Now suppose we have an isomorphism

P ⊕Q′ ∼= Rm

where m > n. As P ⊕Q ∼= Rn, so we get P ⊕ (Q⊕Rm) ∼= Rm+n ∼= P ⊕ (Q′ ⊕Rn). Thus we get

Q⊕Rm+k ∼= Q′ ⊕Rn+k.

Hence by previous, we have χQ,n = χQ⊕Rm+k,m+n+k = χQ′⊕Rn+k,m+n+k = χQ′,m, as required.

Definition 17.2.2.2 (Characteristic map). Let R be a ring and P ∈ Proj(R). Then the map χP :
Aut (P )→ K1(R) constructed in Construction 17.2.2.1 will be called the characteristic map of P .
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We now state a classical theorem of Bass, which shows the real intent behind defining K1(R).

Theorem 17.2.2.3 (Bass). LetR be a ring and denote by tProj(R)∼= to be the filtered category whose objects
are isomorphism classes of f.g. projective R-modules and an arrow P → P ′ is an isomorphism class of Q
such that P ⊕Q ∼= P ′. Then,

K1(R) ∼= lim−→
P∈tProj(R)∼=

Aut (P )
[Aut (P ),Aut (P )] .

Proof. Note that the mapping P 7→ Aut(P )
[Aut(P ),Aut(P )] is a functor tProj(R)∼= → Ab where for P → P ′

given by θ : P ⊕Q
∼=→ P ′, the functor maps it to the mapping

Aut (P )
[Aut (P ),Aut (P )] −→

Aut (P ′)
[Aut (P ′),Aut (P ′)]

ϕ̄ 7−→ θ ◦ (ϕ⊕ idQ) ◦ θ−1.

It can be shown that tProj(R)∼= is a filtered category5. As we have

K1(R) =
GL(R)

[GL(R),GL(R)]
∼= lim−→

n

GLn(R)
[GLn(R),GLn(R)]

and free modules are cofinal in the filtered category tProj(R)∼=, thus we get that

lim−→
n

GLn(R)
[GLn(R),GLn(R)]

∼= lim−→
P∈tProj(R)∼=

Aut (P )
[Aut (P ),Aut (P )] ,

as required.

Remark 17.2.2.4. The proof of Theorem 17.2.2.3 shows that for any f.g. projective module P , the
characteristic map

χP : Aut (P )→ K1(R)

are the maps into the filtered limit lim−→P

Aut(P )
[Aut(P ),Aut(P )] . Indeed, this is evident from the functor

P 7→ Aut(P )
[Aut(P ),Aut(P )] and Construction 17.2.2.1. In particular the following diagram commutes:

K1(R) lim−→Q∈tProj(R)∼=
Aut(Q)

[Aut(Q),Aut(Q)]

Aut (P ) Aut(P )
[Aut(P ),Aut(P )]

∼=

χP

π

ιP .

5For two objects P, P ′, we have P ⊕Q ∼= Rn and P ′ ⊕Q′ ∼= Rm. Consequently, we have P ⊕Q⊕Rm ∼= Rn+m and
P ′ ⊕ Q′ ⊕ Rn ∼= Rn+m. For existence of coequalizers, observe that for P ⊕ Q1 ∼= P ′ ∼= P ⊕ Q2, we get [Q1] = [Q2] in
K0(R). By Lemma 17.1.1.2, we deduce that Q1 ⊕Rn ∼= Q2 ⊕Rn. Thus, the map

P ′ Rn

−→ P ′ ⊕Rn

coequalizes both Q1 and Q2, as required.
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Generators for SK1(R)

Recall by Construction 17.2.1.2 that we have a decomposition

K1(R) ∼= R× ⊕ SK1(R)

where SK1(R) = Ker (det : K1(R)→ R×). Hence, to understand K1(R), it is sufficient to under-
stand the subgroup SK1(R). Indeed, in certain cases on R, there is a class of elements of SK1(R)
which is known to be its generating set.

Definition 17.2.2.5 (Mennicke symbols). Let R be a commutative ring. A Mennicke symbol is an
element of SK1(R) which is determined by following. Consider a, b ∈ R such that aR + bR = R.
Thus there exists c, d ∈ R such that ad− bc = 1. The matrixï

a b
c d

ò
∈ SL2(R)

is such that its class in K1(R) is in Ker (det : K1(R)→ R×) = SK1(R). Thus we denote the class
of the above matrix in SK1(R) as [a, b], which we call the Mennicke symbol correspoding to a, b.

The obvious observation here is that Mennicke symbol [a, b] doesn’t depend on c, d.

Lemma 17.2.2.6. Let R be a commutative ring and let aR + bR = R such that ad − bc = 1. Then the
Mennicke symbol [a, b] is independent of c, d ∈ R.

Proof. Indeed, we need only observe that if ad− bc = 1 = ad′ − bc′, then we haveï
a b
c d

ò
·
ï
a b
c′ d′

ò−1
=
ï
a b
c d

ò
·
ï
d′ −b
−c′ a

ò
=
ï

1 0
cd′ − dc′ 1

ò
∈ E2(R)

and thus the class of ï
a b
c d

ò
·
ï
a b
c′ d′

ò−1
in K1(R) is contained in E(R) = [GL(R),GL(R)] (Theorem 17.2.1.8). Hence in K1(R) both the
classes are same and is in SK1(R).

The main point of Mennicke symbols is the following result which clarifies the dimension 1
case.

Theorem 17.2.2.7. Let R be a commutative noetherian ring of dimension 1.
1. Mennicke symbols generates SK1(R).
2. If κ(m) is a finite field for all m ∈ mSpec (R), then every element of SK1(R) has torsion.

A famous result calculates the SK1(OF ) for a number field F/Q.

Theorem 17.2.2.8 (Serre, Milnor, Bass). Let K/Q be a number field. Then,

SK1(OF ) = 0.
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17.3 K2

We discuss some basic results about K2, relegating the more homological discussions about it to
higher K-theory.

Definition 17.3.0.1 (Steinberg group & K2). Recall that the nth-Steinberg group Stn(R) is the quo-
tient of the free group generated by the symbols x(n)ij (λ), λ ∈ R and 1 ≤ i ̸= j ≤ n by the subgroup
generated by the known relations which elementary n× n-matrices of type 1 satisfies:

x
(n)
ij (λ) · x(n)ij (µ) · x(n)ij (λ+ µ)−1

[x(n)ij (λ), x(n)kl (µ)], i ̸= l, j ̸= k

[x(n)ij (λ), x(n)jk (µ)] · x(n)ik (λµ)−1, i ̸= k.

We call these the Steinberg relations. Consider the group homomorphism for each n ∈ N

Stn(R) −→ Stn+1(R)

x
(n)
ij (λ) 7−→ x

(n+1)
ij (λ).

The Steinberg group is defined to be the direct limit

St(R) = lim−→
n

Stn(R)

where we denote the class of x(n)ij (λ) as xij(λ). As for each n ∈ N, we have a surjective group
homomorphism

φn : Stn(R) −→ En(R)

x
(n)
ij (λ) 7−→ e

(n)
ij (λ),

thus we get a unique surjective map

φ : St(R) −→ E(R).

We thus define

K2(R) := Ker (φ : St(R)→ E(R)).

Thus, we have

E(R) ∼=
St(R)
K2(R)

.

17.3.1 Central extensions & K2(R)
Our goal is to show the following theorem, which, amongst other things, says that K2(R) is an
abelian group.
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Theorem 17.3.1.1. Let R be a ring. Then the extension

1→ K2(R)→ St(R) φ→ E(R)→ 1

exhibits St(R) as a universal central extension of E(R). Moreover, K2(R) is the center of St(R).

Proof. In order to show that this extension is central, we first need to show that K2(R) is in the
center of St(R). In-fact we see that K2(R) is the center of St(R). Indeed, as the center of E(R) is
1 and the center of St(R) is contained in the inverse image of the center of E(R), thus center of
St(R) ⊆ K2(R). Conversely, we need to show that K2(R) is in center of St(R).

Pick an element α ∈ K2(R). We wish to show that every element of St(R) commutes with α.
As every element of St(R) is a word in elements xij(λ), it suffices to show that [α, xij(λ)] = 1.
Write xij(λ) as the class of some element x(n)ij (λ) ∈ Stn(R). By the third relation of Stn(R), we can
write

x
(n)
ij (λ) = [x(n)in (λ), x(n)nj (1)]

in Stn(R). A little algebra makes it clear that it is sufficient to show that [α, xin(λ)] = 1 =
[α, xnj(λ)]. We hence reduce to showing that

[α, xin(λ)] = 1

for any 1 ≤ i ≤ n− 1, n ∈ N and λ ∈ R.
We now exploit the fact that α ∈ K2(R) = Ker (φ) by using the map φ : St(R) → E(R).

Consider the subgroup

Gn = ⟨xin(λ) | 1 ≤ i ≤ n− 1, λ ∈ R⟩ ≤ St(R).

We wish to understand the structure of Gn. Pick two elements xin(λ), xjn(µ) ∈ Gn. Observe that
as i ̸= n and n ̸= j, we deduce by second relation that

xin(λ) · xjn(µ) = xjn(µ) · xin(λ),

that is, Gn is commutative. Hence, any arbitrary element of Gn is of the form β = x1n(λ1) · · · · ·
xn−1n(λn−1).

We thus see that φ|Gn : Gn → E(R) is injective as if β ∈ Gn as above goes to 1 in E(R), then

e1n(λ1) · · · · · en−1n(λn−1) =


1 0 · · · λ1
0 1 · · · λ2
...

...
. . .

...
0 0 · · · 1

 = 1.

It follows that λi = 0 and thus xin(λi) = 1, which further implies that β = 1, as required. Now
as shown above, the group Gn is commutative and φ|Gn is injective. We first claim that α is a
normalizer of Gn, that is αGn = Gnα. Indeed, α can be expressed as a product xij(µ). Using the
Steinberg relations, we first easily see that (recall that xij(µ)−1 = xij(−µ))

xij(µ) · xkn(λ) =
®
xkn(λ)xij(µ) if j ̸= k

xin(λµ)xkn(λ)xij(µ) if j = k.
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Then, for any β ∈ Gn, we have α · β = β′ · α for some β′ ∈ Gn. Applying the injective map ϕ|Gn ,
we see that 1 · ϕ(β) = ϕ(β′) · 1, thus β = β′. This shows that α is actually a centralizer of Gn, thus,
every element of Gn commutes with α, as required. This shows that the extension is central and
K2(R) is the center of St(R).

We now show that the extension is moreover universal central. By Theorem 6.9.7 of [WeibHA]
(Recognition principle), it suffices to prove that St(R) is perfect and every central extension of
St(R) splits. The fact that St(R) is perfect follows immediately from the third Steinberg relation.
Thus we reduce to showing that every central extension of St(R) splits. This is the major part of
the proof of Theorem 5.10 of [MilnKTh].

Corollary 17.3.1.2. Let R be a ring. Then

K2(R) ∼= H2(E(R);Z).

Proof. Follows from Theorem 17.3.1.1 and Theorem 6.9.5 of [WeibHA].

17.3.2 G-representations of K2(F )
Observe that K2(R) is an abelian group since by Theorem 17.3.1.1 it is the center of St(R). Hence,
one may try to find a presentation of K2(R) for any ring R. Matsumoto gives us one such presen-
tation for K2 of a field. This has intricate connections to algebra.

Theorem 17.3.2.1 (Matsumoto). Let F be a field. There is a presentation of K2(F ) (multiplicatively
written) as in

1→Mats(F )→ Z⊕F
××F× → K2(F )→ 1

where Mats(F ) is the subgroup of Z⊕F××F× generated by the following relations for ai, bi, a, b ∈ F×

(a1a2, b) = (a1, b) · (a1, b)
(a, b) = (b, a)−1

(a, 1− a) = 1, a ̸= 1.

We denote the class of (a, b) in K2(F ) by {a, b}. We call the above relations Matsumoto’s relations. Thus
{a, b} satisfies Matsumoto’s relations in K2(F ).

The important technique here is that Matsumoto’s theorem allows us to give an equivalence
between G-representations of K2(F ) and functions F× × F× → G of certain type, for any abelian
group G.

Definition 17.3.2.2 (Symbols on a field). Let F be a field and G be an abelian group. A G-valued
symbol over F is a G-valued function F× × F×, denoted

(, ) : F× × F× → G

which satisfies the Matsumoto relations verbatim as stated in Theorem 17.3.2.1. We denote by
SymbG(F ) the set of all symbols of F over G.
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Here’s the equivalence.

Theorem 17.3.2.3. Let F be a field and G be an abelian group. Then there is a bijection

HomAb (K2(F ), G) ∼= SymbG(F ).

Proof. Define the bijection as

HomAb (K2(F ), G)←→ SymbG(F )
ϕ 7−→ (a, b) := ϕ({a, b})
ϕ̃←− [ (, )s

where ϕ̃ : K2(F ) → G is obtained by extending the group homomorphism Z⊕F××F× → G given
by (a, b) 7→ (a, b)s to the unique map ϕ̃ : K2(F ) → G via universal property of cokernels ((, )s
satsifies Matsumoto’s relations) in the presentation of Theorem 17.3.2.1.

Using this we can immediately find K2 of a finite field.

Proposition 17.3.2.4. Let Fq be a finite field of characteristic p > 0. Then

K2(Fq) = 1.

Proof. By Theorem 17.3.2.3 and Yoneda’s lemma, it suffices to show that for any abelian group G,
SymbG(Fq) = 1. Let (, )s ∈ SymbG(Fq). As F×q is a finite cyclic group, therefore let g ∈ F×q be its
generator. Then, any element in F×q × F×q is of the form (gn, gm). By Matsumoto’s relations we
deduce that (gn, gm)s = (g, gm)ns = (gm, g)−ns = (g, g)−nms . Moreover, as (g, g) = (g, g)−1, therefore
(g, g) is an element of order atmost 2 in G. Let us assume that order of (g, g) is precisely 2.

Note that (−, g) : F×q → G is a group homomorphism by first Matsumoto’s relation. Thus
1 = (1, g) = (g|g|, g) = (g, g)|g|, so we conclude that 2| |g| = q − 1. If p = 2, then q − 1 is odd and
thus we have a contradiction. Thus, we may assume p > 2.

We wish to show that (g, g) = 1. To this end, we use the third Matsumoto’s relation. Note that
it suffices to show that for some k ∈ N odd, we have (g, g)k = 1. Writing k = nm, we see that
we need (gn, gm) = 1. Thus we reduce to showing that there exists h ∈ F×q − 1 such that h = gn,
1− h = gm and n,m are odd. To this end, observe that

F×q − 1 = {g, g2, g3, . . . , gq−2}.

Thus there are (q − 3)/2 squares of g and (q − 1)/2 non-squares of g in F×q − 1. Next, observe that
the map

F×q − 1 −→ F×q − 1
h 7−→ 1− h

is an injective map and since F×q is finite, thus is a bijection. Thus, if for all h ∈ F×q − 1 which is
non-square, 1−h is a square, then by the above bijection, there are atleast (q−1)/2 squares, which
is more than (q − 3)/2, a contradiction. Hence there is h such that it is a non-square and 1 − h is
also a non-square, as required. This completes the proof.
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17.3.3 p-divisibility of K2(F )
Recall that a multiplicatively written abelian group G is a p-divisible group if for all g ∈ G, there
is h ∈ G such that hp = g. It is uniquely p-divisible if G moreover has no p-torsion element, i.e. no
non-trivial element of G has order p. It is divisible if G is p-divisible for each prime p. Finally G is
uniquely divisible if it is uniquely p-divisible for each prime p.

Observe that a uniquely p-divisible group G has a unique pth-root for every element in G.
Thus, a uniquely divisible group G has unique pth-root for every element and for every prime p.
We would like to show the following result.

Theorem 17.3.3.1 (Bass-Tate). Let F be a field and p be a prime such that every polynomial xp−a, a ∈ F
splits in F [x] into linear factors. Then K2(F ) is uniquely p-divisible.

Proof. We first have to show that K2(F ) is a p-divisible group. As the image of a p-divisible group
is p-divisible, it suffices to find a p-divisible group which surjects on K2(F ). Observe that F× is
a p-divisible group by the given hypothesis. It can be checked easily that tensor product of two
uniquely p-divisible groups is unqiuely p-divisible6. By Matsumoto’s theorem (Theorem 17.3.2.1),
we have a surjective homomorphism

ϕ : F× ⊗Z F
× → K2(F ).

This shows that K2(F ) is p-divisible. We need only show that K2(F ) has no p-torsion. To this end,
we first relate the unique p-divisibility of F× ⊗Z F

× to K2(F ). Note that we have the following
commutative diagram whose rows are exact:

0 F× ⊗Z F
× F× ⊗Z F

× 0

0 Tp(K2(F )) K2(F ) K2(F )

mp

ϕ ϕ

mp

.

By Snake lemma, we deduce the following exact sequence

0→ Ker (ϕ) mp→ Ker (ϕ)→ Tp(K2(F ))→ 0→ 0.

Thus, we have

Tp(K2(F )) ∼= Ker (ϕ)/Im (mp).

We wish to show that Tp(K2(F )) = 1. To this end, it suffices to thus show that Ker (ϕ) is p-
divisible.

Note that Ker (ϕ) is generated by elements of form a ⊗ 1 − a for a ∈ F× by Matsumoto’s
theorem (the other relations are trivially satisfied by Ker (ϕ) as it is a subgroup of F× ⊗Z F

×).
Thus, it suffices to show that for any a ∈ F×, the element a ⊗ (1 − a) is a multiple of p of some
other element in Ker (ϕ). By hypothesis, we have

xp − a =
∏
i

(x− bi)

6Let G,H be two uniquely p-divisible groups. Consider the isomorphism mp : G → G. Tensoring 0 → 0 → G
mp→

G → 0 by H , we get 0⊗H → G⊗H
mp⊗id
→ G⊗H → 0 is exact. As 0⊗H = 0, thus mp ⊗ id is an isomorphism.
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for bi ∈ F×. It follows that 1− a =
∏
i(1− bi) and since the notation for tensor product is additive,

so we get

a⊗ (1− a) =
∑
i

a⊗ (1− bi) =
∑
i

bpj ⊗ (1− bi) = p
∑
i

bj ⊗ (1− bi).

As
∑
i bj ⊗ (1− bi) ∈ Ker (ϕ) as it is a sum of generators of it, hence this completes the proof.

We have two immediate corollaries.

Corollary 17.3.3.2. Let F be a field.
1. If F is algebraically closed, then K2(F ) is uniquely divisible.
2. If F is perfect of characteristic p > 0, then K2(F ) is uniquely p-divisible.

Proof. Both follows immediately from Theorem 17.3.3.1. For the latter, observe that by perfection,
for each a ∈ F×, there is a b ∈ F× such that bp = a and thus xp − a = (x − b)p by algebra in
characteristic p > 0.

17.3.4 Brauer group & Galois symbol

Brauer group is another subtle invariant of a field. Its main uses are in a) algebraic geometry,
where it classifies certain type of projective varieties over a field, and in b) algebraic number
theory where it is used to construct the Hasse invariant.

We will here construct a representation of K2(F ) for certain fields in the Brauer group of F ,
denoted Br(F ). For that, we first study a generalization of matrix algebras, central simple algebras
(CSA) over F . Recall A is a CSA over F if A is a finite dimensional associative unital algebra
over F which is simple and whose center is exactly F . The following basic observations is all we
require of them.

Proposition 17.3.4.1. Let F be a field.
1. Mn(F ) is a central simple algebra over F .
2. If A,B are two central simple algebras over F , then so is A⊗F B.

Proof. 1. The center of Mn(F ) is the diagonal matrices diag(λ, λ, . . . , λ) for λ ∈ F×. This is im-
mediate by considering elementary matrices. The fact that Mn(F ) is simple can be seen by Smith
normal form and performing elementary row operations together amongst others to complete the
diagonal with non-zero entries.

2. Observe that the map K → A ⊗K B mapping k 7→ k ⊗ 1 is injective. We first show central-
ity of A⊗F B. Let Z be the center of A⊗F B and x =

∑
i ai ⊗ bi ∈ Z. We wish to show that x ∈ K.

Indeed, consider a ∈ A. We have (a⊗ 1) · x = x · (a⊗ 1). This yields∑
i

(aia− aai)⊗ bi = 0.

Write aia − aai =
∑
k ckmk where {mk} forms a basis of A. We may assume that {bi} is a basis of

B. It follows that
∑
i,k ck(mk⊗ bi) = 0. As {mk⊗ bi}k,i forms a K-basis of A⊗K B, therefore ck = 0

for all k. It follows at once that aia = aai. Hence ai ∈ K for all i. Similarly, bi ∈ K for all i. This
shows that x ∈ K.
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Next we show simplicity of A ⊗F B. Suppose 0 ̸= I ≤ A ⊗F B is a two-sided non-zero ideal.
Let x =

∑
i ai ⊗ bi ∈ I . As the two-sided ideal generated by b1 is B by simplicity of B, therefore

we have b′, b′′ ∈ B such that b′b1b′′ = 1. Similarly, for a2 ∈ A we have a′a2a′′ = 1. We thus have
that x · (1 ⊗ b) − (1 ⊗ b) · x is an element in I which has length strictly smaller than n. We may
thus put minimality hypothesis on n and hence deduce that x · (1⊗ b) = (1⊗ b) · x for each b ∈ B.
Similarly, we may get that x · (a⊗ 1)− (a⊗ 1) · x for each a ∈ A. Now, any element of A⊗F B is
of form

∑
i(ai ⊗ 1) · (1⊗ bi). It follows that x is in the center of A⊗F B which by above is F . This

shows that x ∈ I is a unit of A⊗F B, hence I is trivial.

Definition 17.3.4.2 (Brauer group of a field). Let F be a field. The Brauer group of F is defined to
be quotient of the free abelian group generated by isomorphism classes of central simple algebras
by the subgroup generated by the relations

[A⊗F B] = [A] · [B]
[Mn(F )] = 1.

We denote the abelian group by Br(F ). We denote the subgroup of n-torsion elements of Br(F ) by
n Br(F ) = {[A] ∈ Br(F ) | [A]n = 1}.

We will construct a group homomorphism K2(F ) → Br(F ). The map will take a Matsumoto
symbol {a, b} to a cyclic algebra, which will be a central simple algebra over F .

Definition 17.3.4.3 (Cyclic algebra). Let F be a field containing a primitive nth-root of unity ζ.
Fix two a, b ∈ F×. The cyclic algebra generated by a, b is the F -algebra Aζ(a, b) generated by two
elements x, y subject to the following relations:

xn = a · 1
yn = b · 1
yx = ζxy.

The following are few important properties of cyclic algebras.

Proposition 17.3.4.4. Let F be a field containing a primitive nth-root of unity ζ and a, b ∈ F×. Denote
A = Aζ(a, b) to be the cyclic algebra generated by a and b.

1. A is an n2-dimensional F -algebra.
2. A is a central F -algebra.
3. A is a simple F -algebra.

Proof. 1. Take any element z ∈ A. Then z can be written as a sum of monomials xiyj where
1 ≤ i, j ≤ n− 1. As each xiyj is independent, therefore A has dimension n2 over F , as required.

2. Let Z be the center of A. It contains F . Let z ∈ Z. We wish to show that z ∈ F . Indeed,
we may write

z =
∑

0≤i,j≤n−1
cijx

iyj
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where note that the terms xiyj are independent. As z is in the center, we must have z · x = x · z in
particular. Expanding this, one yields,∑

1≤i,j
cij(ζj − 1)xi+1yj = 0.

We hence deduce that cij(ζj − 1) = 0 for all 1 ≤ i, j ≤ n − 1. As ζ is primitive and j ≤ n − 1, it
follows at once that ζj − 1 ̸= 0 and thus cij = 0 for all 1 ≤ i, j ≤ n − 1. We hence deduce that
z = c00 ∈ F , as required.

3. Pick any non-zero ideal I ≤ A and let z ∈ I be of form z =
∑m
k=0 ckx

ikyjk of shortest length. We
will show that ck = 0 for all k possibly except if ik, jk = 0. Indeed, we may multiply z by xn−i0 on
left and yn−j0 on right to get the first term of xn−i0zyn−j0 as c0ab. We may multiply by a−1b−1 to
further get the first term to be c0. Now, the difference z̃ = a−1b−1xn−i0zyn−j0−z is zero as it is in I
and has length strictly smaller thanm. By repeating the same on z̃, one can show coefficients of all
terms of z̃ are 0, from which we yield that ck = 0 for all k. Since in z̃, the term of z corresponding
to ik, jk = 0 is absent, hence ck = 0 for all k possibly except if ik, jk = 0, as required.

An important property of cyclic algebra is that they are Brauer-torsion.

Proposition 17.3.4.5. Let F be a field containing a primitive nth-root of unity ζ and a, b ∈ F×. Denote
A = Aζ(a, b) to be the cyclic algebra generated by a and b. Then, A⊗n is isomorphic to a matrix algebra
over F .

We now show the existence of a symbol for fields with enough roots of unity.

Theorem 17.3.4.6 (Galois symbol-1). Let F be a field with a primitive nth-root of unity ζ. Then the
following map

ϕ : K2(F ) −→ Br(F )
{a, b} 7−→ Aζ(a, b)

is a homomorphism whose image is in n Br(F ). We call this map the nth power norm residue symbol for F .

We will later do Merkurjev-Suslin theorem, which will tell us that the above map ϕ̃ is an
isomorphism. Thus, all n-torsion elements of Br(F ) are precisely the classes of cyclic algebras. We
also construct Galois symbols for more general fields in §17.5.1.

Proof. Consider the function F× × F× → Br(F ) given by (a, b) 7→ [Aζ(a, b)]. To get a map from
K2(F ), by Matsumoto’s theorem (Theorem 17.3.2.1), it suffices to show that the above map van-
ishes for Matsumoto’s relations. To see that [Aζ(α, β)] · [Aζ(α, γ)] = [Aζ(α, βγ)], we first observe
the isomorphismAζ(α, β)⊗Aζ(α, γ) ∼=Mn(Aζ(α, βγ)) (Ex. 6.12, pp 266 of [WeibHA]) and observe
that since Mn(A) ∼= A ⊗Mn(F ), thus, [Mn(A)] = [A] in Br(F ). This shows the first relation. We
next wish to show that Aζ(a, 1− a) ∼=Mn(F ) for all a ̸= 1 in F×. By the Lemma 17.3.4.7 below, we
reduce to showing that Aζ(a, 1 − a) contains an n-torsion element. Indeed, as xn = a, yn = 1 − a
and since (x+ y)n = xn + yn = a+ (1− a) = 17, we thus we win.

7for any cyclic algebra Aζ(a, b), the equation (x+ y)n = a+ b holds. This can be checked by a calculation involving
binomal theorem and then showing that the inner term sums to 0 by multiplying it on left by y and on right by x and
observing the resultant pattern.
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Lemma 17.3.4.7. Let F be a field containing a primitive nth-root of unity ζ. If A is a center simple algebra
over F of dimension n2 such that there exists z ∈ A not in the center for which zn = 1, then A ∼=Mn(F ).

Proof. Consider the subalgebra of A generated by z, denoted F [z]. As zn = 1, therefore we have

F [z] ∼=
F [x]
⟨xn − 1⟩ .

As xn − 1
∏n−1
i=0 (x − ζi) in F [x] as F contains a primitive nth-root of unity ζ, hence it follows that

the quotient

F [z] ∼=
F [x]
⟨xn − 1⟩

∼=
n−1∏
i=0

F [x]
⟨x− ζi⟩

by Chinese remainder theorem as the ideals ⟨x − ζi⟩ are comaximal for i ̸= j. Consequently, we
have a splitting of the algebra F [z] as:

F [z] ∼= F × · · · × F︸ ︷︷ ︸
n−times

As A ⊇ F [z], thus A has n-idempotents, which further induces a splitting of A into n-subalgebra
(ei are the idempotents of A):

A = e1A× · · · × enA.

By Wedderburn-Artin theorem, every finite dimensional simple algebra B is isomorphic to Mk(S)
for some division ring S and B can atmost split into k-many right ideals. Consequently, A ∼=
Mk(S) for some division algebra S overF and n ≤ k. As dimF A = n2 = (dimF S)·(dimSMk(S)) =
k2 · dimF S, therefore we deduce that k = n and dimF S = 1, yielding A ∼=Mn(F ), as needed.
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17.4 Higher K-theory of rings-I

We now wish to define higher K-groups for an associative ring R with 1. To this end, we will
construct a space whose lower homotopy groups will agree with the K1 and K2 as defined above,
and will then define higherK-groups to be the higher homotopy groups of this space. TheK0 case
will need some special attention. We will require a lot of topological information to thoroughly
discuss the definitions and their motivations, for which we may often refer to Foundational Ho-
motopy Theory, Chapter 5.

We now make a series of observations to motivate the definition of what we need.
• Let R be a ring. The classifying space BGL(R) of GL(R) is such that

π1(BGL(R)) ∼= GL(R)

and thus it has a perfect subgroup E(R) (Remark 17.2.1.10).
• Moreover, the homology of BGL(R) satisfies the following for any GL(R)-module M :

H•(BGL(R);M) ∼= H•(GL(R);M)

where on the right we have group homology of GL(R) with coefficients in M . We also know
that K1(R) ∼= H1(GL(R);Z) and K2(R) ∼= H2(E(R);Z) (Corollary 17.3.1.2). In particular, we
have

K1(R) ∼= H1(BGL(R);Z).

• As we have a natural quotient map

π : GL(R)→ GL(R)
E(R) = K1(R),

hence, we may ask whether there is a space X and a map

i : BGL(R)→ X

such that π1(X) ∼= K1(R) and the map

i∗ : π1(BGL(R))→ π1(X)

is exactly the quotient map π?
In such a scenario, π1(X) is abelian and hence by Hurewicz, we must have

K1(R) ∼= π1(X) ∼= H1(X;Z).

Since we also have a map

i∗ : H1(BGL(R);Z)→ H1(X;Z)

and by the previous observation H1(BGL(R);Z) ∼= K1(R), hence we have a map

i∗ : K1(R)→ K1(R).

We would naturally like this to be an isomorphism. Hence we may wonder whether X and
i : BGL(R)→ X can also be made such that

i∗ : H•(BGL(R);M)→ H•(X;M)

for any GL(R)-module M is an isomorphism?
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In conclusion, we want the following:

Construct a space X and map i : BGL(R)→ X such that (Q)
1. π1(X) ∼= K1(R),
2. i∗ : π1(BGL(R))→ π1(X) is the map π : GL(R) ↠ K1(R),
3. For all GL(R)-modules M , i∗ : H•(BGL(R);M)→ H•(X;M) is an isomorphism.

We call the above three requirements to be the (Q)-criterion. What Quillen found that the space X
can be constructed, but it will be well defined only upto homotopy equivalence (as the conditions
we want is only about the homotopy groups of X). Consequently, there are many ways to con-
struct X from BGL(R), all yielding homotopy equivalent spaces. We first discuss the definition of
BGL(R)+.

17.4.1 The homotopy type BGL(R)+

The definition of BGL(R)+ is not enlightening, in-fact the criterion (Q) is what we will call a
BGL(R)+.

Definition 17.4.1.1 (BGL(R)+). Let R be an associative ring with 1. A pair (X, i) of a CW-complex
X and map i : BGL(R) → X satisfying the (Q)-criterion above is called a model of BGL(R)+. For
a model X of BGL(R)+, we define the homotopy type of X to be the BGL(R)+. We will abuse the
notation and sometimes write BGL(R)+ as a model of BGL(R)+ as well!

Remark 17.4.1.2 (BGL(R)+ is defined upto homotopy). As the definition shows, the space BGL(R)+
is a homotopy type, not really a space. Of-course, we need to show that any two spaces X and Y
satisfying (Q)-criterion are homotopy equivalent. This will require some work.

From now on, as was the case earlier, we will assume all the rings are associative with 1.

Theorem 17.4.1.3 (Quillen). Let R be a ring. If X and Y are two models for BGL(R)+, then X ≃ Y ,
that is, they are homotopy equivalent.

This is proved later in Corollary 17.4.1.17. Before proving this, we first need to establish that
our definition of homotopy type BGL(R)+ actually does serve the purpose. That is, we wish to
show that π2(BGL(R)+) ∼= K2(R).

Theorem 17.4.1.4. Let R be a ring. Then

π2(BGL(R)+) ∼= K2(R).

This is proved in Theorem 17.4.1.8. We now embark on a small homotopical study of BGL(R)+,
to extract information about BGL(R)+ which will yield the results stated above.

We fix a model of BGL(R)+ and also call it BGL(R)+ in the following. Of-course, we have not
proved existence of a model yet, but we will do so soon, after realizing that indeed the homotopy
type BGL(R)+ works for our need.
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Acyclic fiber, acyclic maps

As the map i : BGL(R)→ BGL(R)+ is a quasi-isomorphism, thus it becomes a special map by the
following important theorem.

Theorem 17.4.1.5 (Acyclic fiber theorem). Let f : X → Y be a based map of connected CW-complexes.
Then the following are equivalent:

1. For all k ≥ 0, we have

f∗ : Hk(X;M)
∼=−→ Hk(Y ;M)

for every π1(Y )-module M8.
2. The homotopy fiber Ff of f is acyclic9.

Proof. (1. ⇒ 2.) By replacing X by the fibration replacement of f (see Construction 5.3.1.11),

we may assume that we have a fibration Ff
i→ X

f→ Y . Assume that π1(Y ) = 0, so that we
have a Serre spectral sequence E2

pq = Hp(Y ;Hq(Ff)) ⇒ Hp+q(X) and for the trivial fibration

pt.→ Y
id→ Y which gives another Serre spectral sequence ′E2

pq = Hp(Y ;Hq(pt.))⇒ Hp+q(Y ). We
have a commutative diagram:

Ff X Y

pt. Y Y

i f

f id

id

.

By comparison theorem (Proposition 5.13 of [HatchSSeq]), we deduce that Ff is acyclic. lt follows
that if Y is simply connected and f induces isomorphism on integral homology, then homotopy
fiber of f is acyclic.

Now suppose π1(Y ) ̸= 0. The main idea is to reduce to the simply connected case by going to
universal cover of Y . Indeed, if Ỹ is the universal cover of Y , then we have the following pullback
diagrams (by Lemma 5.2.1.2, we have that f̃ is a fibration):

F f̃ X ×Y Ỹ Ỹ

Ff X Y

⌟

f̃

⌟
p

f

.

Denote X̃ = X ×Y Ỹ . It then follows by maps constructed by unique path lifting that F f̃ ∼= Ff .
It thus suffices to show that F f̃ is acyclic. To this end, by above, we reduce to showing that we
have an isomorphism f̃∗ : Hk(X̃;Z) → Hk(Ỹ ;Z) for all k ≥ 0. This follows from the following
comutative square with vertical maps being isomorphisms:

Hk(X̃;Z) Hk(Ỹ ;Z)

Hk(X;Z[π1(Y )]) Hk(X;Z[π1(Y )])

f̃∗

∼= ∼=

f∗

.

8That is, M is a left Z[π1(Y )]-module.
9that is, Ff has homology of a point.
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As f∗ is an isomorphism by hypothesis, we win.

(2. ⇒ 1.) As before, we may assume that Ff i→ X
f→ Y is a fibration. Fix a π1(Y )-module

M . Observe that the E2-page of Serre spectral sequence E2
pq = Hp(Y ;Hq(Ff ;M))⇒ Hp+q(X;M)

is all 0 except possibly the bottom row (which consists of Hq(Y ;M)) since Hq(Ff ;M) = 0 forall
q ≥ 1 and H0(Ff ;M) = M by a simple use of universal coefficients theorem. It follows that E
collapses on the E2-page, so that Hn(X;M) ∼= Hn(Y ;M). In particular, this isomprhism comes
from f∗ as the above isomorphim is by the edge homomorphism which we know in Serre spectral
sequence is via the map f : X → Y (see Addendum 2, Theorem 5.3.2 of [WeibHA]).

Corollary 17.4.1.6. Let R be a ring. Then the homotopy fiber of i : BGL(R)→ BGL(R)+ is acyclic.

Proof. Follows from definition and Theorem 17.4.1.5.

Acyclicity is both homological and cohomological.

Lemma 17.4.1.7. Let f : X → Y be a map of connected spaces and π be an abelian group. If f∗ :
Hq(X;π) → Hq(Y ;π) is an isomorphism for all q ≥ 0, then f∗ : Hq(Y ;π) → Hq(X;π) is an isomor-
phism for all q ≥ 0.

Proof. By universal coefficient theorem for cohomology, we have the following commutative dia-
gram where rows are exact:

0 Ext1Z(Hn−1(X), π) Hn(X;π) Hom (Hn(X), π) 0

0 Ext1Z(Hn−1(Y ), π) Hn(Y ;π) Hom (Hn(Y ), π) 0

f∗ .

As the vertical arrows on left and right are induced by f∗ : Hq(X) → Hq(Y ) which is an isomor-
phism, therefore they are also isomorphisms. By 5-lemma, we conclude that f∗ is an isomorphism.

K2(R) & π2(BGL(R)+)

We may now see that indeed K2(R) ∼= π2(BGL(R)+)!

Theorem 17.4.1.8. Let R be a ring. Then

π2(BGL(R)+) ∼= H2(E(R);Z).

Proof. Main idea is to exhibit π2(BGL(R)+) in a universal central extension of E(R) as follows:

0→ π2(BGL(R)+)→??→ E(R)→ 1,

so that uniqueness of universal central extension would yield the proof together with Theorem
6.9.5 of [WeibHA].

We may employ the long exact sequence of homotopy groups associated to a map (see Corol-
lary 5.3.3.7). Indeed, we have the following part of a l.e.s:

π2(BGL(R))→ π2(BGL(R)+)→ π1(Fi)→ π1(BGL(R)) i∗→ π1(BGL(R)+)→ π0(Fi).
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As Fi is acyclic, therefore π0(Fi) = 0. As BGL(R) is K(GL(R), 1), therefore π2(BGL(R)) = 0.
Moreover, π1(BGL(R)) = GL(R), π1(BGL(R)+) = K1(R) and i∗ = π where π : GL(R) → GL(R)

E(R) ,
by definition.

It follows that we have the following s.e.s.:

0→ π2(BGL(R)+) ρ→ π1(Fi)→ GL(R) π→ K1(R)→ 0.

We then further deduce the following s.e.s.:

0→ π2(BGL(R)+) ρ→ π1(Fi)→ E(R)→ 1.

To complete the proof, we need only show that the above is a universal central extension of E(R).
To this end, we first have to show that image of ρ is in the center of π1(Fi). This follows from
Corollary IV.3.5 of [WhElem]. Finally we wish to see that the above is universal central. To this
end, by Recognition Criterion 6.9.7 of [WeibHA], it suffices to show that π1(Fi) is perfect and
every central extension of π1(Fi) splits. The former is true as Fi is acyclic, so H1(Fi) = 0 and
thus π1(Fi) is perfect. For the latter, by Corollary 6.9.9 of [WeibHA], it suffices to show that
H2(π1(Fi);Z) = 0. This follows from the Propsotioin 17.4.1.9 mentioned below.

Proposition 17.4.1.9. Let E be an acyclic space with fundamental group G. Then H2(G;Z) = 0.

Proof. Note that BG is a space with fundamental group G as well and moreover H2(BG;Z) ∼=
H2(G;Z). It hence suffices to show that H2(BG;Z) = 0. As BG is obtained by attaching cells to X ,
therefore we have a natural map f : E → BG which induces isomorphism on π1. By considering
the fibration replacement, we may assume f is a fibration and

Ff → E
f→ BG

a fibration sequence. Considering the Serre spectral sequence of this fibration, we obtain E2
pq =

Hp(BG;Hq(Ff)) ⇒ Hp+q(E) = 0. Consequently, we have E∞pq = 0 for all p, q except p, q = 0. An
immediate observation of relevant differentials yield that E∞00 = E2

00, from which it follows that
E2

00 = H0(BG;H0(Ff)) ∼= H0(E) = Z. As BG is path-connected, therefore H0(Ff) ∼= Z, showing
that Ff is path-connected. Another simple analysis of differentials at E2

20 yields that if E2
01 = 0,

then E∞20 = E2
20 = H2(BG;H0(Ff)) = H2(BG;Z), so that it will follow that H2(BG;Z) = 0, as

required. We thus reduce to showing that E2
01 = H0(BG;H1(Ff)) ∼= H1(Ff) is 0.

From the fibration long exact sequence obtained from f and the fact that πk(BG) = 0 for all
k ̸= 1, and π1(BG) = G, we deduce that that map i : Ff → E induces an isomorphism on πk for
all k ≥ 2 and moreover π0(Ff) = π1(Ff) = 0 as f∗ : π1(E) → G is an isomorphism. Thus, Ff
and Ẽ, the universal cover of E has same homotopy groups via the map Ff → E. One can then
show by unique lifting criterion that there is a map ĩ : Ff → Ẽ which is a weak equivalence. By
Whitehead’s theorem (Ff is a CW-complex as well), it follows that ĩ is a homotopy equivalence.
Hence H1(Ff) ∼= H1(Ẽ) and since π1(Ẽ) = 0, by Hurewicz, we have H1(Ẽ) = 0, as required. This
completes the proof.
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The +-construction & uniqueness

We next wish to prove Theorem 17.4.1.3. That is, any two models of BGL(R)+ are homotopy equiv-
alent. To this end, we first abstract out the necessary conditions from the definition of BGL(R)+.

Definition 17.4.1.10 (+-construction). LetX be a based connected CW-complex andG be a perfect
normal subgroup of π1(X). Then a map of CW-complexes f : X → Y is called a +-construction
on X w.r.t. G if f is acyclic and Ker (f∗ : π1(X)→ π1(Y )) = G.

Remark 17.4.1.11. Let f : X → Y be a +-construction w.r.t. P ≤ π1(X) perfect normal subgroup.

By homotopy long exact sequence corresponding to map Ff → X
f→ Y , we can immediately get

following exact sequence:

π1(Ff)→ π1(X) f∗→ π1(Y )→ π0(Ff).

By Theorem 17.4.1.5, Ff is acyclic and thus π0(Ff) = 0. Thus we have the exact sequence:

0→ G→ π1(X) f∗→ π1(Y )→ 0.

Construction 17.4.1.12 (The construction of X+). Let X be a based connected CW-complex and
G ≤ π1(X) a perfect normal subgroup. We construct an inclusion i : X → X+ which is a +-
construction of X w.r.t. G. To this end, the main strategy is as follows:

1. First attach 2-cells to X to kill G in π1(X).
2. Then attach 3-cells to remove the extra homology classes added by step 1.

Let us denote G in generators as follows:

G = ⟨gα | α ∈ I⟩.

As gα ∈ π1(X), therefore we may interpret them as loops

gα : S1 → X.

Now attach 2-cells to X along each of the gα:

X ′ ⨿αD2

X ⨿αS1

⌜
j0 i0

⨿αgα

. (A1)

We first claim that π1(X ′) is π1(X)/G via j0. Indeed, the map

j0∗ : π1(X) −→ π1(X ′)

is surjective since any element h : S1 → X ′ in π1(X ′) by cellular approximation theorem factors
through the inclusion j0. In particular, the 1-skeleton of X ′ is same as that of X . Consequently to
prove our claim, we need only show that Ker (j0∗) = G. Clearly, Ker (j0∗) ⊇ G by construction.
Furthermore, if k : S1 → X is null-homotopic in X ′, then k extends to k′ : D2 → X ′. By cellular
approximation, we may assume that k′ is a cellular map, so that k′ is mapping in the 2-skeleton of
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X ′. It follows at once that if k is not inG, then k (which we assume, by cellular approximation, that
it is in 1-skeleton of X) on composition with j0 gives a non-contractible loop as X ′ only trivializes
all loops in G, a contradiction.

This shows that

π1(X ′) = π1(X)/G.

To complete the proof, we have to now kill all "new" homology classes of X ′ with an arbitrary
choice of coefficient system L whose groups are isomorphic to L. To this end, we will attach 3-
cells to X ′ to obtain the space X+.

To illustrate the idea, suppose we have constructed X+ by attaching 3-cells to X ′. Our goal is
then to show that Hk(X+;L) ∼= Hk(X;L). We thus have a triplet (X+, X ′, X). By homology l.e.s.
for the pair (X+, X) , it suffices to show that

Hk(X+, X;L) = 0

for all k ≥ 0. Recall that the homology of pair (X+, X ′) with coefficient L is given by the homology
of complex L ⊗Z[π1(X)/G] C•(X̃+, X̂) where X̂ is the pullback of X̃+ along X → X+. It is thus

sufficient to show that C•(X̃+, X̂) is an acyclic complex (whose homology in every degree is 0).
As X̃+/X̂ will be a 3-dimensional CW-complex with no 1-cells, it is thus sufficient to show that
the differential

d : C3(X̃+, X̂)→ C2(X̃+, X̂)

is an isomorphism.
Now since we have isomorphisms C3(X̃+, X̂) ∼= C3(X̃+, X̃ ′) ∼= H3(X̃+, X̃ ′) and C2(X̃+, X̂) ∼=

C2(X̃ ′, X̂) ∼= H2(X̃ ′, X̂) by the fact that cells of universal cover are obtained by lifting, therefore
we have to show that the boundary map obtained by the triplet l.e.s. for (X̃+, X̃ ′, X̂) is an isomor-
phism. This is how we construct X+ and then show that for this construction the above actually
holds.

In order to construct X+, we need maps S2 → X ′ through which we can attach 3-cells. In
particular, these are elements of π2(X ′). Consider the following pullback square

X̂ X̃ ′

X X ′

⌟
π

j0

where X̃ ′ → X ′ is the universal cover. As pullback of covering is a covering, thus the map X̂ → X
is a covering. Now, it is clear that X̂ = π−1(X), thus the inclusion X̂ ↪→ X̃ ′ is also induced by
attaching 2-cells to X̂ . It follows that π1(X̂) ∼= G.

Next, observe that in the homology l.e.s. of (X̃ ′, X̂), we get the following isomorphism by
Hurewicz (as X̃ ′ is 1-connected)

π2(X̃ ′)
∼=−→ H2(X̃ ′)

j∗−→ H2(X̃ ′, X̂) −→ H1(X̂).
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Again, by Hurewicz, we have

H1(X̂) ∼= π1(X̂)ab = Gab = 0

as G is perfect. Hence the above sequence becomes

π2(X̃ ′)
∼=−→ H2(X̃ ′)

j∗
↠ H2(X̃ ′, X̂).

Using the above, we have a surjection π2(X̃ ′) ↠ H2(X̃ ′, X̂). For each homology class [cβ] ∈
H2(X̃ ′, X̂) in a fixed generating set, choose one and only element in the fiber [h̃β] ∈ π2(X̃ ′). We
thus have a collection of maps {h̃β : S2 → X̃ ′}β . Composing them with π : X̃ ′ → X ′ yields maps
{hβ : S2 → X ′}β . We use these maps to attach 3-cells to X ′. Indeed, consider the pushout space:

X+ ⨿βD3

X ′ ⨿βS2

⌜

⨿βdβ

k0

⨿βhβ

. (A2)

We thus have the following inclusions of subcomplexes of X+:

X
j0
↪→ X ′

k0
↪→ X+.

We again pass to universal cover of X+ in order and take pullback along X ′ ↪→ X+ to have better
algebraic control via Hurewicz:

X̂ ′ X̃+

X ′ X+

⌟
π

k0

.

But π1(X̂ ′) = 0 since k0∗ is an isomorphism on π1 and π1(X̃+) = 0. Hence, we deduce that

X̂ ′ ∼= X̃ ′,

that is, X̂ ′ is the universal cover of X ′.
By naturality of Hurewicz, we have a map between the long exact sequences of homotopy

groups induced by the map X̂ ′ ↪→ X̃+ to that of homology groups

· · · πn+1(X̃+, X̂ ′) πn(X̂ ′) πn(X̃+) πn(X̃+, X̂ ′) · · ·

· · · Hn+1(X̃+, X̂ ′) Hn(X̂ ′) Hn(X̃+) Hn(X̃+, X̂ ′) · · ·

.

For n = 3, we get the following sequence from the above

π3(X̃+, X̃ ′) π2(X̃ ′)

H3(X̃+, X̃ ′) H2(X̃ ′) H2(X̃ ′, X̂)

∼=

∂̃ j∗

.
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We claim that j∗ ◦ ∂̃ is an isomorphism. Note that this is the boundary map of cellular complex.
Indeed, observe that H3(X̃+, X̃ ′) is a free abelian group generated by the lift of 3-cells attached by
h̃β . We thus need only show that j∗◦∂̃ maps this bijectively onto the generators ofH2(X̃ ′, X̂) which
we know are [cβ]. We know that the lifted map h̃β : S2 → X̃ ′ determines an element in π3(X̃+, X̃ ′)
by definition of relative homotopy, whose image in π2(‹X ′) is exactly [h̃β]. Moreover, the class
determined by h̃β in π3(X̃+, X̃ ′), under the Hurewicz map, determines a class [lβ] ∈ H3(X̃+, X̃ ′).
By commutativity of above, it follows that j∗ ◦ ∂̃ maps [lβ] 7→ [cβ]. As for each generator [cβ] ∈
H2(X̃ ′, X̂), the element [lβ] is unique by construction, we get that j∗ ◦ ∂̃ is an isomorphism, as
required.

Remark 17.4.1.13. While it is rarely that we will use the explicit construction above, it is still good
to keep in mind the precise way in which we found the 3-cells to attach to X ′ to get X+. In
particular, the attaching steps (A1) and (A2) are good to keep in mind.

Example 17.4.1.14 (+-construction of homology spheres). LetX be a based connected CW-complex
which is a homology n-sphere for n > 1 so that π1(X) is perfect. For P = π1(X), we claim that
any +-construction of X w.r.t. P , f : X → X+, is such that Sn ≃ X+.

Indeed, observe that π1(X) is perfect as X is a homology n-sphere. As f is a +-construction,
therefore π1(X+) is π1(X)/π1(X) = 0 by Remark 17.4.1.11. Moreover, X+ itself is a homology n-
sphere as f : X → X+ is acyclic. We now find a map g : Sn → X such that g is a weak equivalence,
so that by Whitehead’s theorem we will conclude that g is a homotopy equivalence, as required.

Indeed, observe that since X+ is 1-connected, therefore by Hurewicz’s theorem, we have
π2(X+) ∼= H2(X+). If n ̸= 2, then π2(X+) = 0 as X+ is also a homology n-sphere. By induc-
tion and using Hurewicz repeatedly, we get that πk(X+) = 0 for all 0 ≤ k ≤ n − 1, so that X+ is
n − 1-connected and thus by another application of Hurewicz, we have πn(X+) ∼= Hn(X+) = Z.
We thus have a non-trivial map g : Sn → X+ whose homology class is the generator. We finally
claim that g induces an isomorphism in integral homology, which will complete the proof by The-
orem 7.5.9 of [SpaAT] (Whitehead’s theorem). To this end, as X+ is a also a homology n-sphere,
thus we need only show that g∗ : Hn(Sn) = Z → Hn(X+) = Z takes [id] 7→ [g]. Indeed, we have
g∗([id]) = [g ◦ id] = [g] ∈ Hn(X+), as needed.

Proposition 17.4.1.15. Let i : X → X+ and j : Y → Y + be +-constructions w.r.t. perfect normal
subgroups G ≤ π1(X) and H ≤ π1(Y ). Then

i× j : X × Y → X+ × Y +

is a +-construction of X × Y w.r.t. the perfect normal subgroup G×H ≤ π1(X × Y ).

Proof. We first show acyclicity of i × j. By unravelling definitions, one reduces to showing that
F (i × j) ∼= F (i) × F (j) is acyclic. To this end, use Künneth formula to deduce that if X,Y are
acyclic, then so is X × Y . The fact that kernel of (i× j)∗ is G×H follows from (i× j)∗ = i∗ × j∗ :
π1(X)× π1(Y )→ π1(X+)× π1(Y +), as required.

The following universal property of Quillen tells us what we need, and then some more.
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Theorem 17.4.1.16 (Quillen). Let X be a CW-complex and P be a perfect normal subgroup of π1(X). Let
f : X → Y be a +-construction on X w.r.t. P . If g : X → Z is a map such that

P ⊆ Ker (g∗ : π1(X)→ π1(Z)),

then there exists a map h : Y → Z such that the following diagram of spaces commutes

Y Z

X

h

f
g

and h is unique upto homotopy.

An immediate corollary is what we seek.

Corollary 17.4.1.17 (Uniqueness of +-construction). LetX be a CW-complex and P be a perfect normal
subgroup of π1(X). If f : X → Y and g : X → Z are two +-constructions, then there is a homotopy
equivalence h : Y ≃→ Z.

Another important consequence is that we have maps in +-construction.

Lemma 17.4.1.18. Let X,Y be two connected CW-complexes and i : X → X+ and j : Y → Y + be
+-constructions w.r.t. perfect normal subgroups G ≤ π1(X) and H ≤ π1(Y ) respectively. If f : X → Y
is a map such that f∗ : π1(X)→ π1(Y ) maps G into H , then there exists a map f̃ : X+ → Y + unique
upto homotopy w.r.t. the commutativity of the following square of spaces:

X+ Y +

X Y

f̃

i

f

j .

Proof. The map j ◦ f on π1 takes G to 0, so by Theorem 17.4.1.16 gives the required map unique
upto homotopy.

We shall prove Theorem 17.4.1.16 by using obstruction theory as developed in [WhElem],
Chapter VI.

Proof of Theorem 17.4.1.16. Consider the based connected CW-complex X+ obtained by Construc-
tion 17.4.1.12. Let g : X → Z be a map such that

P ⊆ Ker (g∗ : π1(X)→ π1(Z)).

We wish to extend g to g̃ : X+ → Z. Consider the map θ : π1(X)/P → π1(Z) as in the triangle
below which exists by hypothesis on g∗:

π1(X)/P π1(Z)

π1(X)

θ

i∗ g∗
.
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We wish to show that g extends to g̃ : X+ → Z such that g̃∗ = θ. To this end, by obstruction theory,
it is sufficient to show that

Hq(X+, X;L) = 0

for all q ≥ 3 and all local coefficient systems L on X+. Fix a local coefficient system L with group
G. Note that we have

Hq(X+, X;L) ∼= Hq
Ä

HomZ[π1(X+)]
Ä
C•(X̃+, X̂), G

ää
where we have the following pullback of the universal cover of X+:

X̂ X̃+

X X+

⌟ .

Now note from the Construction 17.4.1.12 that

Ck(X̃+, X̂) = 0

for all k ̸= 2, 3 and d : C3(X̃+, X̂) → C2(X̃+, X̂) is an isomorphism. It follows at once that
Hq(X+, X;L) = 0 for all q ≥ 0, as required.

For uniqueness upto homotopy, obstruction theory further gives us a sufficient criterion that
H2(X+, X;L) = 0. Hence we are done. Moreover, by the long exact sequence of pairs for coho-
mology with local coefficients, we deduce that the map i : X ↪→ X+ induces isomorphism

i∗ : Hq(X+;L)→ Hq(X; i∗L),

that is, i : X → X+ is cohomologically acyclic as well. This shows the universal property for the
explicit construction. We now show that any +-construction onX w.r.t. P is homotopy equivalent
to the explicit one. This will then complete the proof.

Let f : X → Y be a +-construction w.r.t. P . Then by above there exists a map f̃ : X+ → Y as
in the following triangle

X+ Y

X

f̃

i
f

.

We claim that the map f̃ is a homotopy equivalence. By Whitehead’s theorem, it is sufficient to
show that f̃ is a weak-equivalence. Observe that as i and f are homologically acyclic, it follows at
once that f̃ is also acyclic. Moreover, f̃ induces isomorphism in fundamental groups. By acyclic
fiber theorem (Theorem 17.4.1.5), it follows that the homotopy fiber F f̃ is acyclic. We further claim
that F f̃ is 1-connected. Indeed, from the long exact sequence for homotopy groups for f̃ and that
f̃∗ : π1(X+) → π1(Y ) is an isomorphism, it follows that the map π1(F f̃) → π1(X+) is the zero
map. It suffices to show that the transgression π2(Y ) → π1(F f̃), which is surjective by exactness,
is the zero map as well. As F f̃ is acyclic, therefore π1(F f̃) is a perfect group. By above, it is also
abelian, and thus the zero group, as required.

Hence F f̃ is a 1-connected acyclic space, so that by Hurewicz’s theorem, all homotopy groups
of F f̃ are 0. By homotopy long exact sequence of f̃ , it follows that f̃ is a weak-equivalence, as
required. This also proves Corollary 17.4.1.17.
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K-theory space

We now finally define higher K-groups as follows:

Definition 17.4.1.19 (K-theory space & K-groups). Let R be a ring and let BGL(R)+ be as in
Definition 17.4.1.1. Then for all n ≥ 1, define

Kn(R) = πn(K(R))

where K(R) = K0(R) × BGL(R)+ and K0(R) has discrete topology. The space K(R) is called the
K-theory space of R.

We first have to show that πn(K(R)) is really independent of basepoints and that we are really
computing homotopy groups of BGL(R)+ only, not of something else.

Lemma 17.4.1.20. Let R be a ring and K(R) be the K-theory space of R.
1. π0(K(R)) = K0(R) in the usual sense.
2. πn(K(R)) = πn(BGL(R)+).

Proof. Picking any base point of K(R), the path component of that point is homeomorphic to
BGL(R)+, so the homotopy groups for different base points are all isomorphic.

We immediately have maps in K-theory space.

Proposition 17.4.1.21 (Maps in K-theory). Let f : R → S be a ring homomorphism of commutative
rings. Then there is an induced map

K(f) : K(R) −→ K(S)

unique upto homotopy w.r.t. commutativity of the following square:

K(R) K(S)

K0(R)× BGL(R) K0(S)× BGL(S)

K(f)

id×i

id×Bf

id×j .

We denote the maps in Kn-groups by

f∗ : Kn(R)→ Kn(S).

Proof. As f induces a group homomorphism f : GLp(R) → GLp(S) by taking a matrix A to f(A)
where f is applied on each entry and f(A) is invertible as product of matrices is a polynomial in
each entry. Taking direct limits both side yields map

f : GL(R)→ GL(S).

Applying B(−) yields a map

Bf : BGL(R)→ BGL(S)
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such that (Bf)∗ = f . Note that f maps E(R) into E(S). It follows by Lemma 17.4.1.18 that we
have a map

B̃f : BGL(R)+ → BGL(S)+

unique upto homotopy. As we already have a map f∗ : K0(R)→ K0(S) by Construction 17.1.1.4,
it follows we have a continuous map

K(f) : K(R) −→ K(S)

unique upto homotopy, as required.

An important property of BGL(R)+ which will be exploited later is that it has a homotopy
associative, unital and commutative operation.

Theorem 17.4.1.22 (H-spaces & BGL(R)+). LetR be a ring. Then BGL(R)+ is a homotopy commutative
H-group.

17.4.2 Cup product in K-theory

Construction 17.4.2.1 (Loday’s product). Let R,S be two rings. We wish to define a product (⊗
over Z)

Kp(R)⊗Kq(S) −→ Kp+q(R⊗ S).

Indeed, recall that we have a product on homotopy groups induced by smash product

πp(X)⊗ πq(Y ) −→ πp+q(X ∧ Y )

for any spaces X and Y . Hence it is sufficient to define a map

ψ : BGL(R)+ ∧ BGL(S)+ −→ BGL(R⊗ S)+.

This is the main content of Loday’s construction.
To construct ψ, we first construct a map

ϕ̃pq : BGLp(R)× BGLq(S) −→ BGLpq(R⊗ S)

as follows. Note we have a homomorphism

θpq : GLp(R)×GLq(S) −→ GLpq(R⊗ S)
(A,B) 7−→ A⊗B

where A ⊗ B is the usual tensor product of matrices (A and B represent a class in GL(R) and
GL(S) respectively). In more details, the map is given byÖa11 a12 · · ·

a21 a22 · · ·
...

...
. . .

 ,
b11 b12 · · ·
b21 b22 · · ·

...
...

. . .


è
7→

a11 ⊗ b11 a11 ⊗ b12 · · ·
a11 ⊗ b21 a11 ⊗ b22 · · ·

...
...

. . .

 .
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Now observe that θ maps E(R) × E(S) into E(R ⊗ S), and thus we get maps ϕpq and ϕ̃pq by
Theorem 17.4.1.16, unique upto homotopy, so that the following square commutes (see Propsition
17.4.1.15):

BGLp(R)+ × BGLq(S)+ BGLpq(R⊗ S)+

BGLp(R)× BGLq(S) BGLpq(R⊗ S)

ϕ̃pq

i×j

ϕpq

.

To get a map in BGLp(R)+ ∧ BGLq(S)+ → BGLpq(R ⊗ S)+, we need to show that the subspace
{e} × BGLq(S)+ ∪ BGLp(R)+ × {e} is mapped to the basepoint of BGLpq(R⊗ S)+ under the map
ϕ̃pq. However, the map ϕ̃pq may not satisfy this condition. So we exploit the H-space structure of
BGL(R ⊗ S)+. First, consider the map ϕ̃ with domain and codomain stabilized, which exists by
another application of Theorem 17.4.1.16:

BGL(R)+ × BGL(S)+ BGL(R⊗ S)+

BGLp(R)+ × BGLq(S)+ BGLpq(R⊗ S)+

ϕ̃

ϕ̃pq

.

Now construct the following map

ψ : BGL(R)+ × BGL(S)+ −→ BGL(R⊗ S)+

(x, y) 7−→ ϕ̃(x, y)− ϕ̃(x,pt.)− ϕ̃(pt., y)

where pt. denotes the relevant basepoint and the addition is the homotopy commutative group
operation on BGL(R⊗S)+ by Theorem 17.4.1.22. Note that this map ψ is constant on the subspace
BGL(R)+ ∧ BGL(S)+, so that it finally induces a map (which we again call ψ)

ψ : BGL(R)+ ∧ BGL(S)+ −→ BGL(R⊗ S)+.

This is the required map ψ. Thus, we get a map

πp(BGL(R)+)⊗ πq(BGL(S)+) −→ πp+q(BGL(R)+ ∧ BGL(S)+) ψ∗−→ πp+q(BGL(R⊗ S)+),

which in other words is

Kp(R)⊗Kq(S) −→ Kp+q(R⊗ S),

as required.

The following is then the main theorem, which is suggestive of the heuristic that Loday’s
product behaves like cup product in cohomology. That is, the K-theory of schemes will come
equipped with a cup product10!

Theorem 17.4.2.2 (Loday’s theorem). Let R,S be rings.
1. The Loday’s product ψ : Kp(R)⊗Kq(S)→ Kp+q(R⊗ S) is an associative and bilinear map.

10and hence suggests how to do intersection theory on non-smooth schemes.
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2. If R is commutative, then the following Loday’s product:

Kp(R)⊗Kq(R)
ψ−→ Kp+q(R⊗Z R) −→ Kp+q(R)

where R ⊗Z R → R is the structure map of ring R, makes K(R) =
⊕∞

i=0Ki(R) into a graded-
commutative ring. That is, if x ∈ Kp(R) and y ∈ Kq(R), then

x · y = (−1)pqy · x.

17.4.3 Relative exact sequence for Kn

One of the main benefits of defining higher K-groups as homotopy groups of the K-theory space
is that we get the familiar relative exact sequence for free.

Definition 17.4.3.1 (Relative Kn). Let R,S be commutative rings and f : R → S be a ring homo-
morphism. Then we get a map Kf : K(R)→ K(S). Consider the homotopy fiber

F (Kf) −→ K(R) Kf−→ K(S).

Denote

Ki(f) := πi(F (Kf))

which we call the relative K-group of map f . Note that then by homotopy l.e.s. associated to a
map, we get the following:

Ki−1(f) Ki−1(R) Ki−1(S)

Ki(f) Ki(R) Ki(S)

f∗

f∗

.

Lemma 17.4.3.2. Let R be a commutative ring, I ≤ R be an ideal and π : R ↠ R/I be the corresponding
quotient map. Then,

K0(R, I) ∼= K0(π)

where K0(R, I) is as defined in Definition 17.1.3.4.

Proof. Note K0(π) = π0(FKπ), where we have the following fiber sequence

FKπ → K0(R)× BGL(R)+ Kπ→ K0(R/I)× BGL(R/I)+.

By definition, we have

FKπ = Ker (π∗ : K0(R)→ K0(R/I))× F›Bπ
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where ›Bπ : BGL(R)+ → BGL(R/I)+. Thus, we have

K0(π) = Ker (π∗)× π0(F›Bπ).
On the other hand, consider p : R⊕ I → R as in Definition 17.1.3.4. We then get the fiber sequence

FKp→ K0(R⊕ I)× BGL(R⊕ I)+ Kp→ K0(R)× BGL(R)+.

Again, we have

FKp = Ker (p∗ : K0(R⊕ I)→ K0(R))× F›Bp
= K0(R, I)× F›Bp

where ›Bp : BGL(R⊕ I)+ → BGL(R)+. Thus, we have

K0(p) = K0(R, I)× π0(F›Bp).
We claim that the fiber F›Bp is connected, so that K0(p) = K0(R, I). Indeed, observe by homotopy
l.e.s. corresponding to FKp that it suffices to show that p∗ : K1(R ⊕ I) → K1(R) is a surjection.
This follows immediately from functoriality of π1 and the splitting R → R ⊕ I → R. This shows
that

K0(p) = K0(R, I).

We thus reduce to showing that K0(p) ∼= K0(π). TODO.

17.4.4 Finite coefficients

Construction 17.4.4.1 (Moore spectrum). Let G be an abelian group. We have an associated sus-
pension CW-spectrum called Moore spectrum P∞G whose nth-term is P (G,n), the unique ho-
motopy type whose nth reduced cohomology is G and rest are 0. Recall that for any compactly
generated based spacesX,Y , the based homotopy classes of maps [ΣX,Y ] is a group and [Σ2X,Y ]
is an abelian group. Since P (G,n) ≃ Σn−1P (G, 1), it follows at once that

[P (G,n), X] = [Σn−2P (G, 2), X]

is a group for n = 3 and an abelian group for n ≥ 4. For n = 2 it may not be a group.

Using Moore spectrum, we define mod l homotopy groups for any integer l as follows.

Definition 17.4.4.2 (πn(X;Z/l)). LetX be a based CW-complex and P∞Z/l be the Moore spectrum
for group Z/l for some integer l. Then mod l homotopy groups of X are defined as the following
homotopy class of maps

πn(X;Z/l) = [P (Z/l, n), X].

As noted in Construction 17.4.4.1, π3(X;Z/l) is a group and πn(X;Z/l) is an abelian group for
n ≥ 4. For a map f : X → Y , we get by composition maps f∗ : πn(X;Z/l) → πn(Y ;Z/l) which is
a group homomorphism for n ≥ 3. Thus πn(−;Z/l) is a functor on CW∗.
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Remark 17.4.4.3 (Main facts about mod l homotopy). The following three facts is what we shall
use in the discussion later, most of which are quite familiar.

1. Every fibration sequence F → E → B induces a long exact sequence in mod l homotopy
groups.

2. For every complex X , there is a s.e.s.

0→ πn(X)⊗ Z/l→ πn(X;Z/l)→ Tl(πn−1(X))→ 0

which is split exact if l ̸= 2 mod 4, where Tl(G) = {g ∈ G | l · g = 0}.
3. There is a natural mod l Hurewicz map

hi : πi(X;Z/l) −→ Hi(X;Z/l)

which is an isomorphism for all 1 ≤ i ≤ n if X is an (n− 1) connected nilpotent space.
All these can results in more generality can be found in [NeiPHT].

