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1 Introduction

We would like to state and portray the uses of some of the important and highly usable results of
integration theory, elucidating in the process the analytical thought which is of paramount impor-
tance in any route of exploration in this field!. We give bare-bone proofs as all this is standard,
but we will highlight the main part of the proof by © or if there are many main parts, then by
QQ...(") Let us first begin with some motivation behind modern measure theory.

We know that the class of all Riemann integrable functions on [a,b], denoted R([a,b]), is not
complete under pointwise limit (a sequential approximation of Dirichlet’s function shows that).
Further, motivated by Weierstrass approximation, one would like to have commutability results
between lim and [, which again R([a,b]) lacks. Consequently, one is motivated to find a larger
class of "integrable" functions for which these defects would be rectified.

The idea that H. Lebesgue had was quite simple. He continued the idea of Riemann (that is, of
partitions) but made sure that the function under investigation is much more intertwined in with
it. Indeed, for a bounded function f : [a,b] — R, we contain the image Im (f) C [, 8] and then
consider a partition P = {I;}? ; where I; is an interval. Now choose &; € f —1(IL;) =: J; for each i.
Consequently, we may naturally define Lebesgue sum of f w.r.t. P as follows

n

L(f,P) =Y _ f(&)m(J),

=1

where m(J;) is supposed to be some sort of measure of J;. Note that J; in general might be very
bad (may not even be an intervall). To complete this idea of "integration", we are naturally led to
considering more general notions of measures. Indeed, this is what we will pursue in this course.

Remark 1.0.1. (Pseudo-definition of measure) First, what do we expect from a notion of

measure on R? Perhaps the following is the minimum conditions we would require to call a function

"measure": A function p : P(R) — [0, 00] is said to be a pseudo-measure if it satisfies the following

1. (measure of intervals) for any interval I, the measure u(I) = I(I) where [ is the length
function,

2. (measure of disjoint unions) for any disjoint sequence of subsets { Ay}, 1 (U,, 4rn) = X, 1(4n),

!One may argue, instead, in whole of mathematics.
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3. (translation invariance) for any subset A and z € R, we have u(A + z) = p(A).
We will call such a function a pseudo-measure on R. Observe that for A C B, we obtain u(A) <
u(B) by breaking B =AU B\ A. We call y a pseudo-measure because it does not exists!

Theorem 1.0.2. (Vitali set) There exists no pseudo-measure on R. In paritcular, there exists a
set V C R such that for a pseudo-measure p, u(V') ¢ [0, o).

Proof. We will construct such a set V. Begin with the closed interval J = [0,1]. Define an
equivalence relation ~ on J given as follows:

z~y <= z—y Q.

This can easily be seen to be an equivalence relation on J. We have first some observations to
make about this equivalence relation and the consequent partition of J that it entails.

1. Observe that the class of any rational r in J under ~ is simply [0], as r — 0 € Q.

2. Every equivalence class is countable in size. Indeed, for any x € J, the class [z] is just
translate of x by rationals, which is countable.

3. There are uncountably many equivalence classes. Indeed, if there were atmost countably many
equivalence classes, then by statement 2 above, it would follow there are atmost countably
many elements in J, which is a contradiction.

Consequently, this equivalence relation partitions J into following classes:

J=Jle]

a€l

where 7 is an uncountable set.

We would now construct the set V' as follows. First, let us assume axiom of choice, so that
for each class [o], we may pick an element 7, € [@] and would thus obtain a subset of J, denoted
V = {rq | @ € I'}. We call this the Vitali set.

Consider the set Q = [—1,1] N Q. Since it is countable so consider an enumeration Q = {g,}.
Now consider the translates V + g, for all n € N and their union X = J,, V + g,. We now observe
the following two facts about X.

1. If n # m, then (V +¢,) N (V + ¢y) = 0. Indeed, if z € (V 4+ g,) N (V + gm), then
T =7rg+gn =y + gm. Consequently, r, — r, € Q and hence [a] = [b]. But by single choice of
r. for each ¢ € Z, we get r, = rp and thus ¢, = ¢, from above, which is a contradiction.

2. J =1[0,1] € X. Indeed, for any x € [0,1], consider the class [a] in which z is present.
Consequently we have a unique 7, € V corresponding to z which satisfies z € [r,]. Thus,
T =71+t where t € Q. We may write ¢t = g, to obtain that x € V + ¢, as desired.

3. X C [-1,2]. Indeed, this follows immediately since X = |J,, V + ¢, where ¢,s are rationals
in [-1,1] and V C [0, 1].

With the above three observations, we obtain the following inclusions:

0,11 cJV+a C[-1,2].
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Now, if we apply the pseudo-measure i on the above inclusions, we will obtain the following;:
1<) (V) <3
n

If (V) = 0, 00, then we have an immediate contradiction. Else if 0 < u(V') < oo, then >, pu(V) =
oo and we again have a contradiction. Thus, u(V) ¢ [0, 00|, a contradiction. O

Remark 1.0.3. The main issue in pseudo-measures is that we trying to get a measure on all of
the subsets of R. By Theorem 1.0.2, this is hopeless. What we shall now do instead is to obtain a
measure not on all of the subsets of R, but rather on only a subcollection of subsets of R, and we
shall choose this subcollection in a manner so that we don’t allow sets like Vitali sets. Indeed, this
becomes our point of departure for the abstract definition of o-algebras and measure/measurable
spaces, the need for the right domain of a measure function.

1.1 Few introductory notions

These are few of the basic definitions that one might remember from real analysis.

e Limit Points : z € X is called a limit point of a subset S C X if Vr > 0, 3 a # = such that
a € SN B,(z). That is, ball of any size r around z contains atleast one point of S.

o Isolated Points : y € S is called an isolated point of a subset S C X if 3 r > 0 such that
(Br(y) \ {y}) NS = ®. That is, B,(y) contains no other point of S apart from y.

— Also note that every point of closure S is either a limit point or an isolated point of S.
— More specifically, any subset of R? is closed if and only if it contains all of it’s limit
points.

o Perfect Set : A is called a perfect set if A = A’ where A’ is the set of all limit points of A.
More conveniently, if A does not contain any isolated points then it is a perfect set. R is a
perfect set.

o Symmetric Difference : A and B are two sets then symmetric difference is AAB = (A '\
B)U(B\ A).

o Power Set : Collection of all subsets of a set S, written as P(S).

e Lower Bound : A lower bound of a subset S of a poset (P, <) is an element a € P such that
a<zgforallzes.

e Infimum : A lower bound p € P is called an infimum of S if for all lower bounds y of S in
P,y <p.

o Limit Infimum : For a sequence {z,}, limit inferior is defined by:

imjatan = fm (it o)
= sup inf x,, (1)
nzomZn

= sup{inf{z,, | m > n} | n > 0}.

e Upper Bound : An upper bound of a subset S of a poset P is an element b € P such that
b>zforallz e S.

¢ Supremum : An upper bound u € P is called a supremum of S if for all upper bounds z of
Sin P, z > u.
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Limit Supremum : For a sequence {z,}, limit supremum is defined by:

n—oo nsoo \M2n

limsup 2, = lim <sup xm)

= inf sup z
nZOmZI:L m

= inf{sup{z,, | m > n} |n > 0}
Limit : Consider the sequence {z,} in [—00,+00], then im z, is defined as

lim inf z,, = limsup z,, := lim .
nreo n—+c0 n—o0

Lower Sum : [(f,P) is the sum of the minimum functional values at the partition. That is,
n—1
WfP) =) mi(air1 — a;)
i=0

where m; = inf{f(z) | z € [ai—1,a:]}.
Upper Sum : Similarly,

n—1
u(f, P) = Z Mi(ai+1 — ai)
i=0
where M; = sup{f(z) | = € [a;—1, ai]}
Remember that the function is Riemann Integrable if I(f, P) = u(f, P).
Countable Sets : Note the following,
1. Cardinality : Sets X and Y have the same cardinality if there exists a bijection from X
toY.
2. Finite Set : A set is finite if it is empty or it has the same cardinality as {1,2,...,n}
for some n € N.
Countably Infinite : If the set has the same cardinality as N.
4. Enumeration : An enumeration of a countably infinite set X is a bijection of N onto X.
That is, an enumeration is an infinite sequence {z,} such that each of the z;’s are in X
and each element of X is x; for some 7.
5. Countable : A set is countable if it is finite or countably infinite. For example, N is
countable, Q is also countable (!), R\ Q (irrationals) is not countable, R is not countable.
Totally Bounded : A subset B C X is totally bounded when it can be covered by a finite
number of r-balls for all r > 0. That is,

w

N
Vr>0,3N eN, Jay,...,any € X such that B C U B,(an)

n=1

Compact Set : A set K is said to be compact when given any cover of balls of possibly
unequal radii, there is a finite sub-collection of them that still covers the set K. That is,

N
KQUBTZ(GZ) - 3’51,...,7:]\], K C U Brin(ain)

n=1

Note that compact metric spaces are totally bounded (!). Also, compact sets are closed.
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The problem begins with Riemann Integrable functions when we see that functions like Dirichlet
function (1 on irrational and 0 on rational points) can become measurable even when the function
is not continuous! This motivates the need of a formal notion of a measure.

We begin with some recollections from classical analysis of one real variable.

1. Every open set in R can be written as disjoint union of open intervals.

Proof. Let G C R be a open subset. Now by definition of an open subset, we have that for
any ¢ € G, there exists atleast one open subset U such that x € U C G. Now consider the
following union of all such open subsets of z,

U= U U
zeUCG
It’s now easy to see that U, is the largest such subset of GG, as any other V' C G such that
x € V is by definition contained in U,. Moreover, U, is an interval as it is an arbitrary union
of open intervals. Now, define the following relation on G:

y~x = yelU,

Now we clearly have that z € U, (reflexive); for y ~ U, we have U C U, such that z,y € U,
hence z € Uy (symmetric); for z € U, and y € U,, we have that z,y,z € Uy, since z € Uy, C G
so Uy C U,, so ¢ € U, (transitive). Hence ~ is an equivalence relation, hence ~ partitions
the set G. Denote the set of all equivalence classes as Z so we get

G=JI
IeT
such that I; N Iy = ® for any I1,I> € Z. Now note that for any I € 7 is open because each
I is generated by the relation ~ such that y ~ z iff y € U,. Hence for any z € I, we have

z € U, C G where U, is open. Therefore, we have G = UrczI for disjoint open intervals in
T. d

2. Prove that every non-empty perfect subset of R (or R™) is uncountable. That is, if A = A’
then A is uncountable.

Proof. Take A C R to be a perfect subset. Since A it is perfect, therefore, it must contain
all of it’s limit points or, equivalently, contains no isolated points. Clearly, then, A cannot be
finite, but can only be countably infinite or uncountable. If it is uncountable, then the proof
is over. If A is countably infinite, then we can write A as the following :

A={a1,a2,...}.

Construct a ball around a;, of any radius r; > 0. Since A is perfect, therefore 3 a;, €
By, (ai;) N A = C. Similarly, for some r; > 0, we have a;; € By,(ai,) N Br(ai;) N A = Cy
such that a;, ¢ C2 and so on. In general, we would have the following,

Qiny1 € (n Brj(aij)> NA=C,.
j=1

Now, consider C = N,,C,,. Since Cp4+1 C Cy, therefore C # ®. But, a; ¢ C for any i € N as
a; ¢ Ciy1. Therefore we have a contradiction. Hence A cannot by countably infinite, it must
only be uncountable. O
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3. In the definition of Lebesgue Outer measure on R, one can instead take C4 to be collection
of infinite sequences of the any form from {[an, b,]}, {(an, bn)} or {(an,bn]}

Proof. Refer Proof of Proposition 2.5.3. O
4. Show the following:
N N c
n=1 n=1 k<n

Proof. Take z € U,]Ll E,,. Then 3 Ej for some a such that x € E,. Now, clearly, x € E, C
(Ukca B, hence @ € (Eq N (g, Br)°). Hence, we have UN_y By C UMy (B N (Ugen Br)°).
The converse is easy to see too. O

2 Measures

2.1 Algebras & o-algebras

Definition 2.1.1. (Algebra/Field) Let X be an arbitrary set. A collection A C P(X) of subsets
of X is an algebra on X if:

« X e A

e Ac A = A°c A

o For each finite sequence A1, Ao,..., A, € A implies that

UAiG.A

=1

e For each finite sequence A1, As,..., A, € A implies that

n
ﬂ A, e A
i=1
Definition 2.1.2. (0-Algebra/o-Field) Let X be an arbitrary set. A collection A C P(X) of
subsets of X is a o-algebra on X if:
e X eA.
e Ac A = A°cA.
e For each infinite sequence {4;} such that A; € A, it implies that

o0
U A, e A
i=1
« For each infinite sequence {4;} such that A; € A, it implies that
0
ﬂ A, e A
i=1

Proposition 2.1.3. Let X be a set. Then the intersection of an arbitrary non-empty collection of
o-algebras on X is a o-algebra on X.
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Proof. Consider a collection € of o-algebras on X. Denote A = [ C as intersection of all o-algebras
in €. We can now easily see that any subset in A would be present in every o-algebra present in
collection C, hence, it would obey all properties of a o-algebras. Therefore, A is a o-algebra. [

Corollary 2.1.4. Let X be a set and let T C P(X) be a family of subsets of X. Then there exists
a smallest o-algebra on X that includes F.

Proof. Consider any given family ¥ C P(X) and just take intersection of the family C of all
o-algebras which contains F to construct this smallest o-algebra. O

Definition 2.1.5. (Generated o-algebra) The smallest o-algebra on X containing a given family
F C P(X) of subsets is called the o-algebra generated by F, denoted as o ().

Definition 2.1.6. (Borel o-algebra on R?) It is the o-algebra on R¢ generated by the collection
of all open subsets of R%, denoted as B(R?).

Definition 2.1.7. (Borel Subsets of R%) Any A C R% is called a Borel subset of R? if A € B(R?).

Proposition 2.1.8. The Borel o-algebra on R, B(R), of Borel subsets of R is generated by each
of the following collection of sets:

1. The collection of all closed subsets of R.

2. The collection of all subintervals of R of the form (—oo, b].

3. The collection of all subintervals of R of the form (a,b).

Proof. To show all of these, consider the three o-algebras Ai, Az, A3 corresponding to conditions
1,2 & 3 respectively and try to prove A C Ay C A; C B(R) together with B(R) C Asz. The first
three inclusions are trivial to see. For the case that B(R) C As, simply note that any open subset
can be made by unions of the sets of form (a,b] and by Homework-I,1, each open set is union of
open subsets. O

Proposition 2.1.9. The o-algebra B(R?) of Borel subsets of R? is generated by each of the fol-
lowing collections:
1. The collection of all closed subsets of R%.
2. The collection of all closed half-spaces in R? that have the form {(z1,...,zq) | z; < b} for
some index i and some b € R.
3. The collection of all rectangles in R? that have the form

{(z1,...,2q) |a; <x; < b; fori=1,...,d}

Proof. Almost the same as in Proposition 2.1.8. A; C B(R?) trivially by definition. As C A; as
{(z1,...,2q) | z; < b} is closed itself. A3z C Aj by the observation that {(x1,...,2q4) | i < ; < b;}
is made by the difference of two subsets of the form {(z1,...,z4) | z; < b;} and {(z1,...,2q) | z; >
a;}, the latter is the complement of a certain subset in Ay, moreover, {(x1,...,24) | a; < z; <
b; for i = 1,...,d} is then constructed by intersection of d such subsets. Finally, B(R%) C A3z can
be seen via the fact that open subsets in R¢ are made by union of rectangles of type 3 and as such,
they are called open subsets. O
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Lemma 2.1.10. Let X be a set and S C P(X) a class of subsets of X. Let A C X be a subset.
Denote by SNA={BNA|Be€S}. Then,

ca(SNA)=0(S)NA.
where o4(S N A) denotes the smallest o-algebra over A generated by the class SN A C P(A).

Proof. It is easy to see that 0 4(SNA) — o(S)NA by considering that SNA C o(S)NA. Conversely,
we use the generating set principle. That is, since we wish to show that for any B € ¢(S), we have
BN A€ oa(SNA), therefore we define

S:={Beo(S)|BNAcoa(SNA)}

and then observe quite easily that S is a o-algebra over X inside o(S) containing S. Thus § = o(S5),
as needed. O

The following are some conditions for an algebra to become a o-algebra.

Proposition 2.1.11. Let X be a set and let A be an algebra on X. Then, A is a o-algebra on X
if either

o A is closed under the formation of unions of increasing sequence of sets, or,

o A is closed under the formation of intersections of decreasing sequence of sets.

Proof. Take any countably infinite collection of subsets Aj, As,--- € A where A is an algebra.
Due to the definition of an algebra, we have that C, = |Jj_; A; € A for any n > 1 € Z;. Now
note that C; C Cs C ..., that is, the sequence {C,} forms an increasing sequence of sets. Hence,
by the requirement of the question, we have that |J;2; C; € A. But then we also have that

o1 Ai C U2, C; € A. Hence we have the required condition for part 1. For part 2, we can see
that C7 2 C5 O ... is a decreasing sequence of sets. Then we must have, by the requirement of
the question, that N2, Cf = (U2, C;) € A. But then by definition of algebra, we must have
U2, C; € A, which already contains the countably infinite union (J;2; A;. O

The following are some finiteness conditions we would like to have on measure spaces.

Definition 2.1.12. (Finiteness conditions) Let (X, A, ;1) be a measure space. Then,
1. X is said to be finite if u(X) < oo,
2. X is said to be o-finite if there exists {A,} C A such that U,, An, = X and p(A4,) < oo,
3. X is said to be semi-finite if for all A € A such that u(A) = oo, there exists B C A such that
B € A and p(B) < 0.

2.1.1 X-indexed R-series

We would now like to make sense of the sum > .y f(z) where f : X — [0,00] is an arbitrary
function.

Definition 2.1.13. (X-indexed R-series) Let f : X — [0,00] be a function where X is a set.
We define the series . x f(x) as follows:

Zf($)=sup{2f(ac)|F§Xisﬁnite}.

zeX z€F
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The following are some basic properties of X-indexed R-series.

Proposition 2.1.14. Let X be a set and f : X — [0,00] be a function. Denote S = {x €
X | f(z) > 0}.

1. If S is uncountable then Y, x f(x) = co

2. If S is countably finite then for any bijection ¢ : N — S, we have

Y fl@) =) fle(n)

zeX neN

Proof. 1. Write S = J,, S, where S,, = {f(z) > 1/n}. Note that S,, forms an increasing sequence
of sets. As S is uncountable, there exists N € N such that Sy is uncountable. Consequently, for
any finite set F' C Sy, we have > .p f(z) > % As > cr f(z) £ ¥ sex f(z), therefore

ey s (©)

zeX
As F C Sy is arbitrary finite set and Sy is uncountable, therefore we get the desired result.
2. Pick any bijection ¢ : N — S and pick a finite set F' C X. We have > cp f(2) = X scrng f(@

);
so replace F' C X by a finite set F' C S. Let n € N be large enough so that ¢({1,...,n}) 2 F.
Consequently, we have

Zﬂxs

z€F

k)<Y fa) ©)

zeX

||M:

Take n — oo in the above inequality to obtain
[e 0]
Zﬂzsz (k) <Y f(@).
zeF k=1 zeX

Take sup over all finite subsets F' of X in the above inequality to obtain

Y f@) <Y flem) < Y flw)

zeX neN reX

which yields the desired result. O

2.2 Measures

Definition 2.2.1. (Countably additive function) Let X be a set and A be a o-algebra on X.
Function p : A — [0, 400] is said to be countably additive if it satisfies:

7 (D Ai) = iM(Az

for each infinite sequence {A;} of disjoint sets in A.
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Definition 2.2.2. (Measure) A measure on A is a function p : A — [0,400] that is countably
additive and satisfies:

u(®) = 0.
Remark 2.2.3. This is sometimes also referred as countably additive measure on A.

Definition 2.2.4. We have following definitions to compactly represent above definitions:
1. (Measure space) If X is a set, A is a o-algebra on X and if y is a measure on A, then the
triple (X, A, p) is called a measure space.
2. (Measurable Space) If X is a set and A is a o-algebra on X, then the pair (X, A) is called
a measurable space.

Proposition 2.2.5. Let (X, A,u) be a measure space and let A, B € A such that A C B. Then,
o We have pu(A) < u(B).
o Additionally, if A satisfies that u(A) < +o0, then:

w(B — A) = u(B) — u(A).

Proof. Note that A and B N A€ are disjoint sets in the sigma algebra A. Hence we can write, by
countably additive property of u, that:

AU (BN A?)) = u(B)
= u(A) + p(B N A%
Since (B N A°) > 0, hence u(A) < u(B). Moreover, if u(A) < oo, then we can additionally write
p(B N A%) = p(B) — p(A). 0

Definition 2.2.6. Let u be a measure on a measurable space (X, A). Then,
o (Finite measure) If u(X) < 4o0.
o (o-Finite measure) If X = J; A; where A; € A such that p(A;) < +oo for all 7 € N.

Remark 2.2.7. In other words, a subset A € A is o-finite if it is a union of a countable sequence
of sets that are in A and are of finite measure under pu.

2.2.1 Elementary properties of measures

Proposition 2.2.8. Let (X, A,u) be a measure space. If {Ax} is an arbitrary sequence of sets

that belong to A, then,
p ( Ak) <D ul(A).
k=1 k=1

Proof. Denote By = A; and B; = A; N ( ;;11 Ak)c. Note that B; and B; are disjoint for distinct
i and j. Since {Ax} € A, therefore {B;} € A. Moreover, ;2; B; = Upe; Ak by construction. We
then get,

o0 o0 o0
w(U )= (Um) = Sum
k=1 i=1 i=1
o0
< Z u(4;) (. B; C A; by construction.)
i=1

Hence proved. O
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2.3 Basic results on measure spaces

We have the following first result.

Proposition 2.3.1. Let (X, A, u) be a measure space.
1. If A,B € A and A C B, then pu(A) < u(B).
2. If A,B € A and A C B where u(A) < oo, then u(B\ A) = pu(B) — u(A).
3. For any sequence {An} C A, we have

7 <LnJ An> < Zn:u(An)-

4. If {An} C A is an increasing sequence of measurable sets, then

,u <U An) = limpu(Ap).

5. If {An} C A is a decreasing sequence of measurable sets where pu(A1) < oo, then

L <ﬂ An) = lim,u(Ap).

6. If X is o-finite, then X is semi-finite.

Proof. Statements 1. and 2. are immediate from the disjoint decomposition B = AIl (B \ A). For
3. note that for any {A,} C A, we can form a disjoint sequence {B,} C A such that |, A, =
11, Br and p(By) < p(Ay). Statement 4. also follows from similar reasons, where we can now let
B, = A, \ A,_1. Let us do statement 5. in some detail.

Observe that the sequence C; = () and C,, = A; \ A, is an increasing sequence of sets. Thus,
we have by statement 4. that

I (U Cn) = lim,u (C) . Q)
We can write A; = (41 \ A) I A,,. Using statement 2. we obtain that

n(A1) = p(Cn) + pu(An)
p(A1) — p(An) = p(Cr). (©0)
We now claim that (), An = 41 \ U,,Cr. Indeed, for z € N, An, x € A, C A; for all n
and thus x € A;. But if z € C), for some n, then x ¢ A,, consequently a contradiction. Hence
z € A1\ U, Cn. Conversely, for z € A; \ U, Cn and any n € N, we have that if x ¢ A,, then
x € A1 \ A, = C,, a contradiction. Hence the claim is proved.