The following observation tells us why we are looking at mod l-homotopy groups.

Proposition 17.4.4.4. Let X be an H-space and consider the map

ml : X → X

which is multiplication by l ∈ Z11. Denote F to be the homotopy fiber of the map ml. Then

πn(X;Z/l) ∼= πn−1(F ) ∀n ≥ 2.

Proof. A model of Moore space Pn+1(Z/l) is obtained by gluing an n + 1-cell to Sn by a degree
l-map. Equivalently, this CW-complex is homeomorphic to the homotopy cofiber

Sn
fl−→ Sn −→ Cfl ∼= Pn+1(Z/l)

where fl is a degree l map. Recall that the inclusion Sn → Cfl is a cofibration, thus the above is a
short cofiber sequence. We also have a short fiber sequence

F −→ X
ml−→ X

where F → X is a fibration.
It is well-known that Map∗(−, X) : Topcg∗ → Topcg∗ takes cofibrations to fibrations and Map∗(X,−)

takes fibrations to fibrations. Furthermore, for any based spaceX , we have the smash-map duality
(akin to ⊗-hom duality):

πk(Map∗(S
n, X)) = [Sk,Map∗(S

n, X)] ∼= [Sk ∧ Sn, X] ∼= [Sk+n, X] = πk+n(X).

Similarly for Pn+1(Z/l). Now with this information, we apply Map∗(−, X) onto the first cofiber
sequence and Map∗(S

n,−) onto the second fiber sequence to get two fiber sequences for homo-
topic maps c(Sn is an H-cogroup and X is an H-group):

Map∗(P
n+1(Z/l), X)→Map∗(S

n, X) −◦fl→ Map∗(S
n, X)

Map∗(S
n, F )→Map∗(S

n, X) ml◦−→ Map∗(S
n, X).

Hence Map∗(P
n+1(Z/l), X) ≃Map∗(S

n, F ), which yields the proof after taking homotopy groups
and using the above mentioned fact.

11this makes sense as ΩA has a canonical H-space structure.
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Definition 17.4.4.5 (Kn(R;Z/l)). Let l ∈ Z be an integer and R be a ring. Then mod l K-groups of
R are defined as

Kn(R) := πn(BGL(R)+;Z/l).

Construction 17.4.4.6 (Bott element in K2(R;Z/l)). Let R be any ring containing a primitive lth-
root of unity ζ. Note that the class of the diagonal matrix consisting of ζ in GL(R)/E(R) = K1(R)
is l-torsion and is thus in Tl(K1(R)), which we denote by [ζ] ∈ K1(R). Then, by universal coeffi-
cients theorem (Remark 17.4.4.3, item 2), we get an l-torsion element β ∈ K2(R;Z/l) which maps
to ζ ∈ K1(R). This element β is called a Bott element of K2(R;Z/l).

By the calculation for finite fields done by Quillen, one can deduce the following by basic
algebra.

Theorem 17.4.4.7. Let p be a prime and consider the algebraic closure F̄p.
1. We have

Kn(F̄p) =
®
(Q/Z)[1/p] if n is odd
0 if n is even.

2. We have for l ∈ Z coprime to p

Kn(F̄p;Z/l) =
®
0 if n is odd
Z/l if n is even.

17.5 K-theory & étale cohomology

We discuss some fundamental connections between K-theory and algebraic geometry.

17.5.1 The case of fields : K2 & Galois cohomology

In §4.4, we constructed a representation of K2(F ) in the Brauer group Br(F ) for fields which
contains a primitive root of unity. Our goal in this section is to construct Galois symbol for fields
not necessarily containing primitive roots of unity. We will thus replace the role of ζ by µm(F ),
the group of mth-roots of unity in F .

The main idea is to replace Brauer group from the codomain of ϕ of Theorem 17.3.4.6 to an
object which is more cohomological w.r.t. F and thus will have bilinear pairing from F× ⊗ F×,
which will, hopefully, satisfy Matsumoto relations. Indeed, such an object exists and is the content
of Galois cohomology.

Construction 17.5.1.1 (Galois cohomology). Let F be a field. Denote Fsep to be the separable
closure of F (in the algebraic closure). Thus, Fsep/F is a separable normal extension and hence
Galois. Let G = Gal

(
Fsep/F

)
be the Galois group. As Fsep/F may not be finite, thus G may not

be a finite group. Recall the fundamental Galois theorem for finite case{
L | Fsep/L/F is a finite intermediate extension

}
{H | H ≤ G is a subgroup}

Gal(Fsep/−)F
(−)
sep

.
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Our goal is to study this relationship more "homologically" in the the case of separable closure. In
particular, note that G here is acting on field Fsep by the obvious action, and the whole classical
Galois theory is the study of this action together with its orbits and stabilizers.

Consider the following collection of subgroups of G:

GE = Gal
(
Fsep/E

)
, Fsep/E/F & E/F is finite.

Observe that {GE}Fsep/E/F forms a basis of topology on G, as we have⋃
Fsep/E/F

GE = G [as E = F is possible]

GE ∩GE′ ⊇ GE·E′ [by definition].

Thus G is a topological group. We will now study left modules over the group ring Z[G], also
calledG-modules. Note that for anyG-moduleM , we will have a left multiplication mapG×M →
M . We will call M discrete if this map is continuous, where M has discrete topology.

Now fix a G-module M and as usual in Galois theory, consider the G-invariant subgroup
MG := {m ∈ M | g ·m = m ∀g ∈ G}. Observe that invariant subgroup construction is functorial
on the category of discrete G-modules:

(−)G : Modc(G) −→ Ab

M 7−→MG

and for a map of G-modules f : M → N , we get a map fG : MG → NG as f(g ·m) = g · f(m) for
all m ∈ M . An easy observation tells us that (−)G is also left-exact. Observe that the category of
discrete G-modules is abelian with enough injectives (Lemma 6.11.10 of [WeibHA]). We may thus
right derive the functor (−)G, to obtain the Galois cohomology groups

H i
ét(F ;M) := (Ri(−)G)(M).

Observe that H0
ét(F ;M) =MG (Lemma 19.2.3.3).

Remark 17.5.1.2 (G-modules). Consider the notation of Construction 17.5.1.1. Here are some ele-
mentary examples of discrete G-modules:

1. Gm := F×sep, the abelian group of units is a discrete G-module as σ ∈ G acts on x ∈ Gm by
(σ, x) 7→ σ(x) and since σ is an automorphism, thus every fiber of the above map is open,
thus the action being continuous.

2. µn, the subgroup of Gm of all nth-roots of unity. This is discrete for the same reason as above.
3. M ⊗Z N , the tensor product of two G-modules. Indeed, we define the action of σ ∈ G on a

simple tensor m ⊗ n ∈ M ⊗Z N by (σ,m ⊗ n) 7→ (σ ·m) ⊗ (σ · n). This is continuous since
the individual actions on M and N are continuous. In particular, µ⊗2n = µn ⊗ µn is a discrete
G-module.

The cohomology of G-groups Gm, µn and µ⊗2n is very interesting. We begin by seeing this for
µn.

Remark 17.5.1.3. Let F be a field, Fsep be its separable closure and G = Gal
(
Fsep/F

)
. Denote

µn ≤ Gm to be the group of all nth-roots of unity in Fsep. Consider the map Gm → Gm mapping
g 7→
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Construction 17.5.1.4 (Kummer sequence). Let F be a field of characteristic p > 0 and let n be
coprime to p. Denote Fsep to be the separable closure of F and Gm = F×sep. We obtain the following
short exact sequence:

1 −→ µn −→ Gm
g 7→gn−→ Gm −→ 1.

Indeed, the only part that needs to be shown is the surjectivity of the above map. To this end, pick
any a ∈ Gm and consider the polynomial xn − a ∈ Fsep[x]. As the derivative of xn − a is nxn−1

which is not zero as p ̸ |n, thus xn − a is separable. Let b ∈ F be a root of xn − a. By Proposition
16.6.8.7, it follows that F/Fsep is purely inseparable. If b /∈ Fsep, then the minimal polynomial of b
in Fsep is mb,Fsep(x) = xp

k − c for some c ∈ Fsep (Theorem 16.6.8.3). As mb,Fsep(x)|xn− a and mb,Fsep

is not separable (in-fact it has only one root which repeats), therefore xn − a is not separable as
well, a contradiction.

The above short-exact sequence is called the Kummer sequence of F .

As the above short exact sequence is that of discrete G-modules, therefore in right derived
functors we get a long exact sequence.

Lemma 17.5.1.5 (Kummer cohomology sequence). Let F be a field of characteristic p > 0 and let n be
coprime to p. Denote Fsep to be the separable closure of F , Gm = F×sep and G = Gal

(
Fsep/F

)
. Then the

following is a long exact sequence:

1 µn(F ) F× F×

H1
ét(F ;µn) H1

ét(F ;Gm) H1
ét(F ;Gm)

H2
ét(F ;µn) H2

ét(F ;Gm) H2
ét(F ;Gm)

g 7→gn

.

Proof. Follows from Theorem 19.2.3.5.
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We will discuss some topics from integration theory and functional analysis (topological vector
spaces).

18.1 Introduction

We would like to state and portray the uses of some of the important and highly usable results of
integration theory, elucidating in the process the analytical thought which is of paramount impor-
tance in any route of exploration in this field1. We give bare-bone proofs as all this is standard, but
we will highlight the main part of the proof by♥ or if there are many main parts, then by♥♥ . . . (!)
Let us first begin with some motivation behind modern measure theory.

1One may argue, instead, in whole of mathematics.
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We know that the class of all Riemann integrable functions on [a, b], denoted R([a, b]), is not
complete under pointwise limit (a sequential approximation of Dirichlet’s function shows that).
Further, motivated by Weierstrass approximation, one would like to have commutability results
between lim and

∫
, which again R([a, b]) lacks. Consequently, one is motivated to find a larger

class of "integrable" functions for which these defects would be rectified.

The idea that H. Lebesgue had was quite simple. He continued the idea of Riemann (that is, of
partitions) but made sure that the function under investigation is much more intertwined in with
it. Indeed, for a bounded function f : [a, b] → R, we contain the image Im (f) ⊆ [α, β] and then
consider a partition P = {Ii}ni=1 where Ii is an interval. Now choose ξi ∈ f−1(Ii) =: Ji for each i.
Consequently, we may naturally define Lebesgue sum of f w.r.t. P as follows

L(f,P) :=
n∑
i=1

f(ξi)m(Ji),

where m(Ji) is supposed to be some sort of measure of Ji. Note that Ji in general might be very
bad (may not even be an interval!). To complete this idea of "integration", we are naturally led to
considering more general notions of measures. Indeed, this is what we will pursue in this course.

Remark 18.1.0.1. (Pseudo-definition of measure) First, what do we expect from a notion of mea-
sure on R? Perhaps the following is the minimum conditions we would require to call a function
"measure": A function µ : P(R)→ [0,∞] is said to be a pseudo-measure if it satisfies the following

1. (measure of intervals) for any interval I , the measure µ(I) = l(I) where l is the length function,
2. (measure of disjoint unions) for any disjoint sequence of subsets {An}, µ (

⋃
nAn) =

∑
n µ(An),

3. (translation invariance) for any subset A and x ∈ R, we have µ(A+ x) = µ(A).
We will call such a function a pseudo-measure on R. Observe that forA ⊆ B, we obtain µ(A) ≤ µ(B)
by breaking B = A ∪B \A. We call µ a pseudo-measure because it does not exists!

Theorem 18.1.0.2. (Vitali set) There exists no pseudo-measure on R. In paritcular, there exists a set V ⊆ R
such that for a pseudo-measure µ, µ(V ) /∈ [0,∞].

Proof. We will construct such a set V . Begin with the closed interval J = [0, 1]. Define an equiva-
lence relation ∼ on J given as follows:

x ∼ y ⇐⇒ x− y ∈ Q.

This can easily be seen to be an equivalence relation on J . We have first some observations to
make about this equivalence relation and the consequent partition of J that it entails.

1. Observe that the class of any rational r in J under ∼ is simply [0], as r − 0 ∈ Q.
2. Every equivalence class is countable in size. Indeed, for any x ∈ J , the class [x] is just

translate of x by rationals, which is countable.
3. There are uncountably many equivalence classes. Indeed, if there were atmost countably

many equivalence classes, then by statement 2 above, it would follow there are atmost count-
ably many elements in J , which is a contradiction.

Consequently, this equivalence relation partitions J into following classes:

J =
⋃
α∈I

[α]
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where I is an uncountable set.

We would now construct the set V as follows. First, let us assume axiom of choice, so that for
each class [α], we may pick an element rα ∈ [α] and would thus obtain a subset of J , denoted
V = {rα | α ∈ I}. We call this the Vitali set.

Consider the set Q = [−1, 1] ∩ Q. Since it is countable so consider an enumeration Q = {qn}.
Now consider the translates V + qn for all n ∈ N and their union X =

⋃
n V + qn. We now observe

the following two facts about X .
1. If n ̸= m, then (V + qn)∩ (V + qm) = ∅. Indeed, if x ∈ (V + qn)∩ (V + qm), then x = ra+ qn =
rb + qm. Consequently, ra − rb ∈ Q and hence [a] = [b]. But by single choice of rc for each
c ∈ I, we get ra = rb and thus qn = qm from above, which is a contradiction.

2. J = [0, 1] ⊆ X . Indeed, for any x ∈ [0, 1], consider the class [a] in which x is present.
Consequently we have a unique ra ∈ V corresponding to x which satisfies x ∈ [ra]. Thus,
x = ra + t where t ∈ Q. We may write t = qn to obtain that x ∈ V + qn, as desired.

3. X ⊆ [−1, 2]. Indeed, this follows immediately since X =
⋃
n V + qn where qns are rationals

in [−1, 1] and V ⊆ [0, 1].
With the above three observations, we obtain the following inclusions:

[0, 1] ⊆
⋃
n

V + qn ⊆ [−1, 2].

Now, if we apply the pseudo-measure µ on the above inclusions, we will obtain the following:

1 ≤
∑
n

µ(V ) ≤ 3.

If µ(V ) = 0,∞, then we have an immediate contradiction. Else if 0 < µ(V ) <∞, then
∑
n µ(V ) =

∞ and we again have a contradiction. Thus, µ(V ) /∈ [0,∞], a contradiction.

Remark 18.1.0.3. The main issue in pseudo-measures is that we trying to get a measure on all of
the subsets of R. By Theorem 18.1.0.2, this is hopeless. What we shall now do instead is to obtain
a measure not on all of the subsets of R, but rather on only a subcollection of subsets of R, and we
shall choose this subcollection in a manner so that we don’t allow sets like Vitali sets. Indeed, this
becomes our point of departure for the abstract definition of σ-algebras and measure/measurable
spaces, the need for the right domain of a measure function.

18.1.1 Few introductory notions

These are few of the basic definitions that one might remember from real analysis.
• Limit Points : x ∈ X is called a limit point of a subset S ⊆ X if ∀ r > 0, ∃ a ̸= x such that
a ∈ S ∩Br(x). That is, ball of any size r around x contains atleast one point of S.

• Isolated Points : y ∈ S is called an isolated point of a subset S ⊆ X if ∃ r > 0 such that
(Br(y) \ {y}) ∩ S = Φ. That is, Br(y) contains no other point of S apart from y.

– Also note that every point of closure S is either a limit point or an isolated point of S.
– More specifically, any subset of Rd is closed if and only if it contains all of it’s limit points.
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• Perfect Set : A is called a perfect set if A = A′ where A′ is the set of all limit points of A. More
conveniently, if A does not contain any isolated points then it is a perfect set. R is a perfect
set.

• Symmetric Difference : A andB are two sets then symmetric difference isA∆B = (A\B)∪
(B \A).

• Power Set : Collection of all subsets of a set S, written as P (S).
• Lower Bound : A lower bound of a subset S of a poset (P,≤) is an element a ∈ P such that
a ≤ x for all x ∈ S.

• Infimum : A lower bound p ∈ P is called an infimum of S if for all lower bounds y of S in P ,
y ≤ p.

• Limit Infimum : For a sequence {xn}, limit inferior is defined by:

lim inf
n→∞

xn = lim←−
n→∞

Å
inf
m≥n

xm

ã
= sup

n≥0
inf
m≥n

xm

= sup{inf{xm | m ≥ n} | n ≥ 0}.

(18.1)

• Upper Bound : An upper bound of a subset S of a poset P is an element b ∈ P such that b ≥ x
for all x ∈ S.

• Supremum : An upper bound u ∈ P is called a supremum of S if for all upper bounds z of S
in P , z ≥ u.

• Limit Supremum : For a sequence {xn}, limit supremum is defined by:

lim sup
n→∞

xn = lim←−
n→∞

Ç
sup
m≥n

xm

å
= inf

n≥0
sup
m≥n

xm

= inf{sup{xm | m ≥ n} | n ≥ 0}

(18.2)

• Limit : Consider the sequence {xn} in [−∞,+∞], then lim←−n xn is defined as

lim inf
n→∞

xn = lim sup
n→∞

xn := lim←−
n→∞

xn.

• Lower Sum : l(f,P) is the sum of the minimum functional values at the partition. That is,

l(f,P) =
n−1∑
i=0

mi(ai+1 − ai)

where mi = inf{f(x) | x ∈ [ai−1, ai]}.
• Upper Sum : Similarly,

u(f,P) =
n−1∑
i=0

Mi(ai+1 − ai)

where Mi = sup{f(x) | x ∈ [ai−1, ai]}.
Remember that the function is Riemann Integrable if l(f,P) = u(f,P).
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• Countable Sets : Note the following,
1. Cardinality : Sets X and Y have the same cardinality if there exists a bijection from X to
Y .

2. Finite Set : A set is finite if it is empty or it has the same cardinality as {1, 2, . . . , n} for
some n ∈ N.

3. Countably Infinite : If the set has the same cardinality as N.
4. Enumeration : An enumeration of a countably infinite set X is a bijection of N onto X .

That is, an enumeration is an infinite sequence {xn} such that each of the xi’s are in X
and each element of X is xi for some i.

5. Countable : A set is countable if it is finite or countably infinite. For example, N is
countable, Q is also countable (!), R\Q (irrationals) is not countable, R is not countable.

• Totally Bounded : A subset B ⊆ X is totally bounded when it can be covered by a finite
number of r-balls for all r > 0. That is,

∀ r > 0, ∃N ∈ N, ∃a1, . . . , aN ∈ X such that B ⊆
N⋃
n=1

Br(an)

• Compact Set : A setK is said to be compact when given any cover of balls of possibly unequal
radii, there is a finite sub-collection of them that still covers the set K. That is,

K ⊆
⋃
i

Bri(ai) =⇒ ∃ i1, . . . , iN , K ⊆
N⋃
n=1

Brin (ain)

Note that compact metric spaces are totally bounded (!). Also, compact sets are closed.
The problem begins with Riemann Integrable functions when we see that functions like Dirichlet
function (1 on irrational and 0 on rational points) can become measurable even when the function
is not continuous! This motivates the need of a formal notion of a measure.

We begin with some recollections from classical analysis of one real variable.
1. Every open set in R can be written as disjoint union of open intervals.

Proof. Let G ⊆ R be a open subset. Now by definition of an open subset, we have that for
any x ∈ G, there exists atleast one open subset U such that x ∈ U ⊆ G. Now consider the
following union of all such open subsets of x,

Ux =
⋃

x∈U⊆G
U

It’s now easy to see that Ux is the largest such subset of G, as any other V ⊆ G such that
x ∈ V is by definition contained in Ux. Moreover, Ux is an interval as it is an arbitrary union
of open intervals. Now, define the following relation on G:

y ∼ x ⇐⇒ y ∈ Ux

Now we clearly have that x ∈ Ux (reflexive); for y ∼ Ux we have U ⊆ Ux such that x, y ∈ U ,
hence x ∈ Uy (symmetric); for x ∈ Uy and y ∈ Uz , we have that x, y, z ∈ Uy, since z ∈ Uy ⊆ G
so Uy ⊆ Uz , so x ∈ Uz (transitive). Hence∼ is an equivalence relation, hence∼ partitions the
set G. Denote the set of all equivalence classes as I so we get

G =
⋃
I∈I

I
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such that I1 ∩ I2 = Φ for any I1, I2 ∈ I. Now note that for any I ∈ I is open because each
I is generated by the relation ∼ such that y ∼ x iff y ∈ Ux. Hence for any z ∈ I , we have
z ∈ Ux ⊆ G where Ux is open. Therefore, we have G = ∪I∈II for disjoint open intervals in
I.

2. Prove that every non-empty perfect subset of R (or Rn) is uncountable. That is, if A = A′

then A is uncountable.

Proof. Take A ⊆ R to be a perfect subset. Since A it is perfect, therefore, it must contain all of
it’s limit points or, equivalently, contains no isolated points. Clearly, then, A cannot be finite,
but can only be countably infinite or uncountable. If it is uncountable, then the proof is over.
If A is countably infinite, then we can write A as the following :

A = {a1, a2, . . . }.

Construct a ball around ai1 of any radius r1 > 0. Since A is perfect, therefore ∃ ai2 ∈
Br1(ai1) ∩ A = C1. Similarly, for some r2 > 0, we have ai3 ∈ Br2(ai2) ∩ Br1(ai1) ∩ A = C2
such that ai1 /∈ C2 and so on. In general, we would have the following,

ain+1 ∈

(
n⋂
j=1

Brj (aij )
)
∩A = Cn.

Now, consider C = ∩nCn. Since Cn+1 ⊆ Cn, therefore C ̸= Φ. But, ai /∈ C for any i ∈ N as
ai /∈ Ci+1. Therefore we have a contradiction. Hence A cannot by countably infinite, it must
only be uncountable.

3. In the definition of Lebesgue Outer measure on R, one can instead take CA to be collection
of infinite sequences of the any form from {[an, bn]}, {(an, bn)} or {(an, bn]}.

Proof. Refer Proof of Proposition 18.2.5.3.

4. Show the following:
N⋃
n=1

En =
N⋃
n=1

(
En ∩

(⋃
k<n

Ek

)c)

Proof. Take x ∈
⋃N
n=1En. Then ∃ Ek for some a such that x ∈ Ea. Now, clearly, x ∈ Ea ⊆

(
⋃
k<aEk)

c, hence x ∈
(
Ea ∩ (

⋃
k<aEk)

c). Hence, we have
⋃N
n=1En ⊆

⋃N
n=1

(
En ∩ (

⋃
k<nEk)

c).
The converse is easy to see too.

18.2 Measures

18.2.1 Algebras & σ-algebras

Definition 18.2.1.1. (Algebra/Field) Let X be an arbitrary set. A collection A ⊆ P (X) of subsets
of X is an algebra on X if:

• X ∈ A.
• A ∈ A =⇒ Ac ∈ A.
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• For each finite sequence A1, A2, . . . , An ∈ A implies that

n⋃
i=1

Ai ∈ A

• For each finite sequence A1, A2, . . . , An ∈ A implies that

n⋂
i=1

Ai ∈ A

Definition 18.2.1.2. (σ-Algebra/σ-Field) Let X be an arbitrary set. A collection A ⊆ P (X) of
subsets of X is a σ-algebra on X if:

• X ∈ A.
• A ∈ A =⇒ Ac ∈ A.
• For each infinite sequence {Ai} such that Ai ∈ A, it implies that

∞⋃
i=1

Ai ∈ A

• For each infinite sequence {Ai} such that Ai ∈ A, it implies that

∞⋂
i=1

Ai ∈ A

Proposition 18.2.1.3. Let X be a set. Then the intersection of an arbitrary non-empty collection of σ-
algebras on X is a σ-algebra on X .

Proof. Consider a collection C of σ-algebras onX . Denote A =
⋂
C as intersection of all σ-algebras

in C. We can now easily see that any subset in A would be present in every σ-algebra present in
collection C, hence, it would obey all properties of a σ-algebras. Therefore, A is a σ-algebra.

Corollary 18.2.1.4. Let X be a set and let F ⊆ P (X) be a family of subsets of X . Then there exists a
smallest σ-algebra on X that includes F.

Proof. Consider any given family F ⊆ P (X) and just take intersection of the family C of all σ-
algebras which contains F to construct this smallest σ-algebra.

Definition 18.2.1.5. (Generated σ-algebra) The smallest σ-algebra onX containing a given family
F ⊆ P (X) of subsets is called the σ-algebra generated by F, denoted as σ(F).

Definition 18.2.1.6. (Borel σ-algebra on Rd) It is the σ-algebra on Rd generated by the collection
of all open subsets of Rd, denoted as B(Rd).

Definition 18.2.1.7. (Borel Subsets of Rd) Any A ⊆ Rd is called a Borel subset of Rd if A ∈ B(Rd).

Proposition 18.2.1.8. The Borel σ-algebra on R, B(R), of Borel subsets of R is generated by each of the
following collection of sets:

1. The collection of all closed subsets of R.
2. The collection of all subintervals of R of the form (−∞, b].
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3. The collection of all subintervals of R of the form (a, b].

Proof. To show all of these, consider the three σ-algebras A1,A2,A3 corresponding to conditions
1,2 & 3 respectively and try to prove A3 ⊆ A2 ⊆ A1 ⊆ B(R) together with B(R) ⊆ A3. The first
three inclusions are trivial to see. For the case that B(R) ⊆ A3, simply note that any open subset
can be made by unions of the sets of form (a, b] and by Homework-I,1, each open set is union of
open subsets.

Proposition 18.2.1.9. The σ-algebra B(Rd) of Borel subsets of Rd is generated by each of the following
collections:

1. The collection of all closed subsets of Rd.
2. The collection of all closed half-spaces in Rd that have the form {(x1, . . . , xd) | xi ≤ b} for some index
i and some b ∈ R.

3. The collection of all rectangles in Rd that have the form

{(x1, . . . , xd) | ai < xi ≤ bi for i = 1, . . . , d}

Proof. Almost the same as in Proposition 18.2.1.8. A1 ⊆ B(Rd) trivially by definition. A2 ⊆ A1 as
{(x1, . . . , xd) | xi ≤ b} is closed itself. A3 ⊆ A2 by the observation that {(x1, . . . , xd) | ai < xi ≤ bi}
is made by the difference of two subsets of the form {(x1, . . . , xd) | xi ≤ bi} and {(x1, . . . , xd) | xi >
ai}, the latter is the complement of a certain subset in A2, moreover, {(x1, . . . , xd) | ai < xi ≤
bi for i = 1, . . . , d} is then constructed by intersection of d such subsets. Finally, B(Rd) ⊆ A3 can
be seen via the fact that open subsets in Rd are made by union of rectangles of type 3 and as such,
they are called open subsets.

Lemma 18.2.1.10. Let X be a set and S ⊆ P (X) a class of subsets of X . Let A ⊆ X be a subset. Denote
by S ∩A = {B ∩A | B ∈ S}. Then,

σA(S ∩A) = σ(S) ∩A.

where σA(S ∩A) denotes the smallest σ-algebra over A generated by the class S ∩A ⊆ P (A).

Proof. It is easy to see that σA(S∩A) ↪→ σ(S)∩A by considering that S∩A ⊆ σ(S)∩A. Conversely,
we use the generating set principle. That is, since we wish to show that for any B ∈ σ(S), we have
B ∩A ∈ σA(S ∩A), therefore we define

S := {B ∈ σ(S) | B ∩A ∈ σA(S ∩A)}

and then observe quite easily that S is a σ-algebra overX inside σ(S) containing S. Thus S = σ(S),
as needed.

The following are some conditions for an algebra to become a σ-algebra.

Proposition 18.2.1.11. Let X be a set and let A be an algebra on X . Then, A is a σ-algebra on X if either
• A is closed under the formation of unions of increasing sequence of sets, or,
• A is closed under the formation of intersections of decreasing sequence of sets.
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Proof. Take any countably infinite collection of subsets A1, A2, · · · ∈ A where A is an algebra. Due
to the definition of an algebra, we have that Cn =

⋃n
i=1Ai ∈ A for any n ≥ 1 ∈ Z+. Now note

that C1 ⊆ C2 ⊆ . . . , that is, the sequence {Cn} forms an increasing sequence of sets. Hence, by
the requirement of the question, we have that

⋃∞
i=1Ci ∈ A. But then we also have that

⋃∞
i=1Ai ⊆⋃∞

i=1Ci ∈ A. Hence we have the required condition for part 1. For part 2, we can see that Cc
1 ⊇

Cc
2 ⊇ . . . is a decreasing sequence of sets. Then we must have, by the requirement of the question,

that
⋂∞
i=1C

c
i = (

⋃∞
i=1Ci)

c ∈ A. But then by definition of algebra, we must have
⋃∞
i=1Ci ∈ A,

which already contains the countably infinite union
⋃∞
i=1Ai.

The following are some finiteness conditions we would like to have on measure spaces.

Definition 18.2.1.12. (Finiteness conditions) Let (X,A, µ) be a measure space. Then,
1. X is said to be finite if µ(X) <∞,
2. X is said to be σ-finite if there exists {An} ⊆ A such that

⋃
nAn = X and µ(An) <∞,

3. X is said to be semi-finite if for all A ∈ A such that µ(A) = ∞, there exists B ⊆ A such that
B ∈ A and µ(B) <∞.

X-indexed R-series

We would now like to make sense of the sum
∑
x∈X f(x) where f : X → [0,∞] is an arbitrary

function.

Definition 18.2.1.13. (X-indexed R-series) Let f : X → [0,∞] be a function where X is a set. We
define the series

∑
x∈X f(x) as follows:

∑
x∈X

f(x) = sup
{∑
x∈F

f(x) | F ⊆ X is finite

}
.

The following are some basic properties of X-indexed R-series.

Proposition 18.2.1.14. Let X be a set and f : X → [0,∞] be a function. Denote S = {x ∈ X | f(x) >
0}.

1. If S is uncountable then
∑
x∈X f(x) =∞.

2. If S is countably finite then for any bijection ϕ : N→ S, we have∑
x∈X

f(x) =
∑
n∈N

f(ϕ(n)).

Proof. 1. Write S =
⋃
n Sn where Sn = {f(x) > 1/n}. Note that Sn forms an increasing sequence

of sets. As S is uncountable, there exists N ∈ N such that SN is uncountable. Consequently, for
any finite set F ⊆ SN , we have

∑
x∈F f(x) ≥

|F |
N . As

∑
x∈F f(x) ≤

∑
x∈X f(x), therefore

|F |
N
≤

∑
x∈X

f(x). (♥)

As F ⊆ SN is arbitrary finite set and SN is uncountable, therefore we get the desired result.

2. Pick any bijection ϕ : N → S and pick a finite set F ⊆ X . We have
∑
x∈F f(x) =

∑
x∈F∩S f(x),
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so replace F ⊆ X by a finite set F ⊆ S. Let n ∈ N be large enough so that ϕ({1, . . . , n}) ⊇ F .
Consequently, we have ∑

x∈F
f(x) ≤

n∑
k=1

f(ϕ(k)) ≤
∑
x∈X

f(x). (♥)

Take n→∞ in the above inequality to obtain∑
x∈F

f(x) ≤
∞∑
k=1

f(ϕ(k)) ≤
∑
x∈X

f(x).

Take sup over all finite subsets F of X in the above inequality to obtain∑
x∈X

f(x) ≤
∑
n∈N

f(ϕ(n)) ≤
∑
x∈X

f(x),

which yields the desired result.

18.2.2 measures

Definition 18.2.2.1. (Countably Additive Function) Let X be a set and A be a σ-algebra on X .
Function µ : A −→ [0,+∞] is said to be countably additive if it satisfies:

µ

Ç ∞⋃
i=1

Ai

å
=
∞∑
i=1

µ(Ai)

for each infinite sequence {Ai} of disjoint sets in A.

Definition 18.2.2.2. (measure) A measure on A is a function µ : A → [0,+∞] that is countably
additive and satisfies:

µ(Φ) = 0.
Remark 18.2.2.3. This is sometimes also referred as countably additive measure on A.

Definition 18.2.2.4. We have following definitions to compactly represent above definitions:
1. (measure Space) IfX is a set, A is a σ-algebra onX and if µ is a measure on A, then the triple

(X,A, µ) is called a measure space.
2. (measurable Space) If X is a set and A is a σ-algebra on X , then the pair (X,A) is called a

measurable space.

Proposition 18.2.2.5. Let (X,A, µ) be a measure space and let A,B ∈ A such that A ⊆ B. Then,
• We have µ(A) ≤ µ(B).
• Additionally, if A satisfies that µ(A) < +∞, then:

µ(B −A) = µ(B)− µ(A).

Proof. Note that A and B ∩ Ac are disjoint sets in the sigma algebra A. Hence we can write, by
countably additive property of µ, that:

µ(A ∪ (B ∩Ac)) = µ(B)
= µ(A) + µ(B ∩Ac)

Since µ(B ∩ Ac) ≥ 0, hence µ(A) ≤ µ(B). Moreover, if µ(A) < ∞, then we can additionally write
µ(B ∩Ac) = µ(B)− µ(A).
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Definition 18.2.2.6. Let µ be a measure on a measurable space (X,A). Then,
• (Finite measure) If µ(X) < +∞.
• (σ-Finite measure) If X =

⋃
iAi where Ai ∈ A such that µ(Ai) < +∞ for all i ∈ N.

Remark 18.2.2.7. In other words, a subset A ∈ A is σ-finite if it is a union of a countable sequence
of sets that are in A and are of finite measure under µ.

Elementary Properties of measures

Proposition 18.2.2.8. Let (X,A, µ) be a measure space. If {Ak} is an arbitrary sequence of sets that
belong to A, then,

µ

Ç ∞⋃
k=1

Ak

å
≤
∞∑
k=1

µ(Ak).

Proof. Denote B1 = A1 and Bi = Ai ∩
Ä⋃i−1

k=1Ak
äc

. Note that Bi and Bj are disjoint for distinct i
and j. Since {Ak} ∈ A, therefore {Bi} ∈ A. Moreover,

⋃∞
i=1Bi =

⋃∞
k=1Ak by construction. We

then get,

µ

Ç ∞⋃
k=1

Ak

å
= µ

Ç ∞⋃
i=1

Bi

å
=
∞∑
i=1

µ(Bi)

≤
∞∑
i=1

µ(Ai) (∵ Bi ⊆ Ai by construction.)

Hence proved.

18.2.3 Basic results on measure spaces

We have the following first result.

Proposition 18.2.3.1. Let (X,A, µ) be a measure space.
1. If A,B ∈ A and A ⊆ B, then µ(A) ≤ µ(B).
2. If A,B ∈ A and A ⊆ B where µ(A) <∞, then µ(B \A) = µ(B)− µ(A).
3. For any sequence {An} ⊆ A, we have

µ

Ç⋃
n

An

å
≤

∑
n

µ(An).

4. If {An} ⊆ A is an increasing sequence of measurable sets, then

µ

Ç⋃
n

An

å
= limnµ(An).

5. If {An} ⊆ A is a decreasing sequence of measurable sets where µ(A1) <∞, then

µ

Ç⋂
n

An

å
= limnµ(An).

6. If X is σ-finite, then X is semi-finite.
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Proof. Statements 1. and 2. are immediate from the disjoint decomposition B = A⨿ (B \A). For 3.
note that for any {An} ⊆ A, we can form a disjoint sequence {Bn} ⊆ A such that

⋃
nAn =

∐
nBn

and µ(Bn) ≤ µ(An). Statement 4. also follows from similar reasons, where we can now let Bn =
An \An−1. Let us do statement 5. in some detail.

Observe that the sequence C1 = ∅ and Cn = A1 \ An is an increasing sequence of sets. Thus,
we have by statement 4. that

µ

Ç⋃
n

Cn

å
= limnµ (Cn) . (♥)

We can write A1 = (A1 \An)⨿An. Using statement 2. we obtain that

µ(A1) = µ(Cn) + µ(An)
µ(A1)− µ(An) = µ(Cn). (♥♥)

We now claim that
⋂
nAn = A1 \

⋃
nCn. Indeed, for x ∈

⋂
nAn, x ∈ An ⊆ A1 for all n and thus

x ∈ A1. But if x ∈ Cn for some n, then x /∈ An, consequently a contradiction. Hence x ∈ A1\
⋃
nCn.

Conversely, for x ∈ A1 \
⋃
nCn and any n ∈ N, we have that if x /∈ An, then x ∈ A1 \ An = Cn, a

contradiction. Hence the claim is proved.
As each Cn ⊆ A1, thus

⋃
nCn ⊆ A1. Consequently, by statement 2. and above claim we obtain

that

µ
Ä⋂

An
ä
= µ(A1)− µ

Ç⋃
n

Cn

å
= µ(A1)− limnµ(Cn)
= µ(A1)− limn (µ(A1)− µ(An))
= limnµ(An).

This proves statement 5.
For statement 6. pick any A ∈ A with µ(A) = ∞. We wish to construct a subset B ⊆ A with

B ∈ A and 0 < µ(B) <∞. Let {Dn} ⊆ A be a collection of finite measure sets such that
⋃
nDn =

X . Note that we can assume Dn are disjoint by suitably replacing Dn by Dn \ D1 ∪ · · · ∪ Dn−1.
Assume to the contrary, so that for each B ⊆ A with B ∈ A, either µ(B) = 0 or µ(B) = ∞. Let
Dn ∩ A be such that Dn ∩ A ̸= ∅. Consequently, µ(Dn ∩ A) = 0 or ∞. The latter isn’t possible,
therefore µ(Dn ∩A) = 0 for all n ∈ N.

Since we have A =
∐
nDn ∩A, therefore µ(A) =

∑
n µ(Dn ∩A) = 0, a contradiction to the fact

that µ(A) =∞.

We now cover an important example of a measure.

Construction 18.2.3.2. (measures from a positive function) Let (X,A) be a measurable space and
f : X → [0,∞] be a function. We construct the following map

{All functions X → [0,∞]} −→ {measures on (X,A)} .
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Indeed, define

µf : A −→ [0,∞]
A 7−→

∑
x∈A

f(x).

We claim that µf forms a measure.
It is clear that µf (∅) = 0. Consequently we need to show that for a disjoint collection {An} ⊆ A,

we have

µf

Ç∐
n

An

å
=

∑
n

µf (An).

We first have that

µf

Ç∐
n

An

å
= sup

{∑
x∈F

f(x) | F ⊆
∐
n

An is finite

}
(1)

and ∑
n

µf (An) =
∑
n

sup
{∑
x∈G

f(x) | G ⊆ An is finite

}
. (2)

We first show that (1) ≤ (2). We need only show that for a finite set F ⊆ ⨿nAn, we have∑
x∈F f(x) ≤ (2). Indeed, as Fn := F ∩ An is a collection of disjoint finite set where Fn ⊆ An

and only for finitely many n is Fn non-empty, therefore
∑
x∈F f(x) =

∑
n

∑
x∈Fn f(x) ≤ (2).

Conversely, we now wish to show that (2) ≤ (1). We use a standard technique for this. Pick
any ϵ > 0. For each n ∈ N, we obtain a finite set Gn ⊆ An such that

µf (An)−
ϵ

2n ≤
∑
x∈Gn

f(x). (♥)

Summing this till N ∈ N, we obtain

N∑
n=1

(
µf (An)−

ϵ

2n
)
≤

N∑
n=1

∑
x∈Gn

f(x) =
∑

x∈⨿N
n=1Gn

f(x) ≤ (1).

Now take N →∞ and ϵ→ 0 to obtain the result2.

Observe that the map defined above in Construction 18.2.3.2 is neither injective nor surjective,
and that’s good, otherwise measure theory would have been redundant. We now study comple-
tions of a measure space.

Remark 18.2.3.3. The goal of next few sections is to establish a good measure on Rn through
which we can proceed to a theory of integration of measurable functions. Indeed, this goal was
achieved by Lebesgue and he constructed what will be called the Lebesgue measure on Rn. Hence,
one should view the goal of the next few sections as to construct this measure space (Rn,M,m),
which is highly usable (as we will see in the integration theory) and is the gold standard of modern
analysis.

2We call this the ϵ-wiggle around inf and sup technique.



18.2. MEASURES 645

18.2.4 Completion of a measure space

Definition 18.2.4.1. (Null sets and complete measure spaces) Let (X,A, µ) be a measure space.
A null set is an element A ∈ A such that µ(A) = 0. The collection of all null sets is written as
Null(A) ⊆ A. A measure space (X,A, µ) is said to be complete if for all A ∈ Null(A), P(A) ⊆ A.

Remark 18.2.4.2. Note that for a measure space (X,A, µ), the collection of all null sets Null(A)
contains ∅ and is closed under countable union. Indeed, for {An} ⊆ Null(A), we have µ(∪nAn) ≤∑
n µ(An) = 0 by Proposition 18.2.3.1, 3.

Definition 18.2.4.3. (Extension of measure spaces) Let (X,A, µ) and (X,A′, µ′) be two measure
spaces. Then we say that (X,A′, µ′) is an extension of (X,A, µ) if A′ ⊇ A and µ′|A = µ.

We will now for each measure space (X,A, µ) will construct an extension of it which will be
complete.

Construction 18.2.4.4. Let (X,A, µ) be a measure space. Consider the following collection

Â := {A ∪B | A ∈ A, B ⊆ N,N ∈ Null(A)}.

Define µ̂ : Â → [0,∞] as A ∪B 7→ µ(A).

Theorem 18.2.4.5. Let (X,A, µ) be a measure space. Then, (X, Â, µ̂) is a complete measure space extend-
ing (X,A, µ). We call it the completion of (X,A, µ).

Proof. We need to show the following things.
1. Â is a σ-algebra,
2. µ̂ is a measure,
3. µ̂|A = µ,
4. (X, Â, µ̂) is complete.

The first three are straightforward. We show 4. in some detail.
Pick A ∪ B ∈ Â such that µ̂(A ∪ B) = µ(A) = 0. Then A ∈ Null(A). Further, B ⊆ N where

N ∈ Null(A). Let C ⊆ A ∪ B. Then C = (C ∩ A) ∪ (C ∩ B). Since C ∩ A ⊆ A and C ∩ B ⊆ N ,
therefore C ⊆ A ∪N where A ∪N ∈ Null(A). Consequently, we may write C = ∅ ∪ C where C is
a subset of a null set. Hence C ∈ Â.

Example 18.2.4.6. Let X = {1, 2, 3} and A = {∅, X, {1}, {2, 3}}. Define µ : A → [0,∞] by µ(∅) =
0 = µ({2, 3}) and µ({1}) = µ(X). Clearly, (X,A, µ) is a measure space which is not complete. We
calculate its completion (X, Â, µ̂). By Construction 18.2.4.4, as the only null set is {2, 3}, we have

Â = {∅, X, {1}, {2, 3}, {2}, {3}, {1, 2}, {1, 3}}.

Hence Â = P(X). Similarly, µ̂ is easy to find by the definition in Construction 18.2.4.4.

18.2.5 Outer measures

Definition 18.2.5.1. (Outer measure) Let X be a set and let P (X) be the collection of all subsets of
X . An outer measure on X is a function µ∗ : P (X) −→ [0,+∞] such that:

• For the empty set Φ,
µ∗ (Φ) = 0



646 CHAPTER 18. ABSTRACT ANALYSIS

• If A ⊆ B ⊆ X , then
µ∗ (A) ≤ µ∗ (B) .

• If {An} is an infinite sequence of subsets of X , then

µ∗
Ç⋃

n

An

å
≤

∑
n

µ∗ (An)

Definition 18.2.5.2. (Lebesgue outer measure on R) For each subset A ⊆ R, let CA be the set of all
infinite sequences {(ai, bi)} of bounded open intervals such that A ⊆

⋃
i(ai, bi). That is,

CA = {{(ai, bi)} | A ⊆ ∪i(ai, bi) and ai, bi ∈ R}

Then, λ∗ : P (R) −→ [0,+∞] is the Lebesgue outer measure, defined by:

λ∗ (A) = inf
®∑

i

(bi − ai)
∣∣∣∣∣ {(ai, bi)} ∈ CA

´
(18.3)

To verify that λ∗ is indeed an outer measure.

Proposition 18.2.5.3. Lebesgue outer measure on R is an outer measure and it assigns to each subinterval
of R it’s length.

Proof. Denote CA = {{(ai, bi)} | A ⊆ ∪i(ai, bi)}. To show that λ∗ is an outer measure, we first
need to show that λ∗ (Φ) = 0. For that, consider the set of all infinite sequences {(ai, bi)} ∈ CΦ,
that is (trivially) Φ ⊆ ∪i(ai, bi), such that

∑
i(bi − ai) < ϵ for all ϵ > 0. Then, if we denote

LA = {
∑
i(bi − ai) | {(ai, bi)} ∈ CA}, then inf LΦ = 0 as for any lower bound l of LA, if l > 0 then

∃ {(ai, bi)} ∈ CΦ such that
∑
i(bi − ai) < l, hence l ≤ 0, or inf LΦ = 0.

Second, we need to show that if A ⊆ B ⊆ X , then λ∗ (A) ≤ λ∗ (B). For this, consider A ⊆ B.
Clearly, we have that CB ⊆ CA, therefore LB ⊆ LA and hence inf LB ≥ inf LA.
Third, we need to show that for any infinite sequence {An} of subsets of X ,

λ∗
Ç⋃

n

An

å
≤

∑
n

λ∗ (An)

For this, consider the Lebesgue outer measure of An, that is, λ∗ (An). We must have, that for any
infinite sequence {(an,i, bn,i)} ∈ CAn , that

∞∑
i=1

(bn,i − an,i) ≥ λ∗ (An) .

Hence, consider that the difference is upper bounded according to n, that is the sequence {(an,i, bn,i)} ∈
CAn is such that,

∞∑
i=1

(bn,i − an,i)− λ∗ (An) ≤ ϵ/2n.

Now, we can cover the entire
⋃
iAi by the union of the above intervals, that is,⋃

i

Ai ⊆
⋃
n

⋃
i

(an,i, bn,i).
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Now, we know that

λ∗
Ç⋃

i

Ai

å
= inf L∪iAi .

But since ∑
n

∑
i

(bn,i − an,i) ∈ L∪iAi ,

and ∑
n

Ç∑
i

(bn,i − an,i)− λ∗ (An)
å
≤

∑
n

ϵ/2n

which is equal to ∑
n

∑
i

(bn,i − an,i)−
∑
n

λ∗ (An) ≤ ϵ× 1

or, ∑
n

∑
i

(bn,i − an,i) ≤
∑
n

λ∗ (An) + ϵ

and since λ∗ (
⋃
iAi) = inf L⋃

i
Ai

, therefore,

λ∗
Ç⋃

i

Ai

å
≤

∑
n

∑
i

(bn,i − an,i) ≤
∑
n

λ∗ (An)

Hence proved.

Now, we need to show that λ∗ assigns each subinterval it’s length.
For this first show that λ∗ ([a, b]) ≤ b− a. This is easy to show if we take,

[a, b] =
⋃
i

(ai, bi)

where (a1, b1) = (a, b), (ai, bi) = (a− ϵ/2i, a) for all even i and (aj , bj) = (b, b+ ϵ/2j) for all odd j.
Now, ∑

i

(bi − ai) = (b− a) +
∑

i=2,4,...
ϵ/2i +

∑
i=3,5,...

ϵ/2i

= b− a+
∑

i=1,2,...
ϵ/2i

= b− a+ ϵ

therefore λ∗ ([a, b]) = inf L[a,b] ≤ b− a+ ϵ for all ϵ > 0, hence λ∗ ([a, b]) ≤ b− a.
Now, to show the converse that b − a ≤ λ∗ ([a, b]), we first note that [a, b] is compact, so for any
infinite cover {(ai, bi)} ∈ C[a,b], there exists a finite subcover {(ai, bi)}ni=1 of [a, b]. Now, since λ∗ is
an outer measure, therefore,

b− a ≤
n∑
i=1

λ∗ ((ai, bi)) ≤
∞∑
i=1

λ∗ ((ai, bi)) ∈ L[a,b]
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Therefore, b− a is a lower bound of L[a,b] and hence b− a ≤ inf L[a,b] = λ∗ ([a, b]).
Hence λ∗ ([a, b]) = b− a.
Now since, one can construct subintervals of the form (a, b] or [a, b) from the following manner:

(a, b] ⊆ (a, b)
⋃Ç⋃

n

[b, b+ ϵ/2n]
å

from which we get that λ∗ ((a, b]) ≤ b− a and also,

[a, b] ⊆ (a, b]
⋃Ç⋃

n

[a− ϵ/2n, a]
å

which yields b− a ≤ λ∗ ((a, b]). Similarly for (−∞, b] to show that λ∗ ((−∞, b]) = +∞.

Construction 18.2.5.4. (Lebesgue outer measure on Rn) Consider Rm and for an box I ⊆ Rn, by
which we mean a product of interval I = I1 × · · · × Im for Ii ⊆ R, denote v(I) to be its volume;
v(I) =

∏m
i=1 l(Ii). For any A ⊆ Rn, we define

µ∗(A) = inf
®∑

n

v(In) |
⋃
n

In ⊇ A, In are boxes

´
.

We claim that µ∗ forms an outer measure on Rn.
Indeed, µ∗(∅) = 0 as ∅ ⊆ (−1/k, 1/k)m for all n ∈ N so we have µ∗(A) ≤ 2m/nm. Taking

n→∞ does the job.
LetA ⊆ B in Rm. Observe that to show µ∗(A) ≤ µ∗(B) we need only show that {

∑
n v(In) |

⋃
n In ⊇ A, In are boxes} ⊇

{
∑
n v(In) |

⋃
n In ⊇ B, In are boxes}. But this is trivial as and sequence of boxes {In} covering B

also covers A.
Finally we wish to show countable subadditivity. Pick {An} ⊆ P(Rm). We wish to show that

µ∗
Ç⋃

n

An

å
≤

∑
n

µ∗(An).

We use the ϵ-wiggle around sup and inf technique to show this, as discussed earlier in Construction
18.2.3.2. Pick any ϵ > 0 and observe that we have a sequence of boxes {In,k}k for each n ∈ N such
that

⋃
k In,k ⊇ An and

µ∗(An) +
ϵ

2n ≥
∑
k

v(In,k). (♥)

Observe further that
⋃
n

⋃
k In,k ⊇

⋃
nAn. Consequently, we have

∑
n

∑
k v(In,k) ≥ µ∗(

⋃
nAn).

Hence,

∑
n

(
µ∗(An) +

ϵ

2n
)
≥

∑
n

∑
k

v(In,k) ≥ µ∗
Ç⋃

n

An

å
.

Hence µ∗ is an outer measure on Rn.

Note that the only place we required knowledge about boxes explicitly was only to show that
µ∗(∅) = 0. This motivates the following simple result
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Theorem 18.2.5.5. Let X be a set and S ⊆ P(X) be a collection of sets containing ∅ and X . Let l : S →
[0,∞] be a function such that l(∅) = 0. Then µ∗ defined by

µ∗ : P(X) −→ [0,∞]

A 7−→ inf
®∑

n

l(In) |
⋃
n

In ⊇ A, In ∈ S
´

is an outer measure on X .

Proof. Verbatim to Construction 18.2.5.4, except that µ∗(∅) = 0 follows now by the assumption
that l(∅) = 0 and ∅ ∈ P(X) so that ∅ forms its own covering.

18.2.6 Lebesgue measurability & Carathéodory’s theorem

Definition 18.2.6.1. (µ∗-measurable subset) Let X be a set and let µ∗ be an outer measure on X . A
subset B ⊆ X is µ∗-measurable if:

µ∗ (A) = µ∗ (A ∩B) + µ∗ (A ∩Bc)

holds for all subsets A ⊆ X .

Definition 18.2.6.2. (Lebesgue measurable subset of R) A subset B ⊆ R is called a Lebesgue
measurable subset of R if B is λ∗-measurable. That is, for any A ⊆ R, we must have:

λ∗ (A) = λ∗ (A ∩B) + λ∗ (A ∩Bc)

Remark 18.2.6.3. Important to note are the following:
• Due to sub-additivity of µ∗ and A ⊆ (A ∩B) ∪ (A ∩Bc), we already have that

µ∗ (A) ≤ µ∗ (A ∩B) + µ∗ (A ∩Bc)

for any subsets A,B ⊆ X .
⋆ Due to the above fact, all that remains to be shown to ascertain that B ⊆ R is µ∗-measurable is to

show the following converse:

µ∗ (A) ≥ µ∗ (A ∩B) + µ∗ (A ∩Bc) .

for all A ⊆ X .

Proposition 18.2.6.4. Let X be a set and let µ∗ be an outer measure on X . Then each subset B ⊆ X that
satisfies µ∗ (B) = 0 or that satisfies µ∗ (Bc) = 0 is µ∗-measurable.

Proof. This result actually proves that for subset B ⊆ X which has zero outer measure under
µ∗, any other subset A ⊆ X would be such that µ∗ (A ∩B) = 0(!) After proving this, and from
the remark above, we would just be left to show that if µ∗ (B) = 0, then µ∗ (A) ≥ µ∗ (A ∩B) +
µ∗ (A ∩Bc). We show the former here, from which the latter follows naturally.

Consider B ⊆ X such that µ∗ (B) = 0. It’s true that A ∩ B ⊆ B. Now since µ∗ is an outer
measure onX , therefore, we must have µ∗ (A ∩B) ≤ µ∗ (B) = 0. This implies that µ∗ (A ∩B) = 0.
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Now, we would see that the required condition follows naturally from the previous. First, note
the following:

A ∩B ⊆ A and A ∩Bc ⊆ A.

Hence, we can write:

µ∗ (A ∩B) ≤ µ∗ (A) and µ∗ (A ∩Bc) ≤ µ∗ (A) .

Now if µ∗ (B) = 0, then µ∗ (A ∩B) = 0 and then in the second inequality, we would have:

µ∗ (A ∩Bc) + µ∗ (A ∩B) ≤ µ∗ (A) + 0

Or, if µ∗ (Bc) = 0, then µ∗ (A ∩Bc) = 0 and then in the first inequality, we would have:

µ∗ (A ∩B) + µ∗ (A ∩Bc) ≤ µ∗ (A) + 0.

Hence,B is µ∗-measurable for anyB ⊆ X which satisfies that either µ∗ (B) = 0 or µ∗ (Bc) = 0.

The following theorem is a fundamental fact about outer measures.

Theorem 18.2.6.5 (Carathéodory). Let X be a set, let µ∗ be an outer measure on X and let Mµ∗ be the
collection of all µ∗-measurable subsets of X . Then,

• Mµ∗ is a σ-algebra.
• The restriction of µ∗ to Mµ∗ is a measure on Mµ∗ .

Proof. Act 1. Mµ∗ is an algebra.
First, it is clear that X,Φ ∈ Mµ∗ from Proposition 18.2.6.4, because µ∗ (Φ) = µ∗ (Xc) = 0. Now,
if B ∈ Mµ∗ , then µ∗ (A) = µ∗ (A ∩B) + µ∗ (A ∩Bc) ∀ A ⊆ X . But if we replace B by Bc in the
above, we would get the same equation, hence Bc ∈ Mµ∗ . So Mµ∗ is closed under complements.
Now, to show closed nature under finite unions, we take any two subsets B1, B2 ∈Mµ∗ and show
that A ∪B ∈Mµ∗ . First we have

µ∗ (A) = µ∗ (A ∩B1) + µ∗ (A ∩Bc
1)

= µ∗ (A ∩B2) + µ∗ (A ∩Bc
2)

for any A ⊆ X . Now, we see that from the fact that B1 ∈Mµ∗ ,

µ∗ (A ∩ (B1 ∪B2)) = µ∗ (A ∩ (B1 ∪B2) ∩B1) + µ∗ (A ∩ (B1 ∪B2) ∩Bc
1)

= µ∗ (A ∩B1) + µ∗ (A ∩B2 ∩Bc
1)

Similarly, we have from the fact B2 ∈Mµ∗ ,

µ∗ (A ∩ (B1 ∪B2)c) = µ∗ (A ∩ (B1 ∪B2)c ∩B2) + µ∗ (A ∩ (B1 ∪B2)c ∩Bc
2)

= µ∗ (A ∩Bc
1 ∩Bc

2 ∩B2) + µ∗ (A ∩Bc
1 ∩Bc

2 ∩Bc
2)

= µ∗ (Φ) + µ∗ (A ∩Bc
1 ∩Bc

2)
= µ∗ (A ∩ (B1 ∪B2)c)
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Now, adding the above results yield,

µ∗ (A ∩ (B1 ∪B2)c) + µ∗ (A ∩ (B1 ∪B2)) = µ∗ (A ∩ (B1 ∪B2)c) + µ∗ (A ∩B1) + µ∗ (A ∩B2 ∩Bc
1)

= µ∗ (A ∩Bc
1 ∩Bc

2) + µ∗ (A ∩Bc
1 ∩B2) + µ∗ (A ∩B1)

= µ∗ (A ∩Bc
1) + µ∗ (A ∩B1)

= µ∗ (A) .

Hence, B1 ∪B2 is µ∗-measurable, so B1 ∪B2 ∈Mµ∗ . Now, we can, for a finite collection of subsets
in Mµ∗ , we can proceed like above, to show that Mµ∗ is closed under finite union, hence showing
that Mµ∗ is an algebra.

Act 2. Mµ∗ is a σ-algebra.
All that is left to show that Mµ∗ is a σ-algebra is to show that it is closed under countable union.
We have already proved closed nature under finite union. We extend it via induction principle.
Suppose {Bi} is a sequence of disjoint subsets in Mµ∗ . For this, we first prove3 using induction
that, for all A ⊆ X and n ∈ N,

To Prove : µ∗ (A) =
n∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩

Ç
n⋂
i=1

Bc
i

åå
(18.4)

For the case when n = 1, we see that it Eq. 18.4 reduces to µ∗ (A) = µ∗ (A ∩B1)+µ∗ (A ∩Bc
1). But

sinceBi ∈Mµ∗ ∀ i ∈ N, therefore this is trivially true. Now, by the induction principle, we assume
that Eq. 18.4 is true uptill n and then we try to prove it for n+ 1 step. For this, since Bn+1 ∈Mµ∗

is disjoint to all other Bi’s, we have,

µ∗
Ç
A ∩

n⋂
i=1

Bc
i

å
= µ∗

ÇÇ
A ∩

n⋂
i=1

Bc
i

å
∩Bn+1

å
+ µ∗

ÇÇ
A ∩

n⋂
i=1

Bc
i

å
∩Bc

n+1

å
= µ∗ (A ∩Bn+1) + µ∗

Ç
A ∩

n+1⋂
i=1

Bc
i

å
where the last line follows from the fact that each Bi is disjoint to other Bj ’s, hence each Bc

j would
contain Bi and therefore Bn+1 ⊆

⋂n
i=1B

c
i . Now, substituting the above equation in Eq. 18.4 gives,

µ∗ (A) =
n∑
i=1

µ∗ (A ∩Bi) + µ∗ (A ∩Bn+1) + µ∗
Ç
A ∩

n+1⋂
i=1

Bc
i

å
=

n+1∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩

n+1⋂
i=1

Bc
i

å
3But why to prove Eq. 18.4? The motivation for Eq. 18.4 comes from Part 1. More specifically, notice in the equation

where we added µ∗ (A ∩ (B1 ∪B2)c) and µ∗ (A ∩ (B1 ∪B2)). Note it’s 2nd line, this is the case when n = 2 in Eq. 18.4
combined with the fact that Bi’s are disjoint. Now why to take Bi’s to be disjoint? The reason for this comes from
the fact that for any infinite sequence of subsets {Ai}, one can construct infinite sequence of disjoint subsets, that is :
A1, A2 ∩ Ac

1, A3 ∩ (A1 ∪ A2)c, . . . and it’s union is again
⋃
n
An. Hence if we prove that a disjoint infinite sequence is

closed under union, then we could prove that any infinite sequence of subsets is closed under union too!
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Hence, by induction principle, Eq. 18.4 is true for all n ∈ N. Hence, now we can write,

µ∗ (A) ≥
∞∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩

∞⋂
i=1

Bc
i

å
=
∞∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩

Ç ∞⋃
i=1

Bi

åcå
Now, to prove that

⋃
iBi ∈Mµ∗ , we need to show

To Show : µ∗ (A) ≥ µ∗
Ç
A ∩

⋃
i

Bi

å
+ µ∗

Ç
A ∩

Ç⋃
i

Bi

åcå
This comes from previous result as follows:

µ∗ (A) ≥
∞∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩

Ç ∞⋃
i=1

Bi

åcå
≥ µ∗

Ç ∞⋃
i=1

(A ∩Bi)
å

+ µ∗
Ç
A ∩

Ç ∞⋃
i=1

Bi

åcå
= µ∗

Ç
A ∩

∞⋃
i=1

Bi

å
+ µ∗

Ç
A ∩

Ç ∞⋃
i=1

Bi

åcå (18.5)

Therefore,
⋃
iBi ∈Mµ∗ . Now, as the previous footnote mentions, for every infinite sequence {Ci}

in Mµ∗ , we have a disjoint sequence of subsets as C1, C2∩Cc
1, C3∩Cc

2∩C1, .... Now, this disjoint se-
quence is closed under union as we just showed and since union of this disjoint sequence is equal
to the union of {Ci}, hence

⋃
iCi ∈Mµ∗ for any sequence {Ci} in Mµ∗ . Thus, Mµ∗ is a σ-algebra.

Act 3. µ∗ restricted to Mµ∗ is a measure.
Consider {Bn} be an infinite sequence of subsets in Mµ∗ . Now, by finite subadditivity, we trivially
have

µ∗
Ç⋃

i

Bi

å
≤

∑
i

µ∗ (Bi)

Moreover, from Part 2 and setting A = ∪iBi, we get:

µ∗
Ç⋃

i

Bi

å
≥

∑
j

µ∗
Ç⋃

i

Bi ∩Bj

å
+ µ∗

Ç⋃
i

Bi ∩
Ç⋃

i

Bi

åcå
=

∑
j

µ∗ (Bj) + µ∗ (Φ)

=
∑
j

µ∗ (Bj) .

We hence have the complete proof.
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Definition 18.2.6.6. (Lebesgue measure) The restriction of Lebesgue outer measure on R to the
collectionMλ∗ of Lebesgue measurable subsets of R is called Lebesgue measure. It would be denoted
by λ. Hence, we would work with the measure space (R,Mλ∗ , λ)4.

18.2.7 Does λ∗ (E) = 0 implies E is countable?

We would construct today a set which has measure 0, but not countable(!).
1. Take E0 = [0, 1].
2. Remove (1/3, 2/3) from E0 to form E1 = [0, 1/3] ∪ [2/3, 1].
3. Proceed in the same way to form E2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].
4. At nth step, En contains 2n subintervals and each of which is of length 1

3n .
5. We clearly have E0 ⊃ E1 ⊃ E2 ⊃ . . . .
6. Here, note that each En is a closed and compact subset of R.
7. The set

P =
∞⋂
n=0

En is known as Cantor Set.

Properties of Cantor Set

Proposition 18.2.7.1. Lebesgue measure of Cantor Set is 0.

Proof. Note that Cantor Set is Lebesgue measurable as it is countable intersection of closed sets,
hence it is present in the Borel σ-algebra B(R) and hence is also in Mλ∗ . Hence, instead of λ∗, we
can now write λ as P ∈Mλ∗ . Now, measure of Cantor set P can be written as:

λ (P ) = λ

Ç⋂
n

En

å
= lim←−

n→∞
λ (En)

= lim←−
n→∞

2n

3n

= lim←−
n→∞

1
1.5n

= 0.

Proposition 18.2.7.2. Cantor set is uncountable(!)

Proof. We will show that there exists a bijection between Cantor Set and an uncountable set, specif-
ically ternary system. For this, consider the ternary representation of every number in [0, 1]. What
this means is that every number in [0, 1] can be represented only using the numbers 0, 1 and 2.
Hence, one write 1

3 as 0.1 and 2
3 as 0.2. Now, (1/3, 2/3) = Ec

1 ∩ [0, 1] is the set that has been re-
moved from the process of creating E1 from E0. Clearly, every number in this Ec

1 ∩ [0, 1] is of the

4From this point on-wards, whenever this text mentions that a given set is measurable in space (X,A, µ), it must be
assumed that the given set is in A, given that there is no ambiguity.
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form 0.1 . . . where . . . are all combinations of 0, 1 and 2. Therefore, we are now left with the E1
that has all the numbers represented as 0.0 . . . or 0.2 . . . .
As we saw in the generation of E1, the generation of E2 from E1 would hence involve remov-
ing numbers of the forms 0.01 . . . and 0.21 . . . . And hence E2 would then be the set of numbers
whose first two decimal places are restricted to NOT have the digit 1; that is, E2 would be of form
0.02 . . . , 0.00 . . . , 0.20 . . . , 0.22 . . . .
Continuing like this, we see that En would have in ternary representation, all those numbers
whose first n digits are NOT 1. Hence, for any p ∈ P , p would have the ternary representation
constructed only from 0 and 2, but NOT 1.
Now, consider the map f : P → [0, 1] such that f(p) replaces each occurence of 2 by 1 in the
ternary representation of p. We now show that this map is surjective(!) so that P has atleast as
many elements as [0, 1]. To show this, take any x ∈ [0, 1] in it’s ternary form, and replace all 1 by
2 and denote it as x′. Clearly, x′ would be in P as x′ has all decimal digits generated by 0 and 2.
But f(x′) would be opposite action and would be equal to x. Therefore, we showed that for any
x ∈ [0, 1],∃ x′ ∈ P such that f(x′) = x. Hence f is surjective. Therefore P has atleast as many
elements as [0, 1]. But since P ⊆ [0, 1] therefore P has atmost as many elements as [0, 1]. This
dichotomy suggests that

Cantor Set has as many elements as in [0, 1] (!)

But since [0, 1] is uncountable, therefore, P is uncountable.

With this, we conclude that for any set E ⊆ R, if λ∗ (E) = 0, then it’s NOT necessarily true
that E is countable.
We now see an extremely interesting example of a Non-measurable set.

18.2.8 A non-measurable set

Theorem 18.2.8.1. There is a subset of R that is not Lebesgue measurable5.

Proof. We construct the proof in the following Acts:

Act 1. Equivalence Relation on R.
Construct the following relation ∼ on R:

x ∼ y ≡ x− y ∈ Q.

Clearly, ∼ is reflexive as x− x = 0 is rational; it is also symmetric as negative of a rational is also a
rational number; and it is also transitive as if x− y and y− z is rational, then x− y+ y− z = x− z
is sum of two rationals, which is also rational. Hence ∼ is an equivalence relation. Therefore ∼
partitions the whole R into equivalence classes. Note that each equivalence class of x would con-
sist elements of the form Q+x. But since Q is dense in R, therefore Q+x, that is each equivalence
class, is dense in R.
Now, each equivalence class clearly intersects (0, 1), therefore, inducing the Axiom of Choice on
the set of all equivalence classes, we can form a subset E ⊂ (0, 1) which contains exactly one el-
ement from each of the equivalence classes. We will later prove thatE is not Lebesgue measurable.

5See [Solovay70] for more information.
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Act 2. E satisfies certain properties.
Consider the set Q ∩ (−1, 1). Clearly, this is countable as it’s subset of Q. Then, consider {rn} to
be the enumeration of Q∩ (−1, 1). Construct the sequence of subsets En = E + rn. We now verify
that {En} satisfies the following properties:

1. The sets En are disjoint.
2.

⋃
nEn is a subset of the interval (−1, 2).