As each C), C Ay, thus J,, Cr, C A;. Consequently, by statement 2. and above claim we obtain
that

(N An) = p(41) — p <Lg Cn)

= (A1) — lim,u(Cy)
= p(A1) — lim,, (u(A1) — p(A4n))
= limn.u(An)'
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This proves statement 5.

For statement 6. pick any A € A with u(A) = co. We wish to construct a subset B C A with
B e Aand 0 < u(B) < co. Let {D,} C A be a collection of finite measure sets such that ,, D, =
X. Note that we can assume D,, are disjoint by suitably replacing D,, by D, \ D1 U---U D,,_;.
Assume to the contrary, so that for each B C A with B € A, either u(B) = 0 or u(B) = co. Let
D,, N A be such that D, N A # 0. Consequently, u(D, N A) = 0 or co. The latter isn’t possible,
therefore u(D, N A) =0 for all n € N.

Since we have A = [[,, D, N A, therefore u(A) = >, u(Dr N A) = 0, a contradiction to the fact
that u(A) = co. O

We now cover an important example of a measure.

Construction 2.3.2. (Measures from a positive function) Let (X,.A) be a measurable space and
f:X — [0,00] be a function. We construct the following map

{All functions X — [0, 00]} — {measures on (X,.A)}.
Indeed, define

,LLf:.A—>[0,00]
A— > f(=z)

€A

We claim that p; forms a measure.
It is clear that 41 7(0) = 0. Consequently we need to show that for a disjoint collection {A,} C A,
we have

Ky (H An) = ZNf(An)'

We first have that

wf (HA"> = sup{z f(z) | F C HAn is ﬁnite} (1)

n zeF

and

Z,uf(A Zsup { Z f(z)|GC A, is ﬁnlte} (2)

zeG

We first show that (1) < (2). We need only show that for a finite set F' C II,A,, we have
Y wer f(x) < (2). Indeed, as F, := F'N Ay, is a collection of disjoint finite set where F,, C A, and
only for finitely many n is F,, non-empty, therefore - . f(z) = >, Y e, f(z) < (2).

Conversely, we now wish to show that (2) < (1). We use a standard technique for this. Pick
any € > 0. For each n € N, we obtain a finite set G,, C A,, such that

n)——< > fl@) ©)

z€Gn
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Summing this till N € N, we obtain

N N
S () -5) < X f@= Y f@) <)
n=1 n=1zeG, me]_[gzlgn

Now take N — oo and € — 0 to obtain the result?.

Observe that the map defined above in Construction 2.3.2 is neither injective nor surjective,
and that’s good, otherwise measure theory would have been redundant. We now study completions
of a measure space.

Remark 2.3.3. The goal of next few sections is to establish a good measure on R™ through which
we can proceed to a theory of integration of measurable functions. Indeed, this goal was achieved by
Lebesgue and he constructed what will be called the Lebesgue measure on R™. Hence, one should
view the goal of the next few sections as to construct this measure space (R"™, M,m), which is
highly usable (as we will see in the integration theory) and is the gold standard of modern analysis.

2.4 Completion of a measure space

Definition 2.4.1. (Null sets and complete measure spaces) Let (X, A, 1) be a measure space.
A null set is an element A € A such that u(A) = 0. The collection of all null sets is written as
Null(A) C A. A measure space (X, A, p) is said to be complete if for all A € Null(A), P(A4) C A.

Remark 2.4.2. Note that for a measure space (X,.A, u), the collection of all null sets Null(A)
contains () and is closed under countable union. Indeed, for {A,} C Null(A), we have u(U,A4,) <
> n (Ap) = 0 by Proposition 2.3.1, 3.

Definition 2.4.3. (Extension of measure spaces) Let (X, A, u) and (X, A’, i’) be two measure
spaces. Then we say that (X,.A’, ') is an extension of (X, A, ) if A’ D A and /| 4 = p.

We will now for each measure space (X, .A, 1) will construct an extension of it which will be
complete.

Construction 2.4.4. Let (X, A, 1) be a measure space. Consider the following collection
A:={AUB|Ae€ A BCN,N cNull(A)}.

Define 2 : A — [0,00] as AU B+ u(A).

Theorem 2.4.5. Let (X, A, ) be a measure space. Then, (X, A, i) is a complete measure space
extending (X, A, u). We call it the completion of (X, A, u).

Proof. We need to show the following things.
1. Aisa o-algebra,
2. [i is a measure,
4. (X, A, p) is complete.

2We call this the e-wiggle around inf and sup technique.
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The first three are straightforward. We show 4. in some detail.

Pick AU B € A such that (AU B) = u(A) = 0. Then A € Null(A). Further, B C N where
N € Null(A). Let C C AUB. ThenC = (CNA)U(CNB). SinceCNAC Aand CNB C N,
therefore C C AU N where AU N € Null(A). Consequently, we may write C = () U C where C is
a subset of a null set. Hence C € A. O

Example 2.4.6. Let X = {1,2,3} and A = {0, X, {1},{2,3}}. Define u: A — [0,00] by u(0) =
0= u({2,3}) and p({1}) = u(X). Clearly, (X, .A, 1) is a measure space which is not complete. We
calculate its completion (X, .A, i). By Construction 2.4.4, as the only null set is {2,3}, we have

A={0,X,{1},{2,3}, {2}, {3}, {1,2}, {1,3}}.

Hence A = P(X). Similarly, ji is easy to find by the definition in Construction 2.4.4.

2.5 Outer measures

Definition 2.5.1. (Outer measure) Let X be a set and let P (X) be the collection of all subsets
of X. An outer measure on X is a function p* : P (X) — [0, +00] such that:
¢ For the empty set ®,

p(®)=0
e If AC BC X, then
p*(4) < p*(B).

e If {A,} is an infinite sequence of subsets of X, then

v (Uae) <3 (4
Definition 2.5.2. (Lebesgue outer measure on R) For each subset A C R, let C4 be the set
of all infinite sequences {(a;, b;)} of bounded open intervals such that A C J;(as,b;). That is,
Cyq= {{(ai, bz)} | AC Ui(ai,bi) and a;, b; € R}
Then, \* : P (R) — [0, +o0] is the Lebesgue outer measure, defined by:

¥ (A) = inf {Z(bz — az-)

i

{(ai,bi)} € GA} 3)

To verify that \* is indeed an outer measure.

Proposition 2.5.3. Lebesgue outer measure on R is an outer measure and it assigns to each
subinterval of R it’s length.

Proof. Denote C4 = {{(ai,b;)} | A C U;(a;,b;)}. To show that A\* is an outer measure, we first
need to show that A* (®) = 0. For that, consider the set of all infinite sequences {(a;,b;)} € Cg,
that is (trivially) ® C U;(as,bi), such that >,(b; — a;) < € for all € > 0. Then, if we denote
La={>;bi—a;) | {(ai,b;)} € Ca}, then inf L& = 0 as for any lower bound ! of £ 4, if I > 0 then
3 {(a;,b;)} € Cp such that >;(b; — a;) <, hence I <0, or inf Lo = 0.
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Second, we need to show that if A C B C X, then A*(A) < A*(B). For this, consider A C B.
Clearly, we have that Cg C Cy4, therefore L C £ 4 and hence inf Lg > inf £ 4.
Third, we need to show that for any infinite sequence {A,} of subsets of X,

X (U An) <D N (4n)

For this, consider the Lebesgue outer measure of A,, that is, A\* (A,). We must have, that for any
infinite sequence {(an,bn:)} € Ca,, that

o0

> (bni — ang) > A (An).

=1

Hence, consider that the difference is upper bounded according to n, that is the sequence {(an, i, bn i)} €
Ca4,, is such that,

o0

Z(bn,i —an;) — A (Ap) < €/2".

i=1
Now, we can cover the entire |J; A; by the union of the above intervals, that is,

U Az C U U(an,iy bn,i)-

Now, we know that

¥ <U Ai> =inf Ly, A,

But since

Z Z(bn,i - an,i) € LUiAi’

n o g

and

5 (Z(bm i) — X° (An)> <o

7

which is equal to
Z Z(bn’i — an,i) Z )\* < ex1

or,

33 (bni = an) £ 3N (An) +e

and since \* (|J; 4;) = inf LU» 4, therefore,

» (UAi) < 3 om0 < 2 ()

Hence proved.
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Now, we need to show that \* assigns each subinterval it’s length.
For this first show that A\* ([a,b]) < b — a. This is easy to show if we take,

[a,b] = U(ai, bi)

K3

where (a1,b1) = (a,b), (a;,b;) = (a — €/2%,a) for all even i and (a;,b;) = (b, b+ €/27) for all odd j.
Now,

Z(bi—ai)=(b—a)+ Z €/2¢ + Z €/2!

i=24,... i=3,5,...
=b—a+ Y ¢€/2
i=1,2,...
=b—a+e

therefore \* ([a,b]) = inf L, < b—a+ € for all € > 0, hence X* ([a,b]) < b — a.

Now, to show the converse that b — a < A*([a, b]), we first note that [a,b] is compact, so for any
infinite cover {(a;,b;)} € Cjq), there exists a finite subcover {(a;,b;)}i; of [a,b]. Now, since \* is
an outer measure, therefore,

b—a <> AN ((ai, b)) <D A ((ai, b)) € Ly
=1 i=1

Therefore, b — a is a lower bound of L, and hence b —a < inf L,y = A* ([a, b]).
Hence \* ([a,b]) = b — a.
Now since, one can construct subintervals of the form (a,b] or [a,b) from the following manner:

(a,b] € (a,0) (U[b,b+ e/2"])

from which we get that A* ((a,b]) < b— a and also,

[a,8] € (a, 0] (U[a —€/2", a])

which yields b — a < A* ((a, b]). Similarly for (—oo, b] to show that A* ((—oo, b]) = +o0. O

Construction 2.5.4. (Lebesgue outer measure on R™) Consider R™ and for an box I C R", by
which we mean a product of interval I = I; X --- X I, for I; C R, denote v(I) to be its volume;
v(I) =[Ii%, I(L;). For any A C R", we define

n

p*(A) = inf {Z v(Ip) | UI” 2 A, I, are boxes} .

We claim that p* forms an outer measure on R™.
Indeed, p*(@) = 0 as @ C (—1/k,1/k)™ for all n € N so we have p*(A4) < 2™/n™. Taking
n — oo does the job.
Let A C BinR™. Observe that to show p*(A) < p*(B) we need only show that {}°, v(I,) | U, In 2 A, I, are |
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{3,v(l) | U, In 2 B, I, are boxes}. But this is trivial as and sequence of boxes {I,} covering
B also covers A.
Finally we wish to show countable subadditivity. Pick {A,} C P(R™). We wish to show that

i (Uae) < St

We use the e-wiggle around sup and inf technique to show this, as discussed earlier in Construction
2.3.2. Pick any € > 0 and observe that we have a sequence of boxes {I,, x}1, for each n € N such
that Uk In,k D) An and

(A0 + 35 2 Y o(Ta). (©)
k

Observe further that U, Uy Inx 2 U, An. Consequently, we have > >, v(Ix) > p*(U, 4n).
Hence,

3 (1 + 52) 2 S0l 20 (U ).
n k n

n
Hence p* is an outer measure on R"”.

Note that the only place we required knowledge about boxes explicitly was only to show that
p*(@) = 0. This motivates the following simple result

Theorem 2.5.5. Let X be a set and S C P(X) be a collection of sets containing O and X. Let
[:8 — [0,00] be a function such that [(B) = 0. Then p* defined by

p*:P(X) — [0, 0]
A — inf {Zl([n) |UL24, I, es}

is an outer measure on X.