3. The interval (0, 1) is included in
⋃
nEn.

Property 1 : Assume that En ∩ Em ̸= Φ for some n,m ∈ N such that n ̸= m. Then ∃e1, e2 ∈ E such
that e1 + rn = e2 + rm which means that e1 − e2 = rm − rn ∈ Q. But this cannot happen as e1, e2
are elements of E and E contains exactly one element from the equivalence class of ∼ intersected
with (0, 1). Therefore e1 − e2 /∈ Q. Which is a contradiction. Hence En ∩ Em = Φ for all n,m ∈ N
such that n ̸= m.
Property 2 : Take x ∈

⋃
nEn. This implies that x ∈ Em for some m ∈ N. But Em = E + rm =

{e+ rm | e ∈ E}. Since E ⊂ (0, 1) and rm ∈ Q ∩ (−1, 1) ⊂ (−1, 1), therefore x ∈ E + rm ⊆ (−1, 2).
Hence

⋃
nEn ⊆ (−1, 2).

Property 3 : Take any x ∈ (0, 1). Now take the e ∈ E such that x ∼ e, or x−e ∈ Q. Hence x ∈ Q+e.
That is x = r + e. But since 0 < e < 1 and 0 < x < 1, therefore r = x − e ∈ Q ∩ (−1, 1). Hence
x ∈ E + r and if we denote r = rn for some n ∈ N, we get x ∈ E + rn = En, therefore x ∈

⋃
iEi.

Hence (0, 1) ⊆
⋃
iEi.

Act 3. E is Not Lebesgue measurable.
Assume that E is in-fact Lebesgue measurable. Now since En are disjoint (Property 1), therefore
we can write:

λ

Ç⋃
n

En

å
=

∑
n

λ (En) .

Now, since Lebesgue measure is translation invariant6, therefore λ (En) = λ (E + rn) = λ (E).
Two cases now arise for λ (

⋃
nEn):

1. If λ (E) = 0 : Then λ (
⋃
nEn) = 0. But

λ ((−1, 2)) = 3 ≤ λ
Ç⋃

n

En

å
(Property 3).

Therefore we have a contradiction.
2. If λ (E) ̸= 0 : Then λ (

⋃
nEn) =

∑
n λ (E) = +∞. But

λ

Ç⋃
n

En

å
≤ λ ((−1, 2)) = 3 (Property 2).

We again have a contradiction.
Hence, the set E is just not Lebesgue measurable!

18.2.9 Regularity

First consider the following proposition.
6Proof?
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Proposition 18.2.9.1. Consider E ⊆ R. The following statements are equivalent:
1. E is Lebesgue measurable.
2. ∀ ϵ > 0, ∃ an open set O such that

E ⊆ O and λ∗ (O \ E) < ϵ.

3. ∃ a Gδ set G such that
E ⊆ G and λ∗ (G \ E) = 0.

Proof. The equivalence of each statement is as follows:
1 =⇒ 2. Consider E ⊆ R to be Lebesgue measurable. By above, for any E ⊆ R and any ϵ > 0,
there exists open set U such that E ⊆ U which satisfies

λ∗ (U) ≤ λ∗ (E) + ϵ.

Now since E ⊆ U , therefore,

λ∗ (U \ E) = λ∗ (U)− λ∗ (E)
≤ ϵ

2 =⇒ 3. Similarly, the above shows that there exists a Gδ set G such that E ⊆ G which sat-
isfies λ∗ (E) = λ∗ (G). This directly means that λ∗ (G \ E) = 0 because E ⊆ G so λ∗ (G \ E) =
λ∗ (G)− λ∗ (E).

3 =⇒ 1. Since G is Gδ set therefore it is intersection of open sets in R. Now since any open
set in R is an union of open intervals (Homework I, 1) which is Lebesgue measurable and there-
fore G is Lebesgue measurable. Now, we can write E as

E = G \ (G \ E)

whereG\E is such that (from Statement 3) λ∗ (G \ E) = 0, therefore, by Proposition 18.2.6.4,G\E
is Lebesgue measurable. Hence E is also Lebesgue measurable.

Now, consider the next proposition, which is dual of the above.

Proposition 18.2.9.2. Consider E ⊆ R. The following statements are equivalent:
1. E is Lebesgue measurable.
2. ∀ ϵ > 0, ∃ closed set C such that

C ⊆ E and λ∗ (E \ C) < ϵ.

3. ∃ a Fσ set F such that
F ⊆ E and λ∗ (E \ F ) = 0.

Proof. Implications are as follows:
1 =⇒ 2. Suppose E ⊆ R is Lebesgue measurable. Note that if E is Lebesgue measurable (that is
E ∈ Mλ∗), then Ec is also Lebesgue measurable as Mλ∗ is a σ-algebra (Theorem 18.2.6.5). Hence,
using Proposition 18.2.9.1 on Ec gives us an open set O for all ϵ > 0 such that Ec ⊆ O and
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λ∗ (O \ Ec) < ϵ. Now let’s take it’s complement. Therefore, C = Oc ⊆ E where C is clearly closed.
Now, E \Oc = O \ Ec7. Now,

λ∗ (E \Oc) = λ∗ (O \ Ec)
< ϵ

which proves the first implication.

2 =⇒ 3. From Proposition 18.2.9.1, we have that ∃ a Gδ set G such that Ec ⊆ G and λ∗ (G \ Ec) =
0. Note that the complement of countable intersection of open sets is countable union of closed
sets. Therefore, F = Gc is an Fσ set. Now, Gc ⊆ (Ec)c = E. Now, we know that E \Gc = G \ Ec.
Therefore, we have the result as follows:

λ∗ (E \Gc) = λ∗ (G \ Ec)
= 0.

3 =⇒ 1. Since F is an Fσ set, therefore, F ∈Mλ∗ . Moreover, as Statement 2 show, λ∗ (E \ F ) = 0,
thus by Proposition 18.2.6.4, E \ F ∈Mλ∗ . Since,

E = F ∪ (E \ F )

that is E is union of two Lebesgue measurable sets, therefore E ∈Mλ∗ , completing the proof.

Definition 18.2.9.3. (Complete measure Space) The measure space (X,A, µ) is complete if the for
any A ∈ A such that µ (A) = 0 implies that for any subset B ⊆ A,

µ (B) = 0.

Remark 18.2.9.4. Trivial to see are the following:
• Hence, if µ∗ is an outer measure defined on X , then the space (X,Mµ∗ , µ

∗) is complete
(follows from Proposition 18.2.6.4).

• This means that the Lebesgue outer measure restricted to Lebesgue measurable subsets of
R, (R,Mλ∗ , λ) is complete.

Definition 18.2.9.5. (Completion of a measure Space) Let (X,A) be a measurable space and let µ
be a measure on A. The completion of A under µ is the collection Aµ of subsets A ⊆ X for which
there are sets E and F in A such that

E ⊆ A ⊆ F

and
µ (F − E) = 08.

7It’s not difficult to see as for any x ∈ E \ Oc, x ∈ E but x /∈ Oc. Therefore, x ∈ O but x /∈ Ec, that is x ∈ O \ Ec.
Similarly for the converse.

8Note that, in Exercise III, Q. 2, we proved that for any A ∈ A, this is trivially true. That is, all A-measurable subsets
are Aµ-measurable. In particular, E was a Fσ set and F was a Gδ set.
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18.3 Measurable functions

We now see the definition and basic properties of measurable Functions, which would later be
used to define Lebesgue integral.

Definition 18.3.0.1. (Measurable function) Let (X,A) be a measurable space and letA ⊆ X which
is in A. The function f : A→ [−∞,+∞], is called a measurable function9 if

{x | f(x) > α} for any α ∈ R is measurable (belongs in A).

Remark 18.3.0.2. Please note that the function f defined above has a measurable domain.

Proposition 18.3.0.3. Let (X,A) be a measurable space and A ∈ A. Let f : A → [−∞,+∞] be a
function. Then, the following statements are equivalent:

1. f is a measurable function.
2. For all α ∈ R, the set {x | f(x) ≥ α} ∈ A.
3. For all α ∈ R, the set {x | f(x) < α} ∈ A.
4. For all α ∈ R, the set {x | f(x) ≤ α} ∈ A.

Proof. The equivalence is shown as follows:
1 =⇒ 2. Since f is a measurable, therefore for all α ∈ R, the set {x | f(x) > α} ∈ A. This means
that Cα− 1

n
=
{
x | f(x) > α− 1

n

}
∈ A for all n ∈ N. Now, the following set

C =
⋂
n

Cα− 1
n
= {x | f(x) ≥ α}.

is measurable as C ∈ A because Cα− 1
n
∈ A for any n ∈ N, hence the countable intersection would

also be in A, hence measurable.
2 =⇒ 3. Since {x | f(x) ≥ α} ∈ A, therefore it’s complement {x | f(x) < α} ∈ A for any α ∈ R.
3 =⇒ 4. Since {x | f(x) < α} ∈ A for any α ∈ R, thus, Cα+ 1

n
= {x | f(x) < α + 1

n} ∈ A for all
n ∈ N, hence

C =
⋂
n

Cα+ 1
n
= {x | f(x) ≤ α}

and since each Cα+ 1
n
∈ A, therefore C ∈ A.

4 =⇒ 1. Since {x | f(x) ≤ α} ∈ A then it’s complement {x | f(x) > α} for all α ∈ R, making f
measurable.

Proposition 18.3.0.4. The following are basic examples of measurable functions:
• If f is a measurable function, then the set {x | f(x) = α} is measurable for all α ∈ R.
• Constant functions are measurable.
• The characteristic function χA defined by:

χA(x) =
®
1 x ∈ A
0 x /∈ A

is measurable if and only if A is measurable.

9One writes f as A-measurable function to denote the σ-algebra over whose subset the function f is defined.
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• Continuous functions are measurable.
• Let (X,A) be a measurable space. If f and g are measurable functions on X , then the sets

{x ∈ X | f(x) ̸= g(x)}
{x ∈ X | f(x) < g(x)}

are measurable (belongs to A).
• 10 Monotone functions are measurable.
• 11Consider f : R→ R is a differentiable function. Then f ′ is a λ-measurable function.

Proof. The first example is trivial to see in light of Proposition 18.3.0.3 by taking intersection of
{x | f(x) ≤ α} and {x | f(x) ≥ α}, both of which are measurable.
For second, consider the constant function f(x) = b ∀ x ∈ R. Now, for all α ∈ R, consider the
set f−1((α,∞)) = {x | f(x) > α}. If b > α, then we are done, if b ≤ α, then by previous result,
{x | f(x) ≤ α} is also measurable (equal to R and R ∈ A).
For third example, consider the set χA−1(α,∞) = {x | χA(x) > α} for any α ∈ R. If α > 1, then
f−1(α,∞) = Φ ∈ A. If α = 1, then f−1[α,∞) = A, since χA(x) is given measurable, hence A is
measurable. Now, Assume that A is measurable. Then consider the set χA−1(α,∞) for any α ∈ R.
As we saw previously, the case for α > 1 is trivial. For 0 < α ≤ 1, χA−1(α,∞) = A ∈ A. Finally,
for α ≤ 0, χA−1(−∞, α] = Φ ∈ A. Thus, χA is measurable.
For fourth, since f is continuous (so inverse of open sets is open, by definition), therefore f−1(α,∞)
is open in R, hence it must be Borel, hence measurable for any α ∈ R.
For fifth, since f and g are measurable. Then due to next Proposition 18.3.0.5, we know that f − g
is also measurable. This means that for any α ∈ R,

{x ∈ X | f(x)− g(x) < α}

is measurable. Now set α = 0 to get the result. Moreover, from this, we also get that {x ∈
X | f(x)− g(x) > 0} is also measurable. Hence,

{x ∈ X | f(x)− g(x) ̸= 0} = {x ∈ X | f(x)− g(x) < 0}
⋃
{x ∈ X | f(x)− g(x) > 0}

is also measurable.
For sixth, we proceed as follows:
Consider the function f : A → R where A ∈ Mλ∗ to be monotone. Now, consider the following
two sets for any α ∈ R:

A1 = {x ∈ A | f(x) > α}
A2 =

(
f−1(α),∞

)
∩A

Now, take any x ∈ A1, then f(x) > α =⇒ x > f−1(α). Now if f−1(α) ∩ A = Φ, then {x ∈
A | f(x) > α} = Φ which is trivially measurable and we would be done. If however f−1(α) ∩
A ̸= Φ, then f−1(α) = {y ∈ A | f(y) = α} so that f(y) > α implies that y > f−1(α) so that

10Question 3 of Exercise 3.
11Question 4 of Exercise 3.
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f(y) > f(f−1(α)) = α. Therefore, x > f−1(α), that is x ∈ A2, proving that A1 ⊆ A2.
Similarly, take x ∈ A2, therefore

x > f−1(α)
f(x) > f

(
f−1(α)

)
f(x) > α

x ∈ {x | f(x) > α}
x ∈ A1.

Therefore A2 ⊆ A1. Hence, A1 = A2. But since
(
f−1(α),∞

)
is an interval, hence measurable

and A is given measurable, therefore A2 =
(
f−1(α),∞

)
∩ A is measurable, which makes A1 =

{x | f(x) > α} = A2 measurable for all α ∈ R.
For seventh, the result is simple to see since we are given that f is λ-measurable due to continuity
(see Statement 4). Therefore, we can define the sequence of functions {fn} as follows:

fn(x) =
f
(
x+ 1

n

)
− f(x)

1
n

∀ x ∈ R.

As we can see, fn is λ-measurable due to Proposition 18.3.0.5. Hence, we can see that because
f ′(x) = lim←−h→0

f(x+h)−f(x)
h for any x ∈ R, and since lim←−n→∞ fn(x) = f(x), therefore fn → f ′ is

λ-measurable (Proposition 18.3.0.9).

Proposition 18.3.0.5. Let (X,A) be a measurable space and letA ∈ A. Consider two measurable functions
f, g : A −→ [0,+∞] and c ∈ R. Then,

1. f + c,
2. f ± g
3. cf ,
4. fg

are also measurable.

Proof. 1. Since f is measurable, therefore the set {x | f(x) > α − c} = {x | f(x) + c ≥ α} is
measurable for any α ∈ R.
2. Both f and g are given measurable. The set (f + g)−1(α,∞) can be written as:

(f + g)−1(α,∞) = {x | f(x) + g(x) > α}
= {x | f(x) > α− g(x)}
= {x | f(x) > b}

where b ∈ [−∞, α]. Note that the case where g(x) = +∞ is trivial as f(x) > α − (+∞) ≡ f(x) >
−∞, which is by definition of co-domain of f . Now since {x | f(x) > b} is measurable for any
b ∈ R ⊃ (−∞, α] for any α ∈ R, therefore (f + g)−1(α,∞) is measurable for any α ∈ R.
3. Note that for c = 0, the function becomes constant and hence measurable (Proposition 18.3.0.4).
Consider the set (cf)−1(α,∞). We can write this as follows,

(cf)−1(α,∞) = {x | cf(x) > α}
= {x | f(x) > α/c}
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where c ̸= 0. Since f is measurable, therefore {x | f(x) > α/c} is also measurable for any α ∈ R.
Hence cf is measurable.
4. Consider the set (f2)−1(−∞, α) for any α ∈ R.

(f2)−1(−∞, α) = {x | f2(x) < α}
= {x | −

√
α < f(x) <

√
α}

= {x | f(x) <
√
α}

⋂
{x | f(x) > −

√
α}

Therefore if f is measurable, then f2 is measurable. With this, we can simply write fg as:

fg = (f + g)2 − (f − g)2

4

which, by previous results (2 & 3), is measurable.

Proposition 18.3.0.6. 12 Let (X,A) be a measurable space. Consider a function f : A→ R where A ∈ A.
Then the following are equivalent:

1. f is a A-measurable function.
2. f−1(U) is a measurable set ∀ open sets U ⊆ R.
3. f−1(C) is a measurable set ∀ closed sets C ⊆ R.
4. f−1(B) is a measurable set ∀ borel sets B ∈ B(R).

Proof. The proof is exactly the same as of Proposition 18.3.2.2.

Definition 18.3.0.7. (sequence of fuctions) If {fn} is a sequence of [−∞,+∞] valued functions on
A, then supn fn : A→ [−∞,+∞] is defined byÅ

sup
n
fn

ã
(x) = sup{fn(x) | n ∈ N}.

Remark 18.3.0.8. One similarly defines the following:
• The infimum: (

inf
n
fn
)
(x) = inf{fn(x) | n ∈ N}.

• The limit supremum: Å
lim sup

n
fn

ã
(x) = lim sup{fn(x) | n ∈ N}.

• The limit infimum: (
lim inf

n
fn
)
(x) = lim inf{fn(x) | n ∈ N}.

• The limit: Ç
lim←−
n

fn

å
(x) = lim←−{fn(x) | n ∈ N}.

Proposition 18.3.0.9. Let (X,A) be a measurable space and let A ∈ A. Consider {fn} be a sequence of
[−∞,+∞]-valued measurable functions on A. Then,

12Question 1 of Exercise 3.
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1. The functions supn fn and infn fn are measurable.
2. The functions lim supn fn and lim infn fn are measurable.
3. The function lim←−n fn (whose domain is {x ∈ A | lim supn fn(x) = lim infn fn(x)}) is measurable.

Proof. Note that the set (supn fn)
−1(−∞, α] = {x ∈ A | (supn fn)(x) ≤ α} =

⋂
n{x ∈ A | fn(x) ≤

α}. Therefore supn fn is measurable. Similarly, (infn fn)−1(−∞, α) = {x ∈ A | (infn fn)(x) < α} =⋃
n{x ∈ A | fn(x) < α}. Now, denote gk = supn≥k fn and hk = infn≥k fn. But since lim supn fn =

infn≥0 supk≥n fk = infn≥0 gn and {gn} is measurable by 1st property, therefore lim supn fn is also
measurable, similarly for lim infn.

18.3.1 Almost everywhere property.

Definition 18.3.1.1. (µ-almost everywhere) Let (X,A, µ) be a measure space. A property P of
points of X is said to hold µ-almost everywhere if the set

N = {x ∈ X | P does not hold for x}

has measure zero. That is,
µ (N) = 0.

Remark 18.3.1.2. Note that it’s not necessary for the set N to belong in A. The only requirement is
for the set N to be contained in a set F ∈ A and then µ (F ) = 0 (which automatically implies that
µ∗ (N) = 0).

But, if µ is complete then N ∈ A. See Definition 18.2.9.3.

Definition 18.3.1.3. (Almost everywhere convergence) If {fn} is a sequence of functions on X
and f is a function on X , then

{fn} −→ f almost everywhere.

if the set
{x ∈ X | f(x) ̸= lim←−

n

fn(x)}

is of measure zero.

Proposition 18.3.1.4. Let (X,A, µ) be a measure space and let f and g be extended real valued functions
on X that are equal almost everywhere. If µ is complete and if f is measurable, then g is also measurable.

Proof. Consider the region of non-equality as

N = {x | f(x) ̸= g(x)}.

Given to us is the fact that µ∗ (N) = 0 and since µ is complete, so N ∈ A. Now, consider the
following for any α ∈ R:

{x | g(x) ≥ α} = ({x | g(x) ≥ α} ∩N)
⋃

({x | g(x) ≥ α} ∩N c) .

Denote the set A = {x | g(x) ≥ α} ∩ N and B = {x | g(x) ≥ α} ∩ N c. Since for any x ∈
({x | g(x) ≥ α} ∩N c), f(x) = g(x), therefore, we can equivalently writeB = ({x | f(x) ≥ α} ∩N c).
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Now N c ∈ A and due to Measurability of f , {x | f(x) ≥ α} ∈ A. Hence B ∈ A. Finally, due to
{x | g(x) ≥ α} ∩ N ⊆ N and µ being complete with µ (N) = 0, we get {x | g(x) ≥ α} ∩ N ∈ A,
completing the proof.

Proposition 18.3.1.5. Let (X,A, µ) be a measure space, let {fn} be sequence of extended real valued
functions on X and let f be an extended real valued function on X such that

{fn} −→ f almost everywhere.

If µ is complete and if each fn is measurable, then f is measurable.

Proof. As Proposition 18.3.0.9 shows, lim infn fn and lim supn fn are measurable. As the given
condition shows, lim infn fn is equal to f for almost all X . Hence Proposition 18.3.1.4 implies that
f is also measurable.

18.3.2 Cantor set

With the new tool in hand (measurable functions), we now turn back to the ever-interesting Cantor
set, this time, to prove the sheer size of the σ-algebra Mλ∗ in comparison to the Borel σ-algebra
B(R). In particular we show that B(R) ⊊ Mλ∗ .
But before that, we look at following results:

Proposition 18.3.2.1. The function φ defined by

φ : [0, 1] −→ P

φ(α) =
∞∑
n=1

2bn
3n for α ∈ [0, 1]

where bn ∈ {0, 1} ∀ n ∈ N is measurable in Mλ∗ .

Proof. Note that φ(α) thus maps a decimal number to it’s binary representation {bn}. First, we
define the following function:

φn : [0, 1] −→ {0, 1}
φn(α) = bn.

That is, φn maps α to it’s nth binary digit. We can see that φn(α) can be written as the following:

φn(α) = χEn =
®
1 if α ∈ En
0 otherwise.

whereEn is the intersection of countable sequence of sub-intervals of [0, 1]. HenceEn is a Lebesgue
measurable subset of R, so it is in Mλ∗ . But, as Proposition 18.3.0.4, statement 3 shows, χEn = φn
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is then a measurable function.
Now, the following arguments:

2
3nφn(α) =

2bn
3n is measurable (Proposition 18.3.0.5).ß2φn(α)

3n

™
is a sequence of measurale functions.®

n∑
k=1

2φn(α)
3n

´
is also a sequence of measurable functions (Proposition 18.3.0.5).

lim←−
n→∞

n∑
k=1

2φn(α)
3n is a measurable function (Proposition 18.3.0.9).

Hence the function which maps each real from [0, 1] to it’s binary representation is measurable.

Proposition 18.3.2.2. Let (X,A) be a measurable space. If f is a A-measurable function on A and B ∈
B(R), then f−1(B) ∈ A.

Proof. Denote D be the following set:

D = {B ⊆ R | f−1(B) ∈ A}.

Now, note that,
1. Since f−1(R) = A ∈ A, therefore R ∈ D.
2. If B ∈ D, then

Bc = R ∩Bc

and

f−1(Bc) = f−1(R ∩Bc)
= f−1(R) ∩ f−1(Bc)
= A ∩

(
f−1(B)

)c

Now since A ∈ A and f−1(B) ∈ A because B ∈ D, therefore f−1(Bc) ∈ A so that Bc ∈ D.
3. We know that from the basic results of set functions that

f−1
Ç⋃

n

Bn

å
=

⋃
n

f−1(Bn)

Hence D is a σ-algebra on R (!) Now, due to measurability of f , we know that the set {x | f(x) >
α} is in A, which is equivalent to saying that f−1(α,∞) ∈ A. This hence means that (α,∞) ∈ D for
any α ∈ R. Proposition 18.2.1.8 showed that a σ-algebra generated by such subsets of R is B(R).
Hence, for any B ∈ B(R), we have that B ∈ D. Therefore for any Borel set B, f−1(B) ∈ A13.

13This is a very interesting way to prove such a statement. Notice how we analyzed the set of all possible subsets of
R for which f−1(B) ∈ A right from the start!
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18.3.3 sequence of functions approximating a measurable function.

We now show that any measurable function can be defined in terms of a simple function and a
step function. For this, we first define what we mean by simple functions in Definition 18.3.3.4.
Before that, let’s see few more interesting-but-basic properties of measurable functions.

Proposition 18.3.3.1. Let (X,A) be a measurable space and f be an extended real valued function on
A ∈ A. Define the following:

f+(x) = max(f(x), 0) and f−(x) = −min(f(x), 0).

Then, f is measurable if and only if f+ and f− both are measurable on A.

Proof. If f is measurable, then {x | f(x) ≥ α} is measurable. Note that f+(x) ≥ 0. Hence, for
the case when α > 0, the set {x | f+(x) ≥ α} = {x | f(x) > α} which is measurable due to
measurability of f . Similarly, if α = 0, then {x | f+(x) ≥ 0} = {x | f(x) > 0}

⋃
{x | f(x) = 0}

in which both sets are measurable in view of Proposition 18.3.0.4. Finally, for α < 0, we have
{x | f+(x) > α} = {x | f+(x) ≥ 0} which again is measurable. Now, f−(x) = −min(f(x), 0) =
max(−f(x), 0) and since−f is also measurable (Proposition 18.3.0.5), therefore if f is a measurable
function, then f+ and f− are both measurable functions too.
To show the converse, note that f = f+ − f− and since both are measurable, therefore f is also
measurable (Proposition 18.3.0.5).

Remark 18.3.3.2. Due to the above result, we can hence deduce that if f is a A-measurable function
then,

|f | = f+ + f− is a measurable function on A.

Proposition 18.3.3.3. Let (X,A) be a measurable space and A ∈ A. Let f : A→ [−∞,+∞]. Then,
1. If f is A-measurable and if B is a subset of A, then the restriction fB of f to B is also A-measurable.
2. If {Bn} is a sequence of sets that belong to A such that A =

⋃
nBn and fBn is A-measurable for each

n, then f is also A-measurable.

Proof. The first result follows directly from the following observation:

{x ∈ B | fb(x) > α} = B
⋂
{x ∈ A | f(x) > α}

and the second result follows from the following:

{x ∈ A | f(x) > α} =
⋃
n

{x ∈ Bn | fBn(x) > α}.

both for any α ∈ R.

Definition 18.3.3.4. (Simple Function) A function is called simple if it has only finitely many
values. Equivalently, we say that f is simple if we can write it as the following:

f =
N∑
k=1

αkχEk , αk ∈ R

where each Ek is a measurable set of finite measure.
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Remark 18.3.3.5. Note that
• If Ek are intervals, then we say f to be a step function.

The following Proposition asserts that any measurable function can be approximated by an in-
creasing sequence of simple functions.

Proposition 18.3.3.6. Let (X,A) be a measurable space and let A ∈ A with f : A → [0,+∞] be
a measurable function on A. Then there exists a sequence {fn} of simple [0,+∞)-valued measurable
functions on A that satisfy

f1(x) ≤ f2(x) ≤ f3(x) ≤ . . .

and
lim←−
n→∞

fn(x) = f(x)

for any x ∈ A.

Proof. For the proof, construct the following sequence of sets, by dividing the whole interval [0, n]
for any n ∈ N into n2n number of intervals each of length 1

2n and denote the following set:

An,k =
ß
x ∈ A

∣∣∣∣k − 1
2n ≤ f(x) < k

2n

™
for any n ∈ N and k = 1, 2, . . . , n2n. With this construction, we can now define the following
function for each n:

φn : A→ [0,∞), defined as

φn(x) =
®
k−1
2n if x ∈ An,k for any k = 1, 2, . . . , n2n

n if x ∈ A−
⋃
k An,k.

Note that we can alternatively write φn(x) as the following (with more clarity):

φn(x) =
®
k−1
2n if f(x) ≤ n , where k−1

2n ≤ f(x) <
k
2n for some k ∈ {1, 2, . . . , n2n}

n if f(x) > n.

We now show that φn(x) ≤ φn+1(x) ∀ x ∈ A. Let’s first show this for f(x) ≤ n.
If f(x) ≤ n, then,

φn(x) =
k0 − 1
2n for some k0 ∈ {1, 2, . . . , n2n}

such that k0−12n ≤ f(x) <
k0
2n . Now, two cases arises:

• If k0−1
2n ≤ f(x) < 2k0−1

2n+1 : This is just the case that f(x) lies in the first half of the intervalî
k0−1
2n , k02n

ó
. Hence, in this case we get that:

k0 − 1
2n = 2k0 − 2

2n+1 ≤ f(x) < 2k0 − 1
2n+1

such that φn(x) = k0−1
2n = φn+1(x).



18.3. MEASURABLE FUNCTIONS 667

• If 2k0−1
2n+1 ≤ f(x) < k0

2n : This is the case when f(x) lies in the second half of the interval. In
this case, we see that,

2k0 − 1
2n+1 ≤ f(x) < 2k0

2n+1 = k0
2n

so that φn(x) = k0−1
2n = 2k0−2

2n+1 < 2k0−1
2n+1 = φn+1(x).

Hence from both the cases, we have φn(x) ≤ φn+1(x) for all x ∈ A such that f(x) ≤ n. One can
similarly see the same result for n < f(x) ≤ n + 1 and for f(x) > n + 1, φn(x) ≤ φn+1(x) follows
trivially. Hence, we have proved that ∀n ∈ N and x ∈ A,

φn(x) ≤ φn+1(x). (18.6)

Now, one can write the function φn as the following combination too:

φn(x) =
n2n∑
k=1

k − 1
2n χAn,k + nχA−

⋃
k
An,k

(18.7)

Due to the above representation of φn, the following steps becomes easier (& interesting) to see.
Now, first note thatAn,k is a measurable set because it’s intersection of two measurable sets. More-
over, A−

⋃
k An,k is also a measurable set. Hence, in view of Proposition 18.3.0.4, Statement 3, we

get that φn(x) is a measurable function for any n ∈ N. Therefore, {φn} is a sequence of measurable
functions adhering (18.6). We again find two cases:

• If f is finite : Now since f is finite, therefore ∃n0 ∈ N such that f(x) ≤ n0. Hence, one can
further deduce the following for all n ≥ n0 (hence f(x) ≤ n0 ≤ n),

f(x)− φn(x) = f(x)− k − 1
2n for some k ∈ {1, 2, . . . , n2n} such that

k − 1
2n ≤ f(x) < k

2n

<
1
2n

Hence, as n→∞, |f(x)− φn(x)| → 0.
• If f is infinite for some x ∈ A : If f is infinite, then ∀n ∈ N, f(x) > n. Hence,

φn(x) = n for all n ∈ N.

Therefore lim←−n→∞ φn(x) = +∞ = f(x) for particular x ∈ A where f is infinity.
Hence, in both cases, {φn} converges to f . The proof is therefore complete.

The following can be considered as an important corollary of the above Proposition.

Proposition 18.3.3.7. Let (X,A) be a measurable space and let A ∈ A with f : A → [−∞,+∞] be
a measurable function on A. Then there exists a sequence {fn} of simple (−∞,+∞)-valued measurable
functions on A that satisfy

|f1(x)| ≤ |f2(x)| ≤ |f3(x)| ≤ . . .

and
lim←−
n→∞

fn(x) = f(x)

for any x ∈ A.
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Proof. Since f is a measurable function, therefore f+ and f− are measurable functions too (Propo-
sition 18.3.3.1). Now, since any function f can be written as

f = f+ − f−

therefore, by Proposition 18.3.3.6, we have two sequences {f (1)n } and {f (2)n } such that

f
(1)
n −→ f+ and f (2)n −→ f−

where f (1)1 (x) ≤ f (1)2 (x) ≤ . . . and f (2)1 (x) ≤ f (2)2 (x) ≤ . . . . Denote

fn(x) = f
(1)
n (x)− f (2)n (x)

Therefore, we see that

|fn(x)| = f
(1)
n (x) + f

(2)
n (x) ≤ f (1)n+1(x) + f

(2)
n+1(x) = |fn+1(x)|

Now, we can deduce that

|f(x)− fn(x)| =
∣∣∣f+(x)− f−(x)− f (1)n (x) + f

(2)
n (x)

∣∣∣
=
∣∣∣f+(x)− f (1)n (x)−

Ä
f−(x)− f (2)n (x)

ä∣∣∣
≤
∣∣∣f+(x)− f (1)n (x)

∣∣∣+ ∣∣∣f−(x)− f (2)n (x)
∣∣∣

→ 0 + 0

Hence proved.

Replacing simple functions by step functions14.

We now prove a similar result akin to Proposition 18.3.3.6, where we show that any measurable
function can be approximated by a sequence of step functions, almost everywhere. But before that,
we prove a basic fact about Lebesgue measurable sets with finite measure.

Proposition 18.3.3.8. For any λ-measurable set E of finite measure and a given ϵ > 0, there exists a finite
sequence of open intervals {In}Nn=1 such that

λ

(
E∆

(
N⋃
n=1

In

))
< ϵ.

Proof. Take any ϵ > 0, then we have for any set E ⊆ R, a sequence of open intervals {In} such
that E ⊆

⋃
n In and λ (

⋃
n In) ≤ λ (E) + ϵ or λ (

⋃
n In \ E) ≤ ϵ < 2ϵ. Now since {In} is a dis-

joint sequence, therefore, λ (
⋃
n In) =

∑
n λ (In) and due to the fact that λ (E) < +∞, we get that∑

n λ (In) < +∞.

14Unfortunately, this section onwards, we would tentatively only work with the Lebesgue measure space (R,Mλ∗ , λ)
for pedagogical reasons of the instructor, so the abstract versions of the following results would need to wait.
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Now, since λ (E) < +∞, therefore the sum
∑
n λ (In) < +∞, hence, ∃N ∈ N such that

∑∞
n=N+1 λ (In) <

ϵ. With this N , we now see that:

λ

(
E∆

N⋃
n=1

In

)
= λ

(
E \

N⋃
n=1

In

)
+ λ

(
N⋃
n=1

In \ E

)
(both are disjoint.)

≤ λ

(
E \

N⋃
n=1

In

)
+ λ

Ç⋃
n

In \ E
å

= λ

(
E \

N⋃
n=1

In

)
+ λ

Ç⋃
n

In \ E
å

= λ

(
E ∩

(
N⋃
n=1

In

)c)
+ λ

Ç⋃
n

In \ E
å

≤ λ

(
∞⋃

n=N+1
In

)
+ λ

Ç⋃
n

In \ E
å

∵ E ∩

(
N⋃
n=1

In

)c

⊆
∞⋃

n=N+1
In

≤ ϵ+ ϵ = 2ϵ

Hence, we get that for any finite Lebesgue measurable set E, for all ϵ > 0, ∃ a sequence of open
intervals {In}Nn=1 such that their symmetric difference is a set with measure ≤ ϵ.

Proposition 18.3.3.9. Consider (R,Mλ∗) to be the Lebesgue measurable space andA ∈Mλ∗ . Let f : A→
[−∞,+∞] be a λ-measurable function. Then there exists a sequence of step functions {φk} such that

φk −→ f almost everywhere.

Proof. We will prove first that for any characteristic function, there exists a sequence of step func-
tions converging to it. Let g = χA be the characteristic function onA. Continuing from Proposition
18.3.3.8, we see that if we write the step-function φ as

ψ =
N∑
k=1

χIk

where {Ik} is the set of open intervals such that λ
Ä
A∆

Ä⋃N
n=1 In

ää
< ϵ for a given ϵ > 0, from

Proposition 18.3.3.8, then we get that the set {x | g(x) ̸= ψ(x)} has upper bound on it’s measure
given as follows:{
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) = ψ(x)

}
⊆ A ∩

N⋃
k=1

Ik ∵ g(x) = ψ(x) iff x ∈ ∪Nk=1Ik and 0 for other x ∈ A{
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) ̸= ψ(x)

}
⊇

(
A ∩

N⋃
k=1

Ik

)c

⊇ A∆
N⋃
k=1

Ik.

Similarly, it’s easy to see that for any x such that g(x) ̸= ψ(x), we have x ∈ A∆
⋃N
k=1 Ik so that we

get, {
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) ̸= ψ(x)

}
⊆ A∆

N⋃
k=1

Ik.
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Hence, {
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) ̸= ψ(x)

}
= A∆

N⋃
k=1

Ik.

Therefore,

λ

({
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) ̸= ψ(x)

})
< ϵ

Therefore, for every n ≥ 1, there exists a step-functionψn so that the setEn =
¶
x ∈ A ∪

Ä⋃N
k=1 Ik

ä
| g(x) ̸= ψn(x)

©
is such that

λ (En) <
1
2n .

Now, define the following two sets:

Fn =
∞⋃

j=n+1
Ej (a decreasing sequence)

F =
∞⋂
k=1

Fk.

For the set Fn, observe that

λ (Fn) = λ

(
∞⋃

j=n+1

)
≤

∞∑
j=n+1

λ (Ej)

<
∞∑

j=n+1

1
2j

= 1
2n

and for set F ,

λ (F ) = λ

Ç ∞⋂
k=1

Fk

å
= lim←−

k→∞
λ (Fk) ∵ {Fk} is measurable & decreasing.

= 0.

Note that {Fk} is measurable because any Ei is itself measurable because of Proposition 18.3.0.4,
Statement 5.
Now,

ψn(x) −→ g(x) ∀ x ∈ F c

because F c = F c
1 since {Fk} is a decreasing sequence, therefore F c is the set where g(x) satisfies

with the limit step function.
Finally, ψn ̸→ f ∀ x ∈ F , but since λ (F ) = 0, hence

ψn −→ g almost everywhere
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Now, what we have proved so far is that for any characteristic function g = χA on a measurable
set, there exists a sequence of step functions converging to it point-wise almost everywhere. Since
from Proposition 18.3.3.6, there exists a sequence of simple functions converging to f , and since a
simple function h =

∑M
i=1 αiχEi is a finite combination of characteristics functions over measur-

able sets, therefore there exists a sequence of step functions converging to f almost everywhere.
In particular if ψin −→ χEi almost everywhere, then

∑M
i=1 αiψ

i
n −→

∑M
i=1 αiχEi = h. Now by

Proposition 18.3.3.6, there exists the sequence {hn} of simple functions converging to f . Since

Kn =
{
Mn∑
i=1

αiψ
i
n

}
−→ hn almost everywhere,

where note that Kn =
∑Mn
i=1 αiψ

i
n is a step function because ψin is a step function and there are

finitely many (Mn) of them, and
{hn} −→ f

therefore,
Kn −→ f almost everywhere.

Hence proved.

18.3.4 Egorov’s theorem

We now discuss a very important result in the theory of measurable functions named after Dmitri
Fyodorovich Egorov, who published this result in 1911, thus establishing a condition required for
uniform convergence of a point-wise convergent sequence of measurable functions.

Theorem 18.3.4.1. (Egorov’s theorem) Let (R,Mλ∗ , λ) be the Lebesgue measure space on R. Suppose
{fk} is a sequence of real-valued, Lebesgue measurable functions on E ∈Mλ∗ where λ (E) < +∞. If

fk −→ f pointwise on E,

15 Then for each ϵ > 0, there exists a closed set Aϵ ⊂ E such that
1. λ (E \Aϵ) < ϵ, and
2. fk −→ f uniformly on Aϵ.

Proof. We break down the proof in the following 3 parts.

Act 1. A Basic Construction.
For each pair of integers n, k, construct the following set:

Enk =
ß
x ∈ E : |fj(x)− f(x)| <

1
n
, ∀ j > k

™
.

Now, fix n, so that we have the following observations:

Enk ⊆ E
n
k+1 (18.8)

15From Proposition 18.3.0.9, the limit of a sequence of measurable functions is also measurable, hence there’s no point
in writing extraneously the requirement for f to be also measurable.
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and since fk −→ f point-wise, therefore

lim←−
k→∞

k⋃
i=1

Eni = E. (18.9)

Hence
λ (E \ Enk ) −→ 0 as k →∞.

Note that the above result utilizes the fact that λ (E) < +∞. Now by the above, we can say that
∃ kn such that

λ
(
E \ Enkn

)
<

1
2n

which, by definition of Enk implies that

|fj(x)− f(x)| <
1
n

whenever j > kn and x ∈ Enkn .

Act 2. Constructing Aϵ.
Now choose N ∈ N such that

∞∑
n=N

1
2n <

ϵ

2

and define

Ãϵ =
∞⋂
n=N

Enkn (18.10)

We now observe that

λ
(
E \ Ãϵ

)
= λ

Ç
E ∩

∞⋃
n=N

(
Enkn

)c
å

= λ

Ç ∞⋃
n=N

E ∩
(
Enkn

)c
å

≤
∞∑
n=N

λ
(
E ∩

(
Enkn

)c)
=

∞∑
n=N

λ
(
E \ Enkn

)
<

∞∑
n=N

1
2n

<
ϵ

2

Act 3. Finalé.
We now claim and prove the following:

Claim : fk −→ f uniformly on Ãϵ.
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For this, let δ > 0 and choose n′ ≥ N such that 1
n′ < δ. Then

if x ∈ Ãϵ =⇒ x ∈ En′

kn′
=⇒ |fj(x)− f(x)| <

1
n′
< δ , ∀ j > kn′ . (18.11)

Note that this is just the definition of uniform convergence.
Finally, note that Enk is a Lebesgue measurable set due to Proposition 18.3.0.4, Statement 5. Hence,
Ãϵ is measurable. Now, by Proposition 18.2.9.2, Statement 2, there exists a closed set Aϵ ⊂ Ãϵ such
that

λ
(
Ãϵ \Aϵ

)
<
ϵ

2 .

Now,

ϵ > λ
(
E \ Ãϵ

)
+ λ

(
Ãϵ \Aϵ

)
≥ λ

Ä
E \ Ãϵ

⋃
Ãϵ \Aϵ

ä
= λ (E \Aϵ) .

Now, by (18.11), we see that fk −→ f uniformly for all x ∈ Aϵ ⊂ Ãϵ such that λ (E \Aϵ) < ϵ and
Aϵ is closed. Proof is now complete.

18.3.5 Lusin’s theorem

The following is the final important result on the basic theory of measurable functions, attributed
to Nikolai Nikolaevich Luzin who penned this theorem around 1912.

Theorem 18.3.5.1. (Lusin’s theorem) Consider the Lebesgue measure space (R,Mλ∗ , λ). Suppose f is a
real-valued, Lebesgue measurable function defined over a Lebesgue measurable set E with finite measure.
Then for all ϵ > 0, there exists a closed set Fϵ ⊂ E with

1. λ (E \ Fϵ) < ϵ, and
2. The restriction f |Fϵ of f over Fϵ is continuous.

Proof. From the Proposition 18.3.3.9, we have a sequence {fn} of step functions such that

fn −→ f almost everywhere.

Now, consider, for example the characteristic function over an interval χ[a,b]. Then, we can define
a function φ(x) for any δ > 0 as follows:

φ(x) =



0 x < a
x−a
δ/2 a ≤ x ≤ a+ δ

2
1 a+ δ

2 ≤ x ≤ b−
δ
2

b−x
δ/2 b− δ

2 ≤ x ≤ b
0 x > b

which then satisfies

{x ∈ R | φ(x) ̸= χ[a,b]} =
Å
a, a+ δ

2

ã⋃Å
b− δ

2 , b
ã
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which then implies that,

λ
(
{x ∈ R | φ(x) ̸= χ[a,b]}

)
= λ

ÅÅ
a, a+ δ

2

ã⋃Å
b− δ

2 , b
ãã

= δ.

Note that φ(x) is also continuous over all R. Hence, for any step function (finite sum of χ[a,b]-type
functions) and δ > 0, one can construct a continuous function which does not satisfies with the
step function on a set with measure < δ.

Hence, for step-functions {fn}, corresponding to each fn, ∃ a continuous function φn and a set
En such that

En = {x | φn(x) ̸= fn(x)} and λ (En) <
1
2n .

Now, for all ϵ > 0, there exists a N ∈ N such that

∑
n≥N

1
2n <

ϵ

3 .

With the above fact, construct the set F ′ as follows:

F ′ =
(
A ϵ

3
\

⋃
n≥N

En

)

where A ϵ
3

is the closed subset A ϵ
3
⊂ E such that 1. λ

Ä
E \A ϵ

3

ä
< ϵ

3 and 2. fn −→ f uniformly on
A ϵ

3
. This is guaranteed by Theorem 18.3.4.1 (Egorov’s Theorem).

Note that fn|F ′ is continuous ∀ n ≥ N because for any x ∈ F ′ =⇒ φn(x) = fn(x) ∀ n ≥ N
and since φn are already continuous ∀n ∈ N.

Furthermore, since F ′ ⊂ E and fn −→ f uniformly, then the restriction fn|F ′ is continuous and
converges uniformly to f |F ′ , which due to uniform convergence, is also continuous!

Now, note that En’s are measurable sets due to Proposition 18.3.0.4, Statement 5. Similarly, since
A ϵ

3
is closed, therefore it is also measurable. Hence, F ′ is measurable.

Now by Proposition 18.2.9.2, there exists a closed set Fϵ ⊂ F ′ such that λ (F ′ \ Fϵ) < ϵ
3 . Note

that because Fϵ ⊂ F ′ and f |F ′ is continuous, therefore the restriction f |Fϵ is also continuous.

Finally, combining
1.

∑
n≥N

1
2n <

ϵ
3 ,

2. λ
Ä
E \A ϵ

3

ä
< ϵ

3 ,
3. λ (F ′ \ Fϵ) < ϵ

3
it can be easily seen that Ä

E \A ϵ
3

ä⋃ (
F ′ \ Fϵ

)
= E \ Fϵ
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Hence,

λ (E \ Fϵ) = λ
ÄÄ
E \A ϵ

3

ä⋃ (
F ′ \ Fϵ

)ä
≤ λ

ÄÄ
E \A ϵ

3

ää
+ λ

((
F ′ \ Fϵ

))
<

2ϵ
3

< ϵ.

which completes the proof.

18.3.6 Applications-I : measure spaces and measurable functions

We now present applications of the above theory. This is, in particular, to showcase the true
strength of abstract analysis. This can also be used to strengthen one’s intuition about the topic.

σ-algebras and measure spaces

Lemma 18.3.6.1. Let (X,A, µ) be a measure space. Prove that µ is σ-finite if and only if there exists a
countable disjoint family of measurable sets {An} such that X =

∐
nAn and µ(An) <∞ for all n ∈ N.

Proof. Note that R =⇒ L is immediate from definition. Let µ be σ-finite. Then there exists
{Bn} ⊆ A such that µ(Bn) <∞ and

⋃
nBn = X . Define A1 = B1 and An = Bn \ B1 ∪ · · · ∪ Bn−1.

As A is a σ-algebra, so {An} ⊆ A. Moreover, An ∩ Am = ∅ for all n ̸= m because if m > n16 and
x ∈ Am ∩An, then x ∈ Bm \B1 ∪ · · · ∪Bn ∪ . . . Bm−1 and x ∈ Bn \B1 ∪ . . . Bn−1, a contradiction.
As An ⊆ Bn, therefore µ(An) ≤ µ(Bn) < ∞. To complete the proof, we need only show that⋃
nAn =

⋃
nBn.

Pick any x ∈
⋃
nAn. Then x ∈ Bn \ B1 ∪ · · · ∪ Bn−1 for some n ∈ N. Thus, x ∈ Bn and

hence x ∈
⋃
nBn. Conversely, pick x ∈

⋃
nBn. Then x ∈ Bn for some n ∈ N. Now, either

x ∈ Bn \ B1 ∪ · · · ∪ Bn−1 or x ∈ Bn ∩ (B1 ∪ · · · ∪ Bn−1). If the former is true, then x ∈ An
and we are done. If the latter is true, then we may assume x ∈ Bn−1 ∩ Bn. Now again either
x ∈ Bn−1 \B1∪· · ·∪Bn−2 or x ∈ Bn∩Bn−1∩ (B1∪· · ·∪Bn−2). Repeating this process inductively,
we will end up in either of the following cases:

1. x ∈ Ak for some 1 ≤ k ≤ n,
2. x ∈ B1 ∩ · · · ∩Bn.

As B1 = A1 by construction, therefore in either case we are done.

Lemma 18.3.6.2. Given S ⊆ P(X), denote by A(S) the σ-algebra generated by S . Then,

A(S) = A(A(S)).

Proof. Let X be a set and S ⊆ P(X) be an arbitrary collection of subsets of X . If X is empty then
the statement is vacuously true, so let X be non-empty. Since the σ-algebra generated by A(S) is
the intersection of all σ-algebras containing A(S), therefore we have that A(A(S)) =

⋂
C⊇A(S) C.

Since A(S) is a σ-algebra containing A(S), therefore A(A(S)) ⊆ A(S). Since A(S) ⊆ C for all
σ-algebras C containing A(S), therefore A(A(S)) ⊇ A(S).

16which we may assume wlog.
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Lemma 18.3.6.3. Let A(S) be the σ-algebra generated by a set S ⊆ P(X). Then, A(S) is the union of the
σ-algebras generated by Y as Y ranges over all countable subsets of S.

Proof. Let X be a non-empty set and S ⊆ P(X). We wish to show that

A(S) =
⋃

Y⊆S, countable

A(Y).

Let Y ⊆ S be a countable subcollection. Then,A(Y) ⊆ A(S). Consequently,
⋃
Y⊆S, countableA(Y) ⊆

A(S). Conversely, we need to show that

A(S) ⊆
⋃

Y⊆S, countable

A(Y).

We claim that
⋃
Y⊆S, countableA(Y) is a σ-algebra containing S. This would complete the proof as

A(S) is the smallest σ-algebra containing S.
Denote Z =

⋃
Y⊆S, countableA(Y). As A(Y)s are σ-algebras, therefore Z contains X and ∅. Let

A ∈ Z . Then A ∈ A(Y) for some Y ⊆ S countable. Consequently, Ac ∈ A(Y) and thus Ac ∈ Z .
Let {An} ⊆ Z be a countable collection of sets. Then An ∈ A(Yn) for all n ∈ N. Further, we have
that Yk ⊆ A (

⋃
n Yn) for all k ∈ N as Yk ⊆

⋃
n Yn. As Yk are countable and countable union of

countable sets is countable, therefore
⋃
n Yn is countable. Thus, we have

Ak ∈ A(Yk) ⊆ A
Ç⋃

n

Yn

å
⊆ Z ∀k ∈ N.

Thus from above, we obtain that

⋃
k

Ak ∈
Ç⋃

n

Yn

å
⊆ Z.

Hence, Z is a σ-algebra. To complete the proof, we need only show that Z contains S.
Let A ∈ S. Then since {A} is a countable subset of S, therefore A({A}) is contained in Z and

thus A ∈ Z .

Lemma 18.3.6.4. The σ-algebra generated by
1. S = {(a, b] | a < b ∈ Q},
2. S = {(a, n] | a ∈ Q, n ∈ Z},

is the Borel σ-algebra on R.

Proof. 1. Let S = {(a, b] | a, b ∈ Q}. We wish to show thatA(S) = B where B is the Borel σ-algebra
of R. Since (a, b] for a, b ∈ Q is contained in B as (a, b] = (a, b) ∪

⋂
n∈N(b − 1/n, b+ 1/n), therefore

S ⊆ B. Consequently, A(S) ⊆ B as B is the smallest σ-algebra containing open intervals.
Since we also know that B is generated by the collection of all closed intervals [a, b] in R,

therefore to show that B ⊆ A(S), it would suffice to show [a, b] ∈ A(S) where a < b in R. Pick
a < b in R. By density of Q, we may pick {an} to be an increasing sequence such that an ∈ Q,
an < a and limn→∞an = a. Similarly, we may pick a decreasing sequence {bn} such that bn ∈ Q,
bn > b and limn→∞bn = b. Consequently, we claim that

[a, b] =
⋂
n

(an, bn]
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where (an, bn] ∈ S. Indeed, (⊆) is clear. For (⊇), take x ∈
⋂
n(an, bn]. Hence an < x ≤ bn. Taking

n→∞, we get a ≤ x ≤ b as desired. Thus, [a, b] ∈ A(S).

2. Let S = {(a, n] |a ∈ Q, n ∈ N}. We wish to show that A(S) = B where B is the Borel σ-algebra
of R. Since (a, n] for a ∈ Q and n ∈ N is contained in B as (a, n] = (a, n) ∪

⋂
k∈N(n− 1/k, n+ 1/k),

therefore S ⊆ B. Consequently, A(S) ⊆ B.
Since we also know that B is generated by the collection of all open intervals of the form (a,∞),

a ∈ R, therefore to show that B ⊆ A(S), it would suffice to show (a,∞) ∈ A(S) for all a ∈ R. Pick
(a,∞) for some a ∈ R. By density of Q, there exists a decreasing sequence {an} in R such that
an ∈ Q, an > a and limn→∞an = a. Consequently, we claim that

(a,∞) =
⋃
n

(an, n]

where (an, n] ∈ S. Indeed, for (⊆), take x ∈ (a,∞). We therefore have a < x <∞. As limn→∞an =
a and an > a for all n ∈ N, therefore there exists N ∈ N such that a < an ≤ aN < x for all n ≥ N .
Consequently, for some large n ∈ N greater than N such that x ≤ n, we obtain an < x ≤ n and
hence x ∈ (an, n]. For (⊇), take x ∈

⋃
n(an, n] and thus we get a < an < x ≤ n < ∞. Thus,

(a,∞) ∈ A(S).

Lemma 18.3.6.5. The Borel σ-algebra on R2 is generated by

{(I × R) ∪ (R× J) | I, J ⊆ R, open intervals}.

Proof. Let S = {(I × R) ∪ (R× J) | I, J ⊆ R is open}. We wish to show that A(S) = B where B is
the σ-algebra of R2.

As S is a collection of open sets of R2 and B is generated by all open sets of R2, therefore S ⊆ B
and thus A(S) ⊆ B.

We now wish to show that B ⊆ A(S). It would suffice to show that any open set U ⊆ R2

is in A(S). Note that A(S) consists of all open rectanlges I × J = (I × R) ∩ (R × J). Thus, it
would suffice to show that U can be written as countable union of open rectangles. Recall that
open rectangles forms a basis for the usual topology on R2. Consider the collection of all open
rectangles K inside U whose vertices have both rational coordinates. We claim that the union of
such open rectangles is equal to U . Indeed, their union is inside U and for any x ∈ U , there exists
an open ball x ∈ B ⊆ U , so there exists an open rectangle K inside B which contains x and has
vertices which have both rational coordinates. Thus U is equal to the union of all such rectangles.
Since there are only countably many such open rectangles as they are parameterized by choice of
4 points in Q2 ∩U which is atmost countably many, therefore we have obtained a countable cover
of U by open rectangles. This completes the proof.

Lemma 18.3.6.6. Let (X,A, µ) be a measure space, and let A,B ∈ A. Then,

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

Proof. Observe that we can write

A ∪B = (A \ (A ∩B)) ∪B
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where the right side is a disjoint union. Consequently, we have

µ(A ∪B) = µ(A \A ∩B) + µ(B). (6.1)

We now have two cases. If µ(A∩B) =∞, then since µ(A∩B) ≤ µ(A), µ(B) and µ(A) ≤ µ(A∪B),
therefore we get µ(A ∪ B) = µ(A ∩ B) = µ(A) = µ(B) =∞, so that the statement to be proven is
a tautology. Else if µ(A ∩B) <∞, then we can write

µ(A \A ∩B) = µ(A)− µ(A ∩B).

Consequently, by Eq. (6.1) and the fact that µ(A ∩B) <∞, we have

µ(A ∪B) = µ(A)− µ(A ∩B) + µ(B)
µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

This completes the proof.

Lemma 18.3.6.7. Let x ∈ R and let B be a Borel subset of R. Then, x+ B and xB are Borel subsets of R
(that is, Borel subsets of R are translation and dilation invariant).

Proof. 1. Let x ∈ R and B be the Borel σ-algebra of R. We wish to show that for all B ∈ B, the
translate x+B ∈ B. Consequently, we wish to show

x+ B ⊆ B

where x+ B = {x+B | B ∈ B}. We use the following standard technique to show this.
Consider the following collection

C = {B ∈ B | x+B ∈ B}.

Our goal is to show that C = B. Note that C ⊆ B. Conversely, we wish to show that B ⊆ C. This
would follow immediately if we show that C is a σ-algebra containing all open intervals, as B is
the σ-algebra generated by all open intervals.

We now establish that C is a σ-algebra. Since x+ R = R and x+ ∅ = ∅, therefore R, ∅ ∈ C. Let
A ∈ C. We wish to show that Ac ∈ C. Since x + A ∈ B, therefore (x + A)c ∈ B. Thus it suffices to
show that (x+A)c = x+Ac. Indeed, we have the following equalities

(x+A)c = {y ∈ R | y /∈ x+A}
= {y ∈ R | y − x /∈ A}
= {y ∈ R | y − x ∈ Ac}
= {y ∈ R | y ∈ x+Ac}
= x+Ac.

Let {An} ⊆ C. We wish to show that
⋃
nAn ∈ C. We have that for each n ∈ N, x+An ∈ B. It would

thus suffice to show that

x+
⋃
n

An =
⋃
n

(x+An).
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Indeed, take x+a ∈ x+
⋃
nAn. Hence a ∈ An for some n ∈ N. Consequently, x+a ∈ x+An. Thus

x+ a ∈
⋃
n(x+ An). Conversely, let z ∈

⋃
n(x+ An). Then z = x+ yn for yn ∈ An. Consequently,

z ∈ x+
⋃
nAn. This show that C is a σ-algebra.

To complete the proof, we now need only show that C has all open intervals. This is imme-
diate, as we show now. Take any (a, b) ⊆ R. Since x+(a, b) = (x+a, x+b) ∈ B, therefore (a, b) ∈ C.

2. Let x ∈ R and B be the Borel σ-algebra of R. We wish to show that for all B ∈ B, the di-
late x ·B ∈ B. Note that x ·B = {xb | b ∈ B}. Consequently, we wish to show

x · B ⊆ B

where x · B = {x · B | B ∈ B}. If x = 0, then x · B = {0} and that is trivially inside B as
{0} =

⋂
n(−1/n, 1/n). Thus we now assume that x ̸= 0. We use the following standard technique

to show the above inclusion.
Consider the following collection

C = {B ∈ B | x ·B ∈ B}.

Our goal is to show that C = B. Note that C ⊆ B. Conversely, we wish to show that B ⊆ C. This
would follow immediately if we show that C is a σ-algebra containing all open intervals, as B is
the σ-algebra generated by all open intervals.

We now establish that C is a σ-algebra. Observe that x · R = R. Indeed, as x · R ⊆ R is clear,
we can also write any a ∈ R as x · x−1a. We also have x · ∅ = ∅. Therefore R, ∅ ∈ C. Let A ∈ C.
We wish to show that Ac ∈ C. Since x · A ∈ B, therefore (x · A)c ∈ B. Thus it suffices to show that
(x ·A)c = x ·Ac. Indeed, we have the following equalities

(x ·A)c = {y ∈ R | y /∈ x ·A}
= {y ∈ R | x−1y /∈ A}
= {y ∈ R | x−1y ∈ Ac}
= {y ∈ R | y ∈ x ·Ac}
= x ·Ac.

Let {An} ⊆ C. We wish to show that
⋃
nAn ∈ C. We have that for each n ∈ N, x ·An ∈ B. It would

thus suffice to show that

x ·
⋃
n

An =
⋃
n

(x ·An).

Indeed, take x · a ∈ x ·
⋃
nAn. Hence a ∈ An for some n ∈ N. Consequently, x · a ∈ x · An. Thus

x · a ∈
⋃
n(x · An). Conversely, let z ∈

⋃
n(x · An). Then z = x · yn for yn ∈ An. Consequently,

z ∈ x ·
⋃
nAn. This show that C is a σ-algebra.

To complete the proof, we now need only show that C has all open intervals. This is immediate,
as we show now. Take any (a, b) ⊆ R. If x > 0, then we have x · (a, b) = (x · a, x · b) ∈ B, therefore
(a, b) ∈ C. If x < 0, then we have x · (a, b) = (x · b, x · a) ∈ B, therefore (a, b) ∈ C.

Lemma 18.3.6.8. Let (X,A) be a measurable space and let {µi}ni=1 be a finite collection of measures on
(X,A). If r1, . . . , rn ∈ R≥0, then

∑
i riµi is a measure on (X,A) (that is, positive linear combination of

measures is a measure).
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Proof. Let (X,A) be a measurable space and {µi}ni=1 be a collection of measures on it. Let {ri}ni=1 ⊆
R≥0. We wish to show that µ =

∑n
i=1 riµi is a measure on (X,A). First we may assume that each

ri > 0 as if any rj = 0, then µ(A) =
∑n
i=1 riµi(A) =

∑
i ̸=j riµi(A)+rjµj(A), therefore if µj(A) <∞,

then rjµj(A) = 0 and if µj(A) = ∞, then since 0 · ∞ = 0, therefore still rjµj(A) = 0. Further, if
all ri = 0, then µ = 0, which is the trivial measure. Consequently, we assume that ri > 0 for all
i = 1, . . . , n.

We now show that µ is a measure on (X,A). We have µ(∅) =
∑n
i=1 riµi(∅) =

∑n
i=1 ri · 0 = 0.

Let {An} ⊆ A be a collection of disjoint measurable sets. We wish to show that

µ

Ç∐
k

Ak

å
=

∑
k

µ(Ak).

We have

µ

Ç∐
k

Ak

å
=

n∑
i=1

riµi

Ç∐
k

Ak

å
=

n∑
i=1

ri

∞∑
k=1

µi(Ak).

We now claim that
n∑
i=1

ri

∞∑
k=1

µi(Ak) =
∞∑
k=1

n∑
i=1

riµi(Ak) (8.1)

and showing this will complete the proof as
∞∑
k=1

n∑
i=1

riµi(Ak) =
∞∑
k=1

µ(Ak).

We have few cases for establishing Eq. (8.1).
1. If for all i = 1, . . . , n, the series

∑∞
k=1 µi(Ak) is finite. Then,

∑n
i=1 ri

∑∞
k=1 µi(Ak) =

∑n
i=1

∑∞
k=1 riµi(Ak).

Now, if
∑
n xn,

∑
n yn are two convergent positive series, then their linear combination c

∑
n xn+

d
∑
n yn is equal to

∑
n cxn + dyn, where c, d ∈ R≥0. Indeed, this follows at once from the

equality climn→∞
∑n
k=1 xk + dlimn→∞

∑n
k=1 yk = limn→∞

∑n
k=1 cxk + dyk, which follows

from the fact that both the limit exists and c, d ∈ R. Consequently, we have
n∑
i=1

∞∑
k=1

riµi(Ak) =
∞∑
k=1

n∑
i=1

riµi(Ak),

which is what we needed.
2. If there exists i0 = 1, . . . , n such that the series

∑∞
k=1 µi0(Ak) = ∞. In this case, in the Eq. (8.1),

the left side is∞. The right side is also infinity as shown below:
∞∑
k=1

n∑
i=1

riµi(Ak) ≥
∞∑
k=1

ri0µi0(Ak)

=∞

where the first inequality follows from ri > 0 for all i = 1, . . . , n and measure being positive
by definition. Consequently, Eq. (8.1) follows in this case as well.
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This completes the proof.

Lemma 18.3.6.9. For any set X and a subset S ⊆ X , the collection

AS = {A ⊆ X | A ⊆ S or Ac ⊆ S}

is a σ-algebra on X .

Proof. Let X be a non-empty set, S ⊆ X and define

AS := {A ⊆ X | A ⊆ S or Ac ⊆ S}.

We claim that this forms a σ-algebra on X . As Xc = ∅ ⊆ S, therefore X ∈ AS and ∅ ∈ AS . Let
A ∈ AS . If A ⊆ S, then Ac is such that (Ac)c = A ⊆ S, so Ac ∈ AS . If Ac ⊆ S, then Ac is such that
Ac ⊆ S, so Ac ∈ AS . So in both cases AS is closed uncer complements.

Let {An} ⊆ AS be a collection of subsets. We wish to show that
⋃
nAn ∈ AS . We have three

cases.
C1. An ⊆ S for all n ∈ N. Then

⋃
nAn ⊆ S and thus

⋃
nAn ∈ AS .

C2. ∃Am such that Am ̸⊆ S. Then Acm ⊆ S. We then observe by De-Morgan’s law thatÇ⋃
n

An

åc
=

⋂
n

Acn ⊆ Acm ⊆ S.

Consequently,
⋃
nAn ∈ AS .

C3. An ̸⊆ S for all n ∈ N. Then Acn ⊆ S for all n ∈ N. We again observe by De-Morgan’s law thatÇ⋃
n

An

åc
=

⋂
n

Acn ⊆ Acm ⊆ S ∀m ∈ N.

Consequently,
⋃
nAn ∈ AS .

In all three cases,
⋃
nAn ∈ AS . Hence AS is a σ-algebra.

Lemma 18.3.6.10. Let (X,A, µ) be a semifinite measure space, and let µ(A) = ∞ for some A ∈ A. If
M > 0, then there exists B ⊆ A such that M < µ(B) <∞.

Proof. Let (X,A, µ) be a semi-finite measure space and A ∈ A such that µ(A) = ∞. We wish to
show that for all M > 0, there exists a subset B ⊆ A such that B ∈ A and M < µ(B) <∞.

We wish to show that there exists measurable subsets of A of arbitrarily large size. Therefore,
consider the collection

S = {µ(B) | B ⊆ A,B ∈ A, µ(B) <∞}.

Denote l = supS. We wish to show that l =∞. Pick a sequence {Bn} ⊆ S such that limn→∞µ(Bn) =
l. We first claim that

µ

Ç⋃
n

Bn

å
= l (10.1)
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Clearly,
⋃
nBn ∈ A. Observe that since

µ(Bk) ≤ µ
Ç⋃

n

Bn

å
for all k ∈ N, therefore taking k →∞, we easily obtain

l ≤ µ
Ç⋃

n

Bn

å
.

Conversely, we wish to show that

µ

Ç⋃
n

Bn

å
≤ l.

Let D1 = B1, D2 = B1 ∪ B2 and in general Dn = B1 ∪ · · · ∪ Bn. Then we observe that {Dn} ⊆ A
forms an increasing sequence of sets with

⋃
nDn =

⋃
nBn. Consequently,

µ

Ç⋃
n

Bn

å
= µ

Ç⋃
k

Dk

å
= limk→∞µ(Dk).

Since Dk ⊆ A is such that µ(Dk) ≤
∑k
i=1 µ(Bi) <∞ (by subadditivity), therefore µ(Dk) ∈ S for all

k ∈ N. Consequently,

limk→∞µ(Dk) ≤ l.

Therefore we obtain µ (
⋃
nBn) ≤ l. Hence this completes the proof of Eq. (10.1).

Since we wish to show that l = ∞, so assume to the contrary that l < ∞. It follows from Eq.
(10.1) that µ (

⋃
nBn) < ∞ and therefore

⋃
nBn ∈ S. Let C =

⋃
nBn. Then consider A1 = A \ C.

Since µ(A1) = µ(A) − µ(C) as µ(C) < ∞, therefore we have µ(A1) = ∞− µ(C) = ∞. It follows
from semifiniteness that there exists C1 ⊆ A1 such that C1 ∈ A and 0 < µ(C1) < ∞. Note that
C1 and C are disjoint. It follows that the disjoint union C1 ∪ C ⊆ A is such that µ(C ∪ C1) ∈ S.
But since µ(C1 ∪ C) = µ(C1) + µ(C) > µ(C) = l, therefore S contains an element which is strictly
larger than its supremum, a contradiction. Hence l =∞ and this completes the proof.

Lebesgue measure on R

In this section (R,M,m) denotes the Lebesgue measure space on R and m∗ denotes the Lebesgue
outer measure on R.

Lemma 18.3.6.11. Every Borel subset of R is Lebesgue measurable.

Proof. Let (R,M,m) be the Lebesgue measure space over R. We wish to show that the σ-algebra
of Borel sets denoted B is inM. Denote by A the following:

A = {disjoint finite union of intervals of form (−∞, a], (b,∞), (a, b] for a < b ∈ R}. (1.1)

By construction of Lebesgue measure, we know that A ⊆ M. We thus claim that the σ-algebra
generated by A contains B, that is, ⟨A⟩ ⊇ B. This will conclude the proof.