Proof. Verbatim to Construction 2.5.4, except that p*(0) = 0 follows now by the assumption that
[() = 0 and @ € P(X) so that @ forms its own covering. O
2.6 Lebesgue measurability & Carathéodory’s theorem

Definition 2.6.1. (u*-measurable subset) Let X be a set and let u* be an outer measure on
X. A subset B C X is p*-measurable if:

p*(A) =p" (ANB)+u" (AN B°)
holds for all subsets A C X.

Definition 2.6.2. (Lebesgue measurable subset of R) A subset B C R is called a Lebesgue
measurable subset of R if B is A\*-measurable. That is, for any A C R, we must have:

A*(A) = \* (AN B) + X* (AN B°)
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Remark 2.6.3. Important to note are the following;:
o Due to sub-additivity of u* and A C (AN B) U (AN B°), we already have that

p* (A) <p* (AN B) +p* (AN B°)

for any subsets A, B C X.
% Due to the above fact, all that remains to be shown to ascertain that B C R is u*-measurable
is to show the following converse:

p*(A) > p* (AN B) +p* (AN B°).
for all A C X.

Proposition 2.6.4. Let X be a set and let u* be an outer measure on X. Then each subset B C X
that satisfies p* (B) = 0 or that satisfies u* (B¢) = 0 is p*-measurable.

Proof. This result actually proves that for subset B C X which has zero outer measure under p*,
any other subset A C X would be such that pu* (AN B) = 0(!) After proving this, and from the re-
mark above, we would just be left to show that if p* (B) = 0, then p* (A) > p* (AN B)+p* (AN B°).
We show the former here, from which the latter follows naturally.

Consider B C X such that pu*(B) = 0. It’s true that AN B C B. Now since p* is an outer
measure on X, therefore, we must have u* (AN B) < p* (B) = 0. This implies that u* (AN B) = 0.
Now, we would see that the required condition follows naturally from the previous. First, note the
following;:

ANBC Aand ANB° C A.

Hence, we can write:
W*(ANB) < u* () and p* (AN B°) < u* (A).

Now if p* (B) = 0, then u* (AN B) = 0 and then in the second inequality, we would have:
p(ANB®)+pu* (ANB) < p*(A)+0

Or, if p* (B°) =0, then p* (AN B€) =0 and then in the first inequality, we would have:
p* (AN B) +p* (AN B°) < p* (A) +0.

Hence, B is p*-measurable for any B C X which satisfies that either u* (B) =0 or p*(B¢) =0. O

The following theorem is a fundamental fact about outer measures.

Theorem 2.6.5 (Carathéodory). Let X be a set, let u* be an outer measure on X and let M, be
the collection of all pu*-measurable subsets of X. Then,

o My~ is a o-algebra.

o The restriction of u* to M« is a measure on M,x.
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Proof. Act 1. M is an algebra.
First, it is clear that X,® € M« from Proposition 2.6.4, because p* (®) = p* (X°) = 0. Now, if
B € M, then p*(A) = p*(ANB) 4+ p*(ANB°) V A C X. But if we replace B by B® in the
above, we would get the same equation, hence B¢ € M,+. So M+ is closed under complements.
Now, to show closed nature under finite unions, we take any two subsets By, By € M+ and show
that AU B € M. First we have

p(A) = p" (AN B1) +p* (AN BY)
=" (AN Bz) +p* (AN By)

for any A C X. Now, we see that from the fact that B; € M-,

p* (AN (B1UBy)) =p* (AN (B1UBy) N By) + p* (AN (B1 U Bz) N BY)
=u* (AN B)) +p* (AN By N BY)

Similarly, we have from the fact By € M,

p (AN (B1UB2)) =p*(AN(B1UB)*N By) + u* (AN (B1 U B2)° N BS)
=u* (ANBiNB5N Bs) +u* (AN Bf N BsN B;)
= 4" (@) + p* (AN B§ N BS)
=u* (AN (B1 U By)°)
Now, adding the above results yield,

p (AN (B1UB2)) +pu* (AN (B1UBy)) =p* (AN (B1UB2)°) + p* (AN By) + p* (AN By N BY)
=p* (ANB{NB3)+ p* (AN BfNBy) 4+ u* (AN By)
=p* (ANBY) +p* (AN By)
=" (A).

Hence, By U Bs is p*-measurable, so By U Bz € M,+. Now, we can, for a finite collection of subsets
in M, we can proceed like above, to show that M, is closed under finite union, hence showing
that M, is an algebra.

Act 2. M+ is a o-algebra.

All that is left to show that M, is a o-algebra is to show that it is closed under countable union.
We have already proved closed nature under finite union. We extend it via induction principle.
Suppose {B;} is a sequence of disjoint subsets in M,+. For this, we first prove3 using induction
that, for all AC X and n € N,

To Prove : p* (A):i,u* (AN B;) + u* (Am <ﬁ Bf)) 4)

i=1 =1

3But why to prove Eq. 4? The motivation for Eq. 4 comes from Part 1. More specifically, notice in the equation
where we added p* (AN (B1 U B2)°) and p* (AN (B1 U By)). Note it’s 2°¢ line, this is the case when n = 2 in Eq. 4
combined with the fact that B;’s are disjoint. Now why to take B;’s to be disjoint? The reason for this comes from
the fact that for any infinite sequence of subsets {A;}, one can construct infinite sequence of disjoint subsets, that is
: A1, A2 N A, A3 N (A1 U A2)°, ... and it’s union is again Un A,,. Hence if we prove that a disjoint infinite sequence
is closed under union, then we could prove that any infinite sequence of subsets is closed under union too!
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For the case when n = 1, we see that it Eq. 4 reduces to p* (A) = p* (AN By) + p* (AN BY). But
since B; € M« Vi € N, therefore this is trivially true. Now, by the induction principle, we assume
that Eq. 4 is true uptill n and then we try to prove it for n + 1 step. For this, since By, 1 € M,
is disjoint to all other B;’s, we have,

w* (AmﬂB§> =M*<(AmﬂB§> mBnH) + p* ((AmﬂBf) mB;H)
=1 =1 =1

n+1
= u* (AN Bpy1) + p* (Am N B;)
=1

where the last line follows from the fact that each B; is disjoint to other B;’s, hence each B; would
contain B; and therefore B,1 C i, Bf. Now, substituting the above equation in Eq. 4 gives,

n n+1
p*(A) =) u (AN Bi)+p* (AN Bnia) + p* (Aﬂ N Bf)

i=1 i=1
n+1 n+1

=Y u(ANB;)+u* (An N Bf)

i=1 i=1

Hence, by induction principle, Eq. 4 is true for all n € N. Hence, now we can write,

Mg

u(A) >

pr (AN By + p* (AmﬁBf)

=1 =1

wiansy+u (an(0) )
1 i=1

Now, to prove that J; B; € M«, we need to show

To Show : p* (A) > u* (AHUBZ) + p <Aﬂ ( Bi>c)

This comes from previous result as follows:
u* ZZ (AN B;) + p* <Aﬂ(UBz))
oo o0 c
z;ﬁ(U(AmBi))Jru* (Am UB¢> ) (5)

i=1

= (1nG) e (a0 (02 )

Therefore, |J; B; € M,+. Now, as the previous footnote mentions, for every infinite sequence {C;}
in M+, we have a disjoint sequence of subsets as C1,Co N CY,C3 N C5 N Cy, .... Now, this disjoint
sequence is closed under union as we just showed and since union of this disjoint sequence is equal
to the union of {C;}, hence |J; C; € M~ for any sequence {C;} in M,+. Thus, M« is a o-algebra.

‘P”18

K3
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Act 3. p* restricted to M« is a measure.
Consider {B,} be an infinite sequence of subsets in M,=. Now, by finite subadditivity, we trivially
have

v (UB) <5 )
i i
Moreover, from Part 2 and setting A = U; B;, we get:
) o (g o (o)
i j i i i
= u*(Bj)+u* (@)
J
=D u(By).
J
We hence have the complete proof. O

Definition 2.6.6. (Lebesgue measure) The restriction of Lebesgue outer measure on R to the
collection My« of Lebesgue measurable subsets of R is called Lebesgue measure. It would be denoted
by A. Hence, we would work with the measure space (R, My, A)*.

2.7 Does X\*(F) =0 implies E is countable?

We would construct today a set which has measure 0, but not countable(!).

1. Take Ey = [0, 1].

2. Remove (1/3,2/3) from Ej to form Eq; = [0,1/3] U [2/3,1].

3. Proceed in the same way to form Fy = [0,1/9] U [2/9,1/3] U [2/3,7/9] U [8/9,1].
4. At n" step, E, contains 2" subintervals and each of which is of length 3%

5. We clearly have Eg D 1 D E2 D ...

6. Here, note that each E, is a closed and compact subset of R.

7. The set

o0
P= ﬂ E, is known as Cantor Set.

n=0
2.7.1 Properties of Cantor set
Proposition 2.7.1. Lebesgue measure of Cantor Set is 0.

Proof. Note that Cantor Set is Lebesgue measurable as it is countable intersection of closed sets,
hence it is present in the Borel o-algebra B(R) and hence is also in My~. Hence, instead of A\*, we

“From this point on-wards, whenever this text mentions that a given set is measurable in space (X,.A, u), it must
be assumed that the given set is in A, given that there is no ambiguity.
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can now write A as P € My+. Now, measure of Cantor set P can be written as:

A(P) =)\ (OEn)

= @ )‘(En)

Il
C = 1=
1]

Proposition 2.7.2. Cantor set is uncountable(!)

Proof. We will show that there exists a bijection between Cantor Set and an uncountable set,
specifically ternary system. For this, consider the ternary representation of every number in [0, 1].
What this means is that every number in [0, 1] can be represented only using the numbers 0,1 and
2. Hence, one write 3 as 0.1 and 2 as 0.2. Now, (1/3,2/3) = E{ N [0,1] is the set that has been
removed from the process of creating E; from Ey. Clearly, every number in this E{ N[0, 1] is of the
form 0.1... where ... are all combinations of 0,1 and 2. Therefore, we are now left with the F;
that has all the numbers represented as 0.0... or 0.2....

As we saw in the generation of Fj, the generation of Fs from F; would hence involve removing
numbers of the forms 0.01... and 0.21.... And hence E5 would then be the set of numbers whose
first two decimal places are restricted to NOT have the digit 1; that is, F2 would be of form
0.02...,0.00...,0.20...,0.22....

Continuing like this, we see that E,, would have in ternary representation, all those numbers whose
first n digits are NOT 1. Hence, for any p € P, p would have the ternary representation constructed
only from 0 and 2, but NOT 1.

Now, consider the map f : P — [0,1] such that f(p) replaces each occurence of 2 by 1 in the
ternary representation of p. We now show that this map is surjective(!) so that P has atleast as
many elements as [0,1]. To show this, take any z € [0,1] in it’s ternary form, and replace all 1 by
2 and denote it as z’. Clearly, 2’ would be in P as z’ has all decimal digits generated by 0 and 2.
But f(z') would be opposite action and would be equal to . Therefore, we showed that for any
z € [0,1],3 2’ € P such that f(2') = z. Hence f is surjective. Therefore P has atleast as many
elements as [0,1]. But since P C [0,1] therefore P has atmost as many elements as [0,1]. This
dichotomy suggests that

Cantor Set has as many elements as in [0,1] (/)
But since [0, 1] is uncountable, therefore, P is uncountable. O

With this, we conclude that for any set E C R, if A\* (E) = 0, then it’s NOT necessarily
true that F is countable.
We now see an extremely interesting example of a Non-measurable set.
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2.8 A non-measurable set

Theorem 2.8.1. There is a subset of R that is not Lebesgue measurable’.

Proof. We construct the proof in the following Acts:

Act 1. Equivalence Relation on R.
Construct the following relation ~ on R:

z~y=z—yeqQ.