Indeed, as we know that B is generated by all closed intervals of the form (−∞, a] for all a ∈ R,
therefore it suffices to show that (−∞, a] ∈ ⟨A⟩, but that is a tautology as (−∞, a] is in A. Hence
B ⊆ ⟨A⟩.
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Lemma 18.3.6.12. Let A be a subset of R and c ∈ R. Then,
1. m∗(A+ c) = m∗(A),
2. A ∈M if and only if A+ c ∈M,
3. if A ∈M, then m(A+ c) = m(A).

Proof. Consider the Lebesgue measure space (R,M,m). Take A ⊆ R and for c ∈ R define A+ c =
{a+ c ∈ R | a ∈ A}. Let us set up some notation. For any E ⊆ R, we denote

C(E) =
®
{In} |

⋃
n

In ⊇ A, In = (an, bn] ∈ A
´

(∗)

where A is the algebra defined in Eq. (1.1). Further, let us denote

ΣC(E) =
®∑

n

l(In) ∈ [0,∞] | {In} ∈ C(E)
´

(∗∗)

where l((a, b]) = b− a is the length function. By definition, we have m∗(E) := inf ΣC(E).

(i) : We first wish to show that the Lebesgue outer measure m∗ is translation invariant. That
is, m∗(A + c) = m∗(A). We first show m∗(A + c) ≥ m∗(A). Pick any {In} ∈ C(A). Then we
claim that {In + c} is an element of C(A + c). Indeed, denoting In = (an, bn], we immediately
get In + c = (an + c, bn + c]. Now to see that

⋃
n(In + c) ⊇ A + c, pick any a + c ∈ A + c where

a ∈ A. Then, as
⋃
n In ⊇ A, therefore a ∈ In for some n and thus a + c ∈ In + c. It follows that

{In + c} ∈ C(A+ c). Further note that l(In) = l(In + c) by definition. Consequently, we have

ΣC(A) ⊆ ΣC(A+ c).

Taking infima, we yield m∗(A) = inf ΣC(A) ≤ inf ΣC(A + c) = m∗(A + c), that is m∗(A) ≤
m∗(A+ c).

Conversely, we wish to show that m∗(A) ≥ m∗(A+ c). For this, we use the standard technique
of ϵ-wiggle around inf . Fix ϵ > 0. By definition of m∗(A), there exists {In} ∈ C(A) where In =
(an, bn] such that

m∗(A) + ϵ >
∑
n

bn − an. (2.1)

Note that we can write the above as

m∗(A) + ϵ >
∑
n

(bn + c)− (an + c)

=
∑
n

l((an + c, bn + c])

=
∑
n

l(In + c).

We have {In + c} ∈ C(A+ c) as shown previously, therefore we obtain

m∗(A) + ϵ >
∑
n

l(In + c) ≥ inf ΣC(A+ c) = m∗(A+ c).
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Hence we have m∗(A) + ϵ > m∗(A + c). Taking ϵ → 0, we obtain m∗(A) ≥ m∗(A + c). This
completes the proof.

(ii) : We next wish to show that A + c ∈ M if and only if A ∈ M. Observe that it suffices to
show that A ∈ M =⇒ A+ c ∈ M. Indeed, for the converse, take B = A+ c ∈ M. To show that
A ∈M, it would suffice to show that B− c ∈M, which would follow at once by previous. Hence,
we may only show that A ∈M =⇒ A+ c ∈M.

Pick A ∈M. Fix ϵ > 0. By regularity theorems, there exists open U ⊇ A such that m∗(U \A) <
ϵ. We now claim the following three statements:

1. U + c is open : Indeed, pick any x+ c ∈ U + c where x ∈ U . As U is open, there exists δ > 0
such that (x− δ, x+ δ) ⊆ U . Consequently, (x− δ+ c, x+ δ+ c) ⊆ U + c, hence U + c is open.

2. U + c contains A+ c : Pick any a+ c ∈ A+ c where a ∈ A. As U ⊇ A, therefore a+ c ∈ U + c.
3. (U + c) \ (A+ c) equals (U \A) + c : We first show (U + c) \ (A+ c) ⊆ (U \A) + c. Pick any
x + c ∈ (U + c) \ (A + c). Then x + c ∈ U + c and x + c /∈ A + c. Thus, x ∈ U and x /∈ A.
Hence x ∈ U \A and thus x+ c ∈ U \A+ c.
Conversely, pick x+ c ∈ (U \A)+ c. Then x ∈ U \A and thus x+ c ∈ U + c and x+ c /∈ A+ c.
Thus x+ c ∈ (U + c) \ (A+ c). This completes the proof of this claim.

By above three claims, we conclude that U + c is an open set containing A+ c such that

m∗(U + c \A+ c) = m∗((U \A) + c) (ii)= m∗(U \A) < ϵ.

By regularity theorems, we conclude the proof.

(iii) : We wish to show that if A ∈ M, then m(A + c) = m(A). This is immediate from (i) as
m = m∗|M.

Lemma 18.3.6.13. Let A be a subset of R and c ∈ R. Then,
1. m∗(cA) = |c|m∗(A),
2. for c ̸= 0, A ∈M if and only if cA ∈M,
3. if A ∈M, then m(cA) = |c|m(A).

Proof. Let (R,M,m) be the Lebesgue measure space. Take any A ⊆ R and c ∈ R.

(i) : We first wish to show that m∗(cA) = |c|m∗(A). If c = 0, then the equality is immediate
as cA = {0} and we know that m∗({0}) = 0 as 0 ∈ (−1/n, 1/n] for all n ∈ N so that m∗({0}) ≤ 2/n.
Taking n→∞, we get that m∗({0}) = 0. So we assume from now on that c ̸= 0. We first immedi-
ately reduce to showing either one of

m∗(cA) ≥ |c|m∗(A) or m∗(cA) ≤ |c|m∗(A)

Indeed, the other side follows by replacing A by cA and replacing c by 1/c in either of the above.
We now have two cases based on c being positive or negative.

If c > 0, then we proceed as follows. We follow the convention of Eqns (∗) and (∗∗) as set up
in Q2. We use the standard technique of ϵ-wiggle around inf . Fix ϵ > 0. By definition of outer
measure, there exists {In} ∈ C(cA) where In = (an, bn] such that

m∗(cA) + ϵ >
∑
n

l(In). (3.1)
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As
⋃
n In ⊇ cA and c > 0, therefore we claim that

⋃
n(1c In) ⊇ A. Indeed, for any a ∈ A, cA ∈ In.

Thus ca ∈ (an, bn]. Consequently, a ∈ (an/c, bn/c] = (1c In). Thus, {1c In} ∈ C(A). Consequently,
we have ∑

n

l

Å1
c
In

ã
=

∑
n

1
c
l(In) ≥ m∗(A).

Consequently,
∑
n l(In) ≥ cm∗(A). Using this in Eq. (3.1), we thus obtain

m∗(cA) + ϵ >
∑
n

l(In) ≥ cm∗(A).

Taking ϵ→ 0, we obtain m∗(cA) ≥ cm∗(A), as required.
If c < 0, then we begin similarly to the previous case. Fix ϵ > 0. There exists {In} ∈ C(A)

where In = (an, bn] such that

m∗(A) + ϵ >
∑
n

l(In). (3.2)

Note that cIn = c(an, bn] = [cbn, can) as c < 0 and this type of set is not half-open and is thus
not in A, the algebra of half-opens of Eq. (1.1). Consequently, we have to use ϵ-wiggle to find a
new collection of intervals obtained via cIn which are half open but their sum of lengths in only
in ϵ-neighborhood of those {cIn}. Indeed, for each n ∈ N, we may construct

Jn =
(
cbn −

ϵ

2n+1 , can +
ϵ

2n+1

]
.

Note that Jn ⊇ cIn. As
⋃
n cIn ⊇ cA, therefore

⋃
n Jn ⊇ cA. Thus {Jn} ∈ C(cA). Consequently,

m∗(cA) ≤
∑
n

l(Jn)

=
∑
n

c(an − bn) +
2ϵ

2n+1

=
∑
n

−c(bn − an) +
∑
n

ϵ

2n

= −c
∑
n

(bn − an) + ϵ

= −c
∑
n

l(In) + ϵ

where the third line follows from the series being positive and thus we can rearrange such a series.
It thus follows by Eq. (3.2) and above that

m∗(cA) < −c(m∗(A) + ϵ) + ϵ

= −cm∗(A) + ϵ(1− c).

Taking ϵ→ 0, we obtain (−c = |c| as c < 0)

m∗(cA) ≤ |c|m∗(A)
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as required. This completes the proof.

(ii) : We now wish to show that for c ̸= 0, A ∈ M if and only if cA ∈ M. Note that this is
not true for c = 0 as if we take a non-measurable set V ⊆ R, then cV = {0} is measurable but V is
not.

Pick c ̸= 0. We first note that showing onlyA ∈M =⇒ cA ∈M is sufficient. Indeed, the other
side follows by replacing c by 1/c in the above. So we reduce to showing A ∈M =⇒ cA ∈M.

Pick A ∈ M and c ̸= 0 in R. Fix ϵ > 0. By regularity theorems, there exists open U \ A such
that m∗(U \A) < ϵ

|c| . We now claim the following statements:
1. cU is open : Pick cx ∈ cU where x ∈ U . As U is open therefore there exists δ > 0 such that

(x− δ, x+ δ) ⊆ U . Consequently, c(x− δ, x+ δ) = (c(x+ δ), c(x− δ)) ⊆ cU and contain cx.
Hence cU is open.

2. cU contains cA : Pick any cx in cA. Then x ∈ A. As U ⊆ A, therefore x ∈ U and hence
cx ∈ cU .

3. cU \ cA equals c(U \ A) : For (⊆), pick any cx ∈ cU \ cA. Then cx ∈ cU and cx /∈ cA. Thus,
x ∈ U and x /∈ A, that is ∈ U \ A and thus cx ∈ c(U \ A). Conversely to show (⊇), pick any
cx ∈ c(U \ A) where x ∈ U \ A. Thus, x ∈ U and x /∈ A. Thus cx ∈ cU and cx /∈ cA. Thus
cx ∈ cU \ cA.

Following the above three lemmas, we conclude that cU is an open set containing cA such that

m∗(cU \ cA) = m∗(c(U \A)) (i)= |c|m∗(U \A) < |c| ϵ
|c|

= ϵ.

Thus by regularity theorems, cA ∈M as well.

(iii) : We wish to show that if A ∈ M, then m(cA) = |c|m(A). But this is immediate from (i)
as m = m∗|M. This completes the whole proof.

Lemma 18.3.6.14. For each subseteq A ⊆ R, there exists a Borel subset B ⊇ A such that

m∗(A) = m(B).

Proof. We wish to show that for each A ⊆ R, there exists a Borel set B ⊇ A such that m(B) =
m∗(A). We divide into two cases based on outer measure of A. We will follow the notations of Eq.
(∗) and (∗∗).

If m∗(A) = ∞. In this case, we claim that B = R will work. Indeed R is open and thus Borel.
We thus claim that m(R) = ∞. Indeed, for In = (n, n + 1], n ∈ Z, we have that {In} are disjoint
and

∐
n In = R. As m is a measure and In are measurable, therefore

m(R) =
∑
n

m(In) =
∑
n

1 =∞.

Hence B = R will work.
If m∗(A) < ∞, then we proceed as follows. For each N ∈ N, there exists {INn } ∈ C(A) such

that

m∗(A) + 1
N
>

∑
n

l(INn ).
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Define UN =
⋃
n I

N
n . As each half open interval (a, b] =

⋂
n∈N(a, b + 1/n) is a Borel set, therefore

UN is a Borel set. Observe that

m(UN ) ≤
∑
n

m∗(INn ) =
∑
n

l(INn ) < m∗(A) + 1
N
.

Note that in the above we have used the fact that Lebesgue measure restricted to half opens is
exactly the length function. We thus have for each N ∈ N a Borel set UN containing A such that

m(UN ) < m∗(A) + 1
N
. (4.1)

Denote BK =
⋂K
N=1 UN . Then each BK is Borel and {BK} is a decreasing sequence of sets. Fur-

thermore,
⋂∞
K=1BK =

⋂∞
N=1 UN . Denote B =

⋂∞
K=1BK . Observe that B ⊇ A as BK ⊇ A for each

K ∈ N. Consequently, by continuity of m∗ we have

m(B) ≥ m∗(A).

For the converse, first note that by Eq. (4.1),m(U1) <∞. Thus by monotone convergence property
of measures, we obtain that limK→∞m(BK) = m (

⋂∞
K=1BK). It follows from above, BK ⊆ UK

and Eq. (4.1) that

m(B) = m

Ç ∞⋂
K=1

BK

å
= limK→∞m(BK)
≤ limK→∞m(UK)
(4.1)
< limK→∞

Å
m∗(A) + 1

K

ã
≤ m∗(A).

Thus m(B) ≤ m∗(A) and we are done.

Lemma 18.3.6.15. A bounded set E ⊆ R is measurable if and only if m∗(A) = m∗(A∩E)+m∗(A∩Ec)
for all bounded subsets A ⊆ R.

Proof. Let E be a bounded set of R. We wish to show that E is measurable if and only if for all
bounded sets A ⊆ R, we get m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec).

The (⇒) is immediate from definitions. For (⇐), we proceed as follows. We wish to show that
for any F ⊆ R, we have

m∗(F ) ≥ m∗(F ∩ E) +m∗(F ∩ Ec).

Indeed, if m∗(F ) = ∞, then there is nothing to show. So we assume m∗(F ) < ∞. Observe then
that m∗(F ∩ E),m∗(F ∩ Ec) ≤ m∗(F ) < ∞. Fix ϵ > 0. There exists a sequence {In} of half-opens
such that

⋃
n In ⊇ F and

m∗(F ) + ϵ >
∑
n

m∗(In)
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where we are using the fact that measure of a half-open interval is its length. Observe that for each
n ∈ N, we have m∗(F ) + ϵ > m∗(In), thus each In is a half-open interval with bounded length,
hence In is bounded as a set. Consequently, we have

m∗(F ) + ϵ >
∑
n

m∗(In)

(by hypothesis) ≥
∑
n

m∗(In ∩ E) +m∗(In ∩ Ec)

(by rearrangement of +ve series) =
∑
n

m∗(In ∩ E) +
∑
n

m∗(In ∩ Ec)

(by subadditivity) ≥ m∗
Ç⋃

n

In ∩ E
å

+m∗
Ç⋃

n

In ∩ Ec
å

(by ∪nIn ⊇ F ) ≥ m∗(F ∩ E) +m∗(F ∩ Ec).

This completes the proof.

measurable functions

Notation 18.3.6.16. At times, we will write a subset of X as follows:

{x ∈ X | Px is true} = {Px is true}.

This makes some constructions much more clearer to see and interpret.

Lemma 18.3.6.17. Let f : X → Y be a function and A be an algebra on Y . Then,

⟨f−1(A)⟩ = f−1(⟨A⟩).

Proof. Let f : X → Y be a function and A be an algebra over Y . We wish to show that

⟨f−1(A)⟩ = f−1(⟨A⟩). (2.1)

We first claim that f−1(⟨A⟩) is a σ-algebra overX . Indeed, as Y, ∅ ∈ ⟨A⟩, we have f−1(Y ) = X and
f−1(∅) = ∅. Further, if B ∈ f−1(⟨A⟩), then B = f−1(A) for some A ∈ ⟨A⟩. Hence Bc = f−1(A)c =
f−1(Ac) and Ac ∈ ⟨A⟩ as ⟨A⟩ is a σ-algebra. Finally, pick {Bn} ⊆ f−1(⟨A⟩). Then Bn = f−1(An)
for An ∈ ⟨A⟩. Consequently,

⋃
nBn =

⋃
n f
−1(An) = f−1 (

⋃
nAn) and since

⋃
nAn ∈ ⟨A⟩, hence

this proves that f−1(⟨A⟩) is a σ-algebra.
We now show (⊆) part of Eq. (2.1). Indeed, by above, it would suffice to show that f−1(A) is

contained in the σ-algebra f−1(⟨A⟩). Pick any B ∈ f−1(A), so that B = f−1(A) where A ∈ A. As
A ⊆ ⟨A⟩, therefore A ∈ ⟨A⟩. It follows that B = f−1(A) ∈ f−1(⟨A⟩). This shows that ⟨f−1(A)⟩ ⊆
f−1(⟨A⟩).

We now show (⊇) part of Eq. (2.1). We will use the standard technique of good sets for this.
Consider

C := {A ∈ ⟨A⟩ | f−1(A) ∈ ⟨f−1(A)⟩} ⊆ ⟨A⟩

We now claim the following two statements:
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1. C is a σ-algebra on Y : Indeed, Y = f−1(X) and ∅ = f−1(∅) where X, ∅ ∈ ⟨A⟩ and X, ∅ ∈
⟨f−1(A)⟩. Further, for A ∈ C, we have f−1(A) ∈ ⟨f−1(A)⟩ and thus (f−1(A))c = f−1(Ac) ∈
⟨f−1(A)⟩. Thus Ac ∈ C. Finally, pick {An} ⊆ C. Then f−1(An) ∈ ⟨f−1(A)⟩ for each n ∈ N.
Thus,

⋃
n f
−1(An) = f−1 (

⋃
nAn) ∈ ⟨f−1(A)⟩. It then follows that

⋃
nAn ∈ C. This shows

that C is a σ-algebra.
2. C ⊇ A : Pick any A ∈ A. As ⟨f−1(A)⟩ contains f−1(A), so f−1(A) ∈ ⟨f−1(A)⟩.

We now conclude the proof. As C is a σ-algebra containing A and inside ⟨A⟩, therefore C = ⟨A⟩.
It follows that for each A ∈ ⟨A⟩, we have f−1(A) ∈ ⟨f−1(A)⟩, that is f−1(⟨A⟩) ⊆ ⟨f−1(A)⟩, as
required. This completes the proof.

Lemma 18.3.6.18. Let (X,M,m) be the Lebesgue measure space. Let A ∈ M be a bounded set such that
0 < m(A) <∞. For each 0 < M < m(A), there exists a B ⊊ A such that B ∈M and m(B) =M .

Proof. There are two proofs that we wish to present, one uses Lemma 18.3.6.19 and other is inde-
pendent. The latter uses a nice technique which we would like to write down concretely.

Method 1 : (Using Lemma 18.3.6.19) Consider the map

f : R −→ R
x 7−→ m(A ∩ (−∞, x]).

As A is a bounded set, therefore m(A) < ∞ as there exists a bounded interval I ⊇ A where
I = [c, d]. By Lemma 18.3.6.19, the map f is a continuous map. Let a ∈ R be such that a < c. Then
f(a) = m(A ∩ (−∞, a]) = m(∅) = 0. Let b ∈ R such that b > d. Then, f(b) = m(A ∩ (−∞, b]) =
m(A). On the interval J = [a, b] we have f(a) = 0 and f(b) = m(A). By intermediate value prop-
erty of f , there exists c ∈ J such that f(c) =M . Consequently, A ∩ (−∞, c] is a measurable subset
of A whose measure is M .

Method 2 : (Exponential subdivision technique) We shall explicitly construct B ⊊ A such that
m(B) =M . First, we observe that the question is invariant under translation and dilation. Hence
we may, after suitable dilation and translation, assume that A ⊆ [0, 1). For each n ∈ N, consider
the following partition of [0, 1)

Pn : 0 < x1 =
1
2n < x2 = 2 · 12n < · · · < x2n−1 = (2n − 1) · 12n < 1.

Denote In,j = [ j−12n ,
j
2n ) for each j = 1, . . . , 2n. Observe that In,j are disjoint and, denoting An,j =

A ∩ In,j , we further have a disjoint collection {An,j} of measurable subsets17 of A such that

2n∐
j=1

An,j = A.

Further, we have that
2n∑
j=1

m(An,j) = m

(
2n∐
j=1

An,j

)
= m(A)

17measurable because A and In,j are measurable
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and that

m(An,j) ≤ m(In,j) =
1
2n .

Now, for each n ∈ N, let Nn be the largest index such that

Nn∑
j=1

m(An,j) ≤M.

By the choice of index Nn, we observe that

M <
Nn+1∑
j=1

m(An,j)

=
Nn∑
j=1

m(An,j) +m(An,Nn+1)

≤
Nn∑
j=1

m(An,j) +
1
2n .

Denoting Cn = ⨿Nnj=1An,j , we obtain,

M − 1
2n <

Nn∑
j=1

m(An,j) = m (Cn) ≤M. (3.1)

We now claim that {Cn} is an increasing sequence of measurable subsets of A. First observe that
for each n ∈ N, we have thatNn+1 is either 2Nn−1 or 2Nn. Indeed, pick any x ∈ Cn. Then x ∈ An,j
where j = 1, . . . , Nn. Expanding this, we have

x ∈ An,j

= A ∩
ï
j − 1
2n ,

j

2n

ã
= A ∩

Åï2(j − 1)
2n+1 ,

2j − 1
2n+1

ã
⨿
ï2j − 1
2n+1 ,

2j
2n+1

ãã
= An+1,2j−1 ⨿An+1,2j . (3.2)

As Nn+1 = 2Nn − 1 or 2Nn, therefore for j = 1, . . . , Nn, 2j = 2, . . . , 2Nn, hence in Eq. (3.2), we
obtain that x ∈ An+1,2j−1 or x ∈ An+1,2j and as 2j ≤ 2Nn, hence x ∈ Cn+1. This shows that
Cn ⊆ Cn+1.

Applying limn→∞ on Eq. (3.1), we thus obtain

M ≤ limn→∞m(Cn) ≤M.

Thus, by monotone convergence of measures, we conclude

M = limn→∞m(Cn)

= m

Ç⋃
n

Cn

å
.
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As Cn ⊆ A for each n ∈ N, therefore
⋃
nCn ⊆ A. Consequently we have obtained a subset of A

whose measure is M .

Lemma 18.3.6.19. Let (X,M, µ) be the Lebesgue measure space and A ∈ M be a bounded set. Then the
function

f : R −→ R
x 7−→ m(A ∩ (−∞, x])

is continuous.

Proof. Let A ∈Mwhich has finite measure. We wish to show that

f : R −→ R
x 7−→ m(A ∩ (−∞, x])

is continuous. Pick any a ∈ R and any ϵ > 0. We wish to find a δ > 0 such that |x− a| < δ implies
|f(x)− f(a)| < ϵ. We now have two cases with respect to the position of x and a in R.

1. If a ≤ x : then f(x)− f(a) can be rewritten as follows:

|f(x)− f(a)| = m(A ∩ (−∞, x])−m(A ∩ (−∞, a])
= m(A ∩ (−∞, x] \A ∩ (−∞, a])
= m(A ∩ (a, x])
≤ m((a, x])
= x− a.

Therefore taking δ = ϵ, we would be done.
2. If a > x : then |f(x)− f(a)| can be written as

|f(x)− f(a)| = |f(a)− f(x)|
= m(A ∩ (−∞, a])−m(A ∩ (−∞, x])
= m(A ∩ (x, a])
≤ m((x, a])
= a− x.

Thus, again, taking δ = ϵ would do the job.
This completes the proof.

Lemma 18.3.6.20. Let X be a measurable space and let f : X → R be a function. Suppose {x ∈ X | a ≤
f(x) < b} is measurable for all a < b. Then f is a measurable function.

Proof. As the Borel σ-algebra on R is generated by sets of the form [a,∞) for a ∈ R, therefore for a
fixed a ∈ R we need only show that f−1([a,∞)) is measurable in X .

We can write

f−1([a,∞)) = {a ≤ f(x)}
=

⋃
n>a in N

{a ≤ f(x) < n}.
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As we are given that {a ≤ f(x) < b} are measurable for all a < b ∈ R and countable union of
measurable sets is measurable, therefore f−1([a,∞)) is measurable.

Lemma 18.3.6.21. All monotone functions f : R→ R are measurable.

Proof. We wish to show that all monotone functions f : R → R are measurable. Note that we
may first reduce to assuming that f is non-decreasing as if f is non-increasing, then −f will be
non-decreasing.

Hence let f : R→ R is non-decreasing. As Borel σ-algebra of R is generated by intervals of the
form [a,∞), a ∈ R, therefore it suffices to check that f−1([a,∞)) is measurable in R. Observe

f−1([a,∞)) = {a ≤ f(x)}.

We now have two cases to handle.
1. If a ∈ f(R) : Then there exists b ∈ R such that f(b) = a. We may write

{a ≤ f(x)} = {a < f(x)} ⨿ {a = f(x)}.

Now since f is non-decreasing, therefore f(x) > f(y) implies x > y. Further, we have that
f−1(a) = {a = f(x)} is measurable as singletons are Borel. Consequently, we have

{a ≤ f(x)} = {f(b) < f(x)} ⨿ {a = f(x)}
= (b,∞)⨿ f−1(a).

Hence f−1([a,∞)) is measurable.
2. If a /∈ f(R) : We further have two cases.

(a) If there exists b ∈ R such that b /∈ {a ≤ f(x)} : Observe first that in this case f(b) < a. We
claim that in this case {a ≤ f(x)} is lower bounded by b. Indeed, suppose not. Then
there exists y < b such that y ∈ {a ≤ f(x)}. Then a ≤ f(y) ≤ f(b) < a, a contradiction.
Hence {a ≤ f(x)} is bounded below.
Let c = inf{a ≤ f(x)}, which now exists. Consequently, we have two more cases:

• If f(c) ≥ a : That is, if c ∈ {a ≤ f(x)}. Then we claim

{a ≤ f(x)} = [c,∞).

which is clearly a measurable. Indeed, for some x ∈ R such that f(x) ≥ a, then
x ≥ c. Conversely, if b ≥ c in R, then f(b) ≥ f(c) ≥ a, so b ∈ {a ≤ f(x)}. This
proves the claim.

• If f(c) < a : That is, if c /∈ {a ≤ f(x)}. Then we claim

{a ≤ f(x)} = (c,∞)

which is clearly a measurbale set. Indeed, for x ∈ R such that f(x) ≥ a, x > c.
Further x ̸= c as otherwise f(x) < a. Conversely, if b > c, then there exists d ∈
{a ≤ f(x)} such that c < d < b as c is the infimum. Consequently, a ≤ f(d) ≤ f(b).
Hence b ∈ {a ≤ f(x)}. This proves the claim.

(b) If there doesn’t exists any b ∈ R such that f(b) < a : Then for all b ∈ R we have f(b) ≥ a.
Consequently, f−1([a,∞)) = {a ≤ f(x)} = R, which is measurable.
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Hence in all cases f−1([a,∞)) is a measurable set. This completes the proof.

Lemma 18.3.6.22. Let f : X → C be a complex measurable function on a measurable space X . Then,
there exists a complex measurable function g : X → C such that |g| = 1 and f = g |f |.

Proof. Let f : X → C be a measurable function. We wish to find a measurable function g : X → C
such that |g| = 1 and f = g |f |.

As |f | = fχ{f(x)≥0} − fχ{f(x)<0}, therefore |f | is a measurable function. Denote E = {|f(x)| =
0}. Consequently, we define g as follows:

g(x) =
{

f(x)
|f(x)| if x ∈ Ec

1 if x ∈ E.

We first wish to show that g is measurable. For this, we shall use the fact that measurability of
g can be checked on a cover {Eα} of X such that g|Eα is measurable. Thus in our case, we need
only show that g|E and g|Ec are measurable. On E, g is a constant, hence measurable. On Ec, g
is f/ |f |. As |f | is not zero on Ec, therefore by Lemma 18.3.6.24, f/ |f | is measurable. Hence, g is
measurable.

We now see that |g| (x) =
∣∣∣ f(x)|f(x)|

∣∣∣ = 1 on Ec and |g(x)| = 1 on E. Thus |g| = 1 on X . Further, if

x ∈ E, then f(x) = 0 = g(x) |f | (x). If x ∈ Ec, then g(x) = f(x)
|f(x)| which implies |f(x)| g(x) = f(x).

This shows that in all cases, f = g |f |.

Example 18.3.6.23. It is not true that if f : [0, 1]→ R is a function whose each fibre is measurable,
then f is measurable.

Consider the following function

f : [0, 1] −→ R

x 7−→
®
x if x ∈ V c

x+N if x ∈ V

where V ⊆ [0, 1] denotes the Vitali set and N = 3. Then, for each y ∈ R, we have that f−1(y)
is atmost a singleton, which is measurable in [0, 1]. However, for any 1 < b < N , we see that
f−1((b,∞)) = V , which is not measurable. Hence f is a non-measurable function whose fibres are
measurable.

Lemma 18.3.6.24. Let f, g : X → C be a measurable function such that {g(x) ̸= 0} = X . Then f/g is
measurable.

Proof. Let f, g : X → C be a measurable function such that {g(x) ̸= 0} = X . Then we wish to
show that f/g is measurable.

We first have that (f, g) : X → R2 given by x 7→ (f(x), g(x)) is measurable. Consequently, we
consider the composite

X R2 \ {y = 0} R
(f,g) Φ

where Φ(x, y) = x
y . As Φ is continuous, therefore the composite Φ ◦ (f, g) is measurable. Con-

sequently, we obtain that the map x 7→ f(x)
g(x) is measurable, but this is exactly f/g over X . This

completes the proof.
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Lemma 18.3.6.25. Let f, g : X → R be measurable functions and pick any r0 ∈ R. Then the map

h : X −→ R

x 7−→
®
r0 if f(x) = −g(x) = ±∞
f(x) + g(x) else

is measurable18.

Proof. Let f, g : X → R be measurable functions and pick any r0 ∈ R. Then we wish to show that
the map

h : X −→ R

x 7−→
®
r0 if f(x) = −g(x) = ±∞
f(x) + g(x) else

is measurable.
Define the following sets

E = {f(x) =∞ = −g(x)}
F = {f(x) = −∞ = −g(x)}.

As E = f−1(∞) ∩ g−1(−∞) and F = f−1(−∞) ∩ g−1(∞), therefore they are measurable. Observe
that E and F are disjoint. We thus need only show that h restricted to E, F and X \ (E ⨿ F ) is
measurable.

1. On E : As h|E is constant r0, therefore h|E is measurable.
2. On F : As h|F is again constant r0, therefore h|F is measurable.
3. On X \ (E ⨿ F ) : We first deduce that

X \ (E ⨿ F ) = X ∩ Ec ∩ F c

= Ec ∩ F c

= ({f(x) ̸=∞} ∪ {g(x) ̸= −∞})
⋂

({f(x) ̸= −∞} ∪ {g(x) ̸=∞})

Let G = {f(x) ∈ R} and H = {g(x) ∈ R}. Then we may write X \ (E ⨿ F ) as

X \ (E ⨿ F ) = (G ∪H ∪ {f(x) = −∞} ∪ {g(x) =∞})
⋂

(G ∪H ∪ {f(x) =∞} ∪ {g(x) = −∞})

= (G ∪H) ∪
Ä
({f(x) = −∞} ∪ {g(x) =∞})

⋂
({f(x) =∞} ∪ {g(x) = −∞})

ä
= (G ∪H) ∪ {f(x) = −∞ = g(x)}︸ ︷︷ ︸

=:A

∪{f(x) =∞ = g(x)}︸ ︷︷ ︸
=:B

.

As h|G∪H is (f + g)|G∪H and on G ∪H , f + g : G ∪H → R, therefore h is measurable.
We thus reduce to checking that h|A and h|B are measurable. On both of them, one imme-
diately observes that h is constant −∞ and∞ respectively. Hence, h|A and h|B are measur-
able. As h restricted to G∪H , A and B is measurable therefore h restricted to X \ (E ⨿F ) is
measurable.

18This question in particular shows that modifying a measurable function at a single point doesn’t affect measurabil-
ity at all.
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This completes the proof.

Example 18.3.6.26. It is not true in general that if for a function f : X → R, the |f | : X → [0,∞] is
measurable then f is measurable.

Indeed, consider the following function where V ⊆ [0, 1] denotes the Vitali set:

f : [0, 1] −→ R

x 7−→
®
−x if x ∈ V
x if x ∈ V c.

Then, |f | = id[0,1] which is measurable whereas f is not measurable as f−1((−∞, 0)) = V , which
is not a measurable set.

Lemma 18.3.6.27. Let (X1,AX1 , µ1) be a measure space, (X2,AX2) be a measurable space and f : X1 →
X2 be a measurable function. Then

µ2 : AX2 −→ [0,∞]
B 7−→ µ1(f−1(B))

is a measure on (X2,AX2).

Proof. We first immediately observe that µ2(∅) = µ1(f−1(∅)) = µ1(∅) = 0. We thus reduce to
showing that for any disjoint collection {Bn} ⊆ AX2 , we have µ2(

∐
nBn) =

∑
n µ2(Bn). To this

end, observe that

µ2

Ç∐
n

Bn

å
= µ1

Ç
f−1

Ç∐
n

Bn

åå
= µ1

Ç∐
n

f−1 (Bn)
å

=
∑
n

µ1(f−1(Bn))

=
∑
n

µ2(Bn).

This completes the proof.

Lemma 18.3.6.28. Let (X,A, µ) be a measure space and f : X → R be a measurable function such that
µ({|f(x)| ≥ ϵ}) = 0 for all ϵ > 0. Then f = 0 almost everywhere.

Proof. We first claim that it suffices to show that {|f(x)| > 0} is a null set. Indeed, this is because
{f(x) ̸= 0} = {|f(x)| > 0}. Hence it suffices to show that |f | = 0 a.e.

Define for each n ∈ N the following subset of X

En = {|f(x)| > 1/n}.

We claim that

{|f(x)| > 0} =
⋃
n∈N

En.
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Indeed, for (⊆), pick x ∈ X such that |f(x)| > 0. Then there exists n ∈ N such that |f(x)| > 1/n.
Hence x ∈ En. Conversely pick x ∈ En, then by way of construction of En, we have |f(x)| >
1/n > 0.

Observe that {En} is an increasing sequence of sets as if x ∈ En then |f(x)| > 1
n > 1

n+1 , so
x ∈ En+1. It then follows by monotone convergence property of measures that

µ({|f(x) > 0|}) = µ

Ç⋃
n

En

å
= limn→∞µ(En) = limn→∞0 = 0.

This completes the proof.

Example 18.3.6.29. The statement of Egoroff’s theorem depends crucially on the fact that each
function in the sequence {fn} is measurable. Indeed, we show by the way of an example that the
conclusion of Egoroff’s theorem is not true when fn’s are not measurable.

We wish to show that the statement of Egoroff’s theorem fails if we drop the condition that
functions be measurable.

Consider the measure space (Z,A, µ) where A = {∅,Z, 2Z,Z \ 2Z} and µ(∅) = 0 = µ(2Z),
µ(Z) = 1 = µ(Z \ 2Z). Consider the functions fn : (Z,A, µ) → R where R has the Borel measure,
given by

fn(k) =
k

n

for all k ∈ Z. Observe that {fn} pointwise converges to the constant 0 function at all points of Z.
Further note that fn is not measurable as f−1n ({k/n}) = {k} is not a measurable set inA but {k/n}
is Borel measurable.

To show that this is a counterexample, it would suffice to show that there exists an ϵ0 > 0 such
that for all measurable setsE ∈ A, either µ(Ec) ≥ ϵ0 or fn does not converges uniformly to 0 onE.
We claim that in our situation, ϵ0 = 1/2 works. Indeed, for E = ∅, 2Z, we have µ(Ec) = 1 > 1/2.
Thus we reduce to showing that fn does not converges uniformly on Z and Z\2Z. Indeed, observe
that supk∈Z |fn(k)| = supk∈Z k/n = ∞ for each n ∈ N. As fn converges uniformly if and only if
supk∈Z |fn(k)| → 0 as n → ∞, therefore we deduce that fn does not converge uniformly over Z.
Similarly, it doesn’t converge uniformly over Z \ 2Z.

Lemma 18.3.6.30. Let f, g : R→ R be continuous functions. If f = g almost everywhere, then f = g.

Proof. Indeed, consider h = f−g. Suppose h ̸= 0, therefore there exists x0 ∈ R such that h(x0) ̸= 0.
By continuity of h, there exists ϵ > 0 such that (x0−ϵ, x0+ϵ) ⊆ {h(x) ̸= 0}. Hence, 2ϵ < m({h(x) ̸=
0}) = 0, which yields 0 < 2ϵ ≤ 0, a contradiction.

Lemma 18.3.6.31. Let (X,S, µ) be a measure space and fn, f : X → R be measurable functions such
that fn → f pointwise almost everywhere. Then, there exists measurable functions gn : X → R such that
fn = gn almost everywhere and gn → f pointwise.

Proof. Indeed, as fn converges pointwise to f almost everywhere, therefore the setE = {limn→∞fn(x) ̸=
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f(x)} is a zero measure set. Consequently, we may define

gn : X −→ R

x 7−→
®
fn(x) if x /∈ E
f(x) if x ∈ E.

We then observe that {gn(x) ̸= fn(x)} = E, which is of measure zero, hence gn = fn almost
everywhere. Furthermore, we see that for any x ∈ X ,

limn→∞gn(x) =
®

limn→∞fn(x) = f(x) if x /∈ E
limn→∞f(x) = f(x) if x ∈ E.

Thus, limn→∞gn = f pointwise. This completes the proof.

Example 18.3.6.32. We wish to show that there exists continuous function f : R → R and a
Lebesgue measurable function g : R → R such that g ◦ f : R → R is not Lebesgue measur-
able.

While learning about the existence of a non-Borel measurable set, one learns about the exis-
tence of a homeomorphism ϕ : [0, 1] → [0, 2] such that m(ϕ(C)) = 1 > 0 where C ⊆ [0, 1] is the
Cantor set. Indeed, if C : [0, 1]→ [0, 1] denotes the Cantor function, then ϕ is constructed by defin-
ing ϕ(x) = C(x) + x. As, C(0) = 0 and C(1) = 1, therefore ϕ(0) = 0 and ϕ(1) = 2. Consequently,
we may define a continuous function f : R→ R as follows:

f(x) =


x− 1 if x > 2
ϕ−1(x) if x ∈ [0, 2]
x if x < 0.

Observe that f is continuous as f is obtained by gluing three continuous functions at points where
they agree.

As m(ϕ(C)) = 1 > 0 for Cantor set C, therefore there exists a non-measurable set V ⊆ ϕ(C) ⊆
[0, 2]. But since f(V ) = ϕ−1(V ) ⊆ ϕ−1(ϕ(C)) = C and C is a null set, therefore by completeness
of Lebesgue measure, it follows that f(V ) is a Lebesgue measurable set. Consequently, we may
define g = χf(V ) : R → R, which is Lebesgue measurable as f(V ) is Lebesgue measurable. We
thus have

R R Rf g

cont. Leb. msble
.

We claim that h := g ◦ f is not Lebesgue measurable. Indeed, observe that h−1({1}) = (g ◦
f)−1({1}) = f−1(g−1({1})) = f−1(f(V )). But as f restricted to [0, 2] is a homeomorphism from
[0, 2] to [0, 1] because on [0, 2], f is equal to ϕ−1, hence f−1(f(V )) = V . Hence h−1({1}) = V ,
where {1} is measurable but V ⊆ [0, 2] is non-measurable. This shows that h is not measurable.
This completes the proof.

18.4 Integration of measurable functions

Let’s first remind ourselves of the basic definition of a Riemann Integrable function. If we say that
the function f : R → R is Riemann Integrable, then the integral of f on [a, b], written as

∫ b
a f , is

given by the following two constructions on a partition P of [a, b],
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• Lower Sum :
L(f, P ) =

∑
i

mi(ai − ai−1) where mi = inf
x∈[ai−1,ai]

f(x)

• Upper Sum:
U(f, P ) =

∑
i

Mi(ai − ai−1) where Mi = sup
x∈[ai−1,ai]

f(x)

so that ∫ b

a
f = L(f, P ) = U(f, P ).

The chain of observations begins now. One can easily write the Lower and Upper Sum as the
following simple functions (remember that the partition is finitely many)

L(f, P ) =
∑
i

miλ ([ai−1, ai])

U(f, P ) =
∑
i

Miλ ([ai−1, ai])

Or, equivalently, we can define a lower step function as follows:

φP =
∑
i

miχ[ai−1,ai]

so that the Riemann integral is simply∫ b

a
f(x)dx = sup

P

∫ b

a
φP (x)dx

where supremum is defined over all partitions. But since, by definition, φP (x) ≤ f(x) ∀ x ∈ R, we
can alternatively define Riemann integral as∫ b

a
f(x)dx = sup

φP≤f

∫ b

a
φP (x)dx (18.12)

where the supremum is defined for all step functions on any partition P .

This definition presented in (18.12) provides the motivation for extending the definition of Inte-
gration from Riemann to Lebesgue. In particular, note the definition of φP , usual measure on the
intervals is applied in Riemann’s definition. But, since we know that Borel σ-algebra is a proper
subset of Mλ∗ , then it just makes sense to replace ai−1− ai by λ ([ai−1, ai]) in the motivation that it
might generalize the notion of integration.

18.4.1 Integration of non-negative measurable functions

Definition 18.4.1.1. (Lebesgue integral of a simple function) Consider φ : R → [0,+∞) be a
simple function as

φ =
N∑
i=1

αiχEi where αi ≥ 0 and λ (Ei) < +∞
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Then, the Lebesgue integral of φ is defined as

∫
φdx =

N∑
i=1

αiλ (Ei)

Definition 18.4.1.2. (Lebesgue integral of a measurable function) Suppose f : R → [0,+∞) is a
λ-measurable function, then the Lebesgue integral of f is defined as

⋆
∫
fdx = sup

φ≤f

∫
φdx where φ are the simple functions ≤ f . ⋆

Definition 18.4.1.3. (Lebesgue integral over a measurable set) Consider f : R → [0,+∞) to be a
λ-measurable function and E ⊆ R is Lebesgue measurable. Then,∫

E
fdx =

∫
f · χEdx

Remark 18.4.1.4. Therefore, the integral of a non-negative measurable function over a measurable
set is given by the integral19 of restriction of f to it and zero otherwise.

Proposition 18.4.1.5. Consider the two λ-measurable functions f, g : R→ [0,+∞) and φ : R→ [0,+∞)
be a simple-function, then the Lebesgue integral has the following properties:

1. Consider two Lebesgue measurable subsets A and B of R such that A ∩B = Φ. Then,∫
A∪B

φdx =
∫
A
φdx+

∫
B
φdx.

2. For any α ∈ R, ∫
αfdx = α

∫
fdx.

3. Integration for positive valued measurable functions is therefore distributive:∫
(f + g)dx =

∫
fdx+

∫
gdx.

4. If f(x) ≤ g(x) holds for all x ∈ R, then ∫
fdx ≤

∫
gdx.

5. Consider A and B be Lebesgue measurable subsets of R such that A ⊆ B. Then,∫
A
fdx ≤

∫
B
fdx.

19From now on, any instance of integral should be presupposed by Lebesgue integral, of-course, unless otherwise
stated, in this text.
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Proof. Part 1 : Since φ is simple, therefore we can write

φ =
N∑
i=1

αiχEi .

Now, by definition∫
A∪B

φdx =
N∑
i=1

αiλ (Ei ∩ (A ∪B))

=
N∑
i=1

αiλ ((Ei ∩A) ∪ (Ei ∩B))

=
N∑
i=1

αiλ (Ei ∩A) + αiλ (Ei ∩B) ∵ Ei ∩A and Ei ∩B are disjoint.

=
∫
A
φdx+

∫
B
φdx

Part 2 & 3 : Can be seen easily from Theorem 18.4.2.1.

Part 4 : Note that we define∫
fdx = sup

φ≤f

∫
φdx where φ are simple functions.

Therefore, for any φ ≤ f , due to given condition f ≤ g, we would have φ ≤ g. Hence,∫
φdx ≤

∫
gdx

Since this is true for all simple φ ≤ f , therefore supφ≤f
∫
φdx ≤

∫
gdx, proving the result.

Part 5 : Consider the following:∫
A
fdx =

∫
fχAdx

≤
∫
fχBdx ∵ χA ≤ χB , then apply 4.

=
∫
B
fdx

Hence proved.

18.4.2 Monotone Convergence Theorem

This is arguably one of the most important theorem in Integration theory,

Theorem 18.4.2.1. (Monotone Convergence Theorem) Consider a sequence {fn} of R → [0,+∞) of
λ-measurable functions which satisfies

fn(x) ≤ fn+1(x) ∀ x ∈ R and n
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and suppose lim←−n→∞ fn exists. Then, ∫
lim←−
n→∞

fn = lim←−
n→∞

∫
fn.

Proof. Since fn ≤ fn+1, therefore, ∫
fn ≤

∫
fn+1 ≤

∫
lim←−
n→∞

fn.

Hence,

lim←−
n→∞

∫
fn ≤

∫
lim←−
n→∞

fn.

Therefore we have proved one inequality.

Now to prove the other inequality, consider any simple function φ ≤ lim←−n→∞ f . If we can show
that

∫
fn ≥

∫
φ for any n ∈ N, then we are done. To this goal, consider α ∈ (0, 1). Construct the

set20

En = {x | fn(x) ≥ αφ(x)} .

Clearly,
En ⊆ En+1 ∀ n ∈ N.

Now, ∫
fn ≥

∫
En
fn ≥ α

∫
En
φ. (18.13)

Moreover, we can see that
Claim 1 :

⋃
n

En = R.

This is easy to see as follows:

Take x ∈
⋃
n

En =⇒ x ∈ Ei0 for some i0 ∈ N.

=⇒ x ∈ R ∵ En are subsets of R.
Take x ∈ R =⇒ Either (1) x ∈ {x | fn(x)− αφ(x) ≥ 0} or (2) x ∈ {x | fn(x)− αφ(x) < 0} for any n ∈ N.

=⇒ If (1), then x ∈ En, else if (2), then ∵ φ ≤ lim←−
n→∞

fn, ∃ n′ s.t. x ∈ En′

=⇒ x ∈
⋃
n

En. Hence Claim 1.

Next, we can also see that

Claim 2 :
∫
En
φ −→

∫
φ

20After reading the proof, it should appear striking to the reader on actually how much the proof depends on this
construction. Both the claims in the following page utilizes this construction En to full extent! Hence, it is advised (by
Instructor) to purse such effective constructions in the problem sheets and your own proofs.
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This can be seen by expanding the simplicity of φ as follows:

lim←−
n→∞

∫
En
φ =

N∑
i=1

ai lim←−
n→∞

λ (Ai ∩ En)

=
N∑
i=1

aiλ

Ç⋃
n

Ai ∩ En

å
∵ {Ai ∩ En}n is increasing.

=
N∑
i=1

aiλ

Ç
Ai ∩

⋃
n

En

å
=

N∑
i=1

aiλ (Ai ∩ R) Claim 1.

=
N∑
i=1

aiλ (Ai) =
∫
φ Hence Claim 2.

Finally, take limit in (18.13) to get:

lim←−
n→∞

∫
fn ≥ lim←−

n→∞

∫
En
fn ≥ α lim←−

n→∞

∫
En
φ

= α
∫
φ Claim 2.

lim←−
n→∞

∫
fn ≥

∫
φ ∵ 0 < α < 1 is arbitrary.

Hence, for any simple function φ ≤ lim←−n→∞ fn, we have concluded that
∫
φ ≤ lim←−n→∞

∫
fn, hence

it must be true that ∫
lim←−
n→∞

fn = sup
φ≤lim←−n fn

∫
φ ≤ lim←−

n→∞

∫
fn.

Combining the converse inequality at the beginning, we hence get the desired result.

Proposition 18.4.2.2. Consider a Lebesgue measurable function f : R→ [0,+∞). Then,∫
fdx = 0⇐⇒ f ≡ 0 almost everywhere.

Proof. L =⇒ R : Consider f is a non-negative real-valued function whose integral is zero. Con-
struct the set,

En =
ß
x | f(x) ≥ 1

n

™
.

In order to show that f ≡ 0 almost everywhere, it is hence sufficient to show that λ (En) = 0 ∀ n ∈
N because it equivalently proves that the measure of the set where f is greater than zero is zero.
Now, consider the following function

gn = 1
n
χEn .
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Clearly, because gn is a simple function and

1
n
χEn(x) =

® 1
n if f(x) ≥ 1

n

0 otherwise

which clearly means that 1
nχEn ≤ f , therefore,∫

f = 0 = sup
φ≤f

∫
φ

≥
∫ 1
n
χEn

= 1
n
λ (En)

=⇒ λ (En) = 0 ∀ n ∈ N.

R =⇒ L : If a non-negative real-valued measurable function f is 0 almost everywhere, then for
any simple function φ ≤ f , φ must also be 0 almost everywhere, so that

∫
φ =

N∑
i=1

αiλ (Ei)

= 0

Since this is true for any simple φ ≤ f , therefore the supremum of all such
∫
φ must also be zero,

to make
∫
f = 0.

A simple corollary of the MCT tells us an equivalent story for decreasing sequence of maps
where first term is L1, as compared to the statement of MCT.

Corollary 18.4.2.3. Let (X,M,µ) be a measure space and let fn : X → R be a sequence of positive
measurable maps. Suppose

1. limnfn(x) exists and is equal to f(x) for some measurable f : X → R,
2. fn(x) ≥ fn+1(x) for all x ∈ X and n ∈ N,
3. f1(x) ∈ L1.

Then,

limn→∞

∫
X
fndµ =

∫
X

limn→∞fndµ.

Proof. Since f ≤ fn ≤ f1, therefore f ∈ L1. Now, consider the (not necessarily positive!) mea-
surable sequence gn = f − fn. Since fn decreases, therefore gn increases. Now, limngn = 0 as
limnfn = f . Since 0 ∈ L1, therefore Hence, by MCT, we get that limn

∫
X gndm =

∫
X limngndm.

Expanding it and using the fact that f is in L1 (so you can cancel
∫
X fdm both sides!) gives the

desired result.

Another important result which is of tremendous usability is the fact that Riemann and Lebesgue
agree on compact domains(!)
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Theorem 18.4.2.4. (Riemann = Lebesgue on [a, b]) Let [a, b] ⊆ R be a closed bounded interval and f :
[a, b]→ R be a Riemann integrable map. Then, the Riemann integral and Lebesgue integral of f agrees on
[a, b]. That is, ∫ b

a
f(x)dx =

∫
[a,b]

fdm

where m is the Lebesgue measure of R.

18.4.3 Fatou’s Lemma

Theorem 18.4.3.1. If {fn} is a sequence of Lebesgue measurable functions from R to [0,+∞), then,∫
lim inf

n
fn ≤ lim inf

n

∫
fn.

Proof. We will use Monotone Convergence Theorem to prove this result. Define

gk = inf
n≥k

fn

Therefore gk ≤ gk+1 with gk ≤ fn∀ n ≥ k. Then,∫
gk ≤

∫
fn∀ n ≥ k.

This implies that ∫
gk ≤ inf

n≥k

∫
fn.

Now, by MCT, ∫
lim←−
k

gk = lim←−
k

∫
gk

Therefore

lim←−
k→∞

inf
n≥k

∫
fn = lim inf

k

∫
fk ≥ lim←−

k→∞

∫
gk

=
∫

lim←−
k→∞

gk

=
∫

lim←−
k→∞

inf
n≥k

fn

=
∫

lim inf
k

fk

Hence Proved.

Remark 18.4.3.2. In fact,

Fatou’s Lemma ⇐⇒ Monotone Convergence Theorem.
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18.4.4 Integration of General Real-Valued measurable Functions

With the notion of integration of non-negative measurable function in place, it’s not difficult to see
how can one extend the same notion to measurable functions which takes value in the whole real
line.

Definition 18.4.4.1. (Lebesgue integral of a Real-Valued measurable Function) Consider f : R→
R to be a measurable function such that

1.
∫
f+dx <∞, and

2.
∫
f−dx <∞.

If the above two conditions are satisfied, then f is called Lebesgue Integrable. Then, the Lebesgue
integral of f is defined as

⋆
∫
fdx =

∫
f+dx−

∫
f−dx ⋆

Remark 18.4.4.2. It’s important to note that the integral
∫
fdx =

∫
f+dx−

∫
f−dx is easily defined

for any measurable function, but f is called Lebesgue integral only when it’s value is finite!

Definition 18.4.4.3. (Lebesgue integral over a measurable set) Consider f : R→ R is measurable,
f · χE is an Lebesgue Integrable function and E ⊆ R is also measurable. Then,∫

E
fdx =

∫
f · χEdx.

Basic properties of general Lebesgue integral

The following properties are direct extensions of Proposition 18.4.1.5 to the bigger class of Lebesgue
Integrable functions.

Proposition 18.4.4.4. Consider f, g : R→ R to be Lebesgue Integrable functions. Then,
1. For any α ∈ R, we have: ∫

αfdx = α
∫
fdx.

2. f + g is also Lebesgue Integrable, with∫
(f + g)dx =

∫
fdx+

∫
gdx.

3. If f ≡ 0 almost everywhere on R, then, ∫
fdx = 0.

4. If f ≤ g almost everywhere on R, then, ∫
fdx ≤

∫
gdx.

5. If A and B are measurable sets such that A ∩B = Φ, then,∫
A∪B

fdx =
∫
A
fdx+

∫
B
fdx.



706 CHAPTER 18. ABSTRACT ANALYSIS

Proof. S1 : Consider the case that α ≥ 0. Then,

(αf)+ = max(αf, 0) = αmax(f, 0) = αf+

(αf)− = −min(αf, 0) = −αmin(f, 0 = αf−

and since
∫
f+dx <∞ and

∫
f−dx <∞, therefore αf is also Lebesgue Integrable, with the integral

given as ∫
αf =

∫
αf+ −

∫
αf−

= α

Å∫
f+ −

∫
f−
ã

= α
∫
f

Now consider that α < 0, then

(αf)+ = max(αf, 0) = − |α|min(f, 0) = |α| f−

(αf)− = −min(αf, 0) = |α|max(f, 0) = |α| f+

Hence, αf is again Lebesgue Integrable, with the integral calculated as:∫
αf =

∫
(αf)+ −

∫
(αf)− = |α|

Å∫
f− −

∫
f+
ã
= − |α|

∫
f = α

∫
f.

S2 : First,

(f + g)+ ≤ f+ + g+

(f + g)− ≤ f− + g−

for all x ∈ R, so that f + g is Lebesgue Integrable. Now,

f + g = (f + g)+ − (f + g)−

= f+ − f− + g+ − g−

therefore,

(f + g)+ − (f + g)− = f+ − f− + g+ − g−

(f + g)+ + f− + g− = (f + g)− + f+ + g+∫
(f + g)+ + f− + g− =

∫
(f + g)− + f+ + g+∫

(f + g)+ +
∫
f− +

∫
g− =

∫
(f + g)− +

∫
f+ +

∫
g+ (∵ of Proposition 18.4.1.5, S3.)∫

(f + g)+ −
∫
(f + g)− =

∫
f+ −

∫
f− +

∫
g+ −

∫
g−∫

(f + g)+ −
∫
(f + g)− =

∫
f +

∫
g
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S3 : Given to us is that f ≡ 0 almost everywhere. This means that

{x ∈ R | f(x) ̸= 0} is of measure 0.

We can write it equivalently as the union of the following two disjoint sets

{x ∈ R | f(x) ̸= 0} = {x | f(x) > 0} ∪ {x ∈ R | f(x) < 0}.
λ ({x ∈ R | f(x) ̸= 0}) = λ

(
{x | f+(x) > 0}

)
+ λ

(
{x | f−(x) < 0}

)
= 0

Since measure is positive valued by definition, therefore, these two have to be individually be
zero. That is,

λ
(
{x | f+(x) > 0}

)
= λ

(
{x | f−(x) < 0}

)
= 0

Now, by Proposition 18.4.2.2, we get that∫
f+ =

∫
f− = 0

which implies that ∫
f =

∫
f+ −

∫
f− = 0.

S4 :

Proposition 18.4.4.5. If f : R→ R is a Lebesgue Integrable Function, then,∣∣∣∣∫ fdx

∣∣∣∣ ≤ ∫
|f | dx

Proof. Simply note the following:∣∣∣∣∫ fdx

∣∣∣∣ = ∣∣∣∣∫ (f+ − f−) dx∣∣∣∣
=
∣∣∣∣∫ f+dx−

∫
f−dx

∣∣∣∣
≤
∣∣∣∣∫ f+dx

∣∣∣∣+ ∣∣∣∣∫ f−dx

∣∣∣∣
=

∫
f+dx+

∫
f−dx

=
∫ (

f+ + f−
)
dx

=
∫
|f | dx.
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18.4.5 Dominated convergence theorem

Theorem 18.4.5.1. Let {fn} be a sequence of measurable functions such that there exists a Lebesgue Inte-
grable function g which satisfies

|fn| ≤ g ∀ n.
Suppose that the limit lim←−n→∞ fn exists. Then lim←−n→∞ fn is Lebesgue Integrable and,

lim←−
n→∞

∫
fndx =

∫
lim←−
n→∞

fndx.

Proof. Since {fn} is a sequence of measurable functions, therefore, lim←−n→∞ fn = f is also measur-
able and |f | is bounded by g. But since g is Lebesgue Integrable, and fn and f are bounded by g,
then each fn and also f are also Lebesgue Integrable (Trivial to see).
Now, {g + fn} is a sequence of measurable functions. Moreover, since fn ≤ g for all n, therefore
fn + g ≥ 0, so that {fn + g} is a sequence of non-negative measurable functions.
Now using Fatou’s Lemma (Theorem 18.4.3.1), we get,∫

lim inf
n

(g + fn)dx ≤ lim inf
n

∫
(g + fn)dx∫ (

g + lim inf
n

fn
)
dx ≤

∫
gdx+ lim inf

n

∫
fndx∫

gdx+
∫

lim inf
n

fndx ≤
∫
gdx+ lim inf

n

∫
fndx∫

lim inf
n

fndx ≤ lim inf
n

∫
fndx ∵ g is L.I., so

∫
gdx <∞∫

fdx ≤ lim inf
n

∫
fndx ∵ lim sup

n
xn = lim inf

n
xn = lim←−

n

xn.

Similarly, since {g−fn} is also a sequence of non-negative measurable functions, therefore we can
use Fatou’s Lemma to conclude:∫

lim inf
n

(g − fn)dx ≤ lim inf
n

∫
(g − fn)dx∫

lim inf
n

(−fn) dx ≤ lim inf
n

Å
−

∫
fndx

ã
−

∫
lim sup

n
fndx ≤ − lim sup

n

∫
fndx ∵ lim inf

n
(−xn) = − lim sup

n
xn.∫

fdx ≥ lim sup
n

∫
fndx

We hence have that
lim sup

n

∫
fndx ≤

∫
fdx ≤ lim inf

n

∫
fndx

But it is also true that
lim inf

n

∫
fndx ≤ lim sup

n

∫
fndx.

Hence,
lim inf

n

∫
fndx = lim sup

n

∫
fndx = lim←−

n

∫
fndx =

∫
fdx

Hence proved.
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Proposition 18.4.5.2. Consider {fn} to be a sequence of Lebesgue Integrable functions such that

∞∑
n=1

∫
|fn| dx <∞.

Then,
1. The series

∞∑
n=1

fn(x) converges almost everywhere on R.

2. The sum

f =
∞∑
n=1

fn is Lebesgue Integrable.

3. The integral is ∫ ∞∑
n=1

fndx =
∞∑
n=1

∫
fndx.

Proof. S1. Denote the following:

ϕ =
∞∑
n=1
|fn|

Clearly, ϕ is a non-negative measurable function. Since we know that Lebesgue integral for non-
negative functions is countably additive, therefore,

∫
ϕdx =

∞∑
n=1

∫
|fn| dx <∞.

Now, if
∫
ϕ < ∞, then ϕ is finite almost everywhere on R21. Now, since

∑∞
n=1 fn is absolutely

convergent almost everywhere (last line), hence it is convergent almost everywhere too on R.

S2. Since |
∑∞
n=1 fn| ≤

∑∞
n=1 |fn| = ϕ < ∞ (almost everywhere) and since we can modify the

set where ϕ is not defined (infinite) arbitrarily to make a new function which would be measur-
able and equal to

∑∞
n=1 fn almost everywhere, therefore

∑∞
n=1 fn would be measurable.

S3. Define

φn =
n∑
i=1

fi.

Clearly, φn ≤ |
∑n
i=1 fi| ≤

∑n
i=1 |fi| ≤

∑∞
i=1 |fi| = ϕ. Therefore, φn is a sequence of measurable

functions and φn ≤ ϕ where ϕ is an Integrable function (given). Therefore, using Dominated

21For a non-negative measurable function f with given that
∫
fdx < ∞, the set E = {x ∈ R | f(x) = ∞} together

with supposition that λ (E) > 0 is such that; since
∫
fdx = supφ≤f

∫
φ, therefore, if we take φ = nχE for any n > 0

then nχE < f . Hence
∫
fdx > nλ (E) for all n, so that

∫
fdx = ∞. But it’s a contradiction to

∫
fdx < ∞. Therefore

λ (E) = 0.
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Convergence Theorem (18.4.5.1), we get,

lim←−
n

∫
φndx =

∫
lim←−
n

φndx

lim←−
n

∫ n∑
i=1

fidx =
∫

lim←−
n

n∑
i=1

fidx

lim←−
n

n∑
i=1

∫
fidx =

∫ ∞∑
i=1

fidx ∵ Proposition 18.4.4.4, S2

∞∑
i=1

∫
fidx =

∫ ∞∑
i=1

fidx.

Hence proved.

18.4.6 Applications-II : Integration

We present important applications of the above results, showcasing the power of their usage. At
parts here, we are proving results from Folland’s exercises.

Lemma 18.4.6.1. The Lebesgue integral ∫ 1

0

xp − 1
log x dx

exists for p > −1.

Proof. The first idea is to break p into cases. In some cases, it is obvious why the above integral
exists, in others, we have to work. Denote fp(x) = xp−1

log x .

Act 1 : p > 0

In this regime, we can bound the
∫ 1
0 fp(x)dx by a fixed quantity. Indeed, since fp(x) is positive, it

will suffice. Observe that

xp − 1
log x = 1− xp

− log x ≤
1

− log x.

Now,− log x can be lower bounded by 1−ax for some 0 < a < 1 by an easy graphical observation.
Hence, continuing above, we get

xp − 1
log x ≤

1
1− ax.

The integral then translates to∫ 1

0

xp − 1
log x dx ≤ −

∫ 1

0

1
1− axdx = − log(1− a)

a
<∞.

Act 2 : −1 < p < 0
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This is the regime in which we got to work a bit. First, from some graphical observations about
xp − 1 and log x, we conclude the following:

1. xp − 1 is positive and log x is negative, so that x
p−1
log x is negative.

2. Viewing 1/ log x as an attenuating factor22, we see that 0 < 1/ log x < −1 for 0 < x < 1/e
and 1/ log x ≤ −1 for 1/e ≤ x < 1.

3. On 1/e < x < 1, log x > 1− x. Hence 1/ log x < 1/1− x.
With this, we write our integral as∫ 1

0

xp − 1
log x dx =

∫ 1/e

0

xp − 1
log x dx+

∫ 1

1/e

xp − 1
log x dx

<
∫ 1/e

0
(1− xp)dx+

∫ 1

0

xp − 1
x− 1 dx

Now the first integral is bounded while the second is bounded as the derivative of xp exists at
x = 1.

Lemma 18.4.6.2. Let f : R→ R∪{∞,−∞} be a measurable map with (R,M,m) be a measure structure
on R. If there exists M > 0 such that for all E ∈M such that 0 < m(E) <∞ we have that∣∣∣∣ 1

m(E)

∫
E
fdm

∣∣∣∣ < M,

then

|f(x)| ≤M a.e..

Proof. LetA = {x ∈ R | |f(x)| > M}. We can write it asA = A+∪A− whereA+ = {x ∈ R | f(x) >
M} and A− = {x ∈ R | f(x) < −M}. Clearly these are disjoint and covers A. Hence, we wish to
show

m(A) = m(A+) +m(A−) = 0

which is equivalent to showing that m(A+) = m(A−) = 0 as measures are always positive.

Act 1 : m(A+) = 0.

The way A+ and A− are defined, it is natural for the next step to be a consideration of integral of
f over these. Indeed, we observe that, due to the fact that f ∈ L1 and A+ ⊆ R

Mm(A+) =
∫
A+

M ≤
∫
A+
|f | ≤

∫
R
|f | dm <∞.

Thus, ∞ >
∫
A+

fdm ≥ Mm(A+). Note we dropped the absolute sign as f is positive on A+.
Hence m(A+) ̸=∞.

22we view 1/ log x as an attenuating factor instead of xp − 1 as if we remove 1/ log x, then we would be left with
xp − 1, whose integral is easy to find.
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Now suppose 0 < m(A+) <∞. Then by hypothesis, we can write∫
A+

fdm < Mm(A+),

which is a contradiction. Hence m(A+) = 0.

Act 2 : m(A−) = 0.

Again using f ∈ L1 and A− ⊆ R, we get∫
A−
|f | dm ≤

∫
R
|f | dm <∞.

Since
∣∣∣∫A−

fdm
∣∣∣ ≤ ∫

A−
|f | dm and since

∫
A−

fdm <
∫
A−
−Mdm = −Mm(A−) so that

∣∣∣∫A−
fdm

∣∣∣ >
Mm(A−), therefore we get

Mm(A−) <
∣∣∣∣∫
A−

fdm

∣∣∣∣ ≤ ∫
A−
|f | dm <∞.

Hence m(A−) ̸=∞. Now with this, if we assume∞ > m(A−) > 0, then by hypothesis, we obtain∣∣∣∣∫
A−

fdm

∣∣∣∣ ≤ m(A−)M,

which contradicts the above inequality. Hence m(A−) = 0.

Lemma 18.4.6.3. Let f : R → R be a measurable map where the domain R has a measure structure
(R,M,m). If f ∈ L1 and f ≥ 0, then for all E ∈M

limn→∞

∫
E
f

1
ndm = m(E).

Proof. The fundamental observation that one has to make here is that if y ∈ [0,∞), then y1/n

increases to 1 on (0, 1] and y1/n decreases to 1 on (1,∞). Indeed, pick any E ∈M and define

E≤ := E ∩ {x ∈ R | f(x) ≤ 1}
E> := E ∩ {x ∈ R | f(x) > 1}.

We thus have a disjoint measurable cover of E and hence m(E) = m(E≤) +m(E>). Hence we get
that

limn→∞

∫
E
f

1
ndm = limn→∞

∫
E≤

f
1
ndm+ limn→∞

∫
E>

f
1
ndm.

Now, we have two integrals to consider.

Act 1 : limn→∞
∫
E≤

f
1
ndm = m(E≤).
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Since f
1
n is a sequence of positive measurable maps increasing to 1, therefore by MCT, we get that

limn→∞

∫
E≤

f
1
ndm =

∫
E≤

limn→∞f
1
ndm

=
∫
E≤

1dm

= m(E≤).

Act 2 : limn→∞
∫
E>

f
1
ndm = m(E>).

It is this place where we will have to use the fact that f ∈ L1. Since f
1
n is a sequence of positive

measurable maps decreasing to 1 where f is L1. Hence, by Corollary 18.4.2.3 of MCT, we get that

limn→∞

∫
E>

f
1
ndm =

∫
E>

limn→∞f
1
ndm

=
∫
E>

1dm

= m(E>).

This completes the proof, as we have showed limn→∞
∫
E f

1
ndm = limn→∞

∫
E≤

f
1
ndm+limn→∞

∫
E>

f
1
ndm =

m(E≤) +m(E>) = m(E).

Lemma 18.4.6.4. Let (X,M,m) be a measure space and f : X × [a, b] → C be a function such that
f(x, t) : X → C is measurable for all t ∈ [a, b]. Let F (t) :=

∫
X f(x, t)dm. Suppose there exists g ∈ L1

such that

|f(x, t)| ≤ |g(x)| ∀x ∈ X

for every t ∈ [a, b]. If limt→t0f(x, t) = f(x, t0) for every x ∈ X , then

limt→t0F (t) = F (t0).

Proof. Clearly we should use DCT. However, we first need to get a sequence of functions for it.
Indeed, since we know that limtn→t0f(x, t) = f(x, t0), thus for any sequence tn → t0, we have
limn→∞f(x, tn) = f(x, t0). Hence we may define fn(x) = f(x, tn) which are by definition mea-
surable. Moreover, we have |fn(x)| ≤ |g(x)| for all x ∈ X where g ∈ L1. Hence, by DCT, we
obtain

limn→∞F (tn) = limn→∞

∫
X
fn(x)dm =

∫
X

limn→∞fn(x)dm

=
∫
X
f(x, t0)dm

= F (t0).

Since tn → t0 is arbitrary, therefore limt→t0F (t) = F (t0).
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18.5 The Lp spaces

We now turn into some more abstract formulation for analysis of measurable functions, by ana-
lyzing their class formed under certain definitions.

Definition 18.5.0.1. (Lp norm of a function) Consider any function f and p > 0. The Lp norm of
f , denoted ∥f∥p, is defined as:

∥f∥p =
Å∫
|f |p

ã 1
p

Definition 18.5.0.2. (The Lp Space) Consider (X,A, µ) to be a measure space. Suppose p > 0.
Then, the class of measurable functions defined as:

Lp (X,A, µ) = {f : X → R | ∥f∥p <∞} /(f ∼ g ⇐⇒ f = g a.e.).

Moreover, two measurable functions f, g ∈ Lp (X,A, µ) are said to be equal if and only if:

f = g almost everywhere on R.

Remark 18.5.0.3. Note that Lp (X,A, µ) is just the class of Integrable functions when p = 1.

Remark 18.5.0.4. Note carefully the use of word class rather than set. It is because that an element
of Lp (X,A, µ) is not a function, but a class of functions identified by the relation f ∼ g if and only
if f = g almost everywhere. But for out purposes, one can get away by writing f ∈ Lp (X,A, µ) to
mean that f is measurable and ∥f∥p <∞ so that |f |p is Integrable.

18.5.1 Algebraic properties of Lp space

We will now see some of the properties of Lp Spaces which reflects it’s algebraic nature. In partic-
ular, we would prove that Lp is a vector space for any p > 0. But proving that ∥ · ∥p is actually the
norm for functions in Lp (p ≥ 1) would require a lot of construction.

Lp is a vector space

Proposition 18.5.1.1. Consider (X,A, µ) to be a measure space. Then, the Lp space

Lp (X,A, µ) is a Vector Space.

Proof. First, let’s deal with the scalar multiplication. Note that the ground field here is R. For any
a, b ∈ R and f, g ∈ Lp (X,A, µ), we trivially have:

(ab)f = a(bf)
1f = f

a(f + g) = af + ag

(a+ b)f = af + bf

Now, to show that Lp(X,A, µ) is an abelian group under addition, the associativity, commutativ-
ity, identity (f such that f = 0 a.e.) and inverse (for f , −f is the inverse) follows trivially. What
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remains to be shown is that for f, g ∈ Lp (X,A, µ), f + g ∈ Lp (X,A, µ) too. To see this, note that
we know already, that f + g is measurable, what we need to then show is that

To Show : ∥f + g∥p <∞

for any p > 0. All we need to show is therefore,∫
|f + g|p <∞

To see this, note:

|f + g|p ≤ (|f |+ |g|)p

≤ 2pmax (|f |p , |g|p)
≤ 2p (|f |p + |g|p)

By Proposition 18.4.4.4 S4, ∫
|f + g|p ≤ 2p

Å∫
|f |p +

∫
|g|p
ã
<∞

Therefore, Lp (X,A, µ) is a Vector Space.

norm on Lp vector space

We first see that the norm defined at the beginning is actually not a norm in the case when p < 1.
Therefore, Lp Vector Space with norm ∥ · ∥p would make sense only when p ≥ 1.

Definition 18.5.1.2. (Norm on a vector space) Consider a Vector Space (V,R). A norm ∥ · ∥ on V
is a function

∥ · ∥ : (V,R)→ [0,∞)

satisfying following three conditions:
1. For any x ∈ (V,R),

∥x∥ = 0 ⇐⇒ x = 0V
2. For any x ∈ (V,R) and α ∈ R,

∥αx∥ = |α| ∥x∥

3. For any x, y ∈ (V,R)
∥x+ y∥ ≤ ∥x∥+ ∥y∥

Now suppose 0 < p < 1, then, it is simple to see ∥ · ∥p does not follow Triangle Inequality on
Lp (X,A, µ). To see this, note that for any a, b > 0 and p ∈ (0, 1), we have:

ap + bp > (a+ b)p (18.14)

This comes naturally from the relation:

tp−1 > (a+ t)1−p
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and then it’s integration.
Using (18.14), we can see that for any two sets E,F ∈ A such that E ∩ F = Φ, if we write

a = µ (E)1/p =
Å∫
|χE |p

ã 1
p

= ∥χE∥p

b = µ (F )1/p =
Å∫
|χF |p

ã 1
p

= ∥χF ∥p

then,

∥χE + χF ∥p =
Å∫
|χE + χF |p

ã 1
p

=
Å∫

(χE + χF )p
ã 1
p

=
Å∫ (

χpE + χpF
)ã 1

p

∵ χE · χF = χE∩F = χΦ = 0

=
Å∫

χpE +
∫
χpF

ã 1
p

= (ap + bp)
1
p

> a+ b Take power
1
p

both sides of Eq. (18.14)

= a+ b

= ∥χE∥p + ∥χF ∥p

Hence, there exists functions in Vector Space Lp (X,A, µ) for p ∈ (0, 1) such that ∥ · ∥p does not
satisfies the ∆-Inequality, hence ∥ · ∥p is not a norm on the vector space Lp (X,A, µ) for p ∈ (0, 1).

But what about p ≥ 1? It turns out we need more revelations, in terms of results, to prove that
for p ≥ 1, ∥ · ∥p is a norm on the vector space Lp (X,A, µ). We now discuss those revelations.

Lemma 18.5.1.3. Consider a ≥ 0, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b.

Proof. Consider the convex function ex. Since it is convex, therefore,

aλb1−λ = eλ ln a+(1−λ) ln b

≤ λeln a + (1− λ)eln b

= λa+ (1− λ)b

Hölder’s inequality

One of the important & frequently used inequalities which would be a stepping stone to show
that ∥ · ∥p is a norm on Lp (X,A, µ) for p ≥ 1.
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Theorem 18.5.1.4. (Hölder’s inequality) Consider 1 < p, q <∞ such that

1
p
+ 1
q
= 1.

Then, for any f ∈ Lp (X,A, µ) and g ∈ Lq (X,A, µ)
1.

fg ∈ L1 (X,A, µ)

2. ∫
|fg| ≤

Å∫
|f |p

ã 1
p

·
Å∫
|g|q
ã 1
q

.
OR

∥fg∥1 ≤ ∥f∥p · ∥g∥q

Proof. From the above Lemma, we have that for any a > 0 and b > 0, the following holds:

a
1
p b

1
q ≤ a

p
+ b

q

Now, if we set

a = |f |p

(∥f∥p)p

b = |g|q

(∥g∥q)q

and then use the inequality in above lemma, we get:

|f | |g|
∥f∥p∥g∥q

≤ 1
p
· |f |

p

(∥f∥p)p
+ 1
q
· |g|

q

(∥g∥q)q
.

Now, because |f | |g| = |fg|, therefore from above inequality, we see that∫
|fg| <∞

hence fg ∈ L1 (X,A, µ). Furthermore, since we know that inequality is preserved in Integration,
therefore integrating the above inequality leads to the following:∫ |f | |g|

∥f∥p∥g∥q
≤

∫ 1
p
· |f |

p

(∥f∥p)p
+

∫ 1
q
· |g|

q

(∥g∥q)q

1
∥f∥p∥g∥q

∫
|fg| ≤ 1

p (∥f∥p)p
∫
|f |p + 1

q (∥g∥q)q
∫
|g|q

∥fg∥11
∥f∥p∥g∥q

≤ 1
p
+ 1
q
= 1

∥fg∥1 ≤ ∥f∥p∥g∥q

Hence proved.
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Remark 18.5.1.5. With Hölder’s Inequality, we are one step closer to proving that ∥f + g∥p ≤
∥f∥p + ∥g∥p for any f, g ∈ Lp (X,A, µ) where 1 ≤ p < ∞, to formally make ∥ · ∥p a norm on
the vector space Lp (X,A, µ). This is finally proved by Minkowski’s Inequality which we prove
now:

Minkowski’s inequality

Theorem 18.5.1.6. (Minkowski’s inequality) : Consider any f, g ∈ Lp (X,A, µ) and 1 ≤ p <∞. Then

Å∫
|f + g|p

ã 1
p

≤
Å∫
|f |p

ã 1
p

+
Å∫
|g|p
ã 1
p

OR,

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Proof. Since |f + g| ≤ |f | + |g|, therefore if p = 1, then the result follows immediately. Now
consider p > 1. Moreover, suppose that q > 1 is such that

1
p
+ 1
q
= 1.

Note that this also leads to following equations

(p− 1)q = p

p

Å
1− 1

q

ã
= 1
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Now, with this, we can bound ∥f + g∥pp as follows:

∥f + g∥pp =
∫
|f + g|p

=
∫
|f + g| · |f + g|p−1

≤
∫

(|f |+ |g|) · |f + g|p−1

=
∫
|f | · |f + g|p−1 +

∫
|g| · |f + g|p−1

=
∫ ∣∣∣|f | · |f + g|p−1

∣∣∣+ ∫ ∣∣∣|g| · |f + g|p−1
∣∣∣

=
∫ ∣∣f · (f + g)p−1

∣∣+ ∫ ∣∣g · (f + g)p−1
∣∣

= ∥f · (f + g)p−1∥1 + ∥g · (f + g)p−1∥1
≤ ∥f∥p · ∥(f + g)p−1∥q + ∥g∥p · ∥(f + g)p−1∥q Hölder’s Inequality (18.5.1.4)

= (∥f∥p + ∥g∥p) · ∥(f + g)p−1∥q

= (∥f∥p + ∥g∥p) ·
Å∫ ∣∣(f + g)p−1

∣∣qã 1
q

= (∥f∥p + ∥g∥p) ·
Å∫

(f + g)(p−1)q
ã 1
q

= (∥f∥p + ∥g∥p) ·
Å∫

(f + g)p
ã 1
q

= (∥f∥p + ∥g∥p) ·
Å∫

(f + g)p
ã 1
p
· p
q

= (∥f∥p + ∥g∥p) · ∥f + g∥
p
q
p

∥f + g∥pp

∥f + g∥
p
q
p

≤ (∥f∥p + ∥g∥p)

∥f + g∥
p
Ä
1− 1

q

ä
p ≤ (∥f∥p + ∥g∥p)

∥f + g∥p ≤ ∥f∥p + ∥g∥p

Hence proved.

Remark 18.5.1.7. ⋆ Hence, in continuation of our effort to prove that ∥ ·∥p is a norm on the vector
space Lp (X,A, µ) for 1 ≤ p < ∞, we can now satisfactorily say that it is indeed such, especially
by Minkowski’s Inequality just proved. One also calls a vector space with norm a norm space.

18.5.2 Properties of L1 maps

We would in this section quickly portray some of the easy properties of L1-maps which are good
to keep in mind. The first tells us that a high schooler’s dream of claiming a map to be zero if
integral is zero is almost true for L1 maps.
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Lemma 18.5.2.1. Let f : X → C be a measurable map where (X,M,m) is a measure space. Suppose
f ∈ L1. Then,

∫
F fdm = 0 for all F ∈M if and only if f = 0 almost everywhere.

Proof. One side is trivial. For the other, we may reduce to the case when f is real valued. Let
A = {x ∈ X | f−(x) > 0}. As f− is measurable, therefore A ∈ M . Since

∫
A fdm = 0, therefore∫

A f
+ − f−dm =

∫
A f

+ =
∫
A f
−dm. If x ∈ A, then f−(x) > 0, and hence f+(x) = 0. Hence∫

A f
+dm = 0 and hence

∫
A f
−dm = 0. Since f− ≥ 0, therefore f− = 0 almost everywhere. We thus

have
∫
X fdm =

∫
X f

+dm = 0 as X ∈M . Since f+ ≥ 0, therefore f+ = 0 almost everywhere.

Lemma 18.5.2.2. Let (X,M,m) be a measure space and f : X → R be a measurable map with f ≥ 0.
Then,

m({x ∈ X | f(x) =∞}) = 0.

Proof. This again uses the standard idea of breaking the set which we wish to measure into sets
whose bounds on measure is known. Indeed, observe that

E := {f(x) =∞} =
⋂
n∈N
{f(x) > n} =:

⋂
n∈N

En.

Moreover, {En} is decreasing. Thus,

m(E) = limn→∞m(En).

Now we obtain bound on m(En). Indeed,

nm(En) =
∫
En
ndm ≤

∫
En
f(x)dm ≤

∫
X
f(x)dm =: I <∞.

Thus m(En) ≤ I/n. Hence limn→∞m(En) = 0.

18.5.3 Completeness of norm space Lp (X,A, µ)

We now see that the norm space Lp (X,A, µ) is actually a complete metric space on the metric
induced by the norm! But before stating the result, let us revisit the definitions of series, Cauchy
sequences & completeness for any arbitrary norm space (V,R, ∥ · ∥).

General definitions and results in normed spaces

Definition 18.5.3.1. (Convergent sequence) Let (V,R, ∥·∥) be a norm space and {xn} be a sequence
in it. Then {xn} is said to converge to x ∈ (V,R, ∥ · ∥) if

∥xn − x∥ −→ 0 as n→∞.

Definition 18.5.3.2. (Cauchy sequence) Let (V,R, ∥ · ∥) be a norm space and {xn} be a sequence in
it. Then {xn} is said to be a Cauchy sequence in (V,R, ∥ · ∥) if

∀ϵ > 0, ∃ N ∈ N such that ∥xn − xm∥ < ϵ ∀ n,m ≥ N.
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Definition 18.5.3.3. (Complete norm Space or Banach Space) A norm space (V,R, ∥ · ∥) is called
a Complete Metric Space or a Banach Space if

Every Cauchy sequence in (V,R, ∥ · ∥) is convergent in (V,R, ∥ · ∥).

Definition 18.5.3.4. (Series in a norm Space) A series in a norm space (V,R, ∥ · ∥) is defined as

∞∑
n=1

xn where xn ∈ (V,R, ∥ · ∥).

Definition 18.5.3.5. (Convergent series in a norm space) A series
∑∞
n=1 xn in a norm space (V,R, ∥·

∥) is said to be convergent if the sequence

{Sn}where Sn =
n∑
i=1

xi is convergent in (V,R, ∥ · ∥).

Definition 18.5.3.6. (Absolutely convergent series) Consider a series
∑∞
n=1 xn in a norm space

(V,R, ∥ · ∥). Then it is called absolutely convergent if and only if

∞∑
n=1
∥xn∥ <∞.

We now see the equivalent condition needed for a norm space to become a complete norm
space:

Theorem 18.5.3.7. (Equivalent condition for a Banach space) Suppose that (V,R, ∥ · ∥) is a norm
space. Then,

(V,R, ∥ · ∥) is a Complete norm Space (or Banach Space) ⇐⇒ Every Absolutely Convergent Series is also Convergent in (V,R, ∥ · ∥).

Proof. L =⇒ R : Suppose (V,R, ∥ · ∥) is a Banach Space. Hence any Cauchy sequence in it
converges at a point within it. Now, take any Absolutely Convergent series, say,

∞∑
n=1

xn

in (V,R, ∥ · ∥). This means that
∞∑
n=1
∥xn∥ <∞.

Now this also means that if we write Sn =
∑n
i=1 xi, then

∥Sn − Sm∥ = ∥
n∑
i=1

xi −
m∑
i=1

xi∥

= ∥
m∑
i=n

xi∥

≤
m∑
i=n
∥xi∥
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Now since
∑∞
n=1 xn is absolutely convergent, therefore,

m∑
i=n
∥xi∥ ≤

∞∑
i=1
∥xi∥ <∞ ∀ n ≤ m ∈ N

also with the fact that
∑m
i=n ∥xi∥ −→ 0 as n,m→∞. Hence,

∥Sn − Sm∥ <∞ and ∥Sn − Sm∥ → 0 as n,m→∞.

Hence, {Sn} is a Cauchy sequence in (V,R, ∥ · ∥) and thus is convergent. Therefore,
∑∞
i=1 xi is also

convergent.

R =⇒ L : Suppose that (V,R, ∥ · ∥) is a norm space with given that every absolutely conver-
gent series converges. Since we need to show that (V,R, ∥ · ∥) is then a Banach space, hence we
now consider any arbitrary Cauchy sequence, say, {xn}.
Now, construct a new sequence from the taken Cauchy sequence {xn} as {yn} defined by the
following:

y1 = xN1 where N1 is such that ∥xn − xm∥ <
1
21 ∀ n,m ≥ N1

y2 = xN2 − xN1 where N2 is such that ∥xn − xm∥ <
1
22 ∀ n,m ≥ N2 > N1

... =
...

yk = xNk − xNk−1 where Nk is such that ∥xn − xm∥ <
1
2k
∀ n,m ≥ Nk > Nk−1.

Now, with {yn} in hand, we see some peculiar properties of it, such as:

k∑
j=1

yj = xNk .

and especially, we see that
∑
yn is absolutely convergent(!) as follows:

∞∑
j=1
∥yj∥ ≤ ∥y1∥+

∞∑
j=1
∥yj∥

≤ ∥xN1∥+
∞∑
j=1

1
2j

= ∥xN1∥+ 1 <∞ ∵ {xn} is Cauchy, so ∥xi∥ <∞∀i.

Now, since we are given that every absolutely convergent series in (V,R, ∥·∥) converges, therefore∑
yn also converges in (V,R, ∥ · ∥). But convergence of a series means convergence of it’s sequence

of partial sums Sn =
∑n
i=1 yi and Sn = xNn as shown above. Therefore, we have

{xNn} converges in (V,R, ∥ · ∥).
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Since {xNn} converges, therefore, if we suppose xNn → x, then:

∥xn − x∥ = ∥xn − xNn + xNn − x∥
≤ ∥xn − xNn∥+ ∥xNn − x∥ 2nd term→ 0.
= ∥xn − xNn∥

Now, we know that n < Nn, therefore, ∃p ∈ N such that Nn > n ≥ Nn−p. Hence

∥xn − xNn∥ <
1

2n−p

and as n→∞, ∥xn − xNn∥ → 0 too. Therefore,

∥xn − x∥ → 0.

Hence, {xn} is a convergent sequence, apart from being Cauchy. Since the choice of {xn} was
arbitrary, therefore all Cauchy sequences are convergent. Hence (V,R, ∥ · ∥) is a Complete norm
Space or Banach Space.

Lp (X,A, µ) is a Banach space!

We now see that Lp (X,A, µ) is a Complete norm Space.

Theorem 18.5.3.8. The normed vector space Lp (X,A, µ) for 1 ≤ p <∞ is a Banach Space.

Proof. From the Theorem 18.5.3.7, we just need to equivalently show that any absolutely conver-
gent series is convergent.
Now consider {fk} in Lp (X,A, µ) to be absolutely convergent, so that

∞∑
k=1
∥fk∥p = B <∞.

Also consider the following sequence:

Gn =
n∑
k=1
|fk| and G =

∞∑
k=1
|fk| .

Clearly, for all n ∈ N we have

∥Gn∥p = ∥
n∑
k=1
|fk| ∥

≤
n∑
k=1
∥fk∥p ≤ B <∞.

Also note that {Gn} is an increasing sequence of positive-valued measurable functions.
Since lim←−nGn exists, therefore, by the Monotone convergence theorem (Theorem 18.4.2.1), we



724 CHAPTER 18. ABSTRACT ANALYSIS

have: ∫
lim←−
n

Gpn =
∫
Gp

= lim←−
n

∫
Gpn

≤ Bp

Therefore, we have that
∫
Gp is finite almost everywhere on R (just consider the above result that∫

(Gp − χX) = 0 where µ (X) = Bp.)
Since Gp is finite almost everywhere, therefore G is finite almost everywhere. Hence, we get

∞∑
k=1

fk ≤
∞∑
k=1
|fk|

= G <∞ almost everywhere.

Now write

F =
∞∑
k=1

fk.

Clearly, we have

|F | =
∣∣∣∣∣ ∞∑
k=1

fk

∣∣∣∣∣
≤
∞∑
k=1
|fk|

= G <∞

and since fk are members of the vector space Lp (X,A, µ), we also have that F ∈ Lp (X,A, µ).
Now, we see that ∣∣∣∣∣F − n∑

k=1
fk

∣∣∣∣∣
p

≤ |F |+
∣∣∣∣∣ n∑
k=1

fk

∣∣∣∣∣
≤ G+G = 2G
≤ (2G)p ∵ 1 ≤ p <∞.
<∞

Now since |F −
∑n
k=1 fk|

p <∞, hence it is in L1 (X,A, µ).
With the above inequality, we see that |F −

∑n
k=1| is finite and is absolutely bounded by another

measurable function for each n, hence, we can now use the Dominated Convergence Theorem
(Theorem 18.4.5.1) to writeÇ

lim←−
n

∫ ∣∣∣∣∣F − n∑
k=1

fk

∣∣∣∣∣
på 1

p

=
Ç∫

lim←−
n

∣∣∣∣∣F − n∑
k=1

fk

∣∣∣∣∣
på 1

p

lim←−
n

∥F −
n∑
k=1

fk∥p = 0 Note that F =
∞∑
k=1

fk ∈ Lp (X,A, µ).
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Hence, we have
∞∑
k=1

fk = F ∈ Lp (X,A, µ)

that is, the absolutely convergent series
∑fk
k=1 is also convergent in the same space! Therefore,

Lp (X,A, µ) is a Banach Space.

18.6 Product measure

We now turn to product measure spaces. This concept would help us to formalize the notion of
double (or higher) integration over the so defined product measure spaces. In fact, this concept ac-
tually shows the generality of the concept of measure spaces, which we might discuss afterwards.

To introduce formal notion of product measure space, we need a definition based framework
to work in, which we learn now:

Definition 18.6.0.1. (Premeasure) Consider an algebra23 A over a set X . The map

µ0 : A −→ [0,+∞]

is called a premeasure if it satisfies:
1. µ0 (Φ) = 0, and
2. For A1, A2, . . . a sequence of disjoint sets from A,

µ0

Ç ∞⋃
i=1

Ai

å
=
∞∑
i=1

µ0 (Ai)

Definition 18.6.0.2. (Outer measure by Premeasure) Consider an algebra A defined on set X .
Suppose µ0 : A→ [0,+∞] is a premeasure on it. We then define µ∗ as the following:

µ∗ : A −→ [0,+∞]

defined by, for A ⊆ X :

µ∗(A) = inf
® ∞∑
n=1

µ0 (En) | A ⊆
∞⋃
n=1

En where {En} is a sequence in A

´
Proposition 18.6.0.3. For an algebra A on X , µ∗ satisfies the following:

1. µ∗ is an Outer measure.
2. The collection of µ∗ measurable sets, Mµ∗ , is a σ-algebra.
3. The σ-algebra generated by algebra A, B, is a proper subset of Mµ∗ . That is,

B ⊊ Mµ∗

23Note that this just an algebra, not a σ-algebra.
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Proof. Clearly, µ∗ (Φ) = 0 as, the∞ sequence of Φ, {An}where Ai = Φ ∀ i, is such that

Φ ⊆
⋃
i

Ai

and ∑
i

µ0 (Ai) = 0.

The next parts has proof similar to one done for Lebesgue Outer measure.

18.6.1 Some set theoretic concepts

We would need this concepts for later discussions.

Definition 18.6.1.1. (Elementary class/family) A collection of sets denoted by E is called an ele-
mentary class if:

1. Φ ∈ E,
2. For any E,F ∈ E, then

E ∩ F ∈ E

3. If E ∈ E, then

∃ {Fn}Nn=1 where Fn’s are disjoint and in E such that Ec =
N⋃
n=1

Fn

Proposition 18.6.1.2. If E is an elementary class, then the collection A defined as:

For any A ∈ A, ∃ {En}Nn=1 where En’s are disjoint and in E such that A =
N⋃
n=1

En

is an Algebra.

Definition 18.6.1.3. (Monotone class) A collection of subsets of a set X denoted C ⊆ P (X) is
called a monotone class if:

1. For if {En} is a sequence of monotonically increasing sets from C, that is,

E1 ⊆ E2 ⊆ . . .

then,
∞⋃
n=1
∈ C.

2. For if {En} is a sequence of monotonically decreasing sets from C, that is,

E1 ⊇ E2 ⊇ . . .

then,
∞⋂
n=1
∈ C.
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Proposition 18.6.1.4. Consider a family of monotone class given as {Cn}. Then,⋂
n

Cn is a monotone class.

Proof. Take any sequence of sets {In} from
⋂∞
n=1 Cn such that they are monotonically increasing,

I1 ⊆ I2 ⊆ . . . .

Now, because each Ii ∈ Cn∀ n and it is a monotonically increasing sequence, therefore
⋃∞
i=1 Ii ∈

Cn ∀ n. Hence,
∞⋃
i=1

Ii ∈
⋂
n

Cn.

Similarly, suppose {Jn} is a monotonically decreasing sequence of sets from
⋂
n Cn,

J1 ⊇ J2 ⊇ . . .

Hence, each Ji ∈ Cn ∀ n. Since each Cn is a monotone class, therefore,
⋂∞
i=1 Ji ∈ Cn ∀ n. Hence,

∞⋂
i=1

Ji ∈
⋂
n

Cn.

Hence proved.

Definition 18.6.1.5. (Generated monotone class) Consider any S ⊂ P (X). Then, C(S) is called
the monotone class generated by S if C(S) is the smallest monotone class containing S.

Proposition 18.6.1.6. Let A be an Algebra. Suppose
• C(A) is the Monotone Class generated by A, and
• M is the σ-Algebra generated by A.

Then,
M = C(A).

18.6.2 Product measure space

Definition 18.6.2.1. (Measurable rectangle) Suppose (X,A, µ) and (Y,B, ν) are two measure spaces.
Suppose X × Y is the Cartesian Product of the sets X and Y . Then, A × B ⊆ X × Y is called a
measurable Rectangle if

A ∈ A and B ∈ B

Definition 18.6.2.2. (Elementary rectangles) Suppose (X,A, µ) and (Y,B, ν) are measure spaces.
Denote by K the collection of all measurable Rectangles. Then, we define Elementary Rectangles,
E, as the collection :

For any A ∈ E, ∃ {En}Nn=1 where En’s are disjoint measurable rectangles in K such that A =
N⋃
n=1

En.

Remark 18.6.2.3. ⋆ It is important to note that elementary rectangles E is an algebra, due to
Proposition 18.6.1.2.
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Definition 18.6.2.4. (Product of measurable spaces) Denote A×B to be the σ-Algebra generated
by E. Then,

(X × Y,A×B)

is the product of measurable Spaces (X,A) and (Y,B).

Definition 18.6.2.5. (Product measure space) Suppose (X,A, µ) and (Y,B, ν) are two measure
Spaces. The product of these two measure Spaces is defined as the following triple:

(X × Y,A×B, µ× ν)

where
1. X × Y is the Cartesian Product of X and Y .
2. A × B is the σ-Algebra generated by Elementary Rectangles of the product X × Y under

respective measure spaces.
3. µ× ν is defined as:

(µ× ν) (A×B) = µ(A) · ν(B)

where A×B is a measurable Rectangle.

Remark 18.6.2.6. ⋆ Note the following:
• µ× ν defines a premeasure on Elementary Rectangles, E, which is an Algebra.
• With the premeasure µ×ν on E, we then construct the outer measure µ∗×ν∗ by premeasure

as done in Definition 18.6.0.2.
• As Proposition 18.6.0.3 shows, the collection of µ∗ × ν∗ measurable sets from E forms a σ-

Algebra, that is, the σ-Algebra generated from all Elementary Rectangles. This is exactly
what we did now.

Properties of product measure space

Definition 18.6.2.7. (x & y sections) Suppose E ⊆ X × Y . Then we define
1. x-section as all y available in E if x is fixed:

Ex = {y ∈ Y | (x, y) ∈ E}

2. y-section as all x available in E if y is fixed:

Ey = {x ∈ X | (x, y) ∈ E}

Definition 18.6.2.8. (x & y sections of a function) Suppose f is a function on X × Y . Then,
1. x-Section of f given x ∈ X is just fx(y) = f(x, y).
2. y-Section of f given y ∈ Y is just fy(x) = f(x, y)

Proposition 18.6.2.9. Suppose (X,A) and (Y,B) are two measurable spaces and E ⊆ A×B. Then,
1. Ex ∈ B ∀x ∈ X , and
2. Ey ∈ A ∀y ∈ Y .

That is, each section of a subset of product of measurable spaces, A×B, is itself measurable.

Proof. Omitted.
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Proposition 18.6.2.10. Suppose f : A×B −→ R is a A×B-measurable function. Then,
1. fx : B −→ R is a B-measurable function ∀x ∈ X .
2. fy : A −→ R is a A-measurable function ∀y ∈ Y .

That is, each section of a measurable Function on product measurable space is itself a measurable function.

Proof. Trivial, same as Proposition 18.6.2.9.

18.6.3 The Fubini-Tonelli theorem

This is perhaps the most important result of this course, whose proof can be found in any course
book, available on webpage.

Theorem 18.6.3.1. (Tonelli’s theorem) Suppose (X,A, µ) and (Y,B, ν) are two σ-finite24 measure spaces.
Consider an A×B-measurable function

f : X × Y −→ [0,+∞].

Then,
1. The function:

• g : X → [0,+∞] given by:

g(x) =
∫
Y
fxdν

is A-measurable.
• h : Y → [0,+∞] given by:

h(y) =
∫
X
fydµ

is B-measurable.
2. f satisfies: ∫

X×Y
fd(µ× ν) =

∫
X

Å∫
Y
fxdν

ã
dµ

=
∫
Y

Å∫
X
fydµ

ã
dν

Theorem 18.6.3.2. (Fubini’s theorem) Suppose (X,A, µ) and (Y,B, ν) be σ-finite measurable spaces.
Consider an A×B-measurable function which is also µ× ν-Integrable given as:

f : X × Y −→ [−∞,+∞]25.

Then,
1. We have that

• fx is ν-Integrable almost everywhere on Y .
• fy is µ-Integrable almost everywhere on X .

24This means that there are finite {An} sets in A with finite measure such that
⋃
n
An = X . Similarly for (Y,B, ν).

25Note the target set here!
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2. The following relation holds: ∫
X×Y

fd(µ× ν) =
∫
X

Å∫
Y
fxdν

ã
dµ

=
∫
Y

Å∫
X
fydµ

ã
dν

18.6.4 Applications-III : Product and Fubini-Tonelli

Lemma 18.6.4.1. Let (X,Σ1, µ) and (Y,Σ2, ν) be two σ-finite measure space with f ∈ L1(µ) and g ∈
L1(ν). Then the function h(x, y) = f(x)g(y) is in L1(µ× ν) and that∫

X×Y
hdµ× ν =

Å∫
X
fdµ

ãÅ∫
Y
gdν

ã
. (1.1)

Proof. We first show that h is measurable. Indeed, as X × Y → C given by (x, y) 7→ f(x) and

X × Y → C given by (x, y) 7→ g(y) are measurable as they are composites X × Y π1→ X
f→ C and

X × Y π2→ X
g→ C respectively, where we know that the projection πi are measurable, therefore

their pointwise product h(x, y) = f(x)g(y) is measurable as well. This shows that h is measurable.
Now note that we have

∫
X |f | dµ = M < ∞ and

∫
Y |g| dν = N < ∞. Furthermore, we have

|h|x = (|f | |g|)x = |f(x)| |g| and similarly |h|y = (|f | |g|)y = |g(y)| |f |. Consequently by Fubini-
Tonelli for L+(µ× ν), we obtain∫

X×Y
|h| dµ× ν =

∫
X

∫
Y
|h| dνdµ

=
∫
X

∫
Y
|f | |g| dνdµ

=
∫
X
|f |
Å∫

Y
|g| dν

ã
dµ

=
∫
X
N |f | dµ

= NM <∞.

Hence, h ∈ L1(µ× ν).
We now wish to show Eq. (1.1). Indeed, as h ∈ L1(µ × ν), therefore by Fubini-Tonelli for

L1(µ× ν), we obtain ∫
X×Y

hdµ× ν =
∫
X

∫
Y
hxdνdµ

=
∫
X

∫
Y
f(x)gdνdµ

=
∫
X
f(x)

Å∫
Y
gdν

ã
dµ

=
Å∫

X
fdµ

ãÅ∫
Y
gdν

ã
as needed.
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Example 18.6.4.2. For X = Y = N, Σ1 = Σ2 = P(N) and µ = ν = # the counting measure, we
wish to restate the Fubini-Tonelli theorem in this setting.

First of all, we observe that both the spaces (X,Σ1, µ) and (Y,Σ2, ν) are σ-finite as N can be
covered by {En}where En = {n} is a finite measure subset. Hence the Fubini-Tonelli applies.

For any measurable h : X → C, we first claim that the integral
∫
X hdµ =

∑
n h(n). Indeed, we

first have by definition∫
X
hdµ =

∫
X
ℜ(h)+dµ−

∫
X
ℜ(h)−dµ+ i

Å∫
X
ℑ(h)+ −

∫
X
ℑ(h)−dµ

ã
where each ℜ(h)±,ℑ(h)± are measurable functions X → [0,∞). Hence we reduce to assuming
h is a non-negative measurable function. In this case, we observe the following. Consider gn =∑n
k=1 h(k)χ{k}. Observe that gn are increasing and converges to f pointwise. Then by MCT, we

have ∫
X
hdµ = limn→∞

∫
X
gndµ

= limn→∞

∫
X

n∑
k=1

h(k)χ{k}dµ

= limn→∞

n∑
k=1

∫
X
h(k)χ{k}dµ

= limn→∞

n∑
k=1

h(k)

=
∞∑
k=1

h(k)

as needed.
Now pick any h ∈ L+(µ × ν). We first claim that

∫
X×Y hdµ × ν =

∑
n,m h(n,m). Indeed, we

claim that
∫
X×Y hdµ×ν = sup{

∫
X×Y ϕdµ×ν | 0 ≤ ϕ ≤ h, ϕ is simple} = sup{

∑
(n,m)∈F h(n,m) | F ⊆

N× N is finite} =
∑
n,m h(n,m), as needed. Let A = {

∫
X×Y ϕdµ× ν | 0 ≤ ϕ ≤ h, ϕ is simple} and

B = {
∑

(n,m)∈F h(n,m) | F ⊆ N× N is finite}. To show the above claim, we need only show that

supA = supB.

First suppose that B is not bounded. Then there exists a sequence bk ∈ B such that bk → ∞ as
k → ∞. Let bk =

∑
(n,m)∈Fk h(n,m) → ∞ as k → ∞, where Fk are finite sets. Hence, construct

ϕk =
∑

(n,m)∈Fk h(n,m)χ{(n,m)}. Clearly, ϕk ∈ A is a simple function below h. As
∫
X×Y ϕkdµ×ν =∑

(n,m)∈Fk h(n,m) = bk, therefore we get that A is unbounded as well.
Now suppose B is bounded. Then, A is bounded as well because for any simple function

0 ≤ ϕ ≤ h, ϕ cannot be supported on an infinite cardinality set as otherwiseB will be unbounded.
Hence both supA and supB exists and we wish to show that they are equal. Note that the above
argument shows that for any simple function 0 ≤ ϕ ≤ h given by ϕ =

∑n
k=1 akχEk , the integral∫

X×Y ϕdµ× ν =
∑n
k=1 ak#(Ek) is finite. Hence for any ϕ ∈ A, there exists a finite set F such that∫

X×Y ϕdµ× ν ≤
∑

(n,m)∈F h(n,m). Thus, supA ≤ supB. Conversely, pick any
∑

(n,m)∈F h(n,m) ∈
B for some finite F . Then, the simple function ϕ =

∑
(n,m)∈F h(n,m)χ{(n,m)} ∈ A is such that
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∫
X×Y ϕdµ× ν =

∑
(n,m)∈F h(n,m). Hence supB ≤ supA. This completes the proof that integral of

h over X × Y is just the double sum.
Now by Fubini-Tonelli for L+, we obtain that∫

X×Y
hd(µ× ν) =

∑
n,m

h(n,m)

=
∫
X

∫
Y
hndνdµ

=
∫
X

∑
m

h(n,m)dµ

(by MCT) =
∑
m

∫
X
h(n,m)dµ

=
∑
m

∑
n

h(n,m).

Similarly, we also yield by an application of MCT that∫
X×Y

hd(µ× ν) =
∑
n,m

h(n,m)

=
∫
Y

∫
X
hmdµdν

=
∑
n

∑
m

h(n,m).

Now suppose h ∈ L1(µ× ν). Then by Fubini-Tonelli, we yield that∫
X×Y

hdµ× ν =
∑
n,m

h(n,m)

=
∫
X

∫
Y
hndνdµ

=
∫
X

∑
m

h(n,m)dµ

(by DCT as each hm ∈ L1(µ) by Fubini) =
∑
m

∫
X
h(n,m)dµ

=
∑
m

∑
n

h(n,m).

Similarly, we yield ∫
X×Y

hdµ× ν =
∑
n

∑
m

h(n,m).

Hence, we yield the following two statements from this discussion:
1. Let

∑
n,m an,m be a double series of non-negative real numbers. Then,∑

n,m

an,m =
∑
n

∑
m

an,m =
∑
m

∑
n

an,m.
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2. Let
∑
n,m an,m be a double series of complex numbers such that∑

n,m

|an,m| <∞.

Then, ∑
n,m

an,m =
∑
n

∑
m

an,m =
∑
m

∑
n

an,m.

This completes the analysis.

Example 18.6.4.3. Let c ∈ R and define f : [0,∞)→ R a map given by

f(x) = sin x2

x
+ cx

1 + x
.

Let a > 0. Then we wish to show that

limn→∞

∫ a

0
f(nx)dx = ac.

We claim that sinx
x is a bounded function over [0,∞). Indeed, fix ϵ > 0. As limx→0

sinx2
x = 0,

therefore there exists δ > 0 such that for x ∈ (0, δ), we have
∣∣∣ sinx2x

∣∣∣ < ϵ. Furthermore, for x ≥ δ

we have
∣∣∣ sinx2x

∣∣∣ ≤ 1
|x| ≤

1
δ . Hence taking M = max{ϵ, 1/δ}, we see that

∣∣∣ sinx2x

∣∣∣ ≤ M over [0,∞).
Consequently, over [0,∞), we have

|f(x)| =
∣∣∣∣sin x2x

+ cx

1 + x

∣∣∣∣
≤ |M |+

∣∣∣∣ cx

1 + x

∣∣∣∣
≤M + |c| .

Thus, the sequence of measurable functions |f(nx)| is upper bounded by |g(x)| = M + |c| over
[0, a], which is L1 over [0, a]. Furthermore, we see that f(nx)→ c over (0, a] pointwise as n→∞.
Hence, by DCT, we obtain

limn→∞

∫ a

0
f(nx)dx =

∫ a

0
limn→∞f(nx)dx

=
∫ a

0
cdx

= ca

as needed.

Example 18.6.4.4. Let X = Y = [0, 1], Σ1 = Σ2 = B[0,1] the Borel σ-algebra on [0, 1] and µ =
Lebesgue measure over [0, 1] and ν = counting measure over [0, 1]. We wish to show that Fubini-
Tonelli doesn’t holds here for the function χD : X × Y → R where D = {(x, x) | x ∈ X}.
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Let us first calculate
∫
X×Y χDdµ×ν. As χD is just a characteristic function, therefore we simply

have ∫
X×Y

χDdµ× ν = µ× ν(D).

1. We claim that µ× ν(D) =∞. Indeed, by definition, we have

µ× ν(D) = inf
®∑

n

µ(In)ν(Jn) |
⋃
n

In × Jn ⊇ D, In × Jn ∈ R
´

where R is the elementary family of all rectangles. We claim that for any such cover D ⊆
⋃
n In ×

Jn, we have
∑
n µ(In)ν(Jn) = ∞. Indeed, it suffices to show that there is an n ∈ N such that

µ(In) ̸= 0 and Jn is infinite. Suppose there is no such n. It then follows that if µ(In) ̸= 0, then Jn
is finite. Further, if µ(In) = 0, then Jn can be finite or infinite. Let

K := {n ∈ N | µ(In) ̸= 0}

and

L := {n ∈ N | µ(In) = 0}.

Consequently, K ∪ L = N.
Pick n ∈ K. Then, µ(In) ̸= 0 and Jn is finite. It follows that (In × Jn) ∩ D is atmost a finite

set. Thus,
⋃
n∈K In×Jn covers atmost a countable subset of D. Hence, it follows that

⋃
n∈L In×Jn

covers an uncountable subset of D. Furthermore,

V := D \

(⋃
n∈L

(In × Jn) ∩D
)

=
⋃
n∈K

(In × Jn) ∩D is countable. (4.1)

For any n ∈ N, observe that

(In × Jn) ∩D = {(x, x) ∈ D | x ∈ In ∩ Jn}. (4.2)

From the preceding remark, it is thus clear that the set
⋃
n∈L(In × Jn)∩D = {(x, x) ∈ D | x ∈ In ∩

Jn for some n ∈ L} is uncountable, which further makes A :=
⋃
n∈L In ∩ Jn ⊆ [0, 1] uncountable.

We claim that [0, 1] \A is countable. Indeed, by (4.1), we first see that

V = {(x, x) | x ∈ In ∩ Jn for some n ∈ K}
∼=

⋃
n∈K

In ∩ Jn.

Thus,
⋃
n∈K In ∩ Jn is countable.

Observe that

[0, 1] =
( ⋃
n∈K

In ∩ Jn

)
∪

(⋃
n∈L

In ∩ Jn

)
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because {In × Jn}n∈N covers D. Consequently, as A is uncountable, therefore

[0, 1] \A ⊆
⋃
n∈K

In ∩ Jn

is countable by Eq. (4.3), as required.
As A ⊆ [0, 1] is such that [0, 1] \A is countable therefore µ(A) = 1. But, A ⊆

⋃
n∈L In, therefore

1 = µ(A) =
∑
n∈Lm(In) =

∑
n 0 = 0 as In for n ∈ L is of measure 0. Hence we have 1 = µ(A) ≤ 0,

a contradiction. This shows that
∑
n µ(In)ν(Jn) =∞ for each {In×Jn} ⊆ R such that

⋃
n In×Jn ⊇

D. Thus,

µ× ν(D) =∞.

2. We claim that
∫
Y

∫
X χDdµdν = 0. Indeed, we have∫

Y

∫
X
(χD)y dµdν =

∫
Y

∫
X
χDydµdν

=
∫
Y
µ({(y, y)})dν

=
∫
Y
0dν

= 0,

as required.

3. We claim that
∫
X

∫
Y χDdνdµ = 1. Indeed, we have∫

X

∫
Y
(χD)xdνdµ =

∫
X

∫
Y
χDxdνdµ

=
∫
X
ν({(x, x)})dµ

=
∫
X
1dµ

= µ(X)
= 1,

as needed.
Hence, we have shown that for Fubini-Tonelli to work, we require both spaces to be σ-finite

(which is not the case here as Y is not σ-finite).

Example 18.6.4.5. We wish to construct an example of a monotone class of subsets of a non-empty
set X such that it is not a σ-algebra. Indeed, consider X = {1., 2, 3}. Define C := {∅, {1}, X}. Then
C is a monotone class as the only non-trivial increasing sequence of sets is ∅ ⊆ {1} and their union
is clearly {1} which is in C. Furthermore the only non-trivial decreasing sequence is X ⊇ {1},
whose intersection is {1}, which is in C. However, C is not a σ-algebra as {1}c = {2, 3} /∈ C.

Lemma 18.6.4.6. Let (X,Σ, µ) be a measure space and f : X → C be an L1(µ) map. For each E ∈ Σ,
define

ν(E) =
∫
E
fdµ.
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1. If µ(E) = 0, then ν(E) = 0.
2. If {En} ⊆ Σ is a disjoint collection, then

ν

Ç∐
n

En

å
=

∑
n

ν(En).

3. For all ϵ > 0, there exists δ > 0 such that

µ(E) < δ =⇒ |ν(E)| < ϵ.

Proof. 1. Note that ν(E) = 0 iff |ν(E)| = 0. Consequently, we see that

|ν(E)| =
∣∣∣∣∫
E
fdµ

∣∣∣∣ ≤ ∫
E
|f | dµ

≤ ∞ ·
∫
E
dµ

=∞µ(E)
=∞ · 0 = 0,

as needed.

2. Pick {En} ⊆ Σ to be a disjoint collection. Consider the sequence of measurable functions
gn = fχ∐n

k=1 Ek
. Observe that gn → fχ∐∞

k=1 Ek
pointwise as n → ∞. Furthermore, observe that

|gn| ≤ |f | and as f ∈ L1(µ), therefore we may apply DCT on {gn}.
Applying DCT, we yield∫∐∞

k=1 Ek
fdµ =

∫
X
fχ∐∞

k=1 Ek
dµ = limn→∞

∫
X
fχ∐n

k=1 Ek
dµ

= limn→∞

∫∐n

k=1 Ek
fdµ

= limn→∞

n∑
k=1

∫
Ek

fdµ

=
∞∑
k=1

∫
Ek

fdµ

=
∞∑
k=1

ν(Ek),

as needed.

3. As f ∈ L1(µ), therefore there exists a sequence of bounded functions gn ∈ L1(µ) such that
gn → f pointwise as n → ∞ and |gn| ≤ |f | over X . Fix E ∈ Σ of finite measure. It follows from
DCT applied on gn over X that

limn→∞

∫
E
|f − gn| dµ ≤ limn→∞

∫
X
|f − gn| dµ = 0.
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Fix ϵ > 0. The convergence of above limit yields that there exists N ∈ N such that∫
E
|f − gn| dµ < ϵ/2

for all n ≥ N . Thus, in particular,∫
E
|f | − |gN | dµ ≤

∫
E
|f − gN | dµ < ϵ/2.

Now, from above, we yield that

|ν(E)| =
∣∣∣∣∫
E
fdµ

∣∣∣∣ ≤ ∫
E
|f | dµ

≤ ϵ/2 +
∫
E
|gN | dµ.

As |gn| is bounded, therefore let |gN | ≤Mn for some MN ∈ [0,∞). Consequently,

|ν(E)| ≤ ϵ/2 +
∫
E
|gN | dµ

≤ ϵ/2 +
∫
E
MNdµ

≤ ϵ/2 +MNµ(E).

Hence, letting δ = ϵ/2MN , we yield that for any E ∈ Σ such that µ(E) < δ we have

|ν(E)| < ϵ/2 + ϵ/2
= ϵ.

This completes the proof.

Example 18.6.4.7. Let X = Y = N, Σ1 = Σ2 = P(N) and µ = ν = counting measure. Further,
define f : N× N→ R given by

f(m,n) =


1 if m = n,

−1 if m = n+ 1,
0 otherwise.

We wish to show that
1.

∫
X×Y |f | d(µ× ν) =∞,

2.
∫
X

∫
Y fdνdµ = 1,

3.
∫
Y

∫
X fdµdν = 0.

Before proving, we would first like to show that f is indeed measurable. Indeed, we may write
f = χD − χS where D = {(m,m) | m ∈ N} is the diagonal and S = {(n+ 1, n) | n ∈ N}. Both are
measurable subsets of Σ1 ⊗ Σ2 as D =

⋃
m{(m,m)} and S =

⋃
n{(n+ 1, n)}. Note that singletons

of X × Y are measurable as singletons in X and Y are measurable.
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1. Observe that |f | = χD + χS = χD⨿S where D and S are two disjoint subsets as defined above.
Consequently ∫

X×Y
|f | dµ× ν = µ× ν(D ⨿ S)

= µ× ν(D) + µ× ν(S).

We claim that both µ× ν(D) and µ× ν(S) are∞.
Indeed, for any {In × Jn} for In × Jn ∈ R rectangles such that

⋃
n In × Jn ⊇ D, we see that

if (In × Jn) ∩ D ̸= ∅, then µ(In)ν(Jn) ≥ 1 as in this case In ∩ Jn ̸= ∅. As D is an infinite set and⋃
n(In × Jn)∩D = D, therefore

∑
n µ(In)ν(Jn) ≥ µ× ν (

⋃
n In × Jn) ≥ µ× ν(D) =∞. This shows

µ× ν(D) =∞.
Similarly, if {In × Jn} for In × Jn ∈ R is a collection of rectangles such that

⋃
n In × Jn ⊇ S,

then for each n for which (In × Jn) ∩D ̸= ∅ we deduce that µ(In)ν(Jn) ≥ 1. Hence, as above, we
again get that

∑
n µ(In)ν(Jn) =∞. This proves that

∫
X×Y |f | dµ× ν =∞.

2. We simply observe that by definition we have Dm = {m} and Sm = {m− 1}. Consequently,∫
X

∫
Y
fmdνdµ =

∫
X

∫
Y
χDm − χSmdνdµ

=
∫
X
ν(Dm)− ν(Sm)dµ

=
∫
X\{1}

(1− 1)dµ+
∫
{1}

(1− 0)dµ

= 1.

3. We simply observe that by definition Dn = {n} and Sn = {n+ 1}. Consequently,∫
Y

∫
X
fndµdν =

∫
Y

∫
X
(χDn − χSn)dµdν

=
∫
Y
µ(Dn)− µ(Sn)dν

=
∫
Y
1− 1dν

= 0.

This completes the proof.

18.7 Differentiation

We now study some of the interconnections between integration and differentiation and related
notions.

18.7.1 Differentiability

Definition 18.7.1.1. (Upper/Lower left & Upper/Lower right Derivatives) Suppose f : R −→
[−∞,+∞] is a function such that for all x ∈ R, f is defined on some open interval around x, then
we define the following quantities:
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• Upper Right Derivative :

D+f(x) = lim sup
h→0+

f(x+ h)− f(x)
h

• Lower Right Derivative :

D+f(x) = lim inf
h→0+

f(x+ h)− f(x)
h

• Upper Left Derivative :

D−f(x) = lim sup
h→0−

f(x+ h)− f(x)
h

• Lower Left Derivative :

D−f(x) = lim inf
h→0−

f(x+ h)− f(x)
h

Definition 18.7.1.2. (Differentiable function) The function f is said to be differentiable at x if and
only if:

D+f(x) = D+f(x) = D−f(x) = D−f(x).

Hence, a function is said to be differentiable if it is differentiable at all points of it’s domain.

18.7.2 Functions of bounded variation

We now study those functions which do not change too erratically over an interval. We already
have the notion of differentiability for the same, so we would see connections between such type
of functions and there differential character.

Definition 18.7.2.1. (Variations of a Function) Suppose we are given a function on an interval

f : [a, b] −→ R

and any partition P[a,b] = {a = x0, x1, x2, . . . , xk−1, xk = b} where xi < xi+1. Now, define the
following the following three quantities:

pP =
k∑
i=1

(f(xi)− f(xi−1))+

nP =
k∑
i=1

(f(xi)− f(xi−1))−

tP = pP + nP =
k∑
i=1
|f(xi)− f(xi−1)|

where P denotes the partition over which the sum is defined and it’s simple to observe that pP −
nP = f(b)− f(a). Also, x+ = max(x, 0) and x− = max(−x, 0).
Then, we finally define the following three quantities:

• Positive Variation of f :
Pf = sup

P
pP .
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• Negative Variation of f :
Nf = sup

P
nP .

• Total Variation of f :
Tf = sup

P
tP .

Definition 18.7.2.2. (Function of bounded variation) Suppose f : R → R is a given function.
Then f is said to be of bounded variation over interval [a, b] if

Tf [a, b] = Tf <∞.

The class of functions on a given interval [a, b] which are of bounded variation is denoted by:

BV ([a, b]) .

So that for any f ∈ BV ([a, b]), Tf <∞.

Remark 18.7.2.3. A function f is said to belong to BV ((−∞,∞)) if f belongs to each BV ([a, b]) for
each interval [a, b]. Clearly, in this case Tf (−∞,∞) = sup[a,b] Tf [a, b].

Proposition 18.7.2.4. Suppose f ∈ BV ([a, b]). Then,
1. f(b)− f(a) = Pf −Nf .
2. Tf = Pf +Nf .

Proof. Take any f ∈ BV ([a, b]). Then we have Tf [a, b] < ∞. Now, we know that for any partition
P of [a, b], f(b) − f(a) = pP − nP . Now, take supremum over all partitions of [a, b], both sides of
the above, to write:

sup
P

(f(b)− f(a)) = sup
P

(pP − nP)

f(b)− f(a) = sup
P
pP − sup

P
nP Known result : sup

n
(xn − yn) = sup

n
xn − sup

n
yn.

= Pf −Nf

For the 2nd part, we have

Tf = sup
P
tP

= sup
P

(pP + nP)

= sup
P
pP + nP Known result : sup

n
(xn + yn) = sup

n
xn + sup

n
yn.

= Pf +Nf

Hence proved.

The following theorem is important as it characterizes the functions in BV ([a, b]).

Proposition 18.7.2.5. The following result holds:

f ∈ BV ([a, b]) ⇐⇒ ∃ g, h which are monotonically increasing and finite on [a, b], such that f = g − h.
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Proof. L =⇒ R : Consider the functions

g(x) = Pf [a, x] + f(a)
h(x) = Nf [a, x]

For any a ≤ x0 ≤ x1 ≤ b, we observe that:

g(x0) = Pf [a, x0] + f(a) ≤ Pf [a, x1] + f(a) = g(x1)
h(x0) = Nf [a, x0] ≤ Nf [a, x1] = h(x1)

because we are adding another partitioning point. Hence, g, h are monotonically increasing func-
tions on [a, b]. Hence, g(b) = Pf [a, b] + f(a) < ∞ as f is of bounded variation, so g is finite.
Similarly h is finite on [a, b]. Finally, we note that:

g(x)− h(x) = Pf [a, x] + f(a)−Nf [a, x]
= Pf [a, x]−Nf [a, x] + f(a)
= f(x)− f(a) + f(a)
= f(x)

Hence proved that if f ∈ BV ([a, b]), then there exists two monotonically increasing, finite func-
tions on [a, b] such that f is their difference.

R =⇒ L : Take any partition P[a, b] = a = x0 < x1 < x2 < · · · < xk = b. Now we see
that

tfP =
k∑
i=1
|f(xi)− f(xi−1)|

=
k∑
i=1
|g(xi)− h(xi)− g(xi−1) + h(xi−1)|

≤
k∑
i=1
|g(xi)− g(xi−1)|+

k∑
i=1
|h(xi)− h(xi−1)|

= tgP + thP
<∞

Hence Tf = supP t
f
P <∞. So f ∈ BV ([a, b]).

18.7.3 Differentiability of monotone functions & Lebesgue’s theorem

Definition 18.7.3.1. (Vitali covering) A collection C of closed, bounded, nondegenerate26 intervals
is said to cover a given set E in the sense of Vitali if:

For any x ∈ E and any ϵ > 0, ∃ I ∈ C such that x ∈ I & λ (I) < ϵ.
26An interval [a, b] is said to be nondegenerate if a < b.
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Theorem 18.7.3.2. (The Vitali covering lemma) Suppose E ⊂ R is of finite outer measure, that is
λ∗ (E) <∞. Also consider a collection C of closed, bounded intervals which covers E in the sense of Vitali.
Then,

∀ ϵ > 0, ∃ disjoint & finite subcollection {Ik}nk=1 of C such that

λ∗
Ç
E \

n⋃
k=1

Ik

å
< ϵ.

The following is a generalization of mean value theorem from Calculus.

Proposition 18.7.3.3. Let f be an increasing function on a closed, bounded interval [a, b]. Then, ∀ α > 0,
we have

λ∗
(
{x ∈ (a, b) | D+f(x) = D−f(x) ≥ α}

)
≤ 1
α
· (f(b)− f(a))

Proof. We first begin be denoting Eα = {x ∈ (a, b) | D+f(x) = D−f(x) ≥ α}. Now, construct the
following collection F of closed and bounded intervals [c, d] for which,

f(d)− f(c) ≥ α′(d− c)

where 0 < α′ ≤ α. Now take any x ∈ Eα. We hence see that D+f(x) ≥ α. Now for any ϵ > 0, we
can construct a closed bounded interval I =

[
x− ϵ

2 , x+ ϵ
2
]

for which λ∗ (I) = ϵ with x ∈ I . But
moreover, we have that

Df(x) = f(x+ ϵ/2)− f(x− ϵ/2)
ϵ

≥ α

f(x+ ϵ/2)− f(x− ϵ/2) ≥ ϵα ≥ ϵα′

Hence the interval
[
x− ϵ

2 , x+ ϵ
2
]
∈ F . Therefore, F covers Eα in the sense of Vitali(!)

Now, by Vitali Covering Lemma (Theorem 18.7.3.2), we get that

∀ ϵ > 0, ∃ finite disjoint {Ik}nk=1 from F such that λ∗
Ç
Eα \

n⋃
k=1

Ik

å
< ϵ

Now, observe that

Eα ⊆
n⋃
k=1

Ik ∪
Ç
Eα \

n⋃
k=1

Ik

å
Hence, by finite sub-additivity of outer measures, we get the following:

λ∗ (Eα) ≤ λ∗
Ç
Eα \

n⋃
k=1

å
+ λ∗

Ç
n⋃
k=1

Ik

å
< ϵ+

n∑
k=1

λ∗ (Ik)

≤ ϵ+
n∑
k=1

f(dk)− f(ck)
α′

Suppose Ik = [ck, dk].
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Now since f is an increasing function and Ik ⊂ [a, b] ∀ k, therefore we have:

n∑
k=1

f(dk)− f(ck) ≤ f(b)− f(a)

That is,

λ∗ (Eα) < ϵ+ 1
α′
· (f(b)− f(a))

But since ϵ > 0 and α′ ∈ (0, α] are arbitrary, therefore,

λ∗ (Eα) ≤
1
α
· (f(b)− f(a))

Hence proved.

Lebesgue’s differentiation theorem

This is also one of the most important theorems of this course. This theorem portrays that mono-
tonicity of a function is much better attribute of niceness of a function than the usual belief of
continuity, because we know example of continuous functions which is not differentiable, that
is the Weierstrass function. But with this theorem, if we are given a monotone function on an
open interval, then it ought to be differentiable almost everywhere on that interval. The same is
obviously not true for just continuous functions.

Theorem 18.7.3.4. (Lebesgue’s Differentiation Theorem) Suppose f is a monotone function on open
interval (a, b) to R. Then,

f is differentiable on (a, b) almost everywhere (!)

Corollary 18.7.3.5. A function f of bounded variation over an interval [a, b] is differentiable almost every-
where in (a, b).

Proof. Lebesgue’s Differentiation Theorem (18.7.3.4) and the fact that any function of bounded
variation is a difference of two increasing functions (Proposition 18.7.2.5).

18.7.4 Integration & differentiation in context

We now learn some relationships between differentiation and integration. But let us begin with
the following basic proposition.

Proposition 18.7.4.1. Let f : X → [0,+∞) be a measurable function which is Lebesgue Integrable on a
set E ⊆ X . Then,

∀ ϵ > 0, ∃ δ > 0 such that ∀ A ⊂ E with λ (A) < δ ,
∫
A
f < ϵ.
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Proof. Consider the following sequence {fn} of functions:

fn(x) =
®
f(x) if f(x) ≤ n
n if f(x) ≥ n

Now, we see that fn(x) ≤ fn+1(x) because if fn(x) = f(x) then fn(x) = f(x) ≤ n < n + 1 so that
fn+1(x) = f(x). Hence {fn} is an increasing sequence. Therefore

fn −→ f almost everywhere

Hence, by Monotone Convergence Theorem (18.4.2.1), we get that∫
lim←−
n

fn = lim←−
n

∫
fn.

Now, observe the following: ∫
E
f − lim←−

n

∫
fn = 0

lim←−
n

∫
E
f − lim←−

n

∫
fn = 0

lim←−
n

∫
E
(f − fn) = 0

where we see that

(f − fn)(x) =
®
0 if f(x)− n ≤ 0
f(x)− n if f(x)− n ≥ 0.

From this, we can construct the following sequence of sets:

En = {x ∈ E | f(x)− n ≥ 0}.

Again, we see that for any x ∈ En, we would have f(x) ≥ n > n − 1, so that x ∈ En−1. Hence
{En} is a decreasing sequence of subsets of E.
We now observe that ∫

En
f ≥

∫
En
n = nλ (En) .

Hence, we get that, for any n ∈ N,

λ (En) ≤
1
n

∫
En
f

So that, we can choose n corresponding to any δ = ϵ/n such that

λ (En) ≤
1
n

∫
En
f < δ = ϵ/n

and ∫
En
f < nδ = ϵ.

Hence proved.
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Indefinite integral

The Indefinite integral of a Lebesgue Integrable function forms a sort of bridge between Integration
and Differentiation.

Definition 18.7.4.2. (Indefinite integral) Suppose f : [a, b] −→ R is a Lebesgue Integrable func-
tion. We then define the indefinite integral of f as the following function:

F (x) =
∫ x

a
f(t)dt

Proposition 18.7.4.3. Suppose f : [a, b] −→ R is a Lebesgue Integrable function. Then,
1. F (x) is a continuous function on [a, b].
2. F (x) is of bounded variation on [a, b].

Proof. 1. Take any ϵ > 0. By Proposition 18.7.4.1, we get that

F (x) =
∫ x

a
f(t)dt < ϵ =⇒ ∃ δ > 0 & ∃A ⊂ [a, x] such that λ∗ (A) < δ.

In more precise words, ∀ϵ > 0, ∃δ > 0 such that whenever

|a− x0| = λ∗ ([a, x0]) < δ

then we would have

|F (x0)− F (a)| < ϵ∣∣∣∣∫ x0

a
f(t)dt−

∫ a

a
f(t)dt

∣∣∣∣ < ϵ∣∣∣∣∫ x0

a
f(t)dt

∣∣∣∣ < ϵ

which is just the definition of continuity.

2. Take any partition of [a, b], say, P([a, b]) = a = x0 < x1 < x2 < . . . xk−1 < xk = b. Now,
we see that,

tP =
k∑
i=1
|F (xi)− F (xi−1)|

=
k∑
i=1

∣∣∣∣∫ xi

a
f(t)dt−

∫ xi−1

a
f(t)dt

∣∣∣∣
=

k∑
i=1

∣∣∣∣∫ xi

xi−1
f(t)dt

∣∣∣∣
<

k∑
i=1

∫ xi

xi−1
|f(t)| dt

<∞

where last line follows because f is Lebesgue Integrable. Since our choice of partition P was
arbitrary, therefore supP tP <∞ hence F (x) is of bounded variation.
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Corollary 18.7.4.4. The Indefinite integral of a Lebesgue Integrable function is Differentiable almost ev-
erywhere.

Proof. By-product of Lebesgue’s Differentiation Theorem (18.7.3.4), or more succinctly, Corollary
18.7.3.5.

Proposition 18.7.4.5. Suppose f : [a, b] −→ R is a Lebesgue Integrable function and

F (x) =
∫ x0

a
f(t)dt = 0 ∀ x ∈ (a, b).

Then, f = 0 almost everywhere on (a, b).

Proof. Suppose to the contrary that ∃ E ⊂ [a, b] such that f(x) ̸= 0 ∀ x ∈ E with λ∗ (E) > 0. By
Proposition 18.2.9.2, we get that ∃ G ⊂ E which is closed such that λ∗ (G) > 0 and λ∗ (E \G) = 0.
Hence (a, b) \G is open. Now consider the integral:∫

G
f =

∫
(a,b)

f −
∫
(a,b)\G

f

We know that
∫
(a,b) f = 0 as F (x) = 0 ∀ x ∈ (a, b). In a similar tone, we have f |(a,b)\G = 0 almost

everywhere because λ∗ (E \G) = 0 and f = 0 on (a, b) \E anyways. Therefore, we have
∫
G f = 0.

But f |G ̸= 0 by definition ofG ⊂ E. Hence we have a contradiction. Therefore such a set E cannot
exist. Thus f = 0 almost everywhere on (a, b) if F = 0 ∀ x ∈ (a, b).

Theorem 18.7.4.6. Let [a, b] be a finite interval and let f : [a, b] −→ R be a Lebesgue Integrable function
over it. Then,

F ′ = f almost everywhere in [a, b].

Proof. Omitted

Absolutely continuous functions

This is a more general form of continuity, and since it has connections with indefinite integral, we
then learn them here.

Definition 18.7.4.7. (Absolutely Continuous Function) A function f : [a, b] −→ R is said to be
Absolutely Continuous if

∀ ϵ > 0 , ∃ δ > 0 such that ∀ finite & disjoint collection of open intervals {(ak, bk)}nk=1 each subset of (a, b) which satisfies

n∑
k=1

(bk − ak) < δ,

also satisfies
n∑
k=1
|f(bk)− f(ak)| < ϵ.

Remark 18.7.4.8. Some straightforward results are:
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• Any Absolutely Continuous function is Continuous in usual sense. This follows trivially
from their definitions.

• Any Absolutely Continuous function is Uniformly Continuous. This also follows from the
definition.

Proposition 18.7.4.9. Suppose f : [a, b] −→ R is an Absolutely Continuous function. Then, f is of
Bounded Variation over [a, b].

Proof. Since f is an absolutely continuous function, therefore, for any fixed ϵ > 0, we can construct
the partition of [a, b], say P ′ = a = x0 < x1 < · · · < xk = b such that each (xi−1, xi) is of length
< δ. Clearly, we would then have that

k∑
i=1
|f(xi)− f(xi−1)| < kϵ.

Now, consider any arbitrary partition say P ≡ a = y0 < y1 < · · · < yN = b of [a, b]. Collect the
partition points of P as the open disjoint intervals {(yi−1, yi)}Ni=1. Then, for each ith interval in this
partition, we can further partition it into ki open disjoint intervals such that each has length < δ.
In particular, we would have the following partition of [yi−1, yi]:{

(zij−1, zij)
}ki
j=1 where zi0 = yi−1 , ziki = yi.

Now, note that the variation of f over the [yi−1, yi] would then be:

|f(yi)− f(yi−1)| =
∣∣∣∣∣ ki∑
j=1

f(zij)− f(zij−1)
∣∣∣∣∣

≤
ki∑
j=1

∣∣∣f(zij)− f(zij−1)∣∣∣
<

ki∑
j=1

ϵ = kiϵ ∵ zij − zij−1 < δ by construction

Now, the variation over whole of P would then be:

tP =
N∑
i=1
|f(yi)− f(yi−1)|

<
N∑
i=1

kiϵ

<∞

as ki is finite for all i. Hence proved.

This theorem relates Indefinite integral of a Lebesgue integral and Absolute Continuity.

Theorem 18.7.4.10. Suppose f : [a, b] −→ R is a Lebesgue Integrable function and it’s Indefinite integral
is denoted by the function F (x). Then,

F is an Indefinite integral ⇐⇒ F is Absolutlely Continuous.