Clearly, ~ is reflexive as x — x = 0 is rational; it is also symmetric as negative of a rational is also a
rational number; and it is also transitive as if £ —y and y — z is rational, thenx —y+y—z=x—=2
is sum of two rationals, which is also rational. Hence ~ is an equivalence relation. Therefore ~
partitions the whole R into equivalence classes. Note that each equivalence class of x would consist
elements of the form Q + z. But since Q is dense in R, therefore Q + z, that is each equivalence
class, is dense in R.

Now, each equivalence class clearly intersects (0, 1), therefore, inducing the Axiom of Choice on the
set of all equivalence classes, we can form a subset E C (0,1) which contains exactly one element
from each of the equivalence classes. We will later prove that E is not Lebesgue measurable.

Act 2. E satisfies certain properties.
Consider the set Q N (—1,1). Clearly, this is countable as it’s subset of Q. Then, consider {r,} to
be the enumeration of QN (—1,1). Construct the sequence of subsets E,, = E + r,. We now verify
that {E,} satisfies the following properties:

1. The sets E,, are disjoint.

2. U,, En is a subset of the interval (—1,2).

3. The interval (0, 1) is included in UJ,, E,.
Property 1 : Assume that E,NE,, # ® for some n, m € N such that n # m. Then Je;,es € F such
that e; + r, = e3 + r,, which means that e; — es = r,, — r,, € Q. But this cannot happen as e, es
are elements of ¥ and E contains exactly one element from the equivalence class of ~ intersected
with (0,1). Therefore e; — e2 ¢ Q. Which is a contradiction. Hence E,, N E,,, = ® for all n,m € N
such that n # m.
Property 2 : Take x € |J,, En. This implies that z € E,, for some m € N. But E,, = E+rp, =
{e+rm | e € E}. Since E C (0,1) and r,, € QN (—1,1) C (—1,1), therefore z € E +ryp C (—1,2).
Hence U,, En C (-1, 2).
Property 8 : Take any = € (0,1). Now take the e € E such that z ~ e, or z — e € Q. Hence
z€Q+e. Thatisz=r+e. Butsince0 <e<1land0< z <1, thereforer=z—e € QN(-1,1).
Hence x € E + r and if we denote r = 7, for some n € N, we get x € E + r, = E,, therefore
z € J; E;. Hence (0,1) C U; E;.

Act 3. E is Not Lebesgue measurable.
Assume that F is in-fact Lebesgue measurable. Now since E,, are disjoint (Property 1), therefore

we can write:
A <UEn> =Y A(En).

5See [Solovay70] for more information.



26 2 MEASURES

Now, since Lebesgue measure is translation invariant®, therefore A (E,,) = A (E +r,) = A (E).
Two cases now arise for A (U,, En):
1. I A(E) = 0 : Then A (U, E,) = 0. But

A((-1,2) = <UE > (Property 3).

Therefore we have a contradiction.
2. f A\(E) #0: Then A (U, Ern) = >, A(E) = +00. But

(UE > <A((-1,2)) =3 (Property 2).

We again have a contradiction.
Hence, the set F is just not Lebesgue measurable! O

2.9 Regularity

First consider the following proposition.

Proposition 2.9.1. Consider E C R. The following statements are equivalent:
1. F is Lebesgue measurable.
2. Ve>0, 3 an open set O such that

ECOand X" (O\E)<e

3. d a G set G such that
ECGand X* (G\E)=0.

Proof. The equivalence of each statement is as follows:
1 = 2. Consider E C R to be Lebesgue measurable. By above, for any £ C R and any € > 0,
there exists open set U such that E C U which satisfies

A*(U) <X (E)+e.
Now since E C U, therefore,

AT(U\NE)=X"(U) - (E)
<e€
2 = 3. Similarly, the above shows that there exists a G5 set G such that E C G which sat-
isfies \* (E) = A*(G). This directly means that A\* (G \ E) = 0 because E C G so \*(G\ E) =
A (G) — X (E).

3 = 1. Since G is Gs set therefore it is intersection of open sets in R. Now since any

5Proof?
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open set in R is an union of open intervals (Homework I, 1) which is Lebesgue measurable and
therefore G is Lebesgue measurable. Now, we can write F as

E=G\(G\E)

where G \ E is such that (from Statement 3) A* (G \ E) = 0, therefore, by Proposition 2.6.4, G\ E
is Lebesgue measurable. Hence F is also Lebesgue measurable.
O

Now, consider the next proposition, which is dual of the above.

Proposition 2.9.2. Consider E C R. The following statements are equivalent:
1. E is Lebesgue measurable.
2. Ve>0, 3 closed set C such that

CCEand X\ (E\C)<e.

8. 4 a F, set F' such that
FCFEand X" (E\F)=0.

Proof. Implications are as follows:

1 = 2. Suppose E C R is Lebesgue measurable. Note that if £ is Lebesgue measurable
(that is E € My«), then E° is also Lebesgue measurable as M)+ is a o-algebra (Theorem 2.6.5).
Hence, using Proposition 2.9.1 on E° gives us an open set O for all € > 0 such that £ C O and
A* (O \ E°) < e. Now let’s take it’s complement. Therefore, C = O° C E where C is clearly closed.
Now, E\ O° = O\ E°". Now,

A (E\ 0% = X* (O \ E°)
<€

which proves the first implication.

2 —> 3. From Proposition 2.9.1, we have that 3 a G5 set G such that E° C G and \* (G \ E°) = 0.
Note that the complement of countable intersection of open sets is countable union of closed sets.
Therefore, FF = G° is an F, set. Now, G° C (E°)® = E. Now, we know that £\ G° = G\ E°.
Therefore, we have the result as follows:
A (E\G%) =X (G\ E)
= 0.

3 — 1. Since F'is an F,, set, therefore, F' € My«. Moreover, as Statement 2 show, \* (E' \ F) =0,
thus by Proposition 2.6.4, E \ F' € Mj«. Since,

E=FU(E\F)

that is F is union of two Lebesgue measurable sets, therefore E € My«, completing the proof. []

"Tt’s not difficult to see as for any x € E\ O, x € E but x ¢ O°. Therefore, x € O but z ¢ E°, that is x € O\ E°.
Similarly for the converse.
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Definition 2.9.3. (Complete measure Space) The measure space (X, A, 1) is complete if the
for any A € A such that u(A) = 0 implies that for any subset B C A,

w(B)=0.

Remark 2.9.4. Trivial to see are the following;:
 Hence, if 4* is an outer measure defined on X, then the space (X, M+, u*) is complete (follows
from Proposition 2.6.4).
o This means that the Lebesgue outer measure restricted to Lebesgue measurable subsets of R,
(R, M+, A) is complete.

Definition 2.9.5. (Completion of a measure Space) Let (X, A) be a measurable space and
let ;1 be a measure on A. The completion of A under p is the collection A, of subsets A C X for
which there are sets £ and F' in A such that

ECACF

and
w(F —E) =08

3 Measurable functions

We now see the definition and basic properties of measurable Functions, which would later be used
to define Lebesgue integral.

Definition 3.0.1. (Measurable function) Let (X, A) be a measurable space and let A C X
which is in A. The function f : A — [—00, +00], is called a measurable function® if

{z | f(z) > a} for any a € R is measurable (belongs in A).

Remark 3.0.2. Please note that the function f defined above has a measurable domain.

Proposition 3.0.3. Let (X, A) be a measurable space and A € A. Let f : A — [—00,+00] be a
function. Then, the following statements are equivalent:

1. f is a measurable function.

2. For all a € R, the set {z | f(z) > a} € A.

3. For all a € R, the set {z | f(z) < a} € A.

4. For all o € R, the set {z | f(z) < a} € A.

Proof. The equivalence is shown as follows:
1 = 2. Since f is a measurable, therefore for all a € R, the set {z | f(z) > a} € A. This means
that C,_1 ={z | f(z) >a— 1} € A for all n € N. Now, the following set

C=Co s = (=] f(@) 2 a}.

8Note that, in Exercise III, Q. 2, we proved that for any A € A, this is trivially true. That is, all A-measurable
subsets are A,-measurable. In particular, E was a F, set and F' was a G5 set.
9One writes f as /-measurable function to denote the o-algebra over whose subset the function f is defined.
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is measurable as C' € A because C,,_1 € A for any n € N, hence the countable intersection would

also be in A, hence measurable.

2 = 3. Since {z | f(z) > a} € A, therefore it’s complement {z | f(z) < a} € A for any o € R.
3 = 4. Since {z | f(z) < a} € A for any a € R, thus, C, 1 = {z | f(z) <o+ 1} € A for all
n € N, hence "

C=Cuyy = =] (@) <}

and since each C,, 1 € A, therefore C € A.

4 = 1. Since {xn| f(z) < a} € A then it’s complement {z | f(z) > a} for all @ € R, making f
measurable. ]

Proposition 3.0.4. The following are basic examples of measurable functions:
o If f is a measurable function, then the set {z | f(z) = a} is measurable for all @ € R.
o Constant functions are measurable.
e The characteristic function xa defined by:

(2) 1 z€A
) =
x4 0 z¢ A
is measurable if and only if A is measurable.
o Continuous functions are measurable.
e Let (X,A) be a measurable space. If f and g are measurable functions on X, then the sets

{zeX|f(z) #9(z)}
{zeX|f(z) <g(z)}

are measurable (belongs to A).
o 10 Monotone functions are measurable.
o Y Consider f:R — R is a differentiable function. Then f' is a A\-measurable function.

Proof. The first example is trivial to see in light of Proposition 3.0.3 by taking intersection of
{z | f(z) < a} and {z | f(z) > a}, both of which are measurable.

For second, consider the constant function f(z) = bV z € R. Now, for all @ € R, consider the
set f~1((a,0)) = {z | f(z) > a}. If b > «, then we are done, if b < a, then by previous result,
{z | f(z) < a} is also measurable (equal to R and R € A).

For third example, consider the set x4~ '(a, 00) = {z | xa(z) > a} for any o € R. If a > 1, then
fHo,00) =® € A. If @ = 1, then f~![a,00) = A, since xa(z) is given measurable, hence A is
measurable. Now, Assume that A is measurable. Then consider the set x4 ~!(c, 00) for any a € R.
As we saw previously, the case for o > 1 is trivial. For 0 < a < 1, xa~!(a,00) = A € A. Finally,
for a <0, xa~!(—00,a] = ® € A. Thus, x4 is measurable.

For fourth, since f is continuous (so inverse of open sets is open, by definition), therefore f~!(c, co)
is open in R, hence it must be Borel, hence measurable for any a € R.

10Question 3 of Exercise 3.
1 Question 4 of Exercise 3.
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For fifth, since f and g are measurable. Then due to next Proposition 3.0.5, we know that f — g
is also measurable. This means that for any a € R,

{zeX|f(z)-9g(z) <a}

is measurable. Now set @ = 0 to get the result. Moreover, from this, we also get that {z €
X | f(x) — g(z) > 0} is also measurable. Hence,

{zeX | f(z) - g(z) #0} = {z € X | f(2) — g(z) < 0} U{z € X | f(z) — g(z) > 0}

is also measurable.

For sixth, we proceed as follows:

Consider the function f : A — R where A € M)~ to be monotone. Now, consider the following two
sets for any a € R:

Ai={ze€A| f(z) > a}
A = (fHa),00) N A

Now, take any x € Aj, then f(z) > a = z > f}(a). Now if f1(a)N A = ®, then
{r € A| f(z) > a} = ® which is trivially measurable and we would be done. If however
fHa)NA#®, then f~(a) ={y € A| f(y) = o} so that f(y) > « implies that y > f~!(a) so
that f(y) > f(f7*(a)) = a. Therefore, z > f~!(a), that is x € Ay, proving that A; C As.
Similarly, take = € Ag, therefore

z>fY(a)
f@) > f ()
f(@)>a
z€{z| f(z) > a}

T € A;.