Proof. Omitted.
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18.8 Signed measures and derivatives

The concept of signed measures is the next generalization that we seek to understand. So far we
have only encountered measures on a space which maps subsets to [0,∞]. But what happens when
we increase the co-domain to the whole [−∞,∞]? First of all, we can see clearly that a measure
shall not map some subsets to +∞ and some other subset to −∞ as we would then have the
problem of∞−∞, and since we are not doing set theory here, hence we would refrain ourselves
only to such signed measures which either maps to (−∞,∞] or [−∞,∞) but not both.

Later we would see that having such a notion of signed measure actually leads to some very
striking results!

Definition 18.8.0.1. (Signed measure) Suppose (X,M) is a measurable Space. A function

ν : M −→ [−∞,+∞) OR ν : M −→ (−∞,+∞]

is called a Signed measure if it satisfies:
1. ν atmost maps sets either to +∞ or −∞, but not both27.
2. ν maps null-set to 0:

ν (Φ) = 0

3. ν follows countable additivity:

ν

Ç ∞⋃
i=1

Ai

å
=
∞∑
i=1

ν (Ai)

where {Ai} is any sequence of disjoint sets from M.

Definition 18.8.0.2. (Positive set) Suppose (X,M) is a measurable space and ν is a signed measure
on it. Then a set A ∈M is said to be a positive set w.r.t. ν if:

∀ S ⊆ A such that S ∈M , ν (S) ≥ 0.

Definition 18.8.0.3. (Negative set) Suppose (X,M) is a measurable space and ν is a signed mea-
sure on it. Then a set B ∈M is said to be a negative set w.r.t. ν if:

∀ S ⊆ B such that S ∈M , ν (S) ≤ 0.

Remark 18.8.0.4. One could alternatively say that a set is a negative set if it is positive w.r.t. −ν.

Definition 18.8.0.5. (Null set) Suppose (X,M) is a measurable space and ν is a signed measure
on it. Then a set N ∈M is said to be a null set w.r.t. ν if

N is both a Positive and Negative set w.r.t. ν

Proposition 18.8.0.6. Suppose (X,M) is a measurable space and ν is a signed measure on it. Let {Ai} be
a sequence of positive sets w.r.t. ν. Then,

A =
⋃
i

Ai is a Positive Set w.r.t. ν.

27Hence the two possible choices for the ν above.
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Proof. We know that we can write the sequence {Ai} in the following form:

{Bi}where Bi’s are disjoint & Bi ⊆ Ai.

This can be easily be seen by B1 = A1 and Bi = Ai \ Bi−1. Hence {Bi} is a sequence of disjoint
positive sets. Moreover, we can see that

A =
⋃
i

Ai =
⋃
i

Bi.

Now, take any subset E ⊆ A, which we can simply write as:

ν (E) = ν (E ∩A)

= ν

Ç⋃
i

E ∩Bi

å
=

∑
i

ν (E ∩Bi)

> 0

because E ∩Ai ⊆ Bi and Bi is a positive set. Hence proved.

Remark 18.8.0.7. This is clearly also true for negative sets and null sets. That is, countable union
of negative (null) sets is also a negative (null) set.

Proposition 18.8.0.8. Suppose (X,M) is a measurable space and ν is a signed measure on it. If E ∈M is
such that ν (E) ≥ 0, then

∃ A ⊆ E such that A is a positive Set w.r.t. ν, A ∈M & ν (A) > 0.

Proof. Written in Diary at 26th September, 2018. Typeset it here when time allows.

18.8.1 The Hahn decomposition theorem

Theorem 18.8.1.1. (Hahn decomposition theorem) Suppose (X,M) is a measurable space and ν is a
signed measure on it. Then,

∃ positive Set A ∈M and negative Set B ∈M such that A ∪B = X & A ∩B = Φ

Moreover, any two such pairs (A,B) and (A′, B′) are unique upto the fact that

A∆A′ & B∆B′ are ν-Null Sets

18.8.2 The Jordan decomposition of a signed measure

We now, in a sense, generalize the Hahn Decomposition Theorem (18.8.1.1), but to the signed
measure ν itself. As usual, let’s first familiarize ourselves with some definitions.
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Definition 18.8.2.1. (Mutual singularity of signed measures) Let ν1 and ν2 be two measures (NOT
signed!) over measurable space (X,M). Then ν1 and ν2 are called mutually singular if

∃ A ∈M such that ν1(A) = ν2(Ac) = 0

and is then denoted by:
ν1 ⊥ ν2.

Theorem 18.8.2.2. (Jordan decomposition theorem) Suppose (X,M) is a measurable space and ν is a
signed measure on it. Then,

∃ measures ν+ & ν− on (X,M) such that ν = ν+ − ν− & ν+ ⊥ ν−

and such a decomposition of ν is unique.

18.8.3 The Radon-Nikodym theorem

This is one of the final and most important theorems of this course. As we will see, this theorem
gives us a notion of the derivative of a signed measure. However, we would not go more deeper
into that fact.
As usual, we first introduce some definitions.

Definition 18.8.3.1. (Total variation of a signed measure) The total variation of a signed measure
ν over some measurable space is defined by

|ν| = ν+ + ν−

where ν = ν+ − ν− is the Jordan Decomposition (Theorem 18.8.2.2) of ν.

Remark 18.8.3.2. Since ν+ and ν+ are the usual measures on the measurable space, therefore |ν| is
also a usual measure on the same measurable space.

Definition 18.8.3.3. (σ-finite signed measure) Suppose ν is a signed measure on measurable space
(X,M). Then ν is called σ-Finite if

∃ {Xn}∞n=1 where Xi ∈M and |ν(Xi)| <∞ such that
∞⋃
n=1

Xn = X

Remark 18.8.3.4. ν is σ-Finite ⇐⇒ |ν| is σ-Finite.

Definition 18.8.3.5. (Absolute continuity of usual measures) Suppose λ and γ are usual measures
over a measurable space (X,M). If,

λ(E) = 0 for some E ∈M =⇒ γ(E) = 0

always, then γ is said to be absolutely continuous w.r.t. λ. This is denoted by γ ≪ λ.

Definition 18.8.3.6. (Absolute continuity of signed measures) Suppose µ and ν are signed mea-
sures over a measurable space (X,M). If,

|µ| (E) = 0 for some E ∈M =⇒ ν(E) = 0

always, then ν is called absolutely continuous w.r.t. µ. This is denoted by ν ≪ µ.
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Theorem 18.8.3.7. (Radon-Nikodym theorem) Suppose (X,M) is a measurable space and λ & γ are
two σ-finite measures on it such that γ ≪ λ. Then,

∃ measurable Function w.r.t. λ f : X −→ [0,∞) such that

γ(E) =
∫
E
fdλ ∀ E ∈M

Moreover, f is unique up-to almost everywhere equality, that is, if γ(E) =
∫
E gdλ ∀ E ∈M, then,

f = g almost everywhere on X w.r.t. λ.

18.8.4 Applications-IV : Signed spaces

Lemma 18.8.4.1. Let (X,A) be a measurable space and µ, ν be two signed measures on it. Then ν ≪ µ
and µ ⊥ ν if and only if ν = 0.

Proof. (⇒) As µ ⊥ ν, therefore there exists a µ-null set A and a ν-null set B such that A ⨿ B = X .
For any measurable set E ⊆ X , we have E = (E ∩ A) ⨿ (E ∩ B). As E ∩ A ⊆ A, therefore
µ(E ∩ A) = 0. As ν ≪ µ, therefore ν(E ∩ A) = 0. Furthermore, since E ∩ B ⊆ B, therefore
ν(E ∩B) = 0. Hence,

ν(E) = ν(E ∩A) + ν(E ∩B)
= 0,

as needed.
(⇐) As for any measurable set E ⊆ X , we have ν(E) = 0, hence ν ≪ µ. Further, as X is

now ν-null and ∅ is µ-null, therefore X = X ⨿∅ gives us the required decomposition to claim that
µ ⊥ ν.

Lemma 18.8.4.2. Let (X,A) be a measurable space and µ, ν be two positive measures on it. The following
are equivalent.

1. ν ⊥ µ,
2. there exists a sequence {En} ⊆ A such that µ(En)→ 0 and ν(X \ En)→ 0 as n→∞.

Proof. (1. ⇒ 2.) As ν ⊥ µ, therefore there exists a ν-null set A and a µ-null set B such that
X = A ⨿ B. Hence, we may take En = A and X \ En = B for each n ∈ N. This provides the
required sequence.

(2. ⇒ 1.) We wish to construct A,B ⊆ X such that A⨿B = X and A is ν-null and B is µ-null.
To construct A and B, we proceed as follows.

We first observe that since µ(En)→ 0, therefore there exists a subsequence of µ(En) say µ(Enk)
such that

∑
k µ(Enk) < ∞. Indeed, this is a consequence of a general result : for any positive

sequence {an} such that limnan = 0, we have that there exists a subsequence {ank} such that∑
k ank < ∞. Indeed, for each k ∈ N there exists an nk ∈ N such that an ≤ 1/2k for all n ≥ nk.

Consequently, we see that
∑∞
k=1 ank ≤

∑∞
k=1 1/2k <∞, as required.

We apply the above result to {µ(En)} to obtain a subsequence {Enk}. We now replace {En} by
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{Enk} so that we may assume
∑
n µ(En) <∞.

Consider the sequence

Fn = X \
∞⋃
k=n

Ek

=
∞⋂
k=n

X \ Ek.

Observe that Fn is an increasing sequence and that each Fn ⊆ X \ En. Hence,

ν(Fn) ≤ ν(X \ En). (2.1)

Moreover, observe that since limn→∞ν(X \ En) = 0, therefore limn→∞ν(Fn) = 0. Hence, we
deduce by monotone property of measures that

limn→∞ν(Fn) = ν

Ç⋃
n

Fn

å
.

Hence, by previous discussion, we further deduce that

limn→∞ν(Fn) = 0 = ν

Ç⋃
n

Fn

å
.

Thus A :=
⋃
n Fn is a ν-null set. It now suffices to show that X \A is a µ-null set.

Observe that X \A can be written as

X \A =
∞⋂
n=1

X \ Fn

=
∞⋂
n=1

∞⋃
k=n

Ek.

We claim that X \A is a µ-null set. Indeed, denote

Sn =
∞⋃
k=n

Ek.

We wish to show that

µ

Ç ∞⋂
n=1

Sn

å
= µ

Ç ∞⋂
n=1

∞⋃
k=n

Ek

å
= 0.

Observe that Sn is a decreasing sequence. Furthermore, as µ(Sn) ≤
∑∞
k=n µ(Ek) < ∞, therefore

we may apply the monotone property of measures. Consequently, we yield the following

limn→∞µ(Sn) = µ

Ç ∞⋂
n=1

Sn

å
. (2.2)
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We now show that limn→∞µ(Sn) = 0. Indeed, denoting l =
∑
k µ(Ek) and ln =

∑n−1
k=1 µ(Ek), we

first see that limn→∞ln = l. Now observe that

µ(Sn) ≤
∞∑
k=n

µ(Ek) = l − ln−1

where the last equality follows from rearrangement of a positive convergent series. Hence, taking
limn→∞, we obtain that

limn→∞µ(Sn) ≤ l − l = 0,

that is, limn→∞µ(Sn) = 0. By Eq. (2.2), we deduce that X \ A =
⋂
n Sn is a µ-null set, as needed.

This completes the proof.

Example 18.8.4.3. We wish to find Lebesgue decomposition of ν = m+δ0 wherem is the Lebesgue
measure and δ0 is the Dirac delta measure at 0 ∈ R.

Indeed, as (R,M) is a σ-algebra, therefore the Lebesgue decomposition theorem holds. We see
an immediate candidate for Lebesgue decomposition of ν with respect to m as follows:

ν = νa + νs

where we set νa = m and νs = δ0. Indeed, this works as m ≪ m holds trivially and δ0 ⊥ m
because of the decomposition R = {0} ⨿ (R2 \ {0}) where we see immediately that {0} is m-null
and R2 \ {0} is δ0-null.

Example 18.8.4.4. Let p(x) = x2 − 6x+ 1 be a function R→ R. Consider the signed measure

ν(E) =
∫
E
pdm

on (R,M).
1. We first wish to show that (R,M, ν) is σ-finite. Indeed, let Xn = [n, n + 1]. We claim that

−∞ < ν(Xn) < ∞ for each n ∈ N. Now, observe that over Xn, the polynomial is a continuous
function supported on a compact interval, hence it achieves a maxima and a minima, say Mn and
mn respectively. Consequently, we have mn ≤ p ≤Mn over Xn.∫

Xn
mndm ≤

∫
Xn

pdm ≤
∫
Xn

Mndm

and thus −∞ < mn ≤ ν(Xn) ≤Mn <∞ for each n. Hence ν is σ-finite.

2. We wish to find the Hahn-decomposition of R w.r.t. ν. That is, we wish to find a decompo-
sition R = P ⨿N such that P is a ν-positive set and N is a ν-negative set.

Observe that p(x) has two real roots c1, c2 ∈ R. Consequently, we see that over N = [c1, c2] the
polynomial p(x) is negative and hence ν(E) =

∫
E pdm ≤ 0 for any measurable E ⊆ N . Thus N is

a negative set. Similarly, define P = (−∞, c1) ∪ (c2,∞). Then observe that p(x) is positive over p,
thus ν(E) ≥ 0 for any measurable E ⊆ P .

3. We now wish to find the Jordan decomposition of ν. Indeed, define ν+(E) := ν(E ∩ P ) and
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ν−(E) := −ν(E ∩N) where X = P ⨿N is the Hahn decomposition. These are positive measures
such that ν = ν+ − ν−. Furthermore, ν+ ⊥ ν− as P is ν−-null and N is ν+-null by construction.

4. We wish to find the Lebesgue decomposition of ν with respect to the Lebesgue measure m.
Indeed, we claim that ν ≪ m, which will immediately show that the Lebesgue decomposition of
ν with respect to m is simply ν = ν + 0 where ν ≪ m and 0 ⊥ m. Indeed, take any measurable set
E ⊆ X such that m(E) = 0. As p is measurable therefore

ν(E) =
∫
E
pdm = 0.

Hence ν ≪ m, completing the proof.

Lemma 18.8.4.5. Let (X,A, µ) be a measure space, {En}Nn=1 ⊆ A and {cn}Nn=1 ⊆ R≥0. Consider the
positive measure

ν(E) =
N∑
n=1

cnµ(E ∩ En)

for some fixed En ∈ A. Then,
1. ν ≪ µ,
2. dν/dµ =

∑N
n=1 cnχEn .

Proof. 1. We wish to show that ν ≪ µ. Indeed, pick any E ∈ A such that µ(E) = 0. As µ is
positive, consequently µ(E ∩ En) = 0 for each n = 1, . . . , N as E ∩ En ⊆ E. Hence, we deduce
that ν(E) = 0. Thus ν ≪ µ.

2. We now wish to find the Radon-Nikodym derivative dν/dµ, which exists as ν ≪ µ. Indeed, this
means we need to find a measurable function f : X → [0,∞] such that

ν(E) =
∫
E
fdµ

for each E ∈ A. We claim that the following simple function

f =
N∑
n=1

cnχEn

is the required derivative. Indeed, observe that∫
E
fdµ =

∫
E

N∑
n=1

cnχEndµ

=
N∑
n=1

cn

∫
E
χEndµ

=
N∑
n=1

cn

∫
X
χEn∩Edµ

=
N∑
n=1

cnµ(E ∩ En)

= ν(E),
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as required.

Lemma 18.8.4.6. Let (X,A) be a measurable space and µ, ν be two positive measures. Suppose ν ≪ µ.
Then,

1. if the derivative dν/dµ > 0 µ-almost everywhere, then µ≪ ν,
2. Assuming both µ and ν are σ-finite, if the derivative dν/dµ > 0 µ-almost everywhere, then µ ≪ ν

and

dµ

dν
=
Å
dν

dµ

ã−1
µ-almost everywhere.

Proof. 1. We first wish to show that if the derivative dν/dµ > 0 µ-almost everywhere, then µ≪ ν.
Denote f = dν/dµ. SupposeE ∈ A is such that ν(E) = 0. Thus ν(E) =

∫
E fdµ = 0. As f > 0 µ-

almost everywhere, therefore consider the sequence En = {f(x) ≥ 1/n}. Clearly,
⋃
nEn = X \N

as f > 0 over X , where N = {f(x) = 0} is a µ-null set. Hence,
⋃
nE ∩ En = E \ N . Thus,

µ(E \N) ≤
∑
n µ(E ∩ En). Now,

1
n
µ(E ∩ En) ≤

∫
E∩En

fdµ ≤
∫
E
fdµ = 0.

Thus, µ(E ∩ En) = 0 for each n ∈ N. Hence,

µ(E \N) ≤
∑
n

ν(E ∩ En) = 0

and thus µ(E) = µ(E ∩N) + µ(E \N) = 0 + 0 = 0.

2. Assuming both µ and ν are σ-finite, we now wish to show that if the derivative dν/dµ > 0
µ-almost everywhere, then µ≪ ν and

dµ

dν
=
Å
dν

dµ

ã−1
µ-almost everywhere.

We have shown that µ ≪ ν in the item 1 above. By Radon-Nikodym theorem, we have the
derivative g = dµ/dν which is a measurable function g : X → [0,∞] such that

µ(E) =
∫
E
gdν.

Denote f = dν/dµ : X → [0,∞] which is such that

ν(E) =
∫
E
fdµ.

We are given that f > 0 µ-almost everywhere. We wish to show that g = 1/f µ-almost everywhere.
As we have seen that for an L+ function h, we obtain a positive measure given by µh =

∫
E hdµ,

therefore we deduce that µ = νg and ν = µf . Consequently, denoting N = {f(x) = 0} to be the
µ-null set, we obtain ∫

E

1
f
dν =

∫
E\N

1
f
fdµ+

∫
E∩N

1
f
dν

=
∫
E\N

dµ+ 0

= µ(E \N).
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As µ(E ∩N) = 0, therefore adding this to above we add∫
E

1
f
dν = µ(E \N) + µ(E ∩N) = µ(E).

Thus by almost everywhere uniqueness of Radon-Nikodym derivative of µ w.r.t. ν, we see that
1/f = g µ-almost everywhere.

Lemma 18.8.4.7. Let (X,A) be a measurable space with µ and ν be two finite positive measures. Suppose

f = dν

d(µ+ ν) .

Assume that 1− f > 0. Then,

ν(E) =
∫
E

f

1− f dµ,

equivalently, that

dν

dµ
= f

1− f .

Proof. We first show that g := 1 − f is equal to the derivative dµ/d(µ + ν). Observe that g > 0.
Indeed, for this, we need to show that for any E ∈ A, we have

µ(E) =
∫
E
gd(µ+ ν).

To this end, we see that by definition of f and finiteness of µ, ν and thus µ + ν as measures, we
may deduce ∫

E
gd(µ+ ν) =

∫
E
(1− f)d(µ+ ν)

=
∫
E
d(µ+ ν)−

∫
E
fd(µ+ ν)

= µ(E) + ν(E)− ν(E)
= µ(E),

as required. We may therefore write µ = (µ+ν)g as the notation introduced in the class for positive
measures defined by positive measurable functions.

Next, we claim that the function f/g is the derivative dν/dµ. For this, we wish to show that for
any measurable E ∈ A, we have that

ν(E) =
∫
E

f

g
dµ.

As µ = (µ+ ν)g, hence we see that ∫
E

f

g
dµ =

∫
E

f

g
gd(µ+ ν)

=
∫
E
fd(µ+ ν)

= ν(E),

as required.
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Example 18.8.4.8. Let (N,P(N)) be a measurable space and ν be a σ-finite signed measure. Fur-
ther, let µ be the counting measure on (N,P(N)).

1. We wish to show that ν ≪ µ. This is immediate, as µ(E) = 0 if and only if E = ∅, and
hence ν(E) = 0 by definition.

2. We now wish to compute the derivative dν/dµ. This is straightforward, for we first observe
that the following function

f : N −→ [0,∞]
n 7−→ ν({n})

is measurable. Indeed, this is because the σ-algebra on N is the power set P(N). We thus claim
that

f = dν

dµ
.

Indeed, pick any measurable set E ⊆ N. Note that it is countable in size. Observe that∫
E
fdµ =

∑
n∈E

f(n)

=
∑
n∈E

ν({n})

= ν

(∐
n∈E
{n}

)
= ν(E)

where the second-to-last equality is obtained from the fact ν is a measure. This completes the
proof.

Lemma 18.8.4.9. Let (X,A) be a measurable space and µ, ν be two σ-finite positive measures on (X,A).
Let λ = µ+ ν. Then the following are equivalent

1. µ ⊥ ν,
2. if f = dµ/dλ and g = dν/dλ, then

fg = 0 λ-almost everywhere.

Proof. (1.⇒ 2.) As µ ⊥ ν, therefore there exists a ν-null set A and a µ-null set B such that

A⨿B = X. (9.1)

For any measurable E ⊆ X , we have

µ(E) =
∫
E
fdλ

ν(E) =
∫
E
gdλ.
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We first observe that if any of the µ or ν is the zero measure, then we are done. Indeed, for if µ = 0,
then we deduce that µ(X) = 0 and hence f = 0 λ-a.e. Consequently, fg = 0 λ-a.e. Hence, we may
now assume that none of the µ and ν are 0 measures.

Observe that since µ(B) = 0, therefore
∫
B fdλ = 0. As λ(B) = µ(B) + ν(B) = ν(B), therefore

we deduce from the fact that ν ̸= 0 and ν(A) = ν(X \B) = 0 that ν(B) ̸= 0. Hence,

λ(B) ̸= 0. (9.2)

For exactly the same reasoning applied on ν(A) = 0, we deduce that

λ(A) ̸= 0. (9.3)

Hence, we have that
∫
B fdλ = 0 =

∫
A gdλ. By Eqns (9.2) and (9.3), we conclude that f = 0 λ-a.e.

over B and g = 0 λ-a.e. over A.
Consider the set N = {f(x) ̸= 0} ∩ {g(x) ̸= 0}. Writing

N = (N ∩A)⨿ (N ∩B),

we observe that
1. N ∩A is ν-null as A is ν-null,
2. N ∩A is µ-null as {g(x) ̸= 0} ∩A is λ-null and over A, we have λ = µ,
3. N ∩B is µ-null as B is µ-null,
4. N ∩B is ν-null as {f(x) ̸= 0} ∩B is λ-null and over B, λ = ν.

Hence, we see that N ∩A and N ∩B both are λ-null. Consequently, N is λ-null.

(2. ⇒ 1.) For any measurable E ⊆ X , we have

µ(E) =
∫
E
fdλ

ν(E) =
∫
E
gdλ.

Consider the following measurable sets

A = {g(x) = 0}
B = {g(x) ̸= 0} ∩ {f(x) = 0}
N = {g(x) ̸= 0} ∩ {f(x) ̸= 0}.

Clearly, X = A ⨿ B ⨿ N . Furthermore, as fg = 0 λ-a.e, therefore N is λ-null. Over A we see
that ν is 0 and over B we see that µ is 0. As N is λ-null, therefore it is both µ and ν-null as well.
Consequently, we have

X = A⨿ (B ⨿N)

where A is ν-null and B ⨿N is µ-null, as required.

Lemma 18.8.4.10. Let (X,A, ν) be a signed space. Then,
1. dν+

d|ν| = χP ,
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2. dν−

d|ν| = χN .

Proof. First, observe that these derivatives exists because ν+ ≪ |ν| and ν− ≪ |ν|. By Jordan
decomposition of ν, we have

ν = ν+ − ν−

where ν+(E) = ν(P ∩E) and ν−(E) = −ν(N ∩E), where X = P ⨿N is the Hahn-decomposition
of X into a positive set P and a negative set N obtained by ν and E ∈ A.

1. We claim that dν
+

d|ν| is given by χP . To this end, we need only show that

ν+(E) =
∫
E
χPd |ν|

as by Radon-Nikodym theorem, we know that the derivatives are unique |ν|-almost everywhere,
and therefore ν-almost everywhere.

Now, we see that ∫
E
χPd |ν| = |ν| (E ∩ P )

= ν+(E ∩ P ) + ν−(E ∩ P )
= ν(E ∩ P ∩ P )− ν(E ∩ P ∩N)
= ν(E ∩ P )− ν(∅)
= ν+(E),

as needed.

2. We proceed similarly as above and claim that χN is the derivative dν−

d|ν| . Indeed, we see that∫
E
χNd |ν| = |ν| (E ∩N)

= ν+(E ∩N) + ν−(E ∩N)
= ν(E ∩N ∩ P )− ν(E ∩N ∩N)
= ν(∅)− ν(E ∩N)
= ν−(E),

as required.

Lemma 18.8.4.11. Let (X,A, ν) be a signed space and let f : X → C be a measurable function. Define∫
X
fdν =

∫
X
fdν+ −

∫
X
fdν−

where ν = ν+ − ν− is the Jordan decomposition of ν. Then,
1. we have ∣∣∣∣∫

X
fdν

∣∣∣∣ ≤ ∫
X
|f | d |ν| ,
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2. for any E ∈ A, we have

|ν| (E) = sup
ß∣∣∣∣∫

E
fdν

∣∣∣∣ | |f | ≤ 1
™
.

Proof. 1. We may write ∣∣∣∣∫
X
fdν

∣∣∣∣ = ∣∣∣∣∫
X
fdν+ −

∫
X
fdν−

∣∣∣∣
≤
∣∣∣∣∫
X
fdν+

∣∣∣∣+ ∣∣∣∣∫
X
fdν−

∣∣∣∣
≤

∫
X
|f | dν+ +

∫
X
|f | dν−. (11.1)

We now claim that
∫
X |f | dν+ +

∫
X |f | dν− =

∫
X |f | d |ν|. Indeed, we first observe that for any

E ∈ A, we have ν+(E) =
∫
E χPd |ν| and ν−(E) =

∫
E χNd |ν|. Consequently, we get∫

X
|f | dν+ +

∫
X
|f | dν− =

∫
X
|f |χPd |ν|+

∫
X
|f |χNd |ν|

=
∫
X
|f | (χP + χN )d |ν|

=
∫
X
|f | · 1d |ν|

=
∫
X
|f | d |ν| , (11.2)

as required. Hence we conclude by Eqns (11.1) and (11.2).

2. Let Z := {|
∫
E fdν| | |f | ≤ 1}. We first see that for any measurable f : X → C with |f | ≤ 1, we

have the following by item 1 above ∣∣∣∣∫
E
fdν

∣∣∣∣ ≤ ∫
E
|f | d |ν|

≤
∫
E
d |ν|

≤ |ν| (E).

Hence, supZ ≤ |ν| (E).
For the converse, we wish to show that |ν| (E) ≤ supZ . If supZ =∞, then there is nothing to

be shown. So we may assume supZ <∞. As the constant function 1 is in the collection, therefore

|ν(E)| ≤ supZ <∞. (11.3)

In order to show |ν| (E) ≤ supZ , it suffices to find a measurable function f : X → C such that
|f | ≤ 1 and |ν| (E) ≤ |

∫
E fdν|. Indeed, denoting by X = P ⨿N to be the Hahn-decomposition of

X obtained by ν, we consider f = χP − χN . Clearly, image of f is {−1, 0, 1} as A ∩ B = ∅, hence
|f | ≤ 1. Moreover, we observe that∣∣∣∣∫

E
fdν

∣∣∣∣ = ∣∣∣∣∫
E
fdν+ −

∫
E
fdν−

∣∣∣∣
=
∣∣∣∣∫
E
(χP − χN )dν+ −

∫
E
(χP − χN )dν−

∣∣∣∣ . (11.4)
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By Eq. (11.3), we deduce that ν+(E) and ν−(E) are finite. Furthermore, over E we have that χP
and χN are both in L1(ν+) and L1(ν−). With this, we may continue Eq. (11.4) as follows∣∣∣∣∫

E
fdν

∣∣∣∣ = ∣∣∣∣∫
E
χPdν

+ −
∫
E
χNdν

+ −
∫
E
χPdν

− +
∫
E
χNdν

−
∣∣∣∣

=
∣∣∣∣∫
E
χPdν

+ − 0− 0 +
∫
E
χNdν

−
∣∣∣∣

= ν+(E ∩ P ) + ν−(E ∩N)
= ν+(E) + ν−(E)
= |ν| (E).

where in the second equality we have used the fact the fact that ν+(E) := ν(E ∩ P ) and ν−(E) :=
ν(E∩N). This shows that for some f : X → C measurable with |f | ≤ 1 we have |

∫
E fdν| = |ν| (E),

which consequently shows that |ν| (E) ≤ supZ . This completes the proof.

Example 18.8.4.12. We wish to find those signed spaces (X,A, ν) which satisfies property 1 below.
Further, we also wish to find those which satisfies 2 as below:

1. For c the counting measure on (X,A), we have c≪ ν.
2. For x0 ∈ X and the Dirac measure δx0 , we have δx0 ≪ ν.

1. Let E ∈ A. We know that c(E) = 0 iff E = ∅. Consequently, if ν(E) = 0, then c(E) = 0 iff E = ∅.
That is, ν(E) = 0 iff E = ∅. Hence all those signed spaces (X,A, ν) whose only null set is ∅ can
only be such that c≪ ν.

2. Let E ∈ A. We know that δx0(E) = 0 iff x0 /∈ E. Thus if ν(E) = 0 and δx0 ≪ ν, then
x0 /∈ E. Hence, (X,A, ν) is a signed space such that all its null sets does not contain x0. This
completes the characterizations.

Lemma 18.8.4.13. Let (X,A, ν) be a signed space. Then,
1. If {En} ⊆ A be an increasing collection of measurable sets, then

ν

Ç⋃
n

En

å
= limn→∞ν(En).

2. If {En} ⊆ A be a decreasing collection of measurable sets such that ν(A1) is finite, then

ν

Ç⋂
n

En

å
= limn→∞ν(En).

Proof. 1. Denote F1 = E1 and Fn = En \ En−1 for n ≥ 2. Observe that {Fn} are disjoint, but⋃
n

En =
∐
n

Fn. (9.1)

Now observe that En = Fn ⨿ En−1. This is recursive relation, which when unravelled, yields

En = Fn ⨿ Fn−1 ⨿ · · · ⨿ F1.
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Applying ν yields

ν(En) =
n∑
k=1

ν(Fk). (9.2)

It follows from Eqns (9.1) and (9.2) that

ν

Ç⋃
n

En

å
= ν

Ç∐
n

Fn

å
=
∞∑
k=1

ν(Fk)

= limn→∞

n∑
k=1

ν(Fk)

= limn→∞ν(En),

as needed.

2. Consider the sequence F1 = E1 and Fn = E1 \ En for n ≥ 2. Note that {Fn} is increasing.
Hence by item 1, we have

ν

Ç⋃
n

Fn

å
= limn→∞ν(Fn). (9.3)

Now observe that

E1 = Fn ⨿ En

for each n ∈ N. Hence, applying ν we yield

ν(E1) = ν(Fn) + ν(En).

As ν(E1) is finite, therefore the RHS in above equation is finite. Consequently, each term in the
above equation is finite. Hence we may write it as

ν(E1)− ν(Fn) = ν(En).

Taking n→∞ yields

ν(E1)− limn→∞ν(Fn) = limn→∞ν(En)

which by Eq. (9.3), yields

ν(E1)− ν
Ç⋃

n

Fn

å
= limn→∞ν(En). (9.4)

We now claim that ifA ∈ A andB ⊆ A inA is such that ν(B) is finite, then ν(A\B) = ν(A)−ν(B).
Indeed, we may write A = (A \ B) ⨿ B where A \ B is measurable as well. Applying ν, we yield
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ν(A) = ν(A \ B) + ν(B). As ν(B) is finite, therefore we may subtract both sides by ν(B) to yield
ν(A \B) = ν(A)− ν(B), as desired.

Using the above proved statement on Eq. (9.4), we obtain

limn→∞ = ν

Ç
E1 \

⋃
n

Fn

å
= ν

Ç
E1 ∩

⋂
n

F cn

å
= ν

Ç⋂
n

E1 ∩ F cn

å
= ν

Ç⋂
n

En

å
,

as desired.

Lemma 18.8.4.14. Let (X,Σ, µ) be a measure space and f, g : X → [0,∞) be two non-negative measur-
able functions such that f(x)g(x) = 0 for almost all x ∈ X . Suppose for each E ∈ Σ we have

µ(E) =
∫
E
fdµ.

Define for each E ∈ Σ

ν(E) =
∫
E
gdµ.

Then µ ⊥ ν.

Proof. We know that ν as defined is a positive measure. LetN = {f(x)g(x) ̸= 0}. This is a null-set.
Consequently, we wish to find A and B measurable subsets such that X = A ⨿ B with A being
µ-null and B being ν-null.

Define A = {f(x) = 0} and B = {g(x) = 0 & f(x) ̸= 0}. Observe that X = A ⨿ B ⨿ N . Let
X1 = A ⨿ N and X2 = B. Consequently X = X1 ⨿ X2. Now, for any measurable A′ ⊆ X1, we
may write A′ = (A′ ∩A)⨿ (A′ ∩N)

µ(A′) =
∫
A′∩A

fdµ+
∫
A′∩N

fdµ =
∫
A′∩A

0dµ+
∫
A′∩N

fdµ = 0 + 0 = 0

where the latter term is zero because it is an integral over a measure 0 subset. Similarly, for any
measurable B′ ⊆ X2, we see that

ν(B′) =
∫
B′
gdµ =

∫
B′

0dµ = 0.

Hence we have shown that X1 is µ-null and X2 is ν-null, as required.

Lemma 18.8.4.15. Let (X,A, ν) be a signed space. Then,
1. If A ∈ A is a positive set, then B ⊆ A such that B ∈ A is also a positive set.
2. If {An} ⊆ A is a sequence of positive sets, then

⋃
nAn is a positive set.
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Proof. 1. Pick any C ⊆ B. As B ⊆ A, therefore C ⊆ A. As A is positive, thus ν(C) ≥ 0, as needed.

2. Let B1 = A1 and Bn = An \ (A1 ∪ · · · ∪ An−1). Then observe that {Bn} is a disjoint sequence of
sets in A, each positive as well by item 1. Furthermore, observe that∐

n

Bn =
⋃
n

An.

Now pick anyE ⊆
⋃
nAn and denoteEn = E∩Bn. Then, sinceBn are disjoint, thus so is {E∩Bn}.

Furthermore E =
∐
nEn. Hence, we obtain

µ(E) = µ

Ç∐
n

En

å
=

∑
n

µ(En).

As each Bn is a positive set, so En = E ∩ Bn is a positive set as well by item 1. Consequently,
µ(En) ≥ 0 for all n ∈ N. Hence, from above, we deduce that

µ(E) =
∑
n

µ(En) ≥ 0,

as needed.

18.9 The dual of Lp (Rn) : Riesz Representation theorem

Definition 18.9.0.1. (Linear Functional) Suppose (V,R, ∥ · ∥) is a Banach Space. A linear28 map
f : V −→ R is called a linear functional.

Definition 18.9.0.2. (Bounded linear functional) A linear functional φ : V −→ R where (V,R, ∥·∥)
is a Banach space is called bounded if

∃ c ≥ 0 such that |φ(x)| ≤ c∥x∥ ∀ x ∈ V.

The space of all such bounded linear functionals is denoted by

B(V ).

That is, any φ ∈ B(V ) is a bounded linear functional.

Proposition 18.9.0.3. Suppose (V,R, ∥ · ∥V ) is a Banach Space and B (V ) is the space of bounded linear
functionals over V . Then,

B (V ) forms a Vector Space

and the map
∥ · ∥ : B (V ) −→ [0,∞)

defined by

∥φ∥ = sup
ß |φ(x)|
∥x∥V

: x ∈ V
™

= inf {c : |φ(x)| ≤ c∥x∥V , x ∈ V }

for any φ ∈ B (V ) forms a norm on the Vector Space B (V ).
28f(αv1 + βv2) = αf(v1) + βf(v2) ∀ v1, v2 ∈ V and α, β ∈ R. Or more simply, a morphism in the Category of Vector

Spaces Vect :):
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Proof. Take any two φ1, φ2 ∈ B (V ) and α, β ∈ R. By the very nature of their existence, φ1 & φ2
have to be bounded linear functionals. Suppose

|φ1(x)| ≤ c1∥x∥V
|φ2(x)| ≤ c2∥x∥V

∀ x ∈ V . Then αφ1 is a function such that:

|αφ1(x)| ≤ αc1∥x∥V

Hence αφ1 ∈ B (V ). Similarly, βφ2 ∈ B (V ). Now, since we have that

|φ1 + φ2| ≤ |φ1|+ |φ2|

Therefore, φ1 + φ2 ∈ B (V ). Hence, B (V ) is a Vector Space.

To see that ∥ · ∥ is a norm over B (V ), we see that for any α ∈ R and φ ∈ B (V ), we trivially
get that

∥αφ∥ = |α| ∥φ∥

and, for f1, f2 ∈ B (V ), we also note that

∥f1 + f2∥ ≤ ∥f1∥+ ∥f2∥

Hence, ∥ · ∥ is a norm on Vector Space B (V ).

18.9.1 B (V ) is a Banach Space

Proposition 18.9.1.1. Suppose V is a Banach Space. Then B (V ) is a Banach Space.

Proof. Take any Cauchy sequence {φn} in B (V ). Now, since φn’s are bounded linear functionals,
therefore,

∃ cn ≥ 0 such that |φn(x)| ≤ cn∥x∥V ∀ x ∈ V

Now take any x ∈ V . Since φn(x) ∈ V , we therefore have a sequence {φn(x)} in R. We now note
that

|φn(x)− φm(x)| ≤ ∥x∥V × sup
ß |φn − φm|
∥x∥V

: x ∈ V
™

= ∥φn − φm∥∥x∥V .

Hence, {φn(x)} is a Cauchy sequence in R. Now write

φ(x) = lim←−
n

φn(x).

Since R is complete, therefore φ(x) ∈ R. But our choice of xwas arbitrary, hence φ(x) = lim←−n φn(x) <
∞ ∀ x ∈ V . Hence φ ∈ B (V ).
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Moreover,

lim←−
n

∥φn∥ = lim←−
n

sup
ß |φn(x)|
∥x∥V

: x ∈ V
™

= sup
®
lim←−
n

|φn(x)|
∥x∥V

: x ∈ V
´

= sup


∣∣∣lim←−n φn(x)∣∣∣
∥x∥V

: x ∈ V


= sup

ß |φ(x)|
∥x∥V

: x ∈ V
™

= ∥φ∥

Hence proved.

18.10 Remarks on Banach spaces

Following are some exercises, examples and remarks on Banach spaces.

18.10.1 normed linear spaces

Remark 18.10.1.1. a) We claim that any linear space could be normed. Let X be a linear space and
{bj} be a Hamel basis. Then for each x ∈ X there are unique finitely many non-zero elements
cx1 , . . . , cxk ∈ K such that x = cx1bj1 + . . . cxkbjk . Define the following map

∥ − ∥ : X −→ R≥0
x 7−→ max{|cx1 | , . . . , |cxk |}.

We claim that ∥ − ∥ is a norm. Indeed, if ∥x∥ = 0, then cxi = 0 for all i = 1, . . . , k. Consequently,
x = 0. If x = 0, then it is clear by uniqueness of cxi that all cxi = 0.

Consider c ∈ K and x ∈ X . Then ∥cx∥ = max |ccx1 | , . . . , |ccxk | = |c|max{|cx1 | , . . . , |cxk |} =
|c| ∥x∥.

We finally wish to show triangle inequality. Pick x, y ∈ X . Then, (we allow cxi and cyi to be
zero)

∥x+ y∥ = max{|cx1 + cy1 | , . . . , |cxk + cyk |}
≤ max{|cx1 |+ |cy1 | , . . . , |cxk |+ |cyk |}
≤ max{|cx1 | , . . . , |cxk |}+max{|cy1 | , . . . , |cyk |}
= ∥x∥+ ∥y∥.

Hence every linear space is normable.
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b) We claim that not all metric on a linear space X comes from a norm on X . Indeed, consider the
following metric:

d : X ×X −→ R≥0

(x, y) 7−→
®
1 if x ̸= y

0 if x = y.

Indeed it is clear that d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y. For triangle inequality, we need
only consider the case when x ̸= y and to show that for any z ∈ X we have

1 = d(x, y) ≤ d(x, z) + d(y, z).

It is clear that we need only show that d(x, z) and d(y, z) are both not simultaneously 0. Indeed, if
both are simultaneously 0, then x = z = y, a contradiction. Hence d is indeed a metric.

We claim that d is not induced by any norm. Indeed, assume to the contrary it is induced by a
norm ∥ − ∥. It follows that

∥x∥ = d(x, 0) =
®
1 if x ̸= 0
0 if x = 0.

Since ∥ − ∥ is a norm, it follows that for any c ̸= 1 in K and x ̸= 0 in X , we must have ∥cx∥ = 1 as
cx ̸= 0. We now have the following contradiction

1 = ∥cx∥ = |c| ∥x∥ = |c| ≠ 1.

This completes the proof.

Remark 18.10.1.2. We wish to show that the following are equivalent for a linear space X with a
function ∥ : ∥X → R≥0 satisfying ∥x∥ = 0 iff x = 0 and ∥cx∥ = |c| ∥x∥ for all c ∈ K and x ∈ X :

1. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X .
2. The closed unit ball B1[0] = {x ∈ X | ∥x∥ ≤ 1} is convex.

(1.⇒ 2.) Pick x, y ∈ B1[0] and c ∈ [0, 1]. We wish to show that cx+ (1− c)y ∈ B1[0]. Indeed, since
∥x∥, ∥y∥ ≤ 1, therefore we have

|cx+ (1− c)y| ≤ |c| ∥x∥+ |1− c| ∥y∥
≤ c+ (1− c)
= 1.

(2. ⇒ 1.) Pick x, y ∈ X . If any of the x or y is 0, then triangle inequality is immediate. Hence we
may assume x and y are both not 0. Then x

∥x∥ ,
y
∥y∥ ∈ B1[0]. Let c = ∥x∥

∥x∥+∥y∥ so that 1− c = ∥y∥
∥x∥+∥y∥ .

It is clear that c ∈ [0, 1]. By convexity of B1[0], it follows that

c
x

∥x∥
+ (1− c) y

∥y∥
∈ B1[0].

But we have

c
x

∥x∥
+ (1− c) y

∥y∥
= x

∥x∥+ ∥y∥ +
y

∥x∥+ ∥y∥
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hence the RHS above is in B1[0]. Taking norm, we see

∥ x

∥x∥+ ∥y∥ +
y

∥x∥+ ∥y∥∥ =
∥x+ y∥
∥x∥+ ∥y∥ ≤ 1

from which we get

∥x+ y∥ ≤ ∥x∥+ ∥y∥,

as required.

Example 18.10.1.3. Consider C[a, b] be the R-vector space of all continuous functions on [a, b].
Define for any 1 ≤ p <∞

∥f∥p :=
Å∫ b

a
|f(t)|p dt

ã 1
p

.

a) We wish to show that ∥ − ∥p is a norm on C[a, b]. Indeed, if f ∈ C[a, b] such that ∥f∥p = 0, then
we have ∫ b

a
|f(t)p| dt = 0.

We wish to show that f = 0. Suppose not, so that f(t0) ̸= 0 at a point t0 ∈ [a, b]. If t0 = a or b,
then by continuity there is a point in (a, b) where f is non-zero. Replace t by that point in (a, b). It
follows by continuity that there exists δ > 0 such that f is non-zero on I = [t0 − δ, t0 + δ] ⊆ (a, b).
Let m = mint∈I |f(t)|p > 0 which exists as f is continuous on compact I and f ̸= 0 on I . Then

0 =
∫ b

a
|f(t)|p dt ≥

∫ t0+δ

t0−δ
mdt = m · (2δ) > 0,

a contradiction. It follows that f = 0 on [a, b].
We now wish to show triangle inequality. For this, we invoke the fact that C[a, b] is contained

inside the linear space Lp[a, b] of R-valued Lebesgue measurable functions on [a, b]. Moreover, the
function

∥f∥p :=
Å∫

[a,b]
|f |p dm

ã1/p

for f ∈ Lp[a, b] defines a norm. Moreover if f is continuous, then the above Lebesgue integral on
[a, b] agrees with the usual Riemann integral. So we may conclude that there is an inclusion of
linear spaces

(C[a, b], ∥ − ∥p) ⊆ (Lp[a, b], ∥ − ∥p) .

We know that (Lp[a, b], ∥ − ∥p) forms a normed linear space, where triangle inequality is estab-
lished by Minkowski’s inequality. Using the same theorem on the subspace (C[a, b], ∥ − ∥p), we
get the desired result.
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b) We claim that (C[0, 2], ∥ − ∥1) is not complete. It suffices to show a Cauchy sequence which
is not convergent. Indeed consider fn(x) as follows:

fn(x) =
®
xn if x ∈ [0, 1]
1 if x ∈ (1, 2].

We first claim that (fn) is Cauchy in C[0, 2]. Indeed, for n ≥ m, we have

∥fn − fm∥1 =
∫ 2

0
|fn(x)− fm(x)| dx

=
∫ 1

0
|xn − xm| dx

=
∫ 1

0
xm − xndx

=
∫ 1

0
xmdx−

∫ 1

0
xndx

= 1
m+ 1 −

1
n+ 1

≤ 1
m+ 1 .

So for a fixed ϵ > 0, let N ∈ N be such that 1/N < ϵ. Then for all n,m ≥ N , we have

∥fn − fm∥1 ≤
1

m+ 1 ≤
1

N + 1 < ϵ,

as needed. Next, we claim that (fn) doesn’t converge in C[0, 2]. Indeed, it would suffice to show
that it converges in L1[0, 2] to a non-continuous function. Indeed, consider the following simple
function

f = χ[1,2].

This is not continuous in [0, 2]. We claim that fn → f in L1[0, 2]. Indeed, we have

∥fn − f∥1 =
∫
[0,2]
|fn − f | dm =

∫
[0,1]
|fn − f | dm+

∫
[1,2]
|fn − f | dm

=
∫
[0,1]
|fn − f | dm =

∫ 1

0
|xn| dx,

where the last equality comes from Riemann and Lebesgue integrals being equal on compact in-
tervals for Riemann integrable functions. Consequently, we have

∥fn − f∥1 =
1

n+ 1

which converges to 0 as n → ∞. Hence in L1[0, 2], fn → f . As C[0, 2] ⊆ L1[0, 2] with the given
norm, it follows that (fn) ⊆ C[0, 2] does not converge in C[0, 2].

Example 18.10.1.4. Let X = (C[0, 1], ∥ · ∥∞). We wish to calculate the following:
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1. d(f1, C) where f1(t) = t and C is the linear subspace of all constant functions,
2. d(f2, P ) where f2(t) = t2 and P is the linear subspace of polynomials of degree at most 1.

1. We claim that d(f1, C) = 1/2. Indeed, we have

d(f1, C) = inf
c∈C
∥f1 − c∥ = inf

c∈C
sup
t∈[0,1]

|t− c|

= inf
c∈C

®
c if 1

2 ≤ c <∞
1− c if −∞ < c < 1

2 .

= 1
2 ,

as needed.

2. We claim that d(f2, P ) = 1/8. Pick any at+ b ∈ P for a, b ∈ R. We first show that

sup
t∈[0,1]

∣∣t2 − at− b∣∣ = max
ß
−b, 1− a− b, a

2

4 + b

™
. (∗)

Indeed, consider the discriminant a2 + 4b of f(t) = t2 − at− b. There are two cases to be had here:
1. If a2+4b ≤ 0 : Then the maximum of |f(t)| is equal to that of f(t) and is achieved only on the

boundary at t = 0 or 1 because f(t) ≥ 0 for all t ∈ [0, 1]. Consequently, supt∈[0,1] |f(t)| = −b
or 1− a− b.

2. If a2+4b > 0 : Then the maximum of |f(t)| is either on boundary at t = 0, 1 or at the point of
minima of f(t) at t = a/2, which thus becomes a point of maxima for |f(t)|. It follows that
supt∈[0,1] |f(t)| = −b, 1− a− b or a2

4 + b.
These two cases shows the claim in Eqn (∗).

Consider now f(a, b) = max
¶
−b, 1− a− b, a24 + b

©
as a function f : R2 → R. We wish to find

inf(a,b)∈R2 f(a, b). First we observe the following three regions:
1. The region R1 : This is

R1 = {(a, b) ∈ R2 | f(a, b) = −b}.

2. The region R2 : This is

R2 = {(a, b) ∈ R2 | f(a, b) = 1− a− b}.

3. The region R3 : This is

R3 =
ß
(a, b) ∈ R2 | f(a, b) = a2

4 + b

™
.

We now analyze bounds on a point (a, b) ∈ Ri as follows.
1. If (a, b) ∈ R1 : Then we have

−b > 1− a− b
−b > a2/4 + b



18.10. REMARKS ON BANACH SPACES 771

solving which, we get bounds

a < 1

b < −a
2

8 .

Hence, to minimize b, we need to maximize a, thus to get that b < −1/8. So we have
(a, b) = (1,−1/8) as a point of minima for −b.

2. If (a, b) ∈ R2 : Then we have

1− a− b > −b

1− a− b >
a2

4 + b

solving which we get bounds

a < 1

b <
1
2 −

a

2 −
a2

8 .

Hence to minimize 1 − a − b, we have to maximize a and b. Doing so yields a = 1 and
b = −1/8. Hence (a, b) = (1,−1/8) is a point of minima for 1− a− b.

3. If (a, b) ∈ R3 : Then we have

a2

4 + b < −b

a2

4 + b < 1− a− b

solving which, we get bounds

b > −a
2

8

b > −a
2

8 −
a

2 + 1
2 .

Hence to minimize a2

4 + b, we have to minimize b and a. Doing so, we obtain b = −a2/8
which thus yields

a > 1.

Hence to minimize a, we have to take a = 1. Consequently, (a, b) = (1,−1/8) is a point of
minima for a2/4 + b.

From all the three cases above, we see that f minimizes at the point (a, b) = (1,−1/8). Indeed, we
see that (1,−1/8) ∈ R1 ∩ R2 ∩ R3 as all three functions −b, 1 − a − b and a2/4 + b are equal at it.
Consequently, the inf(a,b)∈R2 f(a, b) = 1/8, as required.
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18.10.2 Properties

Proposition 18.10.2.1. Let X be a normed linear space. The following are equivalent:
1. X is a Banach space.
2. S1(X) = {x ∈ X | ∥x∥ = 1} is a complete subset of X .

Proof. content...

Proposition 18.10.2.2. Let X be a normed linear space. Then the following are equivalent:
1. X is a Banach space.
2. Absolutely convergent series in X are convergent in X .

Proof. 1.⇒ 2. Pick an absolutely convergent series
∑
n xn in X so that∑

n

∥xn∥ <∞.

It follows that Tn =
∑n
k=1 ∥xk∥ is a Cauchy sequence in R. We wish to show that

∑
n xn converges

in X . It suffices to show that the sequence Sn =
∑n
k=1 xk converges in X . We reduce to showing

that (Sn) is Cauchy. Fix ϵ > 0. For any n ≥ m, we have

∥Sn − Sm∥ = ∥xm+1 + · · ·+ xn∥
≤ ∥xm+1∥+ · · ·+ ∥xn∥

=
∣∣∣∣∣
Ç

n∑
k=1
∥xk∥

å
−
Ç

m∑
k=1
∥xk∥

å∣∣∣∣∣
= |Tn − Tm| < ϵ

some N ∈ N and n,m ≥ N since (Tn) is Cauchy in R. This shows that (Sn) is Cauchy, as required.
2. ⇒ 1. Pick a Cauchy sequence (xn) ⊆ X . We wish to show that there is a convergent subse-

quence of (xn). We first find a subsequence of (xn) which is better behaved. Indeed, by Cauchy
condition, we find for each k ≥ 0 a positive integer Nk ∈ N such that

∥xn − xm∥ <
1
2k

for all n,m ≥ Nk. We may assume Nk to be the least such possible by well-ordering on N. Then
we see that Nk+1 ≥ Nk by minimality hypothesis. Thus consider the subsequence (xNk) of (xn).
Observe that

∥xNk+1 − xNk∥ <
1
2k

as Nk+1, Nk ≥ Nk. We replace (xn) by the subsequence (xNk) so that we may assume

∥xn+1 − xn∥ <
1
2n ∀n ∈ N. (3)

We now find the limit to which (xn) converges. Indeed, define the following sequence in X :

yn−1 =
n−1∑
k=1

xk+1 − xk

= xn − x1.
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We claim that
∑
n xn+1 − xn is an absolutely convergent series. Indeed, denote

Sn−1 :=
n−1∑
k=1
∥xk+1 − xk∥

≤
n−1∑
k=1

1
2k

where the latter bound follows from Eqn. (3). Then, we see that for any n ∈ N

Sn ≤
n∑
k=1

1
2k

<
∞∑
k=1

1
2k

=M <∞. (4)

That is, (Sn) is a monotonically increasing positive bounded sequence in R, therefore (Sn) is con-
vergent. This shows that the series

∑
n xn+1 − xn is absolutely convergent. By our hypothesis, it

follows that
∑
n xn+1 − xn is convergent in X . That is, the sequence

yn−1 =
n−1∑
k=1

xk

of partial sums is convergent in X . But since yn−1 = xn − x1, it follows that (xn) is a convergent
sequence in X , as required.

18.10.3 Bases & quotients

Lemma 18.10.3.1. If X is a normed linear space with a Schauder basis, then X is separable.

Proof. Let (bn) ⊆ X be a Schauder basis. Consider the following subset

D =
®

n∑
k=1

qkbk | qk ∈ E, n ∈ N
´

where E ⊆ K is a countable dense subset. It is clear that D is countable. We claim that D is dense
in X .

Pick any point x ∈ X . Since (bn) is a Schauder basis, there exists (ck) ⊆ K such that

x =
∞∑
k=1

ckbk

where the series converges in X . Pick a ball Bϵ(x) around x. We wish to show that Bϵ(x)∩D ̸= ∅.
Indeed, consider N ∈ N large enough such that

∥x−
N∑
k=1

ckbk∥ <
ϵ

2 . (9)

Moreover, for each k = 1, . . . , N , consider qk ∈ E such that

|ck − qk| <
ϵ

2 · 2k∥bk∥
(10)
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which exists by density of E in K. Hence, we have by Eqns (9) and (10) the following inequalities:

∥x−
N∑
k=1

qkbk∥ ≤ ∥x−
N∑
k=1

ckbk∥+ ∥
N∑
k=1

(ck − qk)bk∥

<
ϵ

2 +
N∑
k=1
|ck − qk| ∥bk∥

<
ϵ

2 + 1
2

N∑
k=1

ϵ

2k

= ϵ

2 + ϵ

2

Å
1− 1

2N

ã
<
ϵ

2 + ϵ

2 = ϵ,

as needed. This shows that
∑N
k=1 qkbk ∈ Bϵ(x), that is D is dense in X .

Proposition 18.10.3.2 (2 out of 3 property). Let X be a normed linear space and Y ⊆ X be a closed
linear subspace. Then,

1. X,Y Banach implies X/Y Banach.
2. X,X/Y Banach implies Y Banach.
3. Y,X/Y Banach implies X Banach.

Proof. 1. We have done in class that if X is Banach then for any closed linear subspace Y , X/Y is
Banach.

2. We need the following lemma here:

Lemma 18.10.3.3. Let X be a Banach space and Y ⊆ X be a linear subspace. Then the following are
equivalent:

1. Y is complete.
2. Y is closed.

Proof of Lemma 18.10.3.3. 1. ⇒ 2. Take (yn) ⊆ Y be a convergent sequence in X such that it con-
verges to x ∈ X . We wish to show that x ∈ Y . Indeed, as (yn) ⊆ Y is convergent, so it is Cauchy.
Since Y is complete, it follows that (yn) converges to a point in Y . By uniqueness of point of con-
vergence in a Hausdorff space, x ∈ Y .

2. ⇒ 1. Pick a Cauchy sequence (yn) ⊆ Y . We wish to show that it converges in Y . Indeed,
(yn) as a sequence in X is Cauchy and thus by completeness of X , we deduce that yn → x in X .
But since Y is closed, therefore by uniqueness of point of convergence, we must have x ∈ Y , as
required.

Since X is Banach and Y is closed, it follows from Lemma 18.10.3.3 that Y is complete.
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3. Pick a Cauchy sequence (xn) ⊆ X . We wish to show that that it converges. We have a se-
quence (xn + Y ) ⊆ X/Y . We first claim that (xn + Y ) is Cauchy. Indeed, we have

∥xn − xm + Y ∥ = inf
y∈Y
∥xn − xm + y∥

≤ ∥xn − xm∥ < ϵ

for all n,m ≥ N for some N ∈ N as (xn) ⊆ X is Cauchy. As X/Y is Banach, it follows that
(xn + Y )→ (x+ Y ) in X/Y . Consequently, for a fixed ϵ > 0, we get

∥xn − x+ Y ∥ = inf
y∈Y
∥xn − x+ y∥ < ϵ/2 < ϵ

for all n ≥ N for some N ∈ N. It follows from above that there is a sequence (yn) ⊆ Y such that

∥xn − x+ yn∥ ≤ ϵ/2 < ϵ. (1)

We claim that (yn) ⊆ Y is Cauchy. Indeed, we first see from Eqn. (1) that

∥xn + yn − x∥ < ϵ

for all n ≥ N . Consequently, the sequence (xn+yn) ⊆ X converges to x ∈ X . Hence, (xn+yn) ⊆ X
is Cauchy, from which we get N ∈ N such that

∥xn + yn − xm − ym∥ = ∥xn − xm − (ym − yn)∥ < ϵ

for each n,m ≥ N . We may write by triangle inequality the following:

|∥xn − xm∥ − ∥yn − ym∥| ≤ ∥xn − xm − (ym − yn)∥ < ϵ

so that

∥yn − ym∥ < ∥xn − xm∥+ ϵ (2)

for all n,m ≥ N . As (xn) ⊆ X is Cauchy, so for some N ′ ∈ N we have ∥xn − xm∥ < ϵ for all
n,m ≥ N ′. Replacing N by maximum of N ′ and N , we obtain from Eqn. (2) the following:

∥yn − ym∥ < 2ϵ ∀n,m ≥ N.

This shows that (yn) ⊆ Y is Cauchy. As Y is complete, therefore yn → y ∈ Y . As xn + yn → x in
X , therefore xn → x− y in X , thus showing that X is complete.

Proposition 18.10.3.4. The Banach space ℓp is separable for all 1 ≤ p <∞.

Proof. Recall that

ℓp =
®
(xn) | xn ∈ K &

∑
n

|xn|p <∞
´
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with the norm being ∥(xn)∥p = (
∑
n |xn|

p)1/p. Let D ⊆ K be a countable dense subset of K (which
exists as R and C are separable in their usual topology). Using D we will construct a countable
dense subset F ⊆ ℓp. Indeed, consider the following subset of ℓp:

F =
⋃
N≥0

FN

where

FN = {(xn) ∈ ℓp | xn ∈ D, xn = 0 ∀n ≥ N} .
We see that FN is countable as finite product of countable sets is countable and thus F is a count-
able union of countable sets, showing that F is countable. We next claim that F is dense in ℓp.

Pick any open set Br(y) ⊆ ℓp. Note that

Br(y) =
®
(xn) ∈ ℓp |

∑
n

|xn − yn|p < rp
´
.

As y = (yn) ∈ ℓp, therefore
∑
n |yn|

p = M <∞. Now observe that for all ϵ > 0, there exists N ∈ N
such that

∞∑
k=n
|yn|p < ϵ (5)

for all n ≥ N . As D ⊆ K is dense and each yn ∈ K, therefore choose

xn ∈ Brn(yn) ∩D ⊆ K

where rn = r

2
n+1
p

for all n ∈ N. Hence,

|xn − yn|p <
rp

2 · 2n
for all n ∈ N. As

∑∞
n=1 r

p/2n+1 = rp/2, therefore∑
n≥1
|xn − yn|p <

rp

2 . (6)

This shows that the element (xn) ∈ Br(y) ⊆ ℓp.
Now, fix ϵ > 0 so that there exists K ∈ N large enough using Eqn. (5) such that

∞∑
n=K
|yn|p < ϵ. (7)

Using Eqn. (6) and (7), we can write
K−1∑
n=1
|xn − yn|p +

∞∑
n=K
|yn|p <

K−1∑
n=1

rp

2 · 2n +
∞∑
n=K
|yn|p

<
rp

2

Å
1− 1

2K

ã
+
∞∑
n=K
|yn|p

<
rp

2

Å
1− 1

2K

ã
+ ϵ

<
rp

2

Å
1− 1

2N

ã
+ ϵ
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for all N ≥ K. So let N →∞ so that we obtain
K−1∑
n=1
|xn − yn|p +

∞∑
n=K
|yn|p ≤

rp

2 + ϵ.

Thus taking ϵ = rp

4 , we get K̃ ∈ N such that

K̃−1∑
n=1
|xn − yn|p +

∞∑
n=K̃

|yn|p ≤
3rp

4 < rp. (8)

Define x̃ ∈ ℓp as follows:

x̃n =
®
xn if n ≤ K̃ − 1
0 if n ≥ K̃.

Then x̃ ∈ FK̃ and by Eqn. (8) it follows that
∞∑
n=1
|x̃n − yn|p < rp.

Consequently, x̃ ∈ F ∩Br(y), as needed.

Example 18.10.3.5 (ℓ∞ is not separable). We wish to show that ℓ∞ does not have a Schauder basis.
By Lemma 18.10.3.1, it suffices to show that ℓ∞ is not separable. Suppose to the contrary that
D ⊆ ℓ∞ is a countable dense set. We will derive a contradiction to countability of D. Indeed,
consider κ = {0, 1} and the subset κ∞ ⊆ ℓ∞ of all sequences formed by 1 and 0. Observe that κ∞

is uncountable.
Pick any x ∈ κ∞. We first claim that B1/2(x) ∩ κ∞ = {x}. Indeed, if y ∈ B1/2(x), then

supn |xn − yn| < 1/2. It follows that there exists 0 < ϵ < 1/2 such that

|xn − yn| < ϵ ∀n ∈ N.

As xn = 0 or 1, therefore ®
−ϵ < yn < ϵ if xn = 0
1− ϵ < yn < 1 + ϵ if xn = 1.

(9)

Hence, if y ∈ κ∞, then by Eqn. (9) it follows that yn = xn for all n ∈ N and thus x = y.
We next show that for x ̸= x′ ∈ κ∞, the open balls B1/2(x) ∩ B1/2(x′) = ∅. Since x ̸= x′,

we may assume WLOG that there exists m ∈ N such that xm = 0 and x′m = 1. Thus, if y ∈
B1/2(x) ∩B1/2(x′), then by Eqn. (9), it follows that

−ϵ < ym < ϵ

1− ϵ < ym < 1 + ϵ.

Since ϵ = 1/2, therefore the above inequalities give a contradiction. Hence B1/2(x) ∩B1/2(x′) = ∅.
We now complete the proof. AsD ⊆ ℓ∞ is dense, thereforeD∩B1/2(x) ̸= ∅ for all x ∈ κ∞. Pick

one dx ∈ D ∩ B1/2(x) for each x ∈ κ∞. By above two claims, it follows that we have an injective
map

f : κ∞ ↪→ D,

but κ∞ is uncountable and D is countable, a contradiction. This completes the proof.
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18.10.4 Continuous linear transformations

Example 18.10.4.1. We wish to show that the inverse of a bounded linear operator may not be
bounded. Indeed consider X = (P [0, 1]1, ∥ · ∥sup) to be the normed linear space of all polynomials
whose least degree term is of degree 1. Similarly, consider Y = (P [0, 1]2, ∥ · ∥sup) to be the normed
linear space of all polynomials whose least degree term is of degree 2. We consider the following
linear map

T : X −→ Y

p 7−→
∫
pdx

so that if p(x) = anx
n + . . . a1x, then T (p) = an

n+1x
n+1 + · · · + a1

2 x
2. We claim that T is bounded.

Indeed,

∥T (p)∥ = ∥ an
n+ 1x

n+1 + · · ·+ a1
2 x

2∥

= sup
x∈[0,1]

∣∣∣∣ an
n+ 1x

n+1 + · · ·+ a1
2 x

2
∣∣∣∣

= sup
x∈[0,1]

∣∣∣∣x · Å an
n+ 1x

n + · · ·+ a1
2 x
ã∣∣∣∣

≤ sup
x∈[0,1]

|x| sup
x∈[0,1]

∣∣∣∣Å an
n+ 1x

n + · · ·+ a1
2 x
ã∣∣∣∣

≤ 1 · sup
x∈[0,1]

|anxn + . . . a1x|

= sup
x∈[0,1]

|p(x)|

= ∥p∥.

Thus indeed, T is a bounded linear transformation. We next claim that the following linear trans-
form is an inverse of T :

U : Y −→ X

q 7−→ q′

so that if q(x) = anx
n + . . . a2x

2, then U(q) = nanx
n−1 + · · ·+ 2a2x. Indeed, we see that

T ◦ U(q) = T
(
nanx

n−1 + · · ·+ 2a2x
)

= nan
xn

n
+ . . . 2a2

x2

2
= q.

Similarly, for p(x) = anx
n + . . . a1x, we see that

U ◦ T (p) = U

Å
an
n+ 1x

n+1 + · · ·+ a1
2 x

2
ã

= an
n+ 1(n+ 1)xn + · · ·+ a1

2 (2)x

= p.
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This shows that U is inverse of T . We now show that U is unbounded. Indeed,

∥U(xn)∥ = ∥nxn−1∥
= sup

x∈[0,1]

∣∣nxn−1∣∣
= n · 1
= n · ∥xn∥.

This shows that for all n ≥ 2, there exists qn(x) ∈ Y given by qn(x) = xn+1 such that

∥U(qn)∥ = n+ 1 > n = n∥qn∥,

making U unbounded. This completes the proof.

18.10.5 Miscellaneous applications

Example 18.10.5.1. We wish to construct an additive function f : R→ R which is not continuous.
Indeed, consider the Hamel basis of R over Q and denote it by B. We know that B is not finite.
Observe that any additive map f : R→ R is Q-linear as

f

Å
p

q
x

ã
= pf

Å1
q
x

ã
and since qf

Ä
1
qx
ä
= f(x), thus,

f

Å
p

q
x

ã
= p

q
f(x).

Since any function B → R can be extended Q-linearly to R → R, therefore we now construct a
function f : B → R and show that its Q-linear extension f̃ : R→ R cannot be continuous at 0.

Pick any sequence (bn) ⊆ B and consider the following sequence in R

xn = bn
n⌈|bn|⌉+n

where ⌈z⌉ is the ceiling function (smallest integer larger than z). Note that the denominator of xn
is a positive integer. Observe that xn → 0 as n→∞.

Define the following function f : B → R:

f(b) =
®
n⌈|bn|⌉+n if b = bn

1 else.

Extend this function to a Q-linear map f̃ : R → R, so that it is additive. We claim that f̃ is not
continuous at 0. Indeed, we have xn → 0 as n→∞, but

f̃(xn) = f̃

Å
bn

n⌈|bn|⌉+n

ã
= 1
n⌈|bn|⌉+n

f̃(bn) =
1

n⌈|bn|⌉+n
n⌈|bn|⌉+n = 1

and thus f̃(xn) = 1 ̸→ f̃(0) = 0 as n→∞, making f̃ discontinuous at 0, as needed.
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Proposition 18.10.5.2. Let X be a normed linear space over field K and T : X → K be a linear functional.
If T is unbounded, then Ker (T ) ⊆ X is dense.