Therefore Ay C A;. Hence, A; = A;. But since (f~!(),00) is an interval, hence measurable
and A is given measurable, therefore Ay = (f~!(a),00) N A is measurable, which makes A; =
{z | f(x) > a} = Ay measurable for all a € R.

For seventh, the result is simple to see since we are given that f is A-measurable due to continuity
(see Statement 4). Therefore, we can define the sequence of functions {f,} as follows:

fu(z) = flot %1) — f(m)‘v’ac e R.

n

As we can see, f, is A-measurable due to Proposition 3.0.5. Hence, we can see that because
fl(x) = @h_) w for any z € R, and since &nn_mo fu(z) = f(z), therefore f, — f' is
A-measurable (Proposition 3.0.9). O

Proposition 3.0.5. Let (X,A) be a measurable space and let A € A. Consider two measurable
functions f,g: A — [0,4+00] and ¢ € R. Then,
1. f+ec
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2. fxg
3. cf,
4- fyg

are also measurable.

Proof. 1. Since f is measurable, therefore the set {z | f(z) > a—c} = {z | f(z) + ¢ > a} is
measurable for any o € R.
2. Both f and g are given measurable. The set (f + g) ' (a, 50) can be written as:

(f +9) (@, 00) = {z ] f(2) + g(z) > a}
={z| f(2) > a—g(2)}
={z | f(z) > b}

where b € [—00, a]. Note that the case where g(x) = 400 is trivial as f(z) > a — (+o0) = f(z) >
—o0, which is by definition of co-domain of f. Now since {z | f(z) > b} is measurable for any
beR D (—o0,a] for any o € R, therefore (f + g) ' (, 00) is measurable for any o € R.

3. Note that for ¢ = 0, the function becomes constant and hence measurable (Proposition 3.0.4).
Consider the set (cf) (e, 00). We can write this as follows,

(cf) ™ (a,00) = {z | cf(z) > a}
={z | f(z) > a/c}
where ¢ # 0. Since f is measurable, therefore {z | f(z) > «/c} is also measurable for any o € R.

Hence cf is measurable.
4. Consider the set (f2)_1(—oo, o) for any a € R.

(f2) " (~00,0) = {z | fA(z) < a}
= {z| —Va< f() < Va}
= {z| f(&) < Va}(z | f(z) > —Va}

Therefore if f is measurable, then f2? is measurable. With this, we can simply write fg as:

(f+9)?%—(f—9)?
4

fg=
which, by previous results (2 & 3), is measurable. O

Proposition 3.0.6. 2 Let (X,.A) be a measurable space. Consider a function f : A — R where
A € A. Then the following are equivalent:

1. f is a A-measurable function.

2. f~Y(U) is a measurable set V open sets U C R.

3. f~Y(C) is a measurable set V closed sets C C R.

4. f71(B) is a measurable set ¥ borel sets B € B(R).

Proof. The proof is exactly the same as of Proposition 3.2.2. O

12Question 1 of Exercise 3.
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Definition 3.0.7. (sequence of fuctions) If {f,} is a sequence of [—o0, +00] valued functions
on A, then sup,, fr, : A = [—00, +00] is defined by

(sup 1n) (@) = sup{fula) | n € ).

Remark 3.0.8. One similarly defines the following:
e The infimum:

(irnlf fn) (z) = inf{f(z) | n € N}.

e The limit supremum:

<limnsup fn) (z) = limsup{fn(z) | n € N}.

e The limit infimum:

(limninf fn> (z) = liminf{f,(z) | n € N}.
o The limit:

(1212 ) () = i) 1m0

Proposition 3.0.9. Let (X, A) be a measurable space and let A € A. Consider {f,} be a sequence
of [—00, +00]-valued measurable functions on A. Then,
1. The functions sup,, fn, and inf,, f, are measurable.
2. The functions limsup,, f, and liminf, f,, are measurable.
3. The function lim  f, (whose domain is {x € A | limsup,, f,(z) = liminf, f,(z)}) is measur-
able.

Proof. Note that the set (sup, fn) '(—00,0] = {z € A| (sup,, fn)(z) < a} =N, {z € A| falz) <
o}. Therefore sup,, f,, is measurable. Similarly, (inf, f,) ' (—oc0,a) = {z € A | (inf, f,)(z) < a} =
Un{z € A| fnu(z) < a}. Now, denote gy = sup,,> frn and hy = inf,> f,. But since limsup,, f, =
inf,>0 Supg>,, fx = infp>0 gn and {g,} is measurable by 15¢ property, therefore lim sup,, f;, is also
measurable, similarly for lim inf,,. O

3.1 Almost everywhere property.

Definition 3.1.1. (u-almost everywhere) Let (X, A, u) be a measure space. A property P of
points of X is said to hold p-almost everywhere if the set

N = {z € X | P does not hold for =}

has measure zero. That is,
p(N) =0.

Remark 3.1.2. Note that it’s not necessary for the set IV to belong in A. The only requirement
is for the set N to be contained in a set F' € A and then p (F) = 0 (which automatically implies
that p* (N) = 0).

But, if p is complete then N € A. See Definition 2.9.3.
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Definition 3.1.3. (Almost everywhere convergence) If {f,} is a sequence of functions on X
and f is a function on X, then

{fn} — f almost everywhere.

if the set

{z € X | /(&) # lim fu(x))

is of measure zero.

Proposition 3.1.4. Let (X, A, ) be a measure space and let f and g be extended real valued
functions on X that are equal almost everywhere. If u is complete and if f is measurable, then g
is also measurable.

Proof. Consider the region of non-equality as

N ={z| f(z) # g(a)}.

Given to us is the fact that u* (N) = 0 and since u is complete, so N € A. Now, consider the
following for any o € R:

{zlg(@) 2o} =({z]g(@) > a}nN)J({z | 9(z) > a} N N°).

Denote the set A = {z | g(x) > e} NN and B = {z | g(z) > a} N N°. Since for any = €
({z | g(z) > a} N N°), f(z) = g(z), therefore, we can equivalently write B = ({z | f(z) > a} N N°).
Now N°¢ € A and due to Measurability of f, {z | f(z) > a} € A. Hence B € A. Finally, due to
{z ]| g(z) > a} NN C N and p being complete with p(N) =0, we get {z | g(z) > a} NN € A,
completing the proof. O

Proposition 3.1.5. Let (X, A, 1) be a measure space, let {f,} be sequence of extended real valued
functions on X and let f be an extended real valued function on X such that

{fn} — [ almost everywhere.
If i is complete and if each f, is measurable, then f is measurable.

Proof. As Proposition 3.0.9 shows, liminf,, f, and limsup,, f, are measurable. As the given con-
dition shows, liminf,, f,, is equal to f for almost all X. Hence Proposition 3.1.4 implies that f is
also measurable. O

3.2 Cantor set

With the new tool in hand (measurable functions), we now turn back to the ever-interesting Cantor
set, this time, to prove the sheer size of the o-algebra M)« in comparison to the Borel o-algebra
B(R). In particular we show that B(R) C My«.

But before that, we look at following results:
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Proposition 3.2.1. The function ¢ defined by

$:[0,1] — P
¢(a)=223i:f0rae [0,1]

where b, € {0,1} Vn € N is measurable in Mjy«.

Proof. Note that ¢(a) thus maps a decimal number to it’s binary representation {b,}. First, we
define the following function:

én : [0,1] — {0,1}
¢n(a) = by,

That is, ¢,, maps « to it’s n® binary digit. We can see that ¢, () can be written as the following:

1 ifa€ek,
0 otherwise.

bule) = x5, = {
where E,, is the intersection of countable sequence of sub-intervals of [0, 1]. Hence E,, is a Lebesgue
measurable subset of R, so it is in My«. But, as Proposition 3.0.4, statement 3 shows, xg, = ¢y, is
then a measurable function.
Now, the following arguments:

2 2b
3—n¢n(a) = —" is measurable (Proposition 3.0.5).

.
e

} is a sequence of measurale functions.

n 9 "
{Z ¢3£a)} is also a sequence of measurable functions (Proposition 3.0.5).
k=1

L)) .
im Z ¢375a) is a measurable function (Proposition 3.0.9).
k=1

n—oo

Hence the function which maps each real from [0, 1] to it’s binary representation is measurable. [

Proposition 3.2.2. Let (X, A) be a measurable space. If f is a A-measurable function on A and
B € B(R), then f~1(B) € A.

Proof. Denote D be the following set:
D={BCR|fYB)eA}.

Now, note that,
1. Since f~}(R) = A € A, therefore R € D.
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2. If B € D, then
B =RNB°
and
fHBY) = fH(RNB)

= fTHR) N FH(B)
=An(f74(B))"

Now since A € A and f~!(B) € A because B € D, therefore f~1(B°) € A so that B® € D.
3. We know that from the basic results of set functions that

f_l (U Bn) = Uf_l(Bn)

Hence D is a o-algebra on R (!) Now, due to measurability of f, we know that the set {z | f(z) > o}
is in A, which is equivalent to saying that f~!(a,00) € A. This hence means that (o,00) € D
for any a € R. Proposition 2.1.8 showed that a o-algebra generated by such subsets of R is B(R).
Hence, for any B € B(R), we have that B € D. Therefore for any Borel set B, f~1(B) € A3. O

3.3 Sequence of functions approximating a measurable function.

We now show that any measurable function can be defined in terms of a simple function and a step
function. For this, we first define what we mean by simple functions in Definition 3.3.4. Before
that, let’s see few more interesting-but-basic properties of measurable functions.

Proposition 3.3.1. Let (X, A) be a measurable space and f be an extended real valued function
on A € A. Define the following:

f*(z) = max(f(),0) and f~(z) = —min(f(z),0).
Then, f is measurable if and only if fT and f~ both are measurable on A.

Proof. If f is measurable, then {z | f(z) > «a} is measurable. Note that f*(z) > 0. Hence, for
the case when a > 0, the set {z | f*(z) > a} = {z | f(z) > o} which is measurable due to
measurability of f. Similarly, if o = 0, then {z | f*(z) > 0} = {z | f(z) > 0} U{z | f(z) = 0}
in which both sets are measurable in view of Proposition 3.0.4. Finally, for a < 0, we have
{z | fT(z) > a} = {z | fT(x) > 0} which again is measurable. Now, f~(z) = —min(f(z),0) =
max(—f(x),0) and since —f is also measurable (Proposition 3.0.5), therefore if f is a measurable
function, then f* and f~ are both measurable functions too.

To show the converse, note that f = f* — f~ and since both are measurable, therefore f is also
measurable (Proposition 3.0.5). O

Remark 3.3.2. Due to the above result, we can hence deduce that if f is a A-measurable function
then,
|fl = f* + f~ is a measurable function on A.

!3This is a very interesting way to prove such a statement. Notice how we analyzed the set of all possible subsets
of R for which f~'(B) € A right from the start!
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Proposition 3.3.3. Let (X, A) be a measurable space and A € A. Let f : A — [—00,400]|. Then,
1. If f is A-measurable and if B is a subset of A, then the restriction fg of f to B is also
A-measurable.
2. If {Byn} is a sequence of sets that belong to A such that A =J,, By and fp, is A-measurable
for each n, then f is also A-measurable.

Proof. The first result follows directly from the following observation:

{m€B|fb(x)>a}=Bﬂ{xeA|f(ac)>a}

and the second result follows from the following;:
{ze Al f(z) >a} =z € Bul f5.(z) > a}.

both for any o € R. O

Definition 3.3.4. (Simple Function) A function is called simple if it has only finitely many
values. Equivalently, we say that f is simple if we can write it as the following:

N

f=> oxs,, a€R
k=1

where each FE;, is a measurable set of finite measure.

Remark 3.3.5. Note that
o If E} are intervals, then we say f to be a step function.

The following Proposition asserts that any measurable function can be approxrimated by
an increasing sequence of simple functions.