Proof. Since T is unbounded, therefore we first claim that T is unbounded on eachB1/n[0]. Indeed,
if there exists n0 ∈ N such that T is bounded on B1/n0 [0], then for any x ∈ X , we have x

n0∥x∥ ∈
B1/n0 [0]. Thus, by boundedness of T on B1/n0 [0], there exists K ∈ R>0 such that∣∣∣∣T Å x

n0∥x∥

ã∣∣∣∣ ≤ K.
By linearity it follows from above that

|Tx| ≤ Kn0∥x∥

for all x ∈ X . This makes T bounded, a contradiction. Hence T is unbounded on each B1/n[0].
Consequently, for each n ∈ N, there exists yn ∈ B1/n[0] such that ∥Tyn∥ ≥ n. It follows that

yn → 0 as n→∞ since yn ∈ B1/n[0]. Further, observe that

zn = yn
Tyn

− x

Tx
∈ Ker (T ).

Now we claim that zn → x
Tx as n→∞. Indeed, since

∥ yn
Tyn
∥ = 1
|Tyn|

∥yn∥ ≤
1
n
∥yn∥ < ∥yn∥

and since ∥yn∥ → 0 as n → ∞, therefore this shows that yn
Tyn
→ 0 as n → ∞. It follows that

zn → x
Tx as n→∞, as required.

As zn ∈ Ker (T ), therefore T (x)zn ∈ Ker (T ) by linearity. Thus T (x)zn → x as n → ∞. This
shows the density of Ker (T ), thus completing the proof.

The following is a generalization of Riesz lemma to r = 1.

Proposition 18.10.5.3. Let X be a normed linear space and Y ⊆ X be a finite dimensional proper linear
subspace. Then there exists x1 ∈ S1(X) = {x ∈ X |∥x∥ = 1} such that

d(x1, Y ) = 1.

Proof. Pick x ∈ X \Y . As Y is finite-dimensional inX , therefore it is closed inX . Hence, d(x, Y ) >
0. We first claim that there exists ỹ ∈ Y such that

d(x, Y ) = d(x, ỹ). (10)

Indeed, since d(x, Y ) = infy∈Y d(x, y) = M , therefore there exists a sequence (yn) ⊆ Y such that
d(x, yn) → M as n → ∞. Fix ϵ > 0. Thus, there exists N ∈ N such that |d(x, yn)−M | < ϵ for all
n ≥ N . That is, 0 < d(x, yn) < M + ϵ for all n ≥ N . Since g(y) := d(x, y) is a continuous map on
Y , therefore we have that

(yn)n≥N ⊆ K = g−1([0,M + ϵ])
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where K ⊆ Y is a closed subset of Y . We now claim that K is bounded. Pick y ∈ K. Then

∥y∥ = d(y, 0) ≤ d(y, x) + d(x, 0)
< M + ϵ+ d(x, 0).

This shows that K is bounded. As Y is finite-dimensional normed linear space, therefore gener-
alized Heine-Borel holds and we deduce that K is a compact subset of Y . Since in a metric space
compactness is equivalent to sequentially compact, thereforeK is sequentially compact. It follows
that (yn)n≥N ⊆ K has a subsequence which converges, say to ỹ ∈ K ⊆ Y . Replace (yn) by that
subsequence so that we may write yn → ỹ and d(x, yn) → M . By continuity of g, it follows that
g(yn) = d(x, yn) → g(ỹ) = d(x, ỹ), but d(x, yn) → M , thus by uniqueness of limits in a Hausdorff
space, it follows that d(x, ỹ) =M , as needed. This completes the proof of claim in Eqn. (10).

We now complete the proof. Consider the vector

x1 =
x− ỹ
∥x− ỹ∥

∈ X.

We claim that d(x1, Y ) = 1. Indeed,

d(x1, Y ) = inf
y∈Y
∥ x− ỹ
∥x− ỹ∥

− y∥

= 1
∥x− ỹ∥

inf
y∈Y
∥x− (ỹ + ∥x− ỹ∥y)∥

= 1
∥x− ỹ∥

inf
y∈Y
∥x− y∥

where the last equality follows from the bijection provided by affine transformations Y → Y
mapping as y 7→ ay + x for a ∈ K and x ∈ Y , using the linearity of Y . From above equalities, it
follows from Eqn. (10) that

d(x1, Y ) = 1
∥x− ỹ∥

inf
y∈Y
∥x− y∥

= 1
∥x− ỹ∥

d(x, Y )

= 1
d(x, ỹ)d(x, Y ) = 1,

as required to complete the proof.

18.11 Main theorems of functional analysis

There are four major theorems in basic functional analysis, which we discuss now.

Theorem 18.11.0.1 (Uniform boundedness principle). Let X be a Banach space and Y be a normed
linear space. Consider a collection of bounded linear transformations (Ti)i∈I ⊆ B(X,Y ) such that for each
x ∈ X , the subset (Tix)i∈I ⊆ Y is bounded. Then, (∥Ti∥)i∈I is bounded in R, that is, (Ti)i∈I ⊆ B(X,Y )
is a bounded set.
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Theorem 18.11.0.2 (Open mapping & bounded inverse theorem). Let X and Y be Banach spaces and
T : X → Y be a surjective bounded linear map. Then,

1. T is an open map.
2. If T is a bijection, then T is a homeomorphism.

Theorem 18.11.0.3 (Closed graph theorem). Let X and Y be Banach spaces and T : X → Y be a linear
transformation. Then the following are equivalent:

1. T is continuous/bounded.
2. The graph Γ(T ) = {(x, Tx) ∈ X × Y | x ∈ X} is closed in X × Y .

We now show how all three are equivalent.

Theorem 18.11.0.4. Let X and Y be Banach spaces. Then the following implications are true:
1. CGT =⇒ UBP.
2. BIT =⇒ OMP.
3. CGT =⇒ OMP.

Proof. 1. Closed graph theorem (CGT) states that a linear map T : X → Y is bounded if and only
if Γ(T ) = {(x, Tx) ∈ X × Y | x ∈ X} is a closed set in X × Y . We wish to show that uniform
boundedness principle (UBP) holds, that is, if (Ti)i∈I is a non-empty collection of bounded linear
maps from X to Y such that for each x ∈ X , the set (Ti(x))i∈I ⊆ Y is bounded, then the set
(∥Ti∥)i∈I ⊆ R is a bounded set.

Pick any collection (Ti)i∈I ⊆ B(X,Y ) such that for all x ∈ X , there exists Mx ∈ R+ such that
supi∈I ∥Tix∥ ≤Mx. We wish to show that (∥Ti∥)i∈I is bounded. Indeed, to this end, we contstruct
a new norm on X , using which, we will show the above.

Define the following for each x ∈ X :

∥x∥1 := ∥x∥+ sup
i∈I
∥Tix∥.

This is well-defined, as (Tix) is a bounded set in Y . We now make the following claims:
C1. (X, ∥ · ∥1) is a normed linear space.
C2. (X, ∥ · ∥1) is a Banach space.

Assuming the above two claims to be true, let us first show how this will complete the proof. We
consider the map

id : (X, ∥ · ∥)→ (X, ∥ · ∥1).

We claim that this is a continuous linear transformation. Indeed, by CGT, we need only show that
Γ(id) is closed. That is, (denote X1 = (X, ∥ · ∥1))

Γ(id) = {(x, x) ∈ X ×X1 | x ∈ X} ⊆ X ×X1

is closed. Indeed, consider any sequence (xn, xn) ⊆ Γ(id) which is convergent in X × X1. Then
suppose xn → x in X and xn → x′ in X1. We claim that x = x′, so that (xn, xn)→ (x, x) and since
(x, x) ∈ Γ(id), so this will show that Γ(id) is closed.

Indeed, we have xn → x in X , so ∥xn− x∥ → 0 as n→∞. Similarly, ∥xn− x′∥1 → 0 as n→∞.
Since

∥xn − x′∥1 = ∥xn − x′∥+ sup
i∈I
∥Tixn − Tix′∥ → 0
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as n → ∞, therefore supi∈I ∥Tixn − Tix′∥ → 0 and ∥xn − x′∥ → 0 as well. The latter says that
xn → x in X . By uniqueness of limits, we conclude that x = x′, as required. This shows that
id : X → X1 is continuous linear transform by CGT, hence bounded.

We wish to bound sup∥x∥=1 ∥Tix∥. Pick any x ∈ X with ∥x∥ = 1. Then we have for each i ∈ I
that

∥x∥1 = ∥x∥+ sup
i∈I
∥Tix∥

≥ 1 + ∥Tix∥.

Thus, for each i ∈ I , we have

∥Tix∥ ≤ ∥x∥1 − 1 ≤ ∥x∥1.

It follows that

sup
∥x∥=1

∥Tix∥ ≤ sup
∥x∥=1

∥x∥1 = ∥id∥ <∞,

as required. Hence we now need only prove the claims C1 and C2.
To see claim C1, proceed as follows. Observe that if ∥x∥1 = 0, then ∥x∥ = 0, so x = 0. Further

we have for any c ∈ K that ∥cx∥1 = ∥cx∥ + supi∈I ∥Ti(cx)∥ = |c| ∥x∥ + |c| supi∈I ∥Tix∥ = |c| ∥x∥1.
Finally, to see triangle inequality, we see that

∥x+ y∥1 = ∥x+ y∥+ sup
i∈I
∥Tix+ Tiy∥

≤ ∥x∥+ ∥y∥+ sup
i∈I

(∥Tix∥+ ∥Tiy∥)

≤ ∥x∥+ ∥y∥+ sup
i∈I
∥Tix∥+ sup

i∈I
∥Tiy∥

= ∥x∥1 + ∥y∥1,

as required. This shows claim C1.
To see claim C2, proceed as follows. Take any Cauchy sequence (xn) ⊆ X1. We wish to show

that it converges. We claim that (xn) is Cauchy in X . Indeed, for any ϵ > 0, we have N ∈ N such
that for any n,m ≥ N we have

∥xn − xm∥ ≤ ∥xn − xm∥1 < ϵ

and for each j ∈ I , we have

∥Tjxn − Tjxm∥ ≤ sup
i∈I
∥Tixn − Tixm∥ ≤ ∥xn − xm∥1 < ϵ/2.

Thus, we get by former that (xn) is Cauchy, so convergent to say x ∈ X . We claim that (xn)
converges to x in X1. In the latter, by letting m → ∞, we obtain that for each j ∈ I and each
n ≥ N , we have

∥Tjxn − Tjx∥ ≤ ϵ/2 < ϵ.
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Thus, taking supi∈I , we further obtain that for each n ≥ N we have

sup
i∈I
∥Tixn − Tix∥ ≤ ϵ/2 < ϵ.

Now, we may write

∥xn − x∥1 = ∥xn − x∥+ sup
i∈I
∥Tixn − Tix∥

< ϵ/2 + ϵ/2 = ϵ

for n ≥ N , as requird. This completes the proof.

2. Consider any bounded linear map T : X → Y which is surjective. We wish to show that T is
an open mapping using bounded inverse theorem. Indeed, as T is bounded, therefore Ker (T ) is a
closed linear subspace. Going modulo Ker (T ), we get a linear transformation T̃ : X/Ker (T )→ Y
such that the following commutes:

X Y

X/Ker (T )

π

T

T̃

We first claim that T̃ is bounded. Indeed, as for any x + Ker (T ) ∈ X/Ker (T ) we have T̃ (x +
Ker (T )) = Tx, therefore

∥T̃ (x+ Ker (T ))∥ = inf
z∈Ker(T )

∥T (x+ z)∥ = inf
z∈Ker(T )

∥Tx∥ = ∥Tx∥.

This shows that T̃ is a bounded linear map which is injective and surjective. Thus, T̃ is a bijection
and thus by BIT, we get that T̃ is a homeomorphism. In particular, we see that T̃ is an open map.
Now consider the map π : X → X/Ker (T ). We wish to show that π is an open map. Let U ⊆ X
be an open set and pick any point x + Ker (T ) ∈ π(U) ⊆ X/Ker (T ) where x ∈ U . As there exists
Bϵ(x) ⊆ U , thus we claim that Bϵ(x + Ker (T )) ⊆ π(U). Indeed, if y + Ker (T ) ∈ Bϵ(x + Ker (T )),
then ∥x− y + Ker (T )∥ < ϵ. As

∥x− y + Ker (T )∥ = inf
z∈Ker(T )

∥x− y + z∥ < ϵ,

thus there exists z ∈ Z such that ∥x−y+z∥ < ϵ. Thus, y−z ∈ Bϵ(x) ⊆ U . Hence, y−z+Ker (T ) =
y + Ker (T ) ⊆ π(U), as needed.

3. We first show that closed graph theorem (CGT) implies bounded inverse theorem (BIT). Indeed,
this combined with item 2 above will show that CGT =⇒ OMP. Let T : X ↠ Y be a surjective
bounded linear transformation which is a bijection. We then wish to show that the inverse linear
transformation of T , T−1 : Y → X , is also bounded. By CGT, it is equivalent to showing that the
graph Γ(T−1) ⊆ Y ×X is a closed set. Since T is a bijection, we get

Γ(T−1) = {(y, T−1y) ∈ Y ×X | y ∈ Y }
= {(Tx, x) ∈ Y ×X | x ∈ X}
∼= {(x, Tx) ∈ X × Y | x ∈ X}
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where the last homeomorphism is induced by restricting the natural homeomorphism Y ×X →
X × Y . It follows that Γ(T−1) is closed in Y × X since Γ(T ) is closed in X × Y by CGT (as it is
continuous), as required.

We next see that it is important in closed graph theorem for X and Y to be Banach.

Example 18.11.0.5. We wish to show that there exists a linear map T : X → Y where X and Y are
normed linear spaces such that T is unbounded and the graph Γ(T ) ⊆ X × Y is closed.

Indeed, consider X = C1[0, 1]∗ to be the subspace of C1[0, 1] of those functions f such that
f(a) = 0 and Y = C[0, 1]∗ both with sup norm. Define

T : X −→ Y

f(x) 7−→ f ′(x)

to be the derivative map. We know that T is unbounded as fn(x) = xn ∈ C1[0, 1] has norm 1
but its derivative has unbounded norm. We wish to show that Γ(T ) is closed in X × Y . Indeed,
consider any sequence (fn) ⊆ X such that (fn, T fn) ⊆ Γ(T ) is convergent in X × Y . As projection
map are continuous, it follows that (fn) ⊆ X and (Tfn) = (f ′n) ⊆ Y are convergent. Let fn → f in
X and f ′n → g in Y . As X and Y are in sup norm, it follows that fn → f and f ′n → g uniformly.
As fn(0) = 0, it follows by the theorem on uniform convergence and derivatives that fn converges
uniformly to a differentiable function which we know is f and f ′ = g. That is Tf = g. This shows
that (fn, T fn) → (f, Tf) in X × Y , that is, (fn, T fn) converges in Γ(T ). This shows that Γ(T ) is
closed. Yet, T is unbounded, as required.

Similarly, the hypothesis of completeness is essential in uniform boudnedness principle.

Example 18.11.0.6. We wish to show that the hypothesis of completeness of the domain in uniform
boundedness principle is essential.

Indeed, let X = R∞ ⊆ (ℓ2, ∥ · ∥2) of all eventually zero sequences in ℓ2 with the induced norm.
Then X is not Banach as (x(n)k ) = (1, 1/2, . . . , 1/n, 0, . . . ) is a sequence in X which is Cauchy but
it is not convergent. We now construct a sequence of functionals fn : X → K such that for all
(xk) ∈ X , the sequence (fn((xk)))n is bounded in K but still (∥fn∥)n ⊆ R is unbounded.

Consider

fn : X −→ K

(xk) 7−→
n∑
k=1

xk.

Pick any (xk) ∈ X . Then,

|fn((xk))| =
∣∣∣∣∣ n∑
k=1

xk

∣∣∣∣∣ ≤
∣∣∣∣∣ ∞∑
k=1

xk

∣∣∣∣∣ <∞
as there are only finitely many non-zero elements, thus for each (xk) ∈ X , (fn((xk)))n is bounded.
Moreover,

∥fn∥ = sup
(xk)∈X

|fn((xk))|
∥(xk)∥

≥ |
∑n
k=1 xk|Ä∑∞

k=1 |xk|
2
ä1/2
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for any (xk) inX . We claim that ∥fn∥ → ∞ as n→∞. Indeed, consider (x(n)k ) = (1, 1/2, . . . , 1/n, 0, . . . ).
Then, ∥(x(n)k )∥ = 1 + 1/22 + . . . 1/n2 < M for a fixed M > 0 and for all n. Further, by above we
have

∥fn∥ ≥
|
∑n
k=1 1/k|
∥(x(n)k )∥

>
1
M

n∑
k=1

1
k
→∞

as n→∞, as required.

We wish to next prove the main theorems using an important technical lemma.

Theorem 18.11.0.7 (Zabreiko’s lemma). Let X be a Banach space and p : X → R≥0 be a seminorm. If p
is countably subadditive, then p is continuous.

Proof. Let us first define a seminorm on a Banach space.

Definition 18.11.0.8 (Seminorm and countably subadditive functions). LetX be a normed linear
space. A function p : X → R≥0 is said to be a seminorm if p(αx) = |α| p(x) for all α ∈ K and x ∈ X
and p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X .

The function p is said to be countably subadditive if for every convergent series
∑
n xn in X ,

we have

p

Ç ∞∑
n=1

xn

å
≤
∞∑
n=1

p(xn)

In proving Zabreiko’s lemma, we would need a notion of absorbing sets.

Definition 18.11.0.9 (Absorbing set). Let X be a normed linear space. A subset A ⊆ X is said to
be absorbing if for all x ∈ X , there exists sx ∈ R>0 such that x ∈ tA for all t ≥ sx.

Note that ifA is absorbing, then−A is also absorbing. We now state the following proposition,
which will be used in proving Zabreiko’s lemma.

Proposition 18.11.0.10. Let X be a normed linear space, p : X → R≥0 be a function and A ⊆ X .
1. If A is absorbing, then 0 ∈ A.
2. If X is Banach and A is closed convex and absorbing, then A contains a neighborhood of 0.
3. If p is a seminorm, then if p is continuous at 0, then p is continuous on X .

Proof. 1. As A is absorbing, therefore for all x ∈ X , there exists sx ∈ R>0 such that x ∈ tA for all
t ≥ sx. Let x = 0. Then, there exists s0 ∈ R>0 such that x ∈ tA for all t ≥ s0. Pick any t ≥ s0, we
get 0 = ta for some a ∈ A. As t ̸= 0, it follows that a = 0, as required.

2. Let A ⊆ X be closed convex and absorbing. Then first observe that

D = A ∩ (−A) ⊆ A
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is non-empty as 0 ∈ A (and thus so is in −A). We claim that for any S ⊆ D, we have

1
2S + 1

2(−S) ⊆ D.

Indeed, pick any s1−s2
2 ∈ 1

2S + 1
2(−S). We wish to show that s1−s2

2 ∈ A and s1−s2
2 ∈ −A. Thus,

we reduce to showing that s1−s2
2 , s2−s12 ∈ A. It is easy to see that A ∩ −A is convex as A and −A

are convex. As s1, s2 ∈ S ⊆ A ∩ −A thus −s1,−s2 ∈ S ⊆ A ∩ −A as well. Now, by convexity of
A ∩ −A, we get

s1 − s2
2 ,

s2 − s1
2 ∈ A ∩ −A,

as required.
We claim that D◦ is non-empty. This will complete the proof as by above we will have that

1
2D
◦+ 1

2(−D
◦) ⊆ D is open in D and since it contains 0, we would have shown that A contains an

open set containing 0.
Suppose to the contrary that D◦ = ∅. We wish to derive a contradiction to the fact that A is

an absorbing set. Indeed, first observe that for all n ∈ N, we have (nD)◦ = ∅ and nD is closed.
This gives us that for each n ∈ N, the set Yn = X − (nD) is an open dense subset of X . Pick any
x ∈ X−D. AsX−D is open, there existsB1 = Br1(x) ⊆ X−D where r1 < 1. AsX−2D is dense,
therefore (X − 2D) ∩ (B1)◦ is non-empty and thus we get a closed ball B2 of radius less than 1/2
in B1. Continuing this, we have a sequence of closed balls B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ . . . with radius
of Bn less than 1/n and Bn ∩ nD = ∅. Let xn be the center of Bn. We claim that (xn) is a Cauchy
sequence. Indeed, for any 1/k we have

∥xn − xm∥ < 2/k

for all n,m ≥ k. As X is complete therefore there exists x ∈ X such that xn → x. Thus x ∈ Bn for
all n ∈ N, that is, x /∈ nD for all n ∈ N. As A is absorbing, therefore there exists sx ∈ R>0 such
that x ∈ tA for all t ≥ sx. As −A is also absorbing, thus we get s′x ∈ R>0 such that x ∈ −tA for all
t ≥ s′x. Let n ∈ N be larger than both sx, s′x. Then we have that x ∈ nA and x ∈ −nA. It follows
that x ∈ nA∩ (−nA) = nD, a contradiction to the fact that x /∈ D. This completes the proof of item
2.

3. Let xn → x in X where x ̸= 0. We wish to show that p(xn) → p(x). Indeed, since xn − x → 0
and p is continuous at 0, we get p(xn − x) → p(0) = 0. Thus for any ϵ > 0, we have p(xn − x) =
|p(xn − x)| < ϵ for all n ≥ N . As p(xn) − p(x) ≤ p(xn − x) by seminorm crieterion, we get
|p(xn)− p(x)| < ϵ for all n ≥ N . It follows that p(xn)→ p(x), as required.

Using the above proposition, we now prove Zabreiko’s lemma.

Proof of Theorem 18.11.0.7. By Proposition 18.11.0.10, 3, we reduce to proving that p is continuous
at 0. We claim that it is sufficient to show that there is an open ball Br(0) of radius r > 0 at 0 such
that p(Br(0)) is a bounded set in R≥0. Indeed, for any sequence (xn) in X converging to 0, which
we may assume to be contained in Br(0), we get that p(xn) ∈ p(Br(0)) for all n ∈ N. We wish to
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show that p(xn)→ p(0) = 0. Indeed, if p(Br(0)) is upper bounded by M > 0, we thus get for any
x ∈ Br(0) the following bound:

p(x) = ∥x∥p
Å
x

∥x∥

ã
≤M∥x∥.

Consequently, we have

p(xn) ≤M∥xn∥.

As ∥xn∥ → 0 as n→∞, it follows by above that p(xn)→ 0 as n→∞, as required.
So we reduce to showing that there exists an open Br(0) of 0 in X such that p(Br(0)) is a

bounded set. Consider A! = {x ∈ X | p(x) < 1}. We claim that A is an absorbing set. Indeed, for
any x ∈ X , we have ∥x∥ such that for all t ≥ ∥x∥ we have x ∈ tA! since p(x/t) = p(x)/t < 1/t,
so p(t · x/t) < 1, as required. This shows that A! is absorbing. We claim that A = A! is absorbing
as well. Indeed, observe that since A contains an absorbing set, namely A!, then A is absorbing as
well.

We next show thatA is convex. Note that since closure of convex set is convex andA! is convex
since if x, y ∈ A!, then p((1− t)x+ ty) ≤ (1− t)p(x)+ tp(y) < (1− t)+ t = 1, therefore A is convex.
Thus, A is closed convex absorbing set in a Banach space. By Proposition 18.11.0.10, 2, it follows
that A has a neighborhood of 0.

We now find the required ball Br(0) so that p(Br(0)) is bounded. Indeed consider r > 0 such
that Br(0) ⊆ Ā and fix a point x ∈ Br(0). Pick a point x1 ∈ A such that ∥x − x1∥ < r/2, that is,
x1 ∈ Br/2(x) ∩ Br(0) ⊆ 1

2A. Thus x − x1 ∈ 1
2Br(0) ⊆

1
2A ⊆

1
2Ā. Now there exists x2 ∈ 1

2A such
that ∥x − x1 − x2∥ ≤ r/22, that is, x2 ∈ Br/22(x − x1) ∩ Br/2(0) ⊆ 1

22A. Continuing this, we get a
sequence (xn) in A such that xn ∈ 1

2n−1A and ∥x−
∑n
k=1 xk∥ < r

2n . It follows that
∑n
k=1 xk → x as

n→∞.
By countable sub-additivity of p, it follows that

p(x) = p

Ç ∞∑
k=1

xk

å
≤
∞∑
k=1

p (xk) .

As xk ∈ 1
2kA, therefore p(xk) < 1

2k by definition of A. Thus,
∑∞
k=1 p(xk) ≤ 1, and thus p(x) ≤ 1. As

x ∈ Br(0) was arbitrary, we have thus shown that p(Br(0)) ≤ 2, as required.

Theorem 18.11.0.11. One can derive OMT, UBP, CGT from Zabreiko’s lemma (Theorem 18.11.0.7).

Proof. (Zabreiko ⇒ OMT) Let T : X ↠ Y be a surjective linear transformation between Banach
spaces. By translation and scaling homeomorphism, we reduce to showing that T (B1(0)) is open.
Define

p : Y −→ R≥0
y 7−→ inf{∥x∥ | Tx = y}.

We claim that p is a countably subadditive semi-norm, so that by Theorem 18.11.0.7, we will get p
is continuous. This is sufficient as

T (B1(0)) = p−1([0, 1))

which is easy to see. So we reduce to showing that p is a countably subadditive seminorm.
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1. p is countably subadditive : Let
∑
n yn be a covergent series in Y . We wish to show that

p (
∑
n yn) ≤

∑
n p(yn). Indeed, fix ϵ > 0. We get the following

p(yn) +
ϵ

2n ≥ ∥xn∥

for each n ∈ N where xn ∈ X is such that Txn = yn. Summing till N we get

N∑
n=1

p(yn) +
N∑
n=1

ϵ

2n ≥
N∑
n=1
∥xn∥ ≥ ∥

N∑
n=1

xn∥

and since T (x1 + · · ·+ xn) =
∑N
n=1 yn, we get that ∥x1 + · · ·+ xn∥ ≥ p(

∑N
n=1 yn). This yields

that

N∑
n=1

p(yn) +
N∑
n=1

ϵ

2n ≥ p
(

N∑
n=1

yn

)
.

Taking N →∞ and then ϵ→ 0, the result follows.
2. p is a seminorm : Fact that p(cy) = |c| y is immediate from definition. Subadditivity follows

from item 1.
(Zabreiko ⇒ UBP) Let X,Y be Banach and (Ti)i∈I ⊆ B(X,Y ) be a family of bounded linear
transformations such that for all x ∈ X , the set (Ti(x))i∈I ⊆ Y is bounded. We wish to show that
(∥Ti∥)i∈I is bounded in R.

Consider

p : X −→ R≥0
x 7−→ sup

i∈I
∥Ti(x)∥.

We claim that p is a countably subadditive seminorm. Indeed, then it would follow by Theorem
18.11.0.7 that p is continuous. Then there exists δ > 0 such that ∥x∥ < δ implies |p(x)| ≤ 1. As p is
a seminorm, therefore we would obtain

∥x∥ < 1 =⇒ p(x) < 1/δ.

As ∥Ti∥ = sup∥x∥<1 ∥Tix∥ and p(x) < 1/δ for ∥x∥ < 1 where

p(x) = sup
i∈I
∥Tix∥ < 1/δ

therefore ∥Tix∥ < 1/δ for all ∥x∥ < 1, which would thus tield ∥Ti∥ ≤ 1/δ, as required. So we
reduce to showing that p is a countably subadditive seminorm.

1. p is countably subadditive : Let
∑
n xn be a convergent series in X . We wish to show that

p (
∑
n xn) ≤

∑
n p(xn). Indeed, we have

p

Ç∑
n

xn

å
= sup

i∈I
∥Ti

Ç∑
n

xn

å
∥ = sup

i∈I
∥
∑
n

Tixn∥ ≤ sup
i∈I

∑
n

∥Tixn∥ ≤
∑
n

sup
i∈I
∥Tixn∥ =

∑
n

p(xn)

where supi∈I ∥Tixn∥ exists and is bounded as by hypothesis, the set (Tix)i∈I is bounded for
any x ∈ X . This shows that p is countably subadditive.
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2. p is a seminorm : Fact that p(cy) = |c| y is immediate from definition. Subadditivity follows
from item 1.

(Zabreiko⇒ CGT) Let T : X → Y be a linear transformation between Banach spaces. We wish to
show that T is bounded if and only if Γ(T ) ⊆ X × Y is closed.

(⇒) is immediate by considering the inverse image at 0 of X × Y → Y of (x, y) 7→ Tx− y.
(⇐) Consider the following function

p : X −→ R≥0
x 7−→ ∥Tx∥.

We claim that p is a countably subadditive seminorm. Indeed, this would imply that p is continu-
ous by Theorem 18.11.0.7. Note that it is sufficient to show that {∥Tx∥ | ∥x∥ < 1} is bounded. But
this set is same as p(B1(0)). Thus, we reduce to showing that p(B1(0)) is bounded. Indeed, this
follows as there exists δ > 0 such that

∥x∥ < δ =⇒ p(x) < 1

which by seminorm property is equivalent to

∥x∥ < 1 =⇒ p(x) < 1/δ.

This shows that p(B1(0)) < 1/δ, as needed. We thus reduce to showing that p is a countably
subadditive seminorm.

1. p is countably subadditive : Let
∑
n xn be a convergent series in X . We wish to show that

p (
∑
n xn) ≤

∑
n p(xn). Indeed, we have

p

Ç∑
n

xn

å
= ∥T

Ç∑
n

xn

å
∥

where since (
∑n
k=1 xk,

∑n
k=1 Txk) is in the graph and is convergent where graph is closed,

therefore T (
∑
n xn) =

∑
n Txn. Thus,

∥T
Ç∑

n

xn

å
∥ = ∥

∑
n

Txn∥ ≤
∑
n

∥Txn∥ =
∑
n

p(xn).

This shows that p is countably subadditive.
2. p is a seminorm : Fact that p(cy) = |c| y is immediate from definition. Subadditivity follows

from item 1.
This completes the proof of Theorem 18.11.0.7.

This completes the proof.

18.12 Strong & weak convergence

These are important definitions as these protray that how fundamental importance this topic gives
to functionals, anyways, its functional analysis so we must be very comfortable with constructing
and manipulating functionals on a normed linear space.
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Definition 18.12.0.1 (Strong & weak convergence). Let X be a normed linear space and (xn) ⊆ X
be a sequence in X . Then, (xn) is said to be strongly convergent if there exists x ∈ X such that
∥xn − x∥ → 0 as n → ∞. Further (xn) is said to be weakly convergent if there exists x ∈ X such
that for all functionals f ∈ X∗, the sequence (f(xn)) → f(x) in K. In the former case x is said to
be the strong limit and in the latter case x is said to be the weak limit.

The following showcases a nice property of weak convergence.

Proposition 18.12.0.2. Let X be a normed linear space and xn → x weakly in X . Then

∥x∥ ≤ lim inf
n→∞

∥xn∥.

Proof. As f(xn)→ f(x) for all f ∈ X∗, therefore we will construct a functional using Hahn-Banach
through which the desrired inequality is straightforward. Indeed, by separation theorem applied
on point x, we get that there exists f ∈ X∗ such that ∥f∥ = 1 and f(x) = ∥x∥. Consequntly, we get
by weak convergence that

f(xn)→ f(x) = ∥x∥.

Now, for each n ∈ N we have

|f(xn)| ≤ ∥f∥∥xn∥ = ∥xn∥.

Taking liminf both sides, we obtain

lim inf
n→∞

|f(xn)| ≤ lim inf
n→∞

∥xn∥.

As f(xn)→ f(x), therefore lim infn→∞ |f(xn)| = |f(x)| = ∥x∥. Thus we get

∥x∥ ≤ lim inf
n→∞

∥xn∥,

as required.

Definition 18.12.0.3 (Weakly Cauchy and complete). A normed linear space X is weakly complete
if every weakly Cauchy sequence is weakly convergent, where a sequence (xn) in X is weakly
Cauchy if for all f ∈ X∗, the sequence (f(xn)) is Cauchy. Thus, unravelling this, we have thatX is
weakly complete if for any sequence (xn) in X such that (f(xn)) is Cauchy in K for each f ∈ X∗,
there exists x ∈ X such that f(xn)→ f(x) for each f ∈ X∗.

Proposition 18.12.0.4. Any reflexive normed linear space X is weakly complete.

Proof. Recall X is reflexive if the James map ev : X → X∗∗ is surjective. Since we have seen that
ev is an isometric embedding, therefore reflexivity tells us ev is an isometric isomorphism.

To show that X is weakly complete, pick any weakly Cauchy sequence (xn) in X . Then, for
each f ∈ X∗, the sequence f(xn) is Cauchy in K. As K is complete, it follows that f(xn) converges
and let f(xn)→ cf where cf ∈ K. We claim that the mapping

ϕ : X∗ −→ K
f 7−→ cf
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is a bounded linear map. This will complete the proof as by reflexivity we will have a unique
x ∈ X such that evx = ϕ and thus evx(f) = f(x) = cf = ϕ(f), that is,

f(x) = lim←−
n→∞

f(xn)

for all f ∈ X∗, which shows that (xn) weakly convergent, as required. We thus reduce to proving
that ϕ is a bounded linear map.

To see linearity, pick any f, g ∈ X∗ and α ∈ K to observe that

ϕ(f + αg) = cf+αg = lim←−
n

(f + αg)(xn) = lim←−
n

f(xn) + α lim←−
n

g(xn) = cf + αcg

since each f(xn) and g(xn) converges because they are Cauchy. To see boundedness, we first show
that the set {xn} ⊆ X is a bounded set. Indeed, by a corollary of uniform boundedness principle
we have that a set Y ⊆ X is bounded if and only if f(Y ) ⊆ K is bounded for each f ∈ X∗. For
Y = {xn} and any f ∈ X∗, we see that f(Y ) = (f(xn)) is bounded as f(xn) → cf . It follows that
{xn} is a bounded set, as required. Consequently, let ∥xn∥ ≤M for all n ∈ N. We thus have

|ϕ(f)| = |cf | = lim←−
n

|f(xn)| ≤ lim sup
n
∥f∥∥xn∥ ≤ ∥f∥ ·M.

Hence, ϕ is a bounded linear map, as required.
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Homological Methods
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Methods employed in homological algebra comes in handy to attack certain type of local-
global problems in geometry. We would like to discuss some foundational homological algebra in
this chapter in the setting of additive and abelian categories. The main goal is not to illuminate
foundations but to quickly get to the working theory which can allow us to develop deeper results
elsewhere in this notebook. Using the Freyd-Mitchell embedding theorem, we can always assume
that any (small) abelian category A is a full subcategory of Mod(R) over some ring R. Thus we
will freely do the technique of diagram chasing in the following, implicitly assuming A to be
embedded in a module category. Consequently, the main example to keep in mind throughout
this chapter is of-course the category of R-modules, Mod(R).

19.1 The setup : abelian categories

Let us begin with the basic definitions. Let A be a category. Then A is said to be preadditive if
for any x, y ∈ A, the homset Hom (x, y) is an abelian group and the composition Hom (x, y) ×
Hom (y, z)→ Hom (x, z) is a bilinear map. For two preadditive categories A,B a functor F : A→
B is called additive if for all x, y ∈ A, the function HomA (x, y)→ HomB (Fx, Fy) is a group homo-
morphism.

793
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Let A be a preadditive category and f : x → y be an arrow. This mean for any two object
w, z ∈ A, there is a zero arrow 0 ∈ Hom (w, z). Then, we can define the usual notions of algebra
as follows.

1. i : Ker (f)→ x is defined by the following universal property w.r.t. fi = 0:

x′

Ker (f) x y
fi

∀g s.t. fg=0∃!

2. j : y → CoKer (f) defined by the following universal property w.r.t. jf = 0:

y′

x y CoKer (f)f j

∀g s.t. gf=0
∃! .

3. k : x→ CoIm (f) is defined to be the cokernel of the kernel map i : Ker (f)→ x.
4. l : Im (f)→ y is defined to be the kernel of the cokernel map j : y → CoKer (f).

Hence, for each f : x→ y in a preadditive category A, we can contemplate the following four type
of maps:

Ker (f) CoKer (f)

x y

CoIm (f) Im (f)

f

Lemma 19.1.0.1. In a preadditive category, if a coproduct x⊕ y exists, then so does the product x× y and
vice versa. In such a case, x⊕ y ∼= x× y.

A preadditive category A is said to be additive if it contains all finite products, including the
empty ones. By the above lemma, we require zero objects and sums of objects to exist.

An additive category A is said to be abelian if all kernels and cokernels exist and the natural
map for each f : x→ y in A

CoIm (f)→ Im (f)

is an isomorphism. This intuitively means that the first isomorphism theorem holds in abelian
categories by definition.
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19.2 Homology, resolutions and derived functors

In this section, we shall discuss basic topics of homological algebra in abelian categories, which
we shall need to setup the sheaf cohomology in geometry and Lie group cohomology in algebra
and etcetera, etcetera.

19.2.1 Homology

We first define cochain complexes and maps, cohomology and homotopy of such. Since this sec-
tion is mostly filled with trivial matters, therefore we shall allow ourselves to be a bit sketchy with
proofs.

Definition 19.2.1.1. (Cochain complexes, maps and cohomology) A cochain complex A• is a se-
quence of object {Ai}i∈Z with a map di : Ai → Ai+1 called the coboundary maps which satisfies
di ◦ di−1 = 0 for all i ∈ Z. A map f : A• → B• of cochain complexes is defined as a collection of
maps f i : Ai → Bi such that the following commutes

Ai Ai+1

Bi Bi+1

f i f i+1

di

di

.

That is, dif i = f i+1di for each i ∈ Z. For a cochain complex A•, we define the ith cohomology
object as the quotient

hi(A•) := Ker
(
di
)
/Im

(
di−1

)
.

With the obvious notion of composition, we thus obtain a category of cochain complexes coCh (A)
over the abelian category A.

We now show that hi forms a functor over coCh (A ).

Lemma 19.2.1.2. Let A be an abelian category. The ith-cohomology assignment is a functor

hi : coCh (A ) −→ A

A• 7−→ hi(A•).

Proof. For a map of complexes f : A• → B•, we first define the map hi(f)

hi(f) : hi(A•) −→ hi(B•)
a+ Im

(
di−1

)
7−→ f i(a) + Im

(
di−1

)
.

This is well defined group homomorphism. Further, it is clear that this is functorial.

With this, we obtain the cohomology long-exact sequence.
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Lemma 19.2.1.3. Let A be an abelian category and 0 → A• → B• → C• → 0 a short-exact sequence in
coCh (A). Then there is a map δi : hi(C•) → hi+1(A•) for each i ∈ Z such that the following is a long
exact sequence

hi(A•) hi(B•) hi(C•)

hi+1(A•) hi+1(B•) hi+1(C•)

δi .

Proof. (Sketch) The proof relies on chasing an element c ∈ Ker (d) of Ci till we obtain an element
a ∈ Ai+1 in Ker (d), in the following diagram:

0 Ai−1 Bi−1 Ci−1 0

0 Ai Bi Ci 0

0 Ai+1 Bi+1 Ci+1 0

d

d

d

d

d

d

The chase is straightforward and is thus omitted. The resultant map is indeed a well-defined
group homomorphism.

We now define homotopy of maps of complexes

Definition 19.2.1.4. (Homotopy between maps) Let A be an abelian category and f, g : A• → B•

be two maps of cochain complexes. Then a homotopy between f and g is defined to be a collection
of maps k := {ki : Ai → Bi−1}i∈Z such that f i − gi = dki + ki+1d for each i ∈ Z:

Ai Ai+1

Bi−1 Bi

f igi
d

d

ki

ki+1
.

As one might expect, homotopic maps induces same (not isomorphic, but actually same) maps
on cohomology.

Lemma 19.2.1.5. Let A be an abelian category and f, g : A• → B• be two maps of cochain complexes. If
k : f ∼ g is a homotopy between f and g, then hi(f) = hi(g) as maps hi(A•)→ hi(B•) for all i ∈ Z.

Proof. (Sketch) Pick any a ∈ Ker (d) inAi. We wish to show that f i(a)−gi(a) ∈ Im (d). This follows
from unravelling the definition of homotopy k : f ∼ g.

We now define the notion of exact functors between two abelian categories.



19.2. HOMOLOGY, RESOLUTIONS AND DERIVED FUNCTORS 797

Definition 19.2.1.6. (Exactness of functors) Let A and B be abelian categories. A functor F : A→
B is said to be

1. additive if the map HomA (A,B)→ HomB (FA,FB) is a group homomorphism,
2. left exact if it is additive and for every short exact sequence 0 → A′ → A → A′′ → 0 the

sequence 0→ FA′ → FA→ FA′′ is exact,
3. right exact if it is additive and for every short exact sequence 0 → A′ → A → A′′ → 0 the

sequence FA′ → FA→ FA′′ → 0 is exact,
4. exact if it is additive and for every short exact sequence 0→ A′ → A→ A′′ → 0 the sequence

0→ FA′ → FA→ FA′′ → 0 is exact,
5. exact at middle if it is additive and for every short exact sequence 0→ A′ → A→ A′′ → 0 the

sequence FA′ → FA→ FA′′ is exact.

Remark 19.2.1.7. It is important to keep in mind that all the above definitions are made for short
exact sequences; a left exact A functor may not map a long exact sequence 0→ A1 → . . . to a long
exact sequence 0→ FA1 → . . . .

There are two prototypical examples of such functors in the category of R-modules.

Example 19.2.1.8. (− ⊗R M and HomR (M,−)) Let R be a commutative ring and M be an R-
module. It is a trivial matter to see that the functor − ⊗R M : Mod(R) → Mod(R) is right exact
but not left exact as applying −⊗Z Z/mZ on the following shows where gcd(n,m) = 1:

0→ nZ→ Z→ Z/nZ→ 0.

Indeed, nZ⊗Z Z/mZ→ Z/mZ is not injective as the former is an infinite ring whereas the latter is
finite.

Consider the covariant hom-functor HomR (M,−) : Mod(R) → Mod(R). This can easily
be seen to be left exact. This is not right exact as applying HomZ (Z/nZ,−) to the above exact
sequence would yield (note that HomZ (Z/nZ,Z) = 0).

We next dualize the above theory study the dual notion of homology, without much change.
TODO.

19.2.2 Resolutions

We begin with injective objects, resolutions and having enough injectives.

Definition 19.2.2.1. (Injective objects and resolutions) Let A be an abelian category. An object
I ∈ A is said to be injective if the functor thus represented, HomA (−, I) : Aop → AbGrp is exact.
An injective resolution of an object A ∈ A is an exact cochain complex

A
ϵ→ I0 → I1 → . . .

where each Ii is an injective object. We denote an injective resolution of A by ϵ : A→ I•.

The following are equivalent characterizations of injective objects.

Proposition 19.2.2.2. Let A be an abelian category and I ∈ A. Then the following are equivalent
1. The functor HomA (−, I) is exact.
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2. For any monomorphism i : A → B and any map f : A → I , there is an extension f̃ : B → I to
make following commute

0 A B

I

i

f
f̃

.

3. Any exact sequence

0→ I → A→ B → 0

splits.

Proof. 1. ⇒ 2. is immediate from definition. 2. ⇒ 3. follows from using the universal property
of item 2 on id : I → I and monomorphism 0 → I → A. For 3. ⇒ 1., we need only check right
exactness of HomA (−, I), which follows immediately from item 3.

The following are some properties of injective objects.

Proposition 19.2.2.3. Let A be an abelian category. If {Ii}i is a collection of injective objects of A and∏
i Ii exists, then it is injective.

Proof. As HomA (−,
∏
i Ii) ∼=

∏
i HomA (−, Ii) and arbitrary product of surjective maps is surjec-

tive, therefore the claim follows.

We see that any two injective resolutions of an object are homotopy equivalent.

Lemma 19.2.2.4. Let A be an abelian category and A ∈ A be an object with two injective resolutions
ϵ : A→ I• and η : A→ J•. Then there exists a homotopy k : ϵ ∼ η.

Proof. Comparison Theorem 2.3.7, pp 40, [cite Weibel Homological Algebra].

We then define when an abelian category has enough injectives.

Definition 19.2.2.5. (Enough injectives) An abelian category A is said to have enough injectives
if for each object A ∈ A, there is an injective object I ∈ A such that A is a subobject of I , A ≤ I .

In such abelian categories, all objects have injective resolutions.

Lemma 19.2.2.6. Let A be an abelian category with enough injectives. Then all objects A ∈ A admit
injective resolutions ϵ : A→ I•.

Proof. Pick any object A ∈ A. As A has enough injectives, therefore we have 0 → A
ϵ→ I0.

Consider CoKer (ϵ) and let it be embedded in some injective object I1, which yields the following
diagram

0 A I0 I1

CoKer (ϵ)

ϵ d

.
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Continue this diagram by considering CoKer (d) which embeds in some other injective I2 to fur-
ther yield the following diagram

0 A I0 I1 I2

CoKer (ϵ) CoKer (d)

ϵ d d

.

This builds the required injective resolution.

We now give examples of abelian categories with enough injectives. Recall that a divisible group
G is an abelian group such that for any g ∈ G and ay n ∈ Z there exists h ∈ G such that g = nh
(see Definition 16.13.2.1).

Theorem 19.2.2.7. Let R be a commutative ring with 1. Then,
1. Any divisible group in AbGrp is an injective object.
2. If G is an injective abelian group, then HomZ (R,G) is an injective R-module.
3. AbGrp is an abelian category which has enough injectives.
4. Mod(R) is an abelian category which has enough injectives.

Proof. The main idea of the proofs of the later parts is to use injective objects constructed in a
bigger category and an adjunction to a lower category to construct injectives in the smaller sub-
category. Further, embedding each object in a large enough product of injectives (which would
remain injective by Proposition 19.2.2.3) would show enough injectivity.

1. By Corollary 16.13.2.3, the statement follows.

2. Recall that F (−) : Mod(R) ⇄ AbGrp : HomZ (R,−) is an adjunction, where F is the for-
getful functor. Consequently HomZ (F (M), G) ∼= HomR (M,HomZ (R,G)). It then follows that
HomZ (R,G) is injective.

3. Observe that Q/Z is a divisible, thus injective abelian group by item 1. Let G be an abelian
group. Consider the abelian group

I =
∏

HomZ(G,Q/Z)
Q/Z.

By Proposition 19.2.2.3, I is an injective abelian group. We now construct an injection ϕ : G → I ,
which would complete the proof. We have the canonical map

θ : G −→ I

g 7−→ (ϕ(g))ϕ∈HomZ(G,Q/Z).

For this to be well-defined, we need to show that HomZ (G,Q/Z) is non-zero. Indeed, we claim
that for any element g ∈ G, there is a Z-linear map ϕg : G→ Q/Z such that ϕg(g) ̸= 0. This would
suffice as if θ(g) = 0 for some g ∈ G, then ϕ(g) = 0 for all ϕ ∈ HomZ (G,Q/Z). Consequently,
ϕg(g) = 0, which cannot happen, hence θ is injective. So we need only show the existence of
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ϕg. Indeed, if |g| = ∞, then we have an injection Z ↪→ G taking 1 7→ g. Pick any non-zero map
f : Z → Q/Z. By injectivity of Q/Z, f extends to ϕg : G → Q/Z which is non-zero at g. On the
other hand, if |g| = k < ∞, then consider the inclusion Z/kZ ↪→ G taking 1̄ 7→ g. Then, consider
the map f : Z/kZ → Q/Z taking 1̄ 7→ 1

k . Then, by injectivity of Q/Z, it extends to ϕg : G → Q/Z
which is non-zero at g.

4. Pick any R-module M . We wish to find an injective R-module I such that M ≤ I . By items
1 and 2, we know that HomZ (R,Q/Z) is an injective R-module. By the proof of item 2, we also
know that

HomZ (M,Q/Z) ∼= HomR (M,HomZ (R,Q/Z)).

Conseuqently, by Proposition 19.2.2.3, we have an injective module

I =
∏

HomZ(M,HomZ(R,Q/Z))
HomZ (R,Q/Z),

We claim that the following map

θ :M −→ I

m 7−→ (ϕ(m))ϕ∈HomZ(M,HomZ(R,Q/Z))

is injective. Indeed, we claim that for each m ∈ M , there exists ϕm ∈ HomZ (M,HomZ (R,Q/Z))
such that ϕm(m) ̸= 0. By the above isomorphism, we equivalently wish to show the existence of
gm ∈ HomZ (M,Q/Z) such that gm(m) ̸= 0. This is immediate from the proof of item 3.

We next dualize the above theory and study projective objects, projective resolutions and hav-
ing enough projectives to define homology. TODO.

19.2.3 Derived functors and general properties

First, for each covariant left exact functor F : A→ B between abelian categories, we will produce
a sequence of functors RiF for each i ≥ 0. We will then dualize it.

Definition 19.2.3.1. (Right derived functors of a left-exact functor) Let F : A → B be a left exact
functor of abelian categories where A has enough injectives. Then, define for each i ≥ 0 the
following

RiF : A −→ B

A 7−→ hi(F (I•))

where ϵ : A → I• is any injective resolution of A. We call RiF the ith right derived functor of the
left exact functor F .

Remark 19.2.3.2. Indeed the above definition is well-defined, by Lemmas 19.2.1.5 and 19.2.2.4.
Further, keep in mind the Remark 19.2.1.7.

Some of the basic properties of right derived functors are as follows. First, the 0th-right derived
functor of F is canonically isomorphic to F .
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Lemma 19.2.3.3. Let A,B be two abelian categories where A has enough injectives. Let F : A → B be a
left-exact functor. Then, there is a natural isomorphism

R0F ∼= F.

Proof. Pick any object A ∈ A with an injective resolution 0 → A
ϵ→ I•. Consequently, R0F (A) is

the cohomology of

0→ F (I0) Fd
0
→ F (I1),

that is, R0F (A) = Ker
(
Fd0

)
. But since F is left-exact and we have the following exact sequence

0→ A
ϵ→ I0

d0→ Im
(
d0
)
,

therefore we get that Ker
(
Fd0

)
= Im (Fϵ). This also needs the observation that if F is left-exact,

then for any map f ∈ A, we have F (Im (f)) ∼= Im (Ff). Since ϵ is injective, then so is Fϵ and thus
Im (Fϵ) ∼= FA.

Remark 19.2.3.4. Let I ∈ A be an injective object. Then we claim that RiF (I) = 0 for all i ≥ 1.

Indeed, this follows immediately because we have 0→ I
id→ I → 0 as a trivial injective resolution

of I .

The following is an important property of right derived functors which makes them ideal
for defining the general notion of cohomology, because they always have long exact sequene in
cohomology.

Theorem 19.2.3.5. Let A,B be two abelian categories where A has enough injectives. Let F : A→ B be a
left-exact functor. If

0→ A→ B → C → 0

is a short exact sequence in A, then we have a long exact sequence in right derived functors of F as in

0 R0FA R0FB R0FC

R1FA R1FB R1FC

δ0

δ1

.

It follows from above theorem that if F is exact, then RiF are trivial for i ≥ 1.

Corollary 19.2.3.6. Let A,B be two abelian categories where A has enough injectives. Let F : A → B be
an exact functor. Then,

RiF = 0

for all i ≥ 1.
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Proof. Pick any object A ∈ A and let I ∈ A be an an injective object such that 0 → A → I is an
injective map. Then we have a short-exact sequence

0→ A→ I → B → 0

whereB = I/A. By Theorem 19.2.3.5, Lemma 19.2.3.3 and Remark 19.2.3.4, it follows that we have
a long exact sequence in right derived functors of F as in

RiFA 0 RiFB

Ri+1FA 0 Ri+1FB

δi
.

It follows from exactness of the above sequence that RiFB ∼= Ri+1FA for all i ≥ 1. Repeating the
same process for B (embedding B into an injective object and observing the resultant long exact
sequence), we obtain that

Ri+1FA ∼= R1FC

for some object C ∈ A. Replacing A by C, it thus suffices to show that R1FA = 0.
In the beginning of the above long exact sequence we have

0 FA FI FB

R1FA 0 R1FB

δ0

from which it follows via exactness that δ0 is surjective and Ker (δ0) = FB. We then deduce that
R1FA = 0, as required.

Injective resolutions might be hard to find in general, but given a left exact functor F , it would
be somewhat easier to find objects J such that RiF (J) = 0 for all i ≥ 1. The remarkable property
of such objects is that it can help to calculate the value of right derived functors of F for objects
admitting resolutions by them.

Definition 19.2.3.7 (Acyclic resolution). Let A,B be two abelian categories where A have enough
injectives. Let F : A→ B be a left-exact functor. An object J ∈ A is said to be acyclic if RiF (J) = 0
for all i ≥ 1. An acyclic resolution of A ∈ A is an exact sequence of the form

0→ A
ϵ→ J0 → J1 . . .

where each J i is acyclic.
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The name "acyclic" is justified since they have zero cohomology, so all cocycles are cobound-
aries, so there are no cycles for that object.

Remark 19.2.3.8. Note that for an acyclic resolution 0 → A
ϵ→ J•, we have h0(F (J•)) ∼= FA by

following the steps as in the proof of Lemma 19.2.3.3.

We then have the following useful theorem.

Proposition 19.2.3.9. Let A,B be two abelian categories where A have enough injectives. Let F : A→ B
be a left-exact functor. For A ∈ A, let 0 → A

ϵ→ J• be an acyclic resolution. Then for all i ≥ 0, there is a
natural isomorphism

RiF (A) ∼= hi(F (J•)).

Derived functors are equivalent to datum of what is defined to be a universal δ-functor. In the
rest of this section we setup the definitions and only state the result.

TODO : Universal δ-functors.
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19.3 Results for Mod(R)
When the abelian category is that of modules over a commutative ring R, then we have some
special results which is very useful in homotopy theory.

19.3.1 Universal coefficients

19.3.2 Künneth theorem

19.3.3 ⊗-Hom adjunction
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20.7 Classical Čech cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

20.8 Derived functor cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

20.8.1 Flasque sheaves & cohomology of OX -modules . . . . . . . . . . . . . . . . 833
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The notion of sheaves plays perhaps the most important role in modern viewpoint of geometry.
It is thus important to understand the various constructions that one can make on them. We
assume the reader knows the definition of a sheaf on a space X and morphism of sheaves. We
begin with some recollections.

20.1 Recollections

Remark 20.1.0.1 (Map on stalks). Recall that a map of sheaves ϕ : F → G on X defines for each
point x ∈ X a map of stalks ϕx : Fx → Gx given by sx 7→ ϕU (s)x where s is a section of F over
U ⊆ X . One can check quite easily that this is well-defined and that this map ϕx is in-fact the

805
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unique map given by the universal property of the colimit in the diagram below:

G(U) lim−→V ∋x G(V )

F(U) lim−→V ∋x F(V )

ϕU ϕx .

Hence ϕx is the unique map which makes the above diagram commute.

Remark 20.1.0.2 (Subsheaves). Recall that F ↪→ G is a subsheaf if F(U) ⊆ G(U) such that forU ↪→ V ,
the restriction map ρV,U : G(V )→ G(U) restricts to ρV,U : F(V )→ F(U).

Remark 20.1.0.3 (Constant sheaves). For an abelian groupA and a spaceX , one defines the constant
sheaf A as the sheaf which for each open set U ⊆ X assigns A(U) = {s : U → A | s is continuous},
whereA is given the discrete topology. One sees instantly that this is a sheaf. Further one observes
that if U = U1 ⨿ · · · ⨿ Uk where Ui are components of open set U and Ui are open, then A(U) ∼=
A⊕ · · · ⊕A k-times. In particular, for any open connected subset U , we get A(U) = A.

We now begin by showing how to construct a sheaf out of a presheaf over X .

20.2 The sheafification functor

Let X be a topological space, denote the category of presheaves on X by PSh(X) and denote the
category of sheaves overX by Sh(X). We have a canonical inclusion functor i : Sh(X) ↪→ PSh(X).
We construct it’s left adjoint commonly known as the process of sheafifying a presheaf.

Theorem 20.2.0.1. (Sheafification) Let X be a topological space and let F be a presheaf over X . Then there
exists a pair (F, iF ) of a sheaf F and a map iF : F → F such that for any sheaf G and a morphism of
presheaves ϕ : F → G, there exists a unique morphism of sheaves ϕ̃ : F → G such that the following
commutes

F G

F

iF ϕ

ϕ̃

,

that is, we have a natural bijection

HomPSh(X) (F,G) ∼= HomSh(X) (F,G).

Moreover:
1. (F, iF ) is unique upto unique isomorphism.
2. For every x ∈ X , the map on stalks iF,x : Fx → Fx is bijective.
3. For any map of presheaves ϕ : F → G, we get a map of sheaves ϕ̃ : F → G which is unique w.r.t. the

commuting of the following natural square:

F G

F G

ϕ̃

iF

ϕ

iG
.
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Hence we have a functor

(−)++ : PSh(X) −→ Sh(X)
F 7−→ F++ := F.

Proof. We explicitly construct the sheaf F out of F . We define the local sections of F by using
germs and turning the gluing condition of sheaf definition onto itself. In particular, define

F(U) :=
{
((six)x) ∈

∏
x∈U

Fx | ∀x ∈ U, ∃ open W ∋ x & t ∈ F (W ) s.t. ∀p ∈W, tp = (sip)p

}
.

The restriction map for U ↪→ V of F is given by ρV,U : F(V ) → F(U), ((six)x) 7→ ((six)x)x∈U ,
that is, ρV,U is just the projection map. Next, we show that F satisfies the gluing criterion and
that is where we will see how the above definition of sections of F came about. Take an open
set U ⊆ X and an open cover U =

⋃
i∈I Ui. Let si ∈ F(Ui) be a corresponding collection of

sections such that for all i, j ∈ I , we have ρUi,Ui∩Uj (si) = ρUj ,Ui∩Uj (sj). We wish to thus construct
a section t ∈ F(U) such that ρU,Ui(t) = si for all i ∈ I . Indeed let ((tix)x) ∈

∏
x∈U Fx where

t := (tix)x = (si)x if x ∈ Ui. Then since for any x ∈ U , there exists U ⊇ Ui ∋ x and si ∈ F(Ui) such
that ρU,Ui(t) = ((tix)x)x∈Ui = ((si)x)x∈Ui , we thus conclude that t ∈ F(U). So F satisfies the gluing
condition. The locality is quite simple. Next the map iF is given as follows on sections:

iF,U : F (U) −→ F(U)
s 7−→ (sx).

Now, it can be seen by definition of colimits that Fx = Fx. Finally, let G be a sheaf and let ϕ : F → G

be a morphism of presheaves, then we can define ϕ̃ by gluing the germs as follows:

ϕ̃U : F(U) −→ G(U)
((six)x) 7−→ [ϕWx(six)]

where [ϕWx(six)] denotes the unique section in G(U) that one gets by considering the open cover⋃
x∈U Wx where six ∈ F(Wx) and considering the gluing of corresponding sections ϕWx(six) ∈

G(Wx). These sections agree on intersections because ϕ is a natural transformation and (six) agree
on intersections as sections of F(U). Hence we have the unique map ϕ̃. Moreover, it is clear that
ϕ̃ ◦ iF = ϕ.

Corollary 20.2.0.2. Let F be a presheaf over a topological space X , then for all x ∈ X , Fx = (F++)x.

Proof. By construction of F++.

Corollary 20.2.0.3. If F is a sheaf over a topological space X , then F++ = F.

Proof. Follows immediately from the universal property of the sheafification, Theorem 20.2.0.1.
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Remark 20.2.0.4. The sections of sheaf F in an open set U containing x is defined in such a manner
so that f ∈ F(U) can be constructed locally out of sections of F . In particular, we can write F(U)
more clearly as follows

F(U) =
{
s : U →

∐
x∈U

Fx | ∀x ∈ U, s(x) ∈ Fx & ∃ open x ∈ V ⊆ U & ∃t ∈ F (V ) s.t. s(y) = ty ∀y ∈ V

}
.

Note that this is exactly the realization that F(U) is the set of section of the étale space of the sheaf
F (see Section 20.4). Most of the time in practice, we would work with the universal property
of F in Theorem 20.2.0.1 as it is much more amenable, but the above must be kept in mind as it
is used, for example, to make sure that certain algebraic constructions of OX -modules remains
OX -modules (no matter how trivial they may sound).

We note that sheafification and restrictions to open sets commute.

Lemma 20.2.0.5. Let X be a space, U ⊆ X be an open subset and F be a presheaf over X . Then,

(F |U )
++ ∼= (F++)

∣∣
U
.

Proof. Immediate from universal property of sheafification (Theorem 20.2.0.1).

20.3 Morphisms of sheaves

All sheaves are abelian sheaves in this section. One of the most important aspects of using sheaves
is that the injectivity and bijectivity of ϕx can be checked on sections. We first show that taking
stalks is functorial

Lemma 20.3.0.1. Let X be a topological space, F,G be two sheaves over X and x ∈ X be a point. Then the
following mapping is functorial:

Sh(X) −→ AbGrp
F 7−→ Fx

F
f→ G 7−→ Fx

fx→ Gx.

Proof. Immediate, just remember how composition of two natural transforms is defined.

Another simple lemma about sheaves and stalks is that equality of two sections can be checked
at the stalk level.

Lemma 20.3.0.2. Let X be a topological space and F be a sheaf over X . If s, t ∈ F(U) for some open
U ⊆ X such that (U, s)x = (U, t)x ∀x ∈ U , then s = t in F(U).

Proof. By equality on stalks, it follows that we have an open set Wx ∋ x in U for all x ∈ U such
that ρU,Wx(s) = ρU,Wx(t). The result follows from the unique gluing property of sheaf F.

The above result therefore show why almost all the time it is enough to work with stalks in
geometry. Let us now define an injective and surjective map of sheaves.
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Definition 20.3.0.3. (Injective & surjective maps) Let X be a topological space and F,G be two
sheaves on X . A map of sheaves f : F → G is said to be

1. injective if for all opens U ⊆ X , the local homomorphism fU : F(U)→ G(U) is injective,
2. surjective if for all opens U ⊆ X and all s ∈ G(U), there exists an open covering {Ui}i∈I such

that ρU,Ui(s) ∈ Im (fUi),
3. bijective if f is injective and surjective.

Heuristically, one may understand the notion of f being surjection by saying that every local
section of G is locally constructible by the image of F under the map f .

For each map of sheaves, we can also define two corresponding sheaves which are global
algebraic analogues of the local algebraic constructions.

Definition 20.3.0.4. (Quotient sheaf) Let X be a topological space and F be a sheaf on X . For
a subsheaf S ⊆ F, one defines the quotient sheaf F/S as the sheafification of the presheaf F/S
defined on open sets U ⊆ X by

F/S(U) := F(U)/S(U).

Definition 20.3.0.5. (Image & kernel sheaves) Let X be a topological space and F,G be two
sheaves over X and f : F → G be a morphism. Then,

1. image sheaf is the sheafification of the presheaf Im (f) defined on open sets U ⊆ X by

(Im (f))(U) := Im (fU ),

and we denote it by the same symbol, Im (f),
2. kernel sheaf is the sheafification of the presheaf Ker (f) defined on open sets U ⊆ X by

(Ker (f))(U) := Ker (fU )

and we denote it by the same symbol, Ker (f).

In both the above definitions, the important aspect is the sheafification of the canonical presheaves.

The main point is that one can check all the three notions introduced in Definition 20.3.0.3 for
f : F → G by checking on stalks fx : Fx → Gx for all x ∈ X .

Theorem 20.3.0.6. 1 Let X be a topological space and F,G be two sheaves over X . Then, a map f : F → G

is
1. injective if and only if fx : Fx → Gx is injective for all x ∈ X ,
2. surjective if and only if fx : Fx → Gx is surjective for all x ∈ X ,
3. bijective if and only if fx : Fx → Gx is bijective for all x ∈ X ,
4. an isomorphism if and only if fx : Fx → Gx is bijective for all x ∈ X2.
5. an isomorphism if and only if f : F → G is bijective.

1Exercise II.1.2, II.1.3 and II.1.5 of Hartshorne.
2In general, we should write "... if and only if fx : Fx → Gx is an isomorphism", but since we are in the setting of

abelian sheaves and bijective homomorphism of abelian groups is an isomorphism, so we can get away with this.
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Proof. The proof is more of an exercise to get a familiarity with the flexibility of sheaf language.
The main idea almost everywhere is to do some local calculations and use sheaf axioms to con-
struct a unique section out of local sections.

1. (L⇒ R) We wish to show that fx is injective. Suppose for two (U, s)x, (V, t)y ∈ Fx we have
fx((U, s)x) = fx((V, t)x) ∈ Gx, which translates to (U, fU (s))x = (V, fU (t))x. We wish to
show that (U, s)x = (V, t)y. By definition of equality on stalks, we obtain open W ⊆ U ∩ V
containing x such that

ρU,W (fU (s)) = ρV,W (fV (t)).

By the fact that f is a natural transformation, we further translate the above equality to

fW (ρU,W (s)) = fW (ρV,W (t)).

By injectivity of homomorphism fW , we obtain

ρU,W (s) = ρV,W (t)

in F(W ). Hence by the definition of equality on stalks, we obtain (U, s)x = (V, t)x.

(R ⇒ L) Pick any open U ⊆ X . We wish to show that fU : F(U) → G(U) is injective. Let
s ∈ F(U) be such that fU (s) = 0. Thus for all x ∈ U , we have (U, fU (s))x = 0. Further, by
definition of the map fx, we obtain fx((U, s))x = (U, fU (s))x = 0. By injectivity of fx, we
obtain (U, s)x = 0 for all x ∈ U3. By definition of equality on stalks, we obtain an open cover
{Wx}x∈U such that x ∈ Wx and s|Wx

:= ρU,Wx(s) = 0. Since f is a natural transformation,
we therefore obtain that {s|Wx

}x∈U is a matching family, i.e. on intersections of Wx,Wy, the
corresponding sections agree. Hence, there is a unique glue of {s|Wx

}x∈U denote t ∈ F(U).
Since each s|Wx

= 0, therefore we have two glues of the family over U , one is 0 and the other
is s. By uniqueness of the glue, it follows that s = 0.

2. (L ⇒ R) Pick any x ∈ X . We wish to show that fx : Fx → Gx is surjective. Pick any
(V, t)x ∈ Gx. We wish to show that for some open U ∋ x, we have (U, s)x ∈ Fx such that

(V, t)x = (U, fU (s))x.

Since t ∈ G(V ), therefore by surjectivity of f that there exists an open cover {Vi}i∈I of V such
that

ρV,Vi(t) ∈ Im (fVi).

Therefore we may pick si ∈ F(Vi) such that

ρV,Vi(t) = fVi(si)
= fVi(ρVi,Vi(si))
= ρVi,Vi(fVi(si)).

Thus, (V, t)x and (Vi, fVi(si))x are same.

3We could be done right here by Lemma 20.3.0.2.
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(R⇒ L) We wish to show that f : F → G is surjective. Pick any open set V ⊆ X and t ∈ G(V ).
We wish to find an open cover {Wi} of V such that si ∈ F(Vi) and fVi(si) = ρV,Vi(t). Since
we have (V, t)x ∈ Gx for all x ∈ V , therefore by surjectivity of each fx : Fx → Gx, we obtain
germs (Wx, sx)x ∈ Fx such that (Wx, fWx(sx))x = (V, t)x for all x ∈ V . By shrinking Wx and
restricting sx, we may assume {Wx} covers V . Thus we have an open cover of V such that
for all sx ∈ F(Wx), we have fWx(sx) = ρV,Wx(t).