Proposition 3.3.6. Let (X, A) be a measurable space and let A € A with f : A — [0,4+00] be a
measurable function on A. Then there exists a sequence {f,} of simple [0, 400)-valued measurable
functions on A that satisfy

fi(@) < fo(z) < f3(z) < ...
and
@1 fn(@) = f()
for any x € A.

Proof. For the proof, construct the following sequence of sets, by dividing the whole interval [0, n]
for any n € N into n2™ number of intervals each of length 2% and denote the following set:

A g = {meA‘% < f(z) < 2%}
for any n € N and £k = 1,2,...,n2". With this construction, we can now define the following
function for each n:

¢n : A —[0,00), defined as
k-1 ifxe Ay forany k=1,2,...,n2"

= 2n
9n(2) {n ifo e A— Uy Ang.



3.3 Sequence of functions approximating a measurable function. 37

Note that we can alternatively write ¢, (z) as the following (with more clarity):

k2L if f(z) <n, where 51 < f(z) < £ for some k € {1,2,...,n2"}

z)=< 2"
#n(®) {n if f(z) > n.

We now show that ¢, (z) < ¢nt+1(z) V¥ € A. Let’s first show this for f(z) < n.
If f(x) <mn, then,

ko—1
on(z) = 02n for some kg € {1,2,...,n2"}

such that % < flz) < ’2“—% Now, two cases arises:
o If % < f(z) < % : This is just the case that f(z) lies in the first half of the interval

[kgzl, 5—2} Hence, in this case we get that:

ko—1 2kg — 2 2ko — 1
on ontl < fz) < on+1

such that ¢, (z) = B2 = ¢,p1(2).
o If 22’“,?:11 < f(z) < ’2“—2 : This is the case when f(z) lies in the second half of the interval. In

this case, we see that,

2ko — 1 2ko _ ko
e <@ < g =g

so that ¢n(z) = 571 = 202 < 2ol — ¢, 1y (2).
Hence from both the cases, we have ¢, (z) < ¢pt1(z) for all x € A such that f(z) < n. One can
similarly see the same result for n < f(z) < n+1 and for f(z) > n+ 1, ¢p(z) < Ppt1(x) follows
trivially. Hence, we have proved that Vn € N and z € A,

Pn(z) < Ppy1(). (6)
Now, one can write the function ¢, as the following combination too:

n2 -1

¢n(-’17) = Z on XAn,k + nXA—Uk Apk (7)
k=1

Due to the above representation of ¢, the following steps becomes easier (& interesting) to see.
Now, first note that A, is a measurable set because it’s intersection of two measurable sets.
Moreover, A — |J;, An is also a measurable set. Hence, in view of Proposition 3.0.4, Statement
3, we get that ¢,(z) is a measurable function for any n € N. Therefore, {¢,} is a sequence of
measurable functions adhering (6). We again find two cases:
o If f is finite : Now since f is finite, therefore Ing € N such that f(z) < ng. Hence, one can
further deduce the following for all n > ng (hence f(z) < ng < n),

k—1 k-1
. for some k € {1,2,...,n2"} such that .

£(2) - 6u(@) = £(2) - < @) < o

1
<on

Hence, as n — oo, |f(z) — ¢n(z)| — 0.
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o If f is infinite for some z € A : If f is infinite, then Vn € N, f(z) > n. Hence,
¢n(xz) =n for all n € N.

Therefore @n_)oo ¢n(x) = 400 = f(z) for particular z € A where f is infinity.
Hence, in both cases, {¢,} converges to f. The proof is therefore complete. O

The following can be considered as an important corollary of the above Proposition.

Proposition 3.3.7. Let (X, A) be a measurable space and let A € A with f : A — [—00, 4]
be a measurable function on A. Then there exists a sequence {f,} of simple (—oo,+00)-valued
measurable functions on A that satisfy

|fi(z)] < |fo(z)| < |fs(2)| < ...
and
Im fo(z) = f(z)

for any x € A.

Proof. Since f is a measurable function, therefore f* and f~ are measurable functions too (Propo-
sition 3.3.1). Now, since any function f can be written as

f=ft—f
therefore, by Proposition 3.3.6, we have two sequences {f\"} and {f®} such that
Y — f* and £ — f~

where f(z) < f{P(z) < ... and fP(z) < fP(2) < .... Denote

fa(@) = £0(@) - £P (@)
Therefore, we see that

a(@)] = (@) + £ (@) < £ @) + £ (@) = | fara ()]
Now, we can deduce that
(@) = fa@)| = | @) — £~ @) = £ @) + £ @)
= | @) - £ @) - (f @) - @)

< |fH@) - f@)| + |f @) - 17 (@)
—-+0+0

Hence proved. O
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3.3.1 Replacing simple functions by step functions

We now prove a similar result akin to Proposition 3.3.6, where we show that any measurable
function can be approximated by a sequence of step functions, almost everywhere. But before that,
we prove a basic fact about Lebesgue measurable sets with finite measure.

Proposition 3.3.8. For any A-measurable set E of finite measure and a given € > 0, there exists
a finite sequence of open intervals {I,})_, such that

(e (001

Proof. Take any € > 0, then we have for any set E C R, a sequence of open intervals {I,} such
that E C U,, In and A (U, In) < A(E)+e€or A(U,In\ E) < € < 2e. Now since {I,,} is a disjoint
sequence, therefore, A (U, In) = >, A (I,) and due to the fact that A\ (E) < +oo, we get that
2n A (In) < +oo.

Now, since A (E) < 400, therefore the sum -, A (I,,) < +00, hence, AN € Nsuch that >°72 1 A (I) <
€. With this N, we now see that:

N N N
A (EA U In> = (E\ U In> +A (U I\ E> (both are disjoint.)
n=1

(0 er(ume)
A <E\n©11n> +)\(LnJIn\E>

A <Em (nL]:len>> +A (LJ%\E)

o) N ¢ o)
,\< U In>+)\<UIn\E) ‘_'Eﬂ(UIn> c U L
n=N+1 n n=1 n=N+1
<e+e=2

IA

Hence, we get that for any finite Lebesgue measurable set E, for all ¢ > 0, 3 a sequence of open
intervals {I,,}2_, such that their symmetric difference is a set with measure < e. O

Proposition 3.3.9. Consider (R, Mx«) to be the Lebesque measurable space and A € My«. Let
f:A— [—00,+00] be a A\-measurable function. Then there exists a sequence of step functions {px}
such that

o — f almost everywhere.

Proof. We will prove first that for any characteristic function, there exists a sequence of step
functions converging to it. Let g = x4 be the characteristic function on A. Continuing from
Proposition 3.3.8, we see that if we write the step-function ¢ as

N
Y= xi,
k=1



40 3 MEASURABLE FUNCTIONS

where {I;} is the set of open intervals such that A (AA (U,]:le In)) < € for a given € > 0, from
Proposition 3.3.8, then we get that the set {z | g(z) # ¥(z)} has upper bound on it’s measure
given as follows:

N N
{m € AU (U Ik> | g(z) = 1/1(1')} CAN U I, o g(x) =(x) iff z € UY_ I} and O for other z € A
k=1 k=1

N N ¢ N
{xeAU (U Ik> |g(x)7é1/1(a:)} D) (An UIk> D AA | L.

Similarly, it’s easy to see that for any z such that g(z) # ¥(x), we have 2 € AA UL, I), so that we
get,

N N
{meAU (U Ik> |g(x)7éz/1(w)} C AA | L.

k=1 k=1
Hence,
N N
{x €AU (U Ik> | 9(x) #w(x)} = AA | L.
k=1 k=1
Therefore,

N
A ({wGAU (U Ik> |g(w)7é¢(x)}> <e€
k=1

Therefore, for every n > 1, there exists a step-function 1, so that the set £, = {.’L‘ €AU (Uévzl I k) | g(z) # ¥n (m)}
is such that

1
A(Ey) < o

Now, define the following two sets:

o0
F, = U E; (a decreasing sequence)
j=n+1

o0
F=()F
k=1

For the set F;,, observe that
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and for set F,

o
A(F)=A <ﬂ Fk> = lim A (Fx) . {Fx} is measurable & decreasing.
k=1

k—o0

=0.

Note that {F}} is measurable because any E; is itself measurable because of Proposition 3.0.4,
Statement 5.
Now,

Yn(z) — g(z) V€ F°

because F° = FY since {F}} is a decreasing sequence, therefore F° is the set where g(x) satisfies
with the limit step function.
Finally, ¢, /4 f V x € F, but since A (F') = 0, hence

¥, — g almost everywhere

Now, what we have proved so far is that for any characteristic function ¢ = x4 on a measurable
set, there exists a sequence of step functions converging to it point-wise almost everywhere. Since
from Proposition 3.3.6, there exists a sequence of simple functions converging to f, and since a
simple function h = Zi]\il o;XE; is a finite combination of characteristics functions over measurable
sets, therefore there exists a sequence of step functions converging to f almost everywhere.

In particular if 9¢, — xg, almost everywhere, then Zf\il Pt — Zf\il aixg; = h. Now by
Proposition 3.3.6, there exists the sequence {hy} of simple functions converging to f. Since

My,
K, = {Z aiwﬁl} — hy, almost everywhere,
i=1

where note that K, = Zf\i’i a9t is a step function because 1 is a step function and there are
finitely many (M,,) of them, and
{hn} — f
therefore,
K, — f almost everywhere.

Hence proved. O

3.4 Egorov’s theorem

We now discuss a very important result in the theory of measurable functions named after Dmitri
Fyodorovich Egorov, who published this result in 1911, thus establishing a condition required
for uniform convergence of a point-wise convergent sequence of measurable functions.

Theorem 3.4.1. (Egorov’s theorem) Let (R,My«,\) be the Lebesgue measure space on R.
Suppose {fr} is a sequence of real-valued, Lebesque measurable functions on E € My« where
A(E) < 4o0. If

fi — [ pointwise on F,

14 Then for each € > 0, there exists a closed set A, C E such that

MFrom Proposition 3.0.9, the limit of a sequence of measurable functions is also measurable, hence there’s no point
in writing extraneously the requirement for f to be also measurable.
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1. \(E\ Ae) <€, and
2. fr — [ uniformly on A..

Proof. We break down the proof in the following 3 parts.

Act 1. A Basic Construction.
For each pair of integers n, k, construct the following set:

B={zcB 5@ f@)< . vi>k.

Now, fix n, so that we have the following observations:

Ep CEpy (8)
and since fr — f point-wise, therefore
k
lim | J B} = E. 9)
k—o0i=1

Hence

AE\ER) — 0as k — .

Note that the above result utilizes the fact that A (E) < +o0o0. Now by the above, we can say that
3 k,, such that

1

which, by definition of Ej} implies that
1 . n
|fi(z) — f(x)] < ” whenever j >k, and x € Ef, .

Act 2. Constructing Ae.
Now choose N € N such that

and define

A=) E} (10)
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‘We now observe that

Act 3. Finalé.
We now claim and prove the following:

Claim : fi, — f uniformly on A..

For this, let § > 0 and choose n’ > N such that ; < 9. Then
~ / 1
fzeAe = z€ B, =>|fj(l')—f(m)|<ﬁ<(5, Vij>ky. (11)

Note that this is just the definition of uniform convergence.
Finally, note that E} is a Lebesgue measurable set due to Proposition 3.0.4, Statement 5. Hence,
A, is measurable. Now, by Proposition 2.9.2, Statement 2, there exists a closed set A. C A, such

that
A\ A <

Mlm

Now,
e>X(BE\ A) + X (A \ Al
> M E\AJA N\ A)
=X(E\ A).