3. Trivially follows from 1. and 2.
4. (L⇒ R) Use the fact that taking stalks is a functor (Lemma 20.3.0.1).

(R⇒ L) Let gx : Gx → Fx be the inverse homomorphism of fx for each x ∈ X . Using gx, we
can easily construct a sheaf homorphism g : G → F which will be the inverse of f . Indeed,
consider the following map for any open U ⊆ X

gU : G(U) −→ F(U)
t 7−→ s

where s ∈ F(U) is formed as the unique glue of the matching family

{sx ∈ F(Ux)}x∈U

where (U, t)x = (Ux, fUx(sx))x for each x ∈ U andUx ⊆ U . In particular, sx = gx((Ux, ρU,Ux(t))x).
This is obtained via the bijectivity of fx. Consequently, g is a sheaf homomorphism, which
is naturally the inverse of f .

5. Follows from 3. and 4.

The following theorem further tells us that our intuition about algebra can be globalized, and
equality of sheaf morphisms can be checked on each stalk.

Theorem 20.3.0.7. Let X be a topological space and F,G be two sheaves over X . Then, a map f : F → G

1. is injective if and only if the kernel sheaf Ker (f) is the zero sheaf,
2. is surjective if and only if the image sheaf Im (f) is G,
3. is equal to another map g : F → G if and only if fx = gx for all x ∈ X .

Proof. The main idea in most of the proofs below is to either use the definition or the universal
property of sheafification.

1. (L ⇒ R) Let f : F → G be injective. We wish to show that Ker (f) = 0. Since the kernel
presheaf ker f = 0, therefore its sheafification Ker (f) = 0.
(R⇒ L) Let Ker (f) = 0. We wish to show that f is injective. Suppose to the contrary that
f is not injective. We have that (Ker (f))x = 0 for all x ∈ X . Thus there exists an open set
U ⊆ X such that fU : F(U) → G(U) is not injective. Hence, there exists, 0 ̸= s ∈ F(U) such
that fU (s) = 0. Thus, we have an element (U, s)x ∈ (ker f)x = (Ker (f))x = 0 for all x ∈ U .
Hence s = 0 by Lemma 20.3.0.2, which is a contradiction.

2. (L⇒ R) Let f : F → G be a surjective map. In order to show that Im (f) = G, we will show
that G satisfies the universal property of sheafification (Theorem 20.2.0.1). For this, consider
a sheaf H and a presheaf map h : im (f) → H. Consider the inclusion map ι : im (f) ↪→ G.
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We will construct a unique sheaf map h̃ : G → H which will be natural such that h̃ ◦ ι = h.
Pick any open set U ⊆ X . We wish to define the map

h̃U : G(U) −→H(U).

Take t ∈ G(U). By surjectivity of f , there exists a covering {Ui} of U and matching family
si ∈ F(Ui) for all i such that

fUi(si) = ρU,Ui(t) =: ti.

We shall construct an element h̃U (t) ∈H(U). Indeed, we first claim that

{hUi(ti) ∈H(Ui)}i

is a matching family. This can be shown by keeping the following diagram in mind and the
fact that {si} is a matching family:

H(Ui) im (fUi) F(Ui)

H(Ui ∩ Uj) im
(
fUi∩Uj

)
F(Ui ∩ Uj)

ρUi,Ui∩Uj ρUi,Ui∩Uj

hUi

hUi∩Uj

fUi

ρUi,Ui∩Uj

fUi∩Uj

.

Thus we get a unique glue which we define to be the image of h̃U for the section t ∈ G(U),
denoted h̃U (t) ∈H(U). Uniqueness and naturality follows from construction.
(R ⇒ L) We have that (im (f))++ = G. Pick any open set U ⊆ X and a section t ∈ G. We
wish to find an open cover {Ui}i∈I of U and si ∈ F(Ui) such that fUi(si) = ρU,Ui(t) for all
i ∈ I . Indeed, by Corollary 20.2.0.2, we obtain that Gx = im (f)x for all x ∈ X . Hence for the
chosen (U, t), we obtain for each x ∈ U , by appropriately shrinking and restricting, an open
set Wx ⊆ U containing x and a section sx ∈ F(Wx) satisfying ρU,Wx(t) = fWx(sx).

3. (L⇒ R) Trivial.
(R⇒ L) Suppose for all x ∈ X we have fx = gx : Fx → Gx. We wish to show that f = g. Pick
an open set U ⊆ X and consider s ∈ F(U). We wish to show that fU (s) = gU (s). For each
x ∈ U , we have (U, s)x ∈ Fx and by the fact that fx = gx, we further have

(U, fU (s))x = (U, gU (s))x.

Hence for all x ∈ U , there exists open x ∈Wx ⊆ U such that

ρU,Wx(fU (s)) = ρU,Wx(gU (s)).

It is then an easy observation that both {ρU,Wx(gU (s))}x∈U and {ρU,Wx(fU (s))}x∈U forms
the same matching family. Hence we have a unique glue by sheaf axiom of G to obtain
fU (s) = gU (s) in G(U).

Lemma 20.3.0.8. Let X be a topological space. Then, the following are equivalent:
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1. The following is an exact sequence of sheaves over X

F′
f→ F

g→ F′′,

that is, Ker (g) = Im (f).
2. The following is an exact sequence of stalks for each x ∈ X

F′x
fx→ Fx

gx→ F′′x.

Proof. (1. ⇒ 2.) Pick any (U, s)x ∈ Fx which is in ker gx. Thus, there exists V ⊆ U open such
that ρU,V (gU (s)) = gV (ρU,V (s)) = 0. Thus ρU,V (s) ∈ F(V ) is in Ker (g) = Im (f) and thus
(V, ρU,V (s))x = (U, s)x ∈ Fx is in im (fx). Conversely, for (U, fx(t))x ∈ im (fx), we see that since
g ◦ f = 0, then (U, gx(fx(t)))x = 0.

(2. ⇒ 1.) This is immediate, by looking at a section of F at any open set (use Remark 20.2.0.4).

Given an open subset U of X and a sheaf over U , we can extend it to a sheaf over X by zeros.
This in particular means extending a sheaf from a subspace in such a way so that stalks outside
of the subspace are always zero. This operation would be fundamental in cohomology and other
places as it yields a nice exact sequence corresponding to any closed or open subset of X .

Definition 20.3.0.9 (Extending a sheaf by zeros). Let X be a space and i : Z ↪→ X be an inclusion
of a closed set and j : U ↪→ X be an inclusion of an open set.

1. If F is a sheaf over Z, then i∗F is a sheaf over X called the extension of F to X by zeros.
2. If F is a sheaf over U , then the extension of F toX by zeroes, denoted j!F is the sheafification

of the presheaf over X given by

V 7−→
®
F(V ) if V ⊆ U
0 else.

The main result is as follows.

Proposition 20.3.0.10. 4 Let X be a space, i : Z ↪→ X be closed and j : U ↪→ X be open. Then,
1. If F is a sheaf over Z, then for any p ∈ X , we have

(i∗F)p =
®
Fp if p ∈ Z
0 if p /∈ Z.

2. If F is a sheaf over U , then for any p ∈ X , we have

(j!F)p =
®
Fp if p ∈ U
0 if p /∈ U.

Moreover, (j!F)|U = F and j!F is unique w.r.t these two properties.
4Exercise II.1.19 of Hartshorne.
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Proof. The first item follows immediately from the fact that Z ⊆ X is a closed subset. In particular,
if p /∈ Z, then there is a cofinal collection of open sets containing p on which i∗F is 0.

For the second item, we proceed as follows. Let G be the presheaf as in Definition 20.3.0.9, 2.
Note that

Gp =
®
Fp if p ∈ V ⊆ U for some open V ⊂ X ,
0 else.

In particular, if p ∈ U , then Gp = Fp and if p /∈ U , then Gp = 0. Since stalks before and after
sheafification are same, therefore we have our result for stalks. Next, (j!F)|U = F because over U ,
the presheafG|U itself is a sheaf, so sheafification ofGwill yield a sheaf equal to F over U . Further
j!F is unique with the two properties as if for any other sheaf G which satisfies that G|U = F,
then we get an map of presheaves G → G which induces an isomorphism on stalks. By universal
property of sheafification (Theorem 20.2.0.1), we deduce that j!F ∼= G.

With the above result, we have a useful short exact sequence.

Corollary 20.3.0.11. Let X be a space and F be a sheaf over X . Let i : Z ↪→ X be a closed subspace and
j : U = X \ Z ↪→ X be the corresponding open subspace. Then there is a short exact sequence

0 −→ j!F|U −→ F −→ i∗F|Z −→ 0

where F|Z = i−1F. We call this the extension by zero short exact sequence.

Proof. Following the notation of proof of Proposition 20.3.0.10, we see that we have an injective
map G → F, which then by universal property and local nature of injectivity gives an injective
map j!F|U → F. The map F → i∗F|Z is obtained by considering the unit map of the adjunction
i∗ ⊢ i−1. This is surjective because on the stalks, we obtain (i∗F|Z)p = Fp if p ∈ Z or 0 otherwise
by above result. To show exactness at middle, we again go to stalks (Lemma 20.3.0.8) and observe

that if p ∈ U , then we get exact sequence 0 → Fp
id→ Fp → 0 → 0 and if p ∈ Z, then we get the

exact sequence 0→ 0→ Fp
id→ Fp → 0.

20.4 Sheaves are étale spaces

Another important and in some sense dual viewpoint of sheaves over X is that they can be equiv-
alently defined as a certain type of bundle over X and all such bundles arises only from a sheaf.
This is important because this viewpoint naturally extends the usual concepts of covering spaces,
bundles and vector bundles to that of sheaves. In particular, a lot of classical constructs in alge-
braic topology can be equivalently be seen as specific instantiates of the notion of étale space of
the sheaf.

Definition 20.4.0.1. (Étale space) Let X be a topological space and let π : E → X be a bundle
over X . Then (E, π,X) is said to be étale over X or just étale if for all e ∈ E, there exists an open
set V ∋ e of E such that p(V ) is open and p|V : V → p(V ) is a homeomorphism, that is, if p is a
local homeomorphism. A morphism of étale spaces (E1, π1, X), (E2, π2, X) over X is given by a
continuous map f : E1 → E2 such that π2 ◦ f = π1. Denote the category of étale spaces over X by
Et/X .
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Clearly, covering spaces over X are étale spaces over X , but not all étale spaces over X are
covering, of-course. We now wish to show that the sheafification functor factors through a functor
mapping a presheaf to an étale space. In particular, we want to show the existence of functor F,G
so that the following commutes

Et/X

PSh(X) Sh(X)

G F

(−)++
.

Construction 20.4.0.2. (Étale space of a sheaf ) Let us now show the construction of the above func-
tors:

1. (The functorG) Let P be a presheaf overX . The étale spaceE := G(P ) is given by the disjoint
union of all stalks:

E :=
∐
x∈X

Px.

The topology on E is given by the initial topology of the map

π : E −→ X

sx 7−→ x.

In particular,E has a basis given by sets of the formBU,s ⊆ E whereBU,s = {sx ∈ E | x ∈ U}
and s ∈ P (U). Next, we wish to establish that π is a local homeomorphism. So take any
sx ∈ E and consider the basic open set BU,s ∋ sx. The map π|BU,s : BU,s → π(BU,s) takes
sx 7→ x. This is a homeomorphism because we can construct an inverse given by x 7→ sx. A
simple calculation checks that this is continuous. Hence indeed, (E, π,X) is an étale space
over X .

Next consider a map of presheaves ϕ : F → G. We can construct a map of corresponding
étale spaces as

ϕ̂ : (EF , πF , X) −→ (EG, πG, X)
sx 7−→ ϕx(sx).

This map is continuous and a valid bundle map over X . This defines the functor G.
2. (The functor F ) Let π : E → X be an étale space over X . Then, we can construct a sheaf E

over X out of it. This is done in a very natural way by considering the set of sections over U
of E to be quite literally the set of cross-sections5 of map π on U . That is, define:

E(U) := {s : U → E | π ◦ s = idU}.

The fact that this is indeed a sheaf can be seen by a general phenomenon that for any con-
tinuous map f : X → Y , the set of all cross-sections of f over open subsets of Y assembles

5In-fact, historically the notion of sheaf was really that of this étale space, and that is why to this day, we still use the
terminology of "sections" of a sheaf over an open subset.
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itself into a sheaf. Hence, we have constructed a sheaf E out of an étale space E over X .

Next consider a map of étale spaces ξ : (E1, π1, X)→ (E2, π2, X). we can construct a map of
corresponding sheaves ξ̃ : E1 → E2 by defining the following for open U ⊆ X :

ξ̃U : E1(U) −→ E2(U)
s 7−→ ξ ◦ s.

One can check that this is indeed a valid sheaf morphism. This defines the functor F .

We then see that the categories Et/X and Sh(X) are equivalent.

Theorem 20.4.0.3. 6 (The étale viewpoint of sheaves) Let X be a topological space. The functors F and G
as defined in Construction 20.4.0.2 defines an equivalence of categories

Sh(X) ≡ Et/X.

We will prove this result in many small lemmas below. We would first like to observe that for
any étalé bundle E over X yields a sheaf by F (E) whose stalks are bijective to fibres of E.

Lemma 20.4.0.4. Let (E, π,X) be an étalé bundle over X and let E be the sheaf obtained by F ((E, π,X)).
Then, for any x ∈ X , the following is a bijection

τx : Ex −→ Ex := π−1(x)
(U, s)x 7−→ s(x).

Proof. We first show that τx is injective. Let (U, s)x, (V, t)x be two germs such that p = s(x) = t(x).
We wish to show that s and t are equal on an open subset in U ∩ V . As E is étaleé, therefore we
have an open A ⊆ E with p ∈ A such that π|A : A → π(A) is a homeomorphism. Consequently,
we see that the open set W = π(A) ∩ U ∩ V would do just fine.

We now show surjectivity. Pick e ∈ Ex. As E is étalé, we thus get an open set A ∋ e in E
such that π|A : A → π(A) is a homeomorphism. Denote the inverse of this homeomorphism
by g : π(A) → A. This is therefore a section of E over π(A) where x ∈ π(A). Consequently,
(π(A), g)x ∈ Ex is such that τx maps it to e.

Proof of Theorem 20.4.0.3. We first show that F ◦G is naturally isomorphic to sheafification functor.
Let E be a presheaf, (E, π) = G(E) and F (E, π) = E′. We wish to show that there is a natural
isomorphism E++ → E′. By Theorem 20.2.0.1 and 20.3.0.6, 3, it suffices to show that there is a map
of presheaves E→ E′ which is isomorphism on stalks.

Consider the map ϕ : E→ E′ which on an open set U ⊆ X gives the following map

ϕU : E(U) −→ E′(U)

s 7−→ U
fU,s→ E

6Exercise II.1.13 of Hartshorne.
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where fU,s : U → E maps as x 7→ (U, s)x. Since fU,s is just the stalk map, then as in Construction
20.4.0.2, fU,s is continuous. Now on the stalks, we get the following commutative diagram by
Lemma 20.4.0.4:

Ex E′x

Ex

∼=

ϕx

,

where the vertical map takes a germ (U, s)x and maps it to the element represented in Ex = Ex,
as Ex = π−1(x) = {x ∈ E | π(e) = x} = {(U, s)y ∈ E | π((U, s)y) = y = x}. Consequently, the
vertical map is a bijection and thus ϕx is a bijection. The naturality of this isomorphism can be
checked trivially.

We now wish to show that G ◦ F is naturally isomorphic to the identity functor on Et/X .
Pick an étalé bundle (E, π) over X , denote F (E, π) = E and G(E) = (E′, π′). We wish to find a
homeomorphism ϕ so that the following commutes:

E′ E

X

π′
π

ϕ

.

Consider the following map

ϕ : E′ −→ E

(U, s)x 7−→ s(x).

By Lemma 20.4.0.4, ϕ is a bijective map. We thus reduce to showing that ϕ is a continuous open
map.

To show continuity, consider an open set A ⊆ E and then observe that

ϕ−1(A) = {(U, s)x ∈ E′ | s(x) ∈ A}
= {(U, s)x ∈ E′ | x ∈ s−1(A)}
=

⋃
U∋x,s:U→E

BU,s

and since BU,s ⊆ E′ is a basic open, therefore ϕ is continuous.

Finally, to show that ϕ is open, one reduces to showing that if s : U → E is a continuous
section of bundle (E, π) and U ⊆ X is an open set, then s(U) is an open set in E (by working
with a basic open BU,s ⊆ E′). This follows from the fact that since π is a local homeomorphism,
therefore for each e ∈ s(U), there exists an open set A ∋ e in E such that s(U) ∩ A ∋ e and since
π : s(U)∩A→ π(s(U)∩A) = U ∩π(A) is a homeomorphism, we further get that s(U)∩A is open
(as U ∩ π(A) is open). Consequently, s(U) is open.
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Remark 20.4.0.5. (The sheaf associated to a covering space) By the above equivalence, each covering
space space over X , which is an étale map, determines a unique sheaf (upto isomorphism). We
analyze this sheaf. Recall that a local system is just a name for locally constant sheaf. We write
LocSys(X) to denote the category of all local systems.

Proposition 20.4.0.6. Let X be a connected and locally path-connected space. The there is an equivalence
of categories

Cov(X) ≡ LocSys(X)

where Cov(X) is the category of covering spaces over X and LocSys(X) is the category of locally constant
sheaves of sets over X .

Proof. We will show that this equivalence is induced from the equivalence of Theorem 20.4.0.3.
It is sufficient to show that F maps covering spaces to locally constant sheaves and vice-versa
for G. Indeed, if (E, p,X) is a covering space and E is the associated sheaf, then for a connected
evenly covered neighborhood U ⊆ X for which p−1(U) = ⨿α∈AUVα where p : Vα → U is a
homeomorphism, we get that the set of sections E(U) is just AU by connectedness. Moreover, it is
clear that E(V ) = AU again for any connected V ⊆ U . This shows that E|U = AU . Hence E is a
local system.

Conversely, if E is a local system with (E, p,X) its associated étale space, then for U ⊆ X such
that E|U = A, we get that p−1(U) = ⨿x∈UEx = ⨿x∈UA = ⨿α∈AVα where Vα = {α ∈ Ax | x ∈ U}.
We first claim that Vα is open. Indeed, it is the basic open setBU,α. Next, Vα∩Vβ = is clear. Finally,
p : Vα → U being a homeomorphism is also clear as this is a bijection and p is an open map as it is
étale.

20.5 Direct and inverse image

Let f : X → Y be a continuous map of topological spaces. Then one can derive two functors
f∗ : Sh(X) → Sh(Y ) and f−1 : Sh(Y ) → Sh(X) which are adjoint of each other, called direct
and inverse image functors respectively. While f∗ is easy to define, it is usually the inverse image
of a sheaf that causes trouble for its obscurity if one works with the definition that inverse image
functor is left-adjoint to direct image functor. This is resolved by working with the corresponding
étale spaces (Theorem 20.4.0.3). In this section we will show how to construct them.

Let us first define the direct image functor.

Definition 20.5.0.1. (Direct image) Let f : X → Y be a continuous map. Then, for any sheaf F on
X , we can define its direct image under f as f∗F whose sections on open V ⊆ Y are given by

(f∗F)(V ) := F(f−1(V )).

This can easily be seen to be a sheaf. For any map of sheaves ϕ : F → G on X , we can define the
map of direct image sheaves as

(f∗ϕ)V : f∗F(V ) −→ f∗G(V )
s 7−→ ϕf−1(V )(s).
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This defines a functor

f∗ : Sh(X) −→ Sh(Y ).

One defines the inverse image of a sheaf as follows:

Definition 20.5.0.2. (Inverse image) Let f : X → Y be a continuous map and let G be a sheaf over
Y . Consider a presheaf F overX constructed by the data of G as follows. Let U ⊆ X be open, then
define

f+G(U) := lim−→
open V⊇f(U)

G(V ),

where restriction maps of f+G is given by the unique map obtained by universality of colimits.
Then, f+G is a presheaf over X and this construction is functorial again by universal property of
colimits:

f+ : PSh(Y ) −→ PSh(X).

Let f−1G = (f+G)++ denote the sheafification of f+G. This sheaf is called the inverse sheaf of G
under f . Now for any map of sheaves ϕ : G→ H over Y , we get a corresponding map of inverse
image sheaves f−1ϕ : f−1G −→ f−1H by composition of two functors. This yields a functor

f−1 : Sh(Y ) −→ Sh(X).

As is visible, this definition is quite obscure if one likes elemental definitions. We thus give
some general properties enjoyed by inverse sheaf.

Lemma 20.5.0.3. Let f : X → Y be a continuous map and G be a sheaf over Y .
1. If f is open, then f−1G = G(f(−)).
2. If f is constant to y ∈ Y , then f−1G is the constant sheaf on X with sections Gy.
3. If X = {x} is a singleton space, then f−1G is the constant sheaf on X with sections Gf(x).
4. If x ∈ X , then

(f−1G)x ∼= Gf(x).

Proof. 1. One notes that f+G(U) := lim−→V⊇f(U) G(V ) = G(f(U)). The mapping G(f(−)) is a sheaf,
hence sheafifying it will yield the same sheaf.
2. We see that f+G(U) = lim−→V⊇f(U) G(V ) = lim−→V ∋y G(V ) = Gy and presheaves with constant
values are sheaves, as restrictions are identity.
3. We see that f+G(U) = lim−→V⊇f(U) G(V ) = lim−→V ∋f(x) G(V ) = Gf(x) and presheaves with constant
values are sheaves, as restrictions are identity.
4. By passing to the right adjoint, one observes that for f : X → Y and g : Y → Z continuous
maps, one can obtain the following natural isomorphism of functors

(g ◦ f)−1 ∼= f−1 ◦ g−1.
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Consider the composite f ◦ ι where ι : {x} ↪→ X is the inclusion map. Consequently, by 3. above,
we obtain the following

Gf(x) ∼= (f ◦ ι)−1(G)({x})
∼= (ι−1 ◦ f−1)(G)({x})
∼= ι−1(f−1G)({x})
∼= (f−1G)f(x).

The following is a fundamental duality between inverse and direct image functors.

Theorem 20.5.0.4. 7 (Direct and inverse image adjunction) Let f : X → Y be a continuous map. Then
the the inverse image functor is the left adjoint of direct image functor 8

Sh(Y ) Sh(X)
f∗

f−1

.

In particular, we have a natural bijection

HomSh(X)
(
f−1F,G

) ∼= HomSh(Y ) (F, f∗G).

One situation that we will find ourselves a lot in algebraic geometry is when f : X → Y will
be a closed immersion of topological spaces (f : X → f(X) is homeomorphism and f(X) ⊆ Y is
closed) and for a sheaf F over X , we would like to find (f∗F)f(x) for each point x ∈ X . This is a
situation where the stalk of direct image can be calculated quite easily.

Lemma 20.5.0.5. Let f : X → Y will be a closed immersion of topological spaces and F a sheaf over X .
Then, there is a natural isomorphism

(f∗F)f(x) ∼= Fx.

Proof. From a straightforward unravelling of definitions of the two stalks, the result follows from
the observation that each open set U ∋ x in X is in one-to-one correspondence with open set
f(U) ∋ f(x) in Y .

Remark 20.5.0.6. We wish to know how the inverse image of sheaves changes the stalk. Let f :
X → Y be a continuous map and let F be a sheaf on Y . Consider the inverse sheaf f−1F on X .
Let x ∈ X . Then we have that (Lemma 20.5.0.3, 4)

(f−1F)x ∼= Ff(x).

The importance of this is that, suppose f : X → Y is given together with F and G are sheaves over
X and Y respectively and a map ϕ♭ : G→ f∗F over Y , which is equivalent to ϕ♯ : f−1G→ F over
X . Now, most of the time, our interest in a sheaf is only limited to stalks (functions defined in

7Exercise II.1.18 of Hartshorne.
8admirers of topoi may see this as a quintessential example of geometric map of topoi.
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some open subset around a point), therefore we are mostly interested in considering only the map
induced at the level of stalks at a point f(x) ∈ Y :

ϕ♭f(x) : Gf(x) −→ (f∗F)f(x).

But the description of the stalk (f∗F)f(x) is usually not simple to derive. But dually, we may ask
the map of stalks of the other map at x ∈ X , and we directly land into the stalks

ϕ♯x : Gf(x) ∼= (f−1G)x −→ Fx.

However, this is a strange map as the stalks are of sheaves which are not on same space. In
particular, this map is given as follows. For any open V ∋ f(x) in Y , we have the following maps:

G(V ) F(f−1(V )) Fx
ϕ♭
V .

Passing to colimits (ϕ♭V commutes with restrictions), one can see that we get the map ϕ♯x : Gf(x) →
Fx back.

It is a good principle to keep in mind that if we wish to work with explicit local sections, then
we should look for the "flat" map and if it is enough to work with germs, then we should look for
the "sharp" map, even though the above remark telling us how to construct the map of stalks from
the "flat" maps on each open set.

This map ϕ♯x can be heuristically be defined as the map which on sections which makes sure
that a non-invertible section remains non-invertible after going through the map. Hence we
mostly work only with maps f−1G → F if we are interested only at the stalk level (which is
more than enough for us).

20.6 Category of sheaves

We will discuss some basic properties of the category of sheaves over X , denoted Sh(X). This is
important as we wish to calculate cohomology of its objects, hence we would require the notion
of injective and projective resolutions of sheaves. We covered the homological methods necessary
for this section in the Homological Methods, Chapter 19. Let us first begin with a more categorical
definition of sheaves.

Definition 20.6.0.1. (Sheaf of sets - categorical defn.) Suppose X is a topological space and O(X) is
the posetal category of open sets of X , ordered by inclusion. Then a presheaf

F : O(X)op −→ Sets

is a sheaf if for any open set U and any covering of U =
⋃
i∈I Ui, we have that

FU

∏
i∈I FUi

∏
i,j∈I F (Ui ∩ Uj)

e

q

p

is an equalizer diagram, where the unique maps e, p & q are given as:
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• e : for a f ∈ FU , e maps it as

e(f) = {F (Ui ⊂ U)︸ ︷︷ ︸
FU→F (Ui)

(f)} ∈
∏
i

F (Ui)

That is, emaps each element f of the FU via the set map under the functor F of the inclusion Ui ⊂ U .
• p : for a sequence {fi} ∈

∏
i∈I FUi, p maps it as

p({fi}) = {F (Ui ∩ Uj ⊂ Ui)︸ ︷︷ ︸
FUi→F (Ui∩Uj)

(fi)} ∈
∏
i,j∈I

F (Ui ∩ Uj)

That is, p maps each component yi of the sequence {yi} via the set map under the functor F of the
inclusion Ui ∩ Uj ⊂ Ui.

• q : for a sequence {fi} ∈
∏
i∈I FUi, q maps it as

q({fi}) = {F (Ui ∩ Uj ⊂ Uj)︸ ︷︷ ︸
FUj→F (Ui∩Uj)

(fj)} ∈
∏
i,j∈I

F (Ui ∩ Uj)

That is, q maps each component yi of the sequence {yi} via the set map under the functor F of the
inclusion Ui ∩ Uj ⊂ Uj .9

20.6.1 Coverings, bases & sheaves

We now quickly discuss some easy properties of sheaves. In the following, a Subsheaf of a sheaf
F is defined as a subfunctor of F which also satisfies the sheaf property (is a sheaf itself).

Proposition 20.6.1.1. A subfunctor S of a sheaf F is a subsheaf if and only if for any open set U and it’s
open covering

⋃
i∈I Ui together with an f ∈ FU , we have f ∈ SU if and only if f |Ui ∈ SUi ∀ i ∈ I .

Proof. (L =⇒ R) Suppose S is a subsheaf, then clearly for any f ∈ SU ⊂ FU , we must have
f |Ui ∈ SUi for all i ∈ I and for any such collection of f |Ui , by the sheaf property of S, f ∈ SU .
(R =⇒ L) Since S is a subfunctor of F , therefore SV ⊂ FV for any open V . With this, because F
is a sheaf, we have the following diagram:

SU
∏
i SUi

∏
i,j S(Ui ∩ Uj)

FU
∏
i FUi

∏
i,j F (Ui ∩ Uj)

where the bottom row is the equalizer. The condition on the right says that for f ∈ FU , f ∈
SU ⇐⇒ {f |Ui} ∈

∏
i SUi, which means that the left square is a pullback. Now because SU

is universal due to it being a pullback, and since the top row infact commutes, therefore SU is
universal with top row commuting, hence, it is an equalizer.

9Refraining to write F (V ⊂ U) = FU → FV to be equal to the restriction (−)|V exaggerates the emphasis on the
abstract nature of sheaf F , that is, it helps to imagine that FU might not always be a set of specific maps over U , even
though in most examples of interest it is the case.
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Sheaf itself is local

Define restriction of a sheaf F on X restricted to open U ⊂ X to be the F |U (V ) = F (V ) where
V ⊂ U , and F |U (U) = F (φ) = {∗} if V ̸⊂ U .

Theorem 20.6.1.2. Suppose X is a space with a given open covering X =
⋃
k∈IWk. If there are sheaves

for each k,

Fk : O(Wk)op −→ Sets

10such that

Fk|Wk∩Wl
= Fl|Wk∩Wl

11 then, ∃ a sheaf F on X ,

F : O(X)op −→ Sets

unique upto isomorphism such that
F |Wk

∼= Fk.

This theorem hence shows that the restriction functor U 7→ Sh (U) and V ⊂ U 7→ (Sh (U) →
Sh (V ), F |U 7→ F |V ) on O(X) is local enough to be almost a sheaf. If only for any sheaf F,G on X ,
we had that F |Wk

= G|Wk
∀ k would imply that F = G, which is not the case in general however,

then we would have said that this restriction functor is also a sheaf.

Sheaf over a basis of X

A basis of a space X is a subset of topology B ⊂ O(X) such that for any open U ∈ O(X), ∃{Bi} ⊆
B such that U =

⋃
iBi.

It turns out that the restriction functor r : Sh (X) −→ Sh (XB) which restricts each sheaf over X to
that of open sets of basis B establishes an equivalence of categories!

Theorem 20.6.1.3. Suppose X is a topological space and B is a basis for X . Then, the restriction functor

r : Sh (X) −→ Sh (XB)
F 7−→ F |B

η : F =⇒ G 7−→ η|B : F |B =⇒ G|B

establishes an equivalence of categories between Sh (X) and Sh (XB).

Proof. For any sheavesF,G in Sh (X), we want to show that HomSh(X) (F,G) ∼= HomSh(XB) (rF, rG),
that is, r is fully faithful. One can see that there r is an injection between the above hom-sets as
for any ϵ, η : F ⇒ G, if rF = F |B = G|B = rG, then due to the commutation of the two squares

10where O(Wk)op is the opposite category of all open subsets of open set Wk and inclusion.
11This condition implies that for any open subsets Vk ⊂ Wk and Vl ⊂ Wl, F (Vk∩Wk∩Wl) = F (Vl∩Wk∩Wl) and for

arrows X1 ⊂ X2 in O(Wk) & Y1 ⊂ Y2 in O(Wl), F (X1∩Wk ∩Wl ⊂ X2∩Wk ∩Wl) = F (Y1∩Wk ∩Wl ⊂ Y2∩Wk ∩Wl).
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below because of naturality, (take U =
⋃
iBi to be any open set and it’s trivial open covering from

basic open sets)

FU
∏
i FBi

GU
∏
iGBi

ϵU ηU

eF

eG

∏
i
ϵBi

∏
i
ηBi

one can infer ϵU = ηU (eF and eG are equalizers, so are monic).
With the information κ : rF ⇒ rG, one can construct a natural transformation γ : F ⇒ G by
defining FU andGU , for any openU with it’s basic coverU =

⋃
iBi whereBi ∈ B, as the equalizer

of the parallel arrows
∏
i F |B Bi ⇒

∏
i,j F |B Bi∩Bj and

∏
i G|B Bi ⇒

∏
i,j G|B Bi∩Bj , respectively.

Then, one defines γU : FU → GU by noticing that the former forms a cone over the latter, due to
arrows

∏
i κBi :

∏
i F |B Bi →

∏
i G|B Bi and

∏
i,j κ(Bi ∩Bj) :

∏
i,j F |B Bi ∩Bj ⇒

∏
i,j G|B Bi ∩Bj ,

so that there exists a unique arrow FU → GU , which we just define as γU .
With this, we see that r is fully faithful. Finally, with the above definitions, rF ∼= F |B where
F ∈ Sh (X) is the sheaf obtained by the above process from F |B ∈ Sh (XB) because both of them
are equalizers of the same diagram for any open set U =

⋃
iBi and it’s basic covering (note that

any covering of U can be decomposed into basic covering).

20.6.2 Sieves as general covers

This is related to generalization of sheaves to topos theory. As we saw in Definition 13.1.1.1, a
subfunctor of Yon (C) = Hom (−, C) is a sieve, therefore this notion would allow us to generalize
the notion of covering of a space, as we will see later. But for now, the shadow of that more general
notion can still be felt in the usual category O(X) of open sets of X .

Definition 20.6.2.1. (Principal Sieve) Suppose X is a topological space and U is open. Then the sieve S,
generated from U , that is,

S = {V : open V ⊂ U}

is said to be a principal sieve, denoted S = ⟨U⟩, generated by a single open set.

With Definition 20.6.2.1, we can now define a new notion of covering of an open set, purely in
terms of arrows onto it!

Definition 20.6.2.2. (Covering Sieve) Suppose X is a topological space and U is open in it. A sieve S
on U is said to cover U if

U =
⋃
W∈S

W.

That is, when U is union of all open sets in the sieve S.

Remark 20.6.2.3. It can be seen quite easily that a subfunctor S of Yon (U) is a principal sieve over
U if and only if S is a subsheaf. L =⇒ R by Proposition 13.1.0.3 and R =⇒ L by noting that the
union of all sets in S would generate it. Remember that you can take covers of only those open
sets which are members of S because S is a subsheaf.

The above definition in effect can be replaced with in the definition of sheaves!
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Proposition 20.6.2.4. A presheaf P : O(X)op −→ Sets on a topological space X is a sheaf if and only if
for any open U and a covering sieve S over U , we have that the inclusion nat. trans. iS : S =⇒ Yon (U)
induces an isomorphism:

Hom’O(X)
(S, P ) ∼= Hom’O(X)

(Yon (U), P ).

Proof. We can re-derive the sheaf condition in terms of the covering sieve as follows. For an open
U =

⋃
i Ui, if{fi} ∈

∏
i PUi is such that fi|Ui∩Uj = fj |Ui∩Uj , then because S is a covering sieve

of U , therefore this condition is equivalent to a sequence {fV } ∈ PV for all V ∈ S such that
fV |V ′ = f |V ′ whenever V ′ ⊂ V . It can also be seen that every natural transformation η between S
and P can be mapped to an element of

∏
V ∈S PV by forming the collection {ηV (∗)}. Similarly, for

any {fV } ∈
∏
V ∈S PV we can construct a nat. trans. {fV : SV = {∗} → PV }. Now, with this, we

can obtain the result by a basic diagram chase around the left square of the following

Hom’O(X)
(S, P )

∏
i PUi

∏
i,j P (Ui ∩ Uj)

Hom’O(X)
(Yon (U), P ) PU

d

Hom’O(X)
(iS ,P ) e

where d is the equalizer of the parallel arrows on the right (the fact that this set is the equalizer is
established in the prev. paragraph)

20.6.3 Sh (X) has all small limits

We now see that Sh (X) has all small limits and the inclusion of Sh (X) to ’O(X) preserves these
limits.

Proposition 20.6.3.1. For any topological space X , the category Sh (X) has all small limits and the inclu-
sion functor

i : Sh (X) ↣’O(X)

preserves all those limits.

Proof. To show that Sh (X) has all small limits, we can first notice that the singleton functor is
a sheaf, which is the terminal object in Sh (X). Now, to see equalizers, take any parallel arrows
in Sh (X) as F ⇒ G. Since ’O(X) has all small limits, therefore, we can take the equalizer of this
in it, in turn of taking equalizer in Sh (X). With this, there exists E, the equalizer of F ⇒ G

in ’O(X). Now because covariant hom-functors preserves limits, therefore for any open U , the
Hom’O(X)

(Yon (U), E) and Hom’O(X)
(S,E) acts as equalizers in the diagram below:

Hom’O(X)
(Yon (U), E) Hom’O(X)

(Yon (U), F ) Hom’O(X)
(Yon (U), G)

Hom’O(X)
(S,E) Hom’O(X)

(S, F ) Hom’O(X)
(S,G)

e◦−

e◦−

−◦is −◦is

g◦−

f◦−

g◦−

f◦−
−◦isfE fF fG
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Using Proposition 20.6.2.4, fF and fG are isomorphisms. A simple diagram chase on the left
square then shows fE is also an isomorphism. Binary products exists by the same process.

The above proposition hence allows us to infer what it means to be a subobject of a sheaf in
Sh (X).

Corollary 20.6.3.2. For any topological space X , any subobject of a sheaf F in Sh (X) is isomorphic to a
subsheaf of F .

Proof. Suppose H ⇒ F is a monic, so a subobject of F . Since Sh (X) has all limits (Proposition
20.6.3.1), so the kernel pair of this arrow would exist in Sh (X) and it’s inclusion in ’O(X) would
preserve it. By point-wise construction of presheaves in ’O(X), we can see that H would be iso-
morphic to some some subfunctor of F , which would be a sheaf too because it is isomorphic to H ,
a sheaf.

Topology of X ∼= Subobjects of Yon (X) in Sh (X)

Finally, we observe that the topology of X is actually isomorphic to subobjects of Yon (X)12 in
Sh (X)!

Proposition 20.6.3.3. For any topological space X , there exists an isomorphism of the following posets

O(X) ∼= SubSh(X) (Yon (X))

which is moreover order preserving.13

20.6.4 Direct and inverse limits in Sh(X)

Since Grothendieck-abelian categories have all colimits, therefore it also has direct limits. We now
show that the direct limits in Sh(X) are obtained by sheafifying the corresponding direct limit in
PSh(X).

Lemma 20.6.4.1. 14 Let X be a topological space and {Fi} be a direct system of sheaves over X . Then, the
direct limit lim−→i

Fi in Sh(X) is formed by sheafification of the presheaf U 7→ lim−→i
Fi(U).

Proof. Let F denote the presheaf obtained by U 7→ lim−→i
Fi(U) and further denote F = F++, the

sheafification of F . Note that we have Fi
ji→ F → F. We wish to show that F satisfies the

universal property of direct limits in Sh(X). Indeed, take any other sheaf G for which there are

12Remember that Yon (X) is the terminal object in Sh (X).
13Remember Proposition 13.1.0.3. Therefore this isomorphism could be extended as:

O(X) ∼= SubSh(X) (Yon (X)) ∼= HomSh(X) (Yon (X),Ω)

when Ω exists. This is the first sign of how sheaves might be related to topoi.
14Exercise II.1.10 of Hartshorne.
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maps fi : Fi → G which further satisfies that for any j ≥ i in the direct set indexing the system,
we have that the following triangle commutes:

G

Fi Fjϕij

fi fj .

We wish to show that there exists a unique map f̃ : F → G such that for all i, the following
commutes:

G F

Fi F

f̃

ji

fi .

But this is straightforward, as by the universal property of direct limits in PSh(X), we first have
a map f : F → G which makes the bottom left triangle in the above commute. Then, by the
universal property of sheafification (Theorem 20.2.0.1), we get a corresponding f̃ : F → G which
makes the top right triangle in the above commute. Consequently, we have obtained f̃ which
makes the square commute.
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20.7 Classical Čech cohomology

Sheaf cohomology becomes an important tool to any attempt at understanding any sophisticated
geometric situation in topology. It is a tool which measures the obstructions faced in extending
a local construction (which are usually not too difficult to make) to a global one (which are most
of the time very difficult to make). To get a feel of why such questions and tools developed to
solve them are important, one may look no further than basic analysis; say in case of Rn, we wish
to extend a local isometry from an open set of Rn to Rm, into a global one between Rn and Rm.
Clearly the former is much, much easier than the latter. In the same vein, we wish to understand
obstructions faced in making local-to-global leaps in the context of schemes, which covers almost
all range of algebro-geometric situations.

Construction 20.7.0.1 (Čech cochain complex and Čech cohomology of an abelian presheaf.). Let X be a
topological space and F be an abelian presheaf over X . We will construct and discuss the Čech
cohomology groups Ȟq(X;F ). After giving the basic constructions, we will specialize to the case
of schemes in Chapter 1, to prove the Serre’s theorem on invariance of affine refinements of coho-
mology of coherent sheaves.

We first construct the Čech cochain complex of F w.r.t. to an open cover U . Let U = {Uα}α∈I
be a fixed open cover of X . We can then define for each i = 0, 1, 2, . . . , a group called the group of
i-cochains of F w.r.t. U :

Ci(U , F ) :=
∏

(α0,...,αi)∈Ii+1

F (Uα0 ∩ Uα1 ∩ · · · ∩ Uαi).

where the product runs over all increasing i + 1-tuples with entries in I15. A typical element
s ∈ Ci(U , F ) is called an i-cochain, whose part corresponding to (β0, . . . , βi) ∈ Ii+1 is denoted by
s(β0, . . . , βi) ∈ F (Uβ0 ∩ · · · ∩ Uβi). For example, the set of all 0-cochains is

∏
α0∈I F (Uα0), which

is equivalent to choosing a section for each element of the cover. Similarly, choosing an element
from C1(U , F ) can be thought of as choosing a section for each intersection of two open sets from
U . Similarly one can interpret the higher cochains.

Next, we give the sequence of groups {Ci(U , F )}i∈N∪0 the structure of a cochain complex.
Indeed, one defines the required differential in quite an obvious manner, if one knows the con-
struction of singular homology. Define a map

d : Ci(U , F ) −→ Ci+1(U , F )
s = (s(α0, . . . , αi)) 7−→ ds

where the components of ds are given as follows for β0, . . . , βi+1 ∈ I :

(ds)(β0, . . . , βi+1) :=
i+1∑
j=0

(−1)jρj(s(β0, . . . , βj−1, βj+1, . . . , βi+1))

=
i+1∑
j=0

(−1)jρj(s(“βj))
15we choose increasing tuples only to make sure we don’t repeat an open set in the product.
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where ρj is the following restriction map of the presheaf F :

ρj : F (Uβ0 ∩ · · · ∩ Uβj−1 ∩ Uβj+1 ∩ Uβi+1) −→ F (Uβ0 ∩ · · · ∩ Uβj−1 ∩ Uβj ∩ Uβj+1 ∩ Uβi+1),

that is, the one where the open set Uβj is dropped from intersection.
This differential can be understood in the simple case of i = 0 as follows. Take s = (s(α0)) ∈

C0(U , F ). Then ds ∈ C1(U , F ) and it corresponds to a choice of a section in the intersection on
each pair of open sets in U . For β0, β1 ∈ I , this choice is given by

(ds)(β0, β1) = ρ0(s(β1))− ρ1(s(β0)).

This is interpreted as "how much far away s(β1) ∈ F (Uβ1) and s(β0) ∈ F (Uβ0) are in the intersec-
tion Uβ1 ∩ Uβ0". If d(s) = 0, then s ∈ C0(U , F ) corresponds to a matching family.

Similarly, for a s ∈ C1(U , F ), we can think of it as a choice of a section on each intersecting pair
of open sets of U . Then, the differential ds ∈ C2(U , F ) for any (β0, β1, β2) ∈ I3 has the component

(ds)(β0, β1, β2) = ρ0(s(β1, β2))− ρ1(s(β0, β2)) + ρ2(s(β0, β1)).

If this quantity is non zero, then it measures "how much the three elements s(β1, β2) ∈ F (Uβ1 ∩
Uβ2), s(β0, β2) ∈ F (Uβ0 ∩ Uβ2) and s(β0, β1) ∈ F (Uβ0 ∩ Uβ1) differs in the combined intersec-
tion Uβ0 ∩ Uβ1 ∩ Uβ2". Indeed, suppose the three agree on F (Uβ0 ∩ Uβ1 ∩ Uβ2). Then, we have
ρ0(s(β1, β2)) = ρ1(s(β0, β2)) = ρ2(s(β0, β1)). Consequently, ds(β0, β1, β2) = ρ2(s(β0, β1)).

Now it is quite obvious that in order to measure the failure of an element of Ci(U , F ) to "match
up in one level above" will be measured by the homology of the cochain complex. Indeed that is
what we do now.

For any s ∈ Ci(U , F ), it is observed by doing the summation and using the fact that the restric-
tion maps ρ are group homomorphisms that

d2 = 0.

Hence, we have a cochain complex, called the Čech cochain complex w.r.t. U :

C0(U , F ) C1(U , F ) C2(U , F ) · · ·ddd

The cohomology of this complex is denoted by

Hq(U ;F ) := Ker (d)
Im (d) =: ZqU ,F

Bq(U ,F)

for Cq+1(U , F ) ← Cq(U , F ) ← Cq−1(U , F ). The subgroup Bq(U ,F) = Im (d) =⊆ Cq(U , F ) is
called the group of q-coboundaries, whereas the group Zq(U ,F) = Ker (d) ⊆ Cq(U , F ) is called the
group of q-cocycles.

To define the general Čech cohomology groups, we need to take limit of cohomology groups
with respect to finer and finer open covers. To this end, we first define the following. Let U =
{Uα}α∈I and V = {Vβ}β∈J be two open covers. Then, V is said to be finer than U if for all j ∈ J ,
there is an i ∈ I such that Vj ⊆ Ui. We therefore obtain a function σ : J → I such that Vj ⊆ Uσ(j).
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For two open covers U ,V where V is finer than U as above, we first get a map of cochain
complexes given by

rU ,V : Cq(U , F ) −→ Cq(V, F )
s 7−→ rU ,V(s)

where for any (β0, . . . , βq) ∈ Jq+1, we define

rU ,V(s)(β0, . . . , βq) = ρ (s(σβ0, . . . , σβq))

for ρ : F (Uσβ0 ∩ · · · ∩Uσβq) −→ F (Vβ0 ∩ · · · ∩ Vβq) is the restriction map of F . As restriction homo-
morphisms commute with themselves, therefore we have that the following square commutes

Cq(U , F ) Cq+1(U , F )

Cq(V, F ) Cq+1(V, F )

rU,V rU,V

d

d

,

showing that rU ,V : C•(U , F ) → C•(V, F ) is a map of cochain complexes. Consequently, we get a
map at the level of cohomology also denoted by

rU ,V : Hq(U , F ) −→ Hq(V, F ).

We call the above the refinement homomorphism.
We now wish to show that if V is a refinement of U via σ : J → I , then the refinement homo-

morphism rU ,V on cohomology doesn’t depend on σ; there might be many such σ making V finer
than U , but all give same refinement homomorphism on cohomology.

Lemma 20.7.0.2. The refinement homomorphism rU ,V is independent of σ.

Proof. Let r, r′ : Cq(U , F ) → Cq(V, F ) be the refinement homomorphisms on cochain level for
σ, τ : J → I respectively. Pick any q-cocycle s ∈ Cq(U , F ). We wish to show that r(s) − r′(s) is a
q-coboundary w.r.t. V . The following t ∈ Cq−1(V, F )

t(α0, . . . , αq−1) :=
q−1∑
j=0

(−1)jρ (s (σα0, . . . , σαj , ταj , ταj+1, . . . , ταi−1))

where ρ : F (Uσα0 ∩ · · · ∩Uσαj ∩Uταj ∩ · · · ∩Uταi−1) −→ F (Vα0 ∩ · · · ∩ Vαj ∩ · · · ∩ Vαi−1) is such that

r(s)− r′(s) = dt

in Cq(V, F ). This can be checked by expanding dt and using the fact that ds = 0. This calculation
is omitted for being too cumbersome to write.

This finally allows us to define Čech cohomology of a presheaf over a topological space as
follows. Let O be the poset of all open covers of X ordered by refinement. The Čech cohomology
groups of presheaf F are then defined to be

Ȟq(X,F ) := lim−→
U∈O

Hq(U , F ).
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Diagrammatically, we have for any two open covers U and V where V is a refinement of U the
following

Ȟq(X,F )

Hq(U , F ) Hq(V, F )rU,V

.

This completes the construction of Čech cohomology groups.

Let us first see something that we hinted during the construction.

Lemma 20.7.0.3. Let X be a space and F be a sheaf over X . Then, for any open cover U of X , we have

H0(U ,F) ∼= Γ(X,F).

Consequently, we have Ȟ0(X,F) ∼= Γ(X,F).

Proof. We first have H0(X,F ) = Ker (d) where d : C0(U , F ) → C1(U , F ). But any s ∈ Ker (d) is
equivalent to the data of a matching family over U . As F is a sheaf, therefore this gives rise to a
unique element in Γ(X,F). Conversely, by restriction, we get an element of Ker (d) via a global
section.

Let us first see an example computation of Ȟ1(X,F ).

Example 20.7.0.4. Let X = S1 and F = K be the constant sheaf of a field K. Further, let U be the
open cover obtained by dividing S1 into n-open intervals U1, . . . , Un where Ui∩Ui+1 and Ui∩Ui−1
are non-empty and Ui ∩ Uj is empty for all j ̸= i, i + 1, i − 1. We wish to calculate H1(U ,K). To
this end, we first see that

C0(U ,K) =
n∏
i=1

K(Ui) = K⊕n

and

C1(U ,K) =
n∏
i=1

K(Ui ∩ Ui+1) = K⊕n.

For q ≥ 2, we clearly have Cq(U ,K) = 0 as there are no higher intersections. The differential
d : C0(U ,K)→ C1(U ,K) maps as

d(x1, . . . xn) = (x2 − x1, x3 − x2, . . . , x1 − xn).

Consequently,

H0(U ,K) = Ker (d) = {(x1, . . . , xn) ∈ C0(U ,K) | x1 = x2 = · · · = xn} ∼= K

and

H1(U ,K) = C1(U ,K)
Im (d)

∼= K

as C1(U ,K) is an n-dimensional K-vector space and Im (d) is of dimension n − 1 because its
defined by one equation deeming the sum of all entries to be 0.
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Construction 20.7.0.5 (Map in cohomology). Any map of abelian sheaves over X yields a map in
the cohomology as well. Indeed, let ϕ : F → G be a map of sheaves. Then we get a map

ϕq : Cq(U ,F) −→ Cq(U ,G)
s = (s(α0, . . . , αq)) 7−→ ϕq(s) =

(
ϕα0...αq(s(α0, . . . , αq))

)
where ϕα0...αq = ϕUα0∩···∩Uαq .

It then follows quite immediately from the fact that each ϕα0...αq is a group homomorphism
that dϕq = ϕq+1d. It follows that we get a map of chain complexes

ϕ• : C•(U ,F) −→ C•(U ,G).

Hence, we get a map in cohomology

ϕq : Hq(U ,F) −→ Hq(U ,G).

Finally, this gives by universal property of direct limits a unique map

ϕq : Ȟq(X,F) −→ Ȟq(X,G)

such that for every open cover U , the following diagram commutes:

Ȟq(X,F) Ȟq(X,G)

Hq(U ,F) Hq(U ,G)

ϕq

ϕq

where vertical maps are the maps into direct limits.

The main tool for calculations with cohomology theories is the cohomology long exact se-
quence. We put below, without proof, the main theorem of Čech cohomology which gives a con-
dition for an exact sequence of sheaves to induce this long exact sequence in cohomology. RecallX
is paracompact if it is Hausdorff and every open cover has a locally finite refinement. Such spaces
are always normal. We first give an explicit description of the first connecting homomorphism.

Construction 20.7.0.6 (Connecting homomorphism). Let X be a topological space and

0 F G H 0ϕ ψ

be an exact sequence of sheaves on X . We define the connecting homomorphism

Ȟ0(X,H) Ȟ1(X,F)δ

as follows. First, pick any h ∈ H0(X,H) = Γ(X,H). As ψ is surjective therefore there exists an
open covering U = {Ui}i∈I of X and gi ∈ G(Ui) such that ψUi(gi) = h|Ui . Using (gi) and (Ui) we
construct a 1-cocycle for F as follows. Observe that for each i, j ∈ I , we have ψUi∩Uj (gi − gj) = 0
in H(Ui∩Uj). Thus, gi−gj ∈ Ker

(
ψUi∩Uj

)
. By exactness guaranteed by Lemma 20.3.0.8, it follows
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that there exists fα0α1 ∈ F(Uα0 ∩ Uα1) such that ϕUα0∩Uα0 (fα0α1) = gα0 − gα1 , for each α0, α1 ∈ I .
We claim that the element

f := (fα0α1)α0,α1 ∈
∏

(α0,α1)∈I2
F(Uα0 ∩ Uα1) = C1(U ,F)

is a 1-cocycle. Indeed, we need only check that df = 0 in C2(U ,F). Pick any (α0, α1α2) ∈ I3. We
wish to show that df(α0, α1α2) = 0. Indeed,

df(α0, α1α2) =
2∑
j=0

(−1)jρj
(
fα0α̂jα2

)
= fα1α2 − fα0α2 + fα0α1

in F(Uα0 ∩Uα1 ∩Uα2). We claim the above is zero. Indeed, By Lemma 20.3.0.8 on V := Uα0 ∩Uα1 ∩
Uα2 we get that ϕV is injective. But since

ϕV (fα1α2 − fα0α2 + fα0α1) = ϕV (fα1α2)− ϕV (fα0α2) + ϕV (fα0α1)
= gα1 − gα2 − (gα0 − gα2) + gα0 − gα1

= 0,

hence it follows that df(α0, α1α2) = 0, as required. Hence f ∈ C1(U ,F) is a 1-cocycle. Thus we get
an element [f ] ∈ H1(U ,F). This defines a group homomorphism Ȟ0(X,H) → H1(U,F). Further
by passing to direct limit, we get an element [f ] ∈ Ȟ1(X,F). We thus define

δ(f) := [f ] ∈ Ȟ1(X,F).

This defines the required group homomorphism δ.

Theorem 20.7.0.7. Let X be a paracompact space and the following be an exact sequence of sheaves over
X

0→ F1 → F2 → F3 → 0.

Then, there is a long exact sequence in cohomology

0 Ȟ0(X,F1) Ȟ0(X,F2) Ȟ0(X,F3)

Ȟ1(X,F1) Ȟ1(X,F2) Ȟ1(X,F3)
.

20.8 Derived functor cohomology

We will here define the cohomology of abelian sheaves over a topological space as right derived
functors of the left exact global-sections functor (see Section 19.2 for preliminaries on derived
functors).

Let X be a topological space. In Section 20.6, we showed that the category of abelian sheaves
Sh(X) has enough injectives. We now use it to define cohomology of F ∈ Sh(X).
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Definition 20.8.0.1. (Sheaf cohomology functors) Let X be a topological space and Sh(X) be the
category of abelian sheaves over X . The ith-cohomology functor H i(X,−) : Sh(X) → AbGrp
is defined to be the ith-right derived functor of the global sections functor Γ(−, X) : Sh(X) →
AbGrp. In other words, H i(X,F) for F ∈ Sh(X) is defined by choosing an injective resolution
0→ F

ϵ→ I• in Sh(X) and then

H i(X,F) := hi(Γ(X, I•)).

As sheaf cohomology functors are in particular derived functors, so they satisfy results from
Section 19.2.3. The main point in particular being that sheaf cohomology induces a long exact
sequence in cohomology from a short exact sequence of sheaves. This will be our primary source
of computations.

20.8.1 Flasque sheaves & cohomology of OX-modules

We would like to see the following theorem.

Theorem 20.8.1.1. Let (X,OX) be a ringed space. Then the right derived functors of Γ(−, X) : Mod(OX)→
AbGrp is equal to the restriction of the cohomology functors H i(X,−) : Sh(X)→ AbGrp.

Remember that Mod(OX) has enough injectives (Theorem 3.5.2.2) but, apriori, the above two
functors might be different because an injective object in Mod(OX) may not be injective in Sh(X).
Consequently, the above result is important because its relevance in rectifying the cohomology of
OX -modules (which are of the only utmost interest in algebraic geometry) to that of the usual sheaf
cohomology functors. Hence, we may completely work inside the module category Mod(OX).
Clearly to prove such a result, we need a bridge between injective modules in Mod(OX) and
either injective or acyclic objects in Sh(X). Indeed, we will see that this bridge is provided by the
realization that injective modules in Mod(OX) are acyclic because they are flasque.

Definition 20.8.1.2 (Flasque sheaves). A sheaf F on X is said to be flasque if all restriction maps
of F are surjective.

The following is a simple, yet important class of examples of flasque sheaves.

Example 20.8.1.3. Let X be an irreducible topological space and A be the constant sheaf over X
for an abelian group A. We claim that A is flasque. Indeed, first recall that any open subspace
U ⊆ X is irreducible, therefore connected. Conseuqently, all restrictions are ρ : A(V )→ A(U) are
identity maps id : A → A (see Remark 20.1.0.3). In-fact this shows that on an irreducible space,
any constant sheaf A of abelian group A has section over any open set U as A(U) = A and all
restrictions are identities.

An important property of flasque sheaves is that they have no obstruction to lifting of sections,
a hint to their triviality in cohomology. However, the proof of this is quite non-constructive and
thus a bit enlightening.

Theorem 20.8.1.4. Let X be a space. If 0→ F1 → F2 → F3 → 0 is an exact sequence of sheaves and F1
is flasque, then we have an exact sequence of sections over any open U ⊆ X

0→ F1(U)→ F2(U)→ F3(U)→ 0.
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Proof. By left-exactness of global sections functor, we need only show the surjectivity of Γ(F2, X)→
Γ(F3, X). To this end, pick any s ∈ Γ(F3, X). We wish to lift this to an element of Γ(F2, X). Con-
sider the following poset

P = {(U, t) | U ⊆ X open & t ∈ F2(U) is a lift of s|U}

where (U, t) ≤ (U ′, t′) iff U ′ ⊇ U and t′|U = t. We reduce to showing that P has a maximal element
and it is of the form (X, t). This will conclude the proof.

To show the existence of a maximal element, we will use Zorn’s lemma. Pick any toset of P
denoted T . We wish to show that it is upper bounded. Indeed, let V =

⋃
(U,t)∈T U and t̃ ∈ F2(V )

be the section obtained by gluing t ∈ F2(U) for each (U, t) ∈ T (they form a matching family
because T is totally ordered). We thus have (V, t̃) which we wish to show is in P . Indeed, as t̃ is
obtained by lifts of restrictions of s, therefore t̃ is a lift of s|V by locality of sheaf F3. This shows
that P has a maximal element, denote it by (V, t̃).

We finally wish to show that V = X . Indeed, if not, then V ⊊ X . Pick any point x ∈ X \ V .
Since we have a surjective map on stalks F2,x → F3,x → 0, hence the germ (X, s)x ∈ F3,x can be
lifted to (U, a)x for some open U ∋ x and a ∈ F2(U). We now have two cases. If U ∩ V = ∅, then
(V ∪ U, t̃⨿ a) is a lift of s|V ∪U , contradicting the maximality of (V, t̃). On the other hand, suppose
we have U ∩ V ̸= ∅. Let W = U ∩ V . Since W ⊆ V , therefore we have tW ∈ F2(W ) a lift of s|W .
Moreover, by restriction, we have a ∈ F2(W ) also a lift of s|W . It follows that a − tW ∈ F1(W ).
As F1 is flasque, therefore there exists b ∈ Γ(F1, X) which extends a− tW . Consequently, we have
a − b = tW ∈ F2(W ). Observe that a − b ∈ F2(U) is also a lift of s|U because b = 0 in Γ(F3, X)
by the left-exactness of global sections functor. It follows that (U, a − b) and (V, t̃) is a matching
family, which glues to (U ∪ V, c) where c is a lift of s|U∪V as well, contradicting the maximality of
(V, t̃).

Corollary 20.8.1.5. Let X be a space. If 0 → F1 → F2 → F3 → 0 is an exact sequence of sheaves where
F2 is flasque, then F3 is flasque.

Proof. This is immediate from Theorem 20.8.1.4 and the following diagram where U ⊇ V an in-
clusion of open subsets of X :

F2(U) F3(U) 0

F2(V ) F3(V ) 0

ρ ρ .

Lemma 20.8.1.6. Let (X,OX) be a ringed space and F be an OX -module. Denote OU = i!OX|U to be the
extension by zeros of OX|U for any open set i : U ↪→ X . Then,

HomOX (OU ,F) ∼= F(U).

Proof. Indeed, we have the following isomorphisms

HomOX (OU ,F) ∼= HomOX|U

(
OU |U ,F|U

) ∼= HomOX|U

(
OX|U ,F|U

) ∼= F(U).
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The first isomorphism follows from the universal property of sheafification. The second isomor-
phism follows from the observation that OU |U = OX|U as is clear from Definition 20.3.0.9 and the
fact that sheafification of a sheaf is that sheaf back. The last isomorphism follows from Lemma
3.5.1.20, 2.

Proposition 20.8.1.7. Let (X,OX) be a ringed space. If I is an injective OX -module, then I is flasque.

Proof. Let i : U ↪→ X be an open set. Denote OU = i!OX|U (see Definition 20.3.0.9). We know from
Lemma 20.8.1.6 that HomOX (OU , I) ∼= I(U) for any open U ⊆ X . Now, let U ⊆ V be an inclusion
of open sets. To this, we get ρ : I(V )→ I(U) the restriction map. Restricting to open set V , we get
the following injective map by Corollary 20.3.0.11

0→ OU → OV .

Using injectivity of I, we obtain a surjection

HomOX (OV , I)→ HomOX (OU , I)→ 0.

Consequently, we have

I(V )→ I(U)→ 0

where the map is the restriction map of sheaf I. Indeed, this follows from the explicit isomorphism
HomOX (OX , I) ∼= I(X) constructed in the proof of Lemma 3.5.1.20, 2.

Finally, we see that flasque sheaves have trivial cohomology.

Proposition 20.8.1.8. Let X be a space and F be a flasque sheaf over X . Then

H i(X,F) = 0

for all i ≥ 1. That is, flasque sheaves are acyclic for the global sections functor.

Proof. Let 0→ F → I be an injective map where I is an injective sheaf. Consequently, we have an
exact sequence of sheaves

0→ F → I→ G→ 0

where G = I/F. It follows from Proposition 20.8.1.7 that I is flasque. By Corollary 20.8.1.5 it
follows that G is flasque. By Theorem 19.2.3.5, we have a long exact sequence in cohomology

H i(X,F) H i(X, I) H i(X,G)

H i+1(X,F) H i+1(X, I) H i+1(X,G)

δi

δi+1

.
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Since I is injective, therefore by Remark 19.2.3.4, we have H i(X, I) = 0 for all i ≥ 1. It follows
from exactness of the above diagram that δi are isomorphisms for each i ≥ 1, that is,

H i(X,G) ∼= H i+1(X,F).

But since G is also flasque, therefore by repeating the above process, we deduce that H i+1(X,F) ∼=
H1(X,H) where H is some other flasque sheaf. It thus suffices to show that H1(X,F) = 0. This
follows immediately as we have an exact sequence

0→ Γ(F, X)→ Γ(I, X)→ Γ(G, X)→ H1(X,F)→ 0

where by Theorem 20.8.1.4, the map Γ(I, X)→ Γ(G, X) is surjective and since Γ(G, X)→ H1(X,F)
is surjective by exactness, it follows that the map Γ(G, X) → H1(X,F) is the zero map and
H1(X,F) = 0, as required.

An immediate corollary is the proof of Theorem 20.8.1.1.

Proof of Theorem 20.8.1.1. Pick any F ∈Mod(OX) and pick an injective resolution of F in Mod(OX)

0→ F
ϵ→ I•.

By Proposition 20.8.1.7, it follows that each Ii is flasque. By Proposition 20.8.1.8, it follows that the
above is an acyclic resolution for the sheaf F in Sh(X). Denote by Γ̄ : Mod(OX) → AbGrp the
restriction of the global sections functor. We wish to show thatRiΓ̄(F) ∼= H i(X,F). By Proposition
19.2.3.9, we have the following isomorphism

RiΓ̄(F) ∼= hi(Γ̄(I•)) = hi(Γ(I•)) ∼= H i(X,F),

as needed.

An important property of flasque sheaves over noetherian spaces is that it is closed under
direct limits.

Proposition 20.8.1.9. Let X be a noetherian space and {Fα} be a directed system of flasque sheaves. Then
lim−→Fα is a flasque sheaf as well.

Proof. TODO.

Examples

We now present some computations.

Example 20.8.1.10. 16 Let X = A1
k be the affine line over an infinite field k and Z be the constant

sheaf over X . Let P,Q ∈ X be two distinct closed points and let U = X \ C where C = {P,Q} be
an open set. Denote ZU to be the extension by zero sheaf of Z|U over X . We claim that

H1(X,ZU ) ̸= 0.

16Exercise III.2.1, a) of Hartshorne.
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We will use the extension by zero short exact sequence of Corollary 20.3.0.11. Denote i : C ↪→ X
to be the inclusion. Then, we have

0→ ZU → Z→ i∗Z|C → 0.

By Theorem 19.2.3.5 and Example 20.8.1.3, it follows that the following sequence is exact

0→ Γ(ZU , X)→ Γ(Z, X)→ Γ(i∗Z|C , X)→ H1(X,ZU )→ 0.

Now suppose that H1(X,ZU ) = 0. It follows that the map Γ(Z, X) → Γ(i∗Z|C , X) is surjective.
Since X is irreducible and hence connected, we yield Γ(Z, X) = Z. Consequently, we have a
surjective map Z→ Γ(i∗Z|C , X). It follows that Γ(i∗Z|C , X) = Z or Z/nZ. We claim that this is not
possible by showing that Γ(i∗Z|C , X) is isomorphic to Z⊕ Z, which will yield a contradiction.

We first observe that Γ(i∗Z|C , X) = Γ(Z|C , C). Recall that Z|C = i−1Z. Note that (Z|C)P = Zp =
Z = (Z|C)Q by Lemma 20.5.0.3. Hence, by Definition 20.5.0.2 and Remark 20.2.0.4, we deduce that
(i+Z)P = (i+Z)({P}) = ZP = Z = (i+Z)Q and

Γ(Z|C , C) =


(s, t) ∈ Z ⊕ Z | ∃ opens UP ∋ P,UQ ∋
Q in C & s′ ∈ i+Z(UP ) & t′ ∈
i+Z(UQ) s.t. s = s′P , t = t′Q, s = t′P if P ∈
UQ & t = s′Q if Q ∈ UP .


With this, we observe that for each (s, t) ∈ Z ⊕ Z, if we keep UP = {P} and UQ = {Q} (which is
possible since P ̸= Q are closed points in X), we obtain i+Z(UP ) = Z = i+Z(UQ). Then, we may
take s′ = s and t′ = t to obtain that Γ(Z|C , C) ∼= Z⊕ Z. This completes the proof.

Moreover, one can see that the only properties of A1
k that we needed was that it is irreducible

and P,Q ∈ A1
k are distinct closed points. Consequently, the above result holds true for X an

arbitrary irreducible space and U = X \ {P,Q}where P,Q are two distinct closed points.

Example 20.8.1.11. Consider the notations of Example 20.8.1.10. We give another simple calcula-
tion of

Γ(i∗Z|C , X) = Z⊕ Z.

TODO.

Example 20.8.1.12. Consider the notations of Example 20.8.1.10. As an exercise in working with
sheaves and sheafification, we also show that

Γ(ZU , X) = 0.

TODO.

20.8.2 Čech-to-derived functor spectral sequence

We wish to now observe how the Čech cohomology and derived functor cohomology are related.
This is done by a spectral sequence.
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