Now, by (11), we see that fi, — f uniformly for all z € A, C A, such that A (E\ A) < € and A,
is closed. Proof is now complete. O

3.5 Lusin’s theorem

The following is the final important result on the basic theory of measurable functions, attributed
to Nikolai Nikolaevich Luzin who penned this theorem around 1912.
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Theorem 3.5.1. (Lusin’s theorem) Consider the Lebesgue measure space (R, My«, ). Suppose
f is a real-valued, Lebesque measurable function defined over a Lebesque measurable set E with
finite measure. Then for all € > 0, there exists a closed set F, C E with

1. A\(E\ F.) <e¢, and

2. The restriction f|p of f over F¢ is continuous.

Proof. From the Proposition 3.3.9, we have a sequence {f,} of step functions such that
fn — f almost everywhere.

Now, consider, for example the characteristic function over an interval x[,3. Then, we can define
a function ¢(z) for any § > 0 as follows:

0 r<a

55 asz<a+j
d(x) =<1 a+%§x<b—g

b— 5

0 z>b

which then satisfies

(# € B16(0) # xont = (wat 5 ) U (6 5.0)

which then implies that,

A({z €R| ¢(x) # X[y} =)\(<a,a+g> U(b— gb>) = 4.

Note that ¢(z) is also continuous over all R. Hence, for any step function (finite sum of x[, 3-type
functions) and § > 0, one can construct a continuous function which does not satisfies with the
step function on a set with measure < 4.

Hence, for step-functions {f,}, corresponding to each f,, 3 a continuous function ¢, and a set
FE,, such that
1
En = {z | ¢u(z) # fo(r)} and A (Ey) < on”
Now, for all € > 0, there exists a N € N such that
Lo
2n "3

n>N

With the above fact, construct the set F’ as follows:

F' = (Ag\ U En>

n>N
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where Ag is the closed subset Ag C FE such that 1. A (E \ Ag) < g and 2. f, — f uniformly
on Ag. This is guaranteed by Theorem 3.4.1 (Egorov’s Theorem).

Note that fy|z is continuous V n > N because for any z € F/ = ¢, (z) = fo(z) Vn > N and
since ¢,, are already continuous Vn € N.

Furthermore, since F' C E and f, — f uniformly, then the restriction f,|z is continuous and
converges uniformly to f|g, which due to uniform convergence, is also continuous!

Now, note that F,,’s are measurable sets due to Proposition 3.0.4, Statement 5. Similarly, since Ag
is closed, therefore it is also measurable. Hence, F’ is measurable.

Now by Proposition 2.9.2, there exists a closed set F, C F’ such that A (F'\ F.) < §. Note
that because Fe C F” and f|p is continuous, therefore the restriction f|p is also continuous.

Finally, combining
L Ysnam <%
2. A(E\Ag) <&,
3.AFI\F)<§

it can be easily seen that

(E\A:)J(F'\F.) =E\F.

Hence,
ME\F)=X((E\As)J (F'\F))
<A((B\A:)) + X ((F'\F))
<e€.
which completes the proof. O

3.6 Applications-I : Measure spaces and measurable functions

We now present applications of the above theory. This is, in particular, to showcase the true
strength of abstract analysis. This can also be used to strengthen one’s intuition about the topic.
3.6.1 (-algebras and measure spaces

Lemma 3.6.1. Let (X, A, u) be a measure space. Prove that u is o-finite if and only if there exists
a countable disjoint family of measurable sets {A,} such that X =11, An and pu(A4,) < oo for all
n € N.

Proof. Note that R = L is immediate from definition. Let p be o-finite. Then there exists
{Bn} C A such that u(By) < oo and U,, B, = X. Define A; = By and A, = B, \ BiU---UBy_;.
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As A is a o-algebra, so {A,} C A. Moreover, A, N A, = 0 for all n # m because if m > n'5 and
x € AnNAy, thenz € B, \Bi1U---UB,U...Bp,_1and z € B, \ ByU...B,_1, a contradiction.
As A, C B,, therefore u(A,) < pu(Bp) < oco. To complete the proof, we need only show that
Un Ap = Un Bi,.

Pick any z € U,, An. Then z € B, \ By U---U B, for some n € N. Thus, x € B, and
hence z € |J,, Bn,. Conversely, pick x € U,, B,. Then z € B, for some n € N. Now, either
x € B,\BiU---UBy_1orz € B,N(ByU---UB,_1). If the former is true, then z € A,
and we are done. If the latter is true, then we may assume z € B,_; N B,. Now again either
z € Bp_1\B1U---UB,_gorz € B,NB,_1N(B1U---UB,_3). Repeating this process inductively,
we will end up in either of the following cases:

1. z € A for some 1 < k <mn,

2.z € B N---NB,.

As B; = A; by construction, therefore in either case we are done. O

Lemma 3.6.2. Given S C P(X), denote by A(S) the o-algebra generated by S. Then,
A(S) = A(A(S)).

Proof. Let X be a set and S C P(X) be an arbitrary collection of subsets of X. If X is empty then
the statement is vacuously true, so let X be non-empty. Since the o-algebra generated by A(S) is
the intersection of all o-algebras containing A(S), therefore we have that A(A(S)) = Neoacs) C-
Since A(S) is a o-algebra containing A(S), therefore A(A(S)) C A(S). Since A(S) C C for all
o-algebras C containing A(S), therefore A(A(S)) 2 A(S). O

Lemma 3.6.3. Let A(S) be the o-algebra generated by a set S C P(X). Then, A(S) is the union
of the o-algebras generated by Y as 'Y ranges over all countable subsets of S.

Proof. Let X be a non-empty set and S C P(X). We wish to show that
A(S) = U AD).

YCS, countable

Let ) C S be a countable subcollection. Then, A(Y) C A(S). Consequently, Uycs, countable A(Y) €
A(S). Conversely, we need to show that

AS) e U Aw).

YCS, countable

We claim that Uycs. countable A(Y) is a o-algebra containing S. This would complete the proof as
A(S) is the smallest o-algebra containing S.

Denote Z = Uycs, countable A(Y)- As A(Y)s are o-algebras, therefore Z contains X and (). Let
A € Z. Then A € A(Y) for some Y C S countable. Consequently, A° € A()) and thus A° € Z.
Let {A,} C Z be a countable collection of sets. Then A,, € A(),) for all n € N. Further, we have
that Yy € A(U,, Wn) for all k € N as Vi, C U,, Vn- As Y are countable and countable union of
countable sets is countable, therefore |J,, ), is countable. Thus, we have

A € AQ%) gA(Uyn> CZVkeN.

15which we may assume wlog.
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Thus from above, we obtain that
U4k € (Uyn) C Z.
k n

Hence, Z is a o-algebra. To complete the proof, we need only show that Z contains S.
Let A € S. Then since {A} is a countable subset of S, therefore A({A}) is contained in Z and
thus A € Z. O

Lemma 3.6.4. The o-algebra generated by
1. §=A{(a,b] |a<beQ},
2. S={(a,n]|a € Q,nelZ},

is the Borel o-algebra on R.

Proof. 1. Let S = {(a,b] | a,b € Q}. We wish to show that A(S) = B where B is the Borel
o-algebra of R. Since (a, b] for a,b € Q is contained in B as (a,b] = (a,b) UN,en(b—1/n,b+1/n),
therefore S C B. Consequently, A(S) C B as B is the smallest o-algebra containing open intervals.

Since we also know that B is generated by the collection of all closed intervals [a,b] in R,
therefore to show that B C A(S), it would suffice to show [a,b] € A(S) where a < b in R. Pick
a < bin R. By density of Q, we may pick {a,} to be an increasing sequence such that a, € Q,
an < a and lim,_,sa, = a. Similarly, we may pick a decreasing sequence {b,} such that b, € Q,
b, > b and lim,, b, = b. Consequently, we claim that

[av b] = m(ana bﬂ]
n
where (an,b,] € S. Indeed, (C) is clear. For (D), take z € (,,(an, by]. Hence a, < = < by,. Taking
n — 0o, we get a < x < b as desired. Thus, [a,b] € A(S).

2. Let S = {(a,n] |a € Q, n € N}. We wish to show that A(S) = B where B is the Borel o-algebra
of R. Since (a,n| for a € Q and n € N is contained in B as (a,n] = (a,n) U pen(n —1/k,n+1/k),
therefore S C B. Consequently, A(S) C B.

Since we also know that B is generated by the collection of all open intervals of the form (a, o),
a € R, therefore to show that B C A(S), it would suffice to show (a,00) € A(S) for all a € R. Pick
(a,00) for some a € R. By density of Q, there exists a decreasing sequence {a,} in R such that
an € Q, a, > a and lim,,_,,.a, = a. Consequently, we claim that

(a,00) = [J(an, n]

where (an,n] € S. Indeed, for (C), take = € (a,00). We therefore have a < z < co. As lim,_,ca, =
a and a, > a for all n € N, therefore there exists N € N such that a < a, < ay <z foralln > N.
Consequently, for some large n € N greater than N such that £ < n, we obtain a, < x < n and
hence = € (an,n]. For (D), take z € U, (an,n| and thus we get a < ap, < £ < n < oco. Thus,
(a,00) € A(S). O

Lemma 3.6.5. The Borel o-algebra on R? is generated by

{IxR)UR X J)|I,J CR, open intervals}.
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Proof. Let S = {(I x R)U(R x J) | I,J C R is open}. We wish to show that A(S) = B where B
is the o-algebra of R2.

As S is a collection of open sets of R? and B is generated by all open sets of R2, therefore S C B
and thus A(S) C B.

We now wish to show that B C A(S). It would suffice to show that any open set U C R? is in
A(S). Note that A(S) consists of all open rectanlges I x J = (I x R)N (R x J). Thus, it would
suffice to show that U can be written as countable union of open rectangles. Recall that open
rectangles forms a basis for the usual topology on R2. Consider the collection of all open rectangles
K inside U whose vertices have both rational coordinates. We claim that the union of such open
rectangles is equal to U. Indeed, their union is inside U and for any = € U, there exists an open
ball x € B C U, so there exists an open rectangle K inside B which contains z and has vertices
which have both rational coordinates. Thus U is equal to the union of all such rectangles. Since
there are only countably many such open rectangles as they are parameterized by choice of 4 points
in Q%2 N U which is atmost countably many, therefore we have obtained a countable cover of U by
open rectangles. This completes the proof. O

Lemma 3.6.6. Let (X, A, ) be a measure space, and let A, B € A. Then,
p(AU B) + (AN B) = p(A4) + u(B).
Proof. Observe that we can write
AUB=(A\(ANB))UB
where the right side is a disjoint union. Consequently, we have
uw(AUB) = u(A\ AN B) + u(B). (6.1)

We now have two cases. If u(ANB) = oo, then since u(ANB) < u(A), u(B) and u(A) < u(AUB),
therefore we get u(AU B) = u(AN B) = p(A) = p(B) = oo, so that the statement to be proven is
a tautology. Else if u(A N B) < oo, then we can write

u(A\ AN B) = u(A) — u(AN B).
Consequently, by Eq. (6.1) and the fact that u(AN B) < oo, we have
u(AU B) = p(A) — p(AN B) + u(B)
u(AU B) + u(AN B) = u(A) + p(B).
This completes the proof. O

Lemma 3.6.7. Let x € R and let B be a Borel subset of R. Then, x+ B and xB are Borel subsets
of R (that is, Borel subsets of R are translation and dilation invariant).

Proof. 1. Let x € R and B be the Borel o-algebra of R. We wish to show that for all B € B, the
translate x + B € B. Consequently, we wish to show

r+BCB
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where z + B = {z + B | B € B}. We use the following standard technique to show this.
Consider the following collection

C={BeB|z+BEeB}.

Our goal is to show that C = B. Note that C C B. Conversely, we wish to show that B C C. This
would follow immediately if we show that C is a o-algebra containing all open intervals, as B is the
o-algebra generated by all open intervals.

We now establish that C is a o-algebra. Since z+R =R and z + 0 = (), therefore R, € C. Let
A € C. We wish to show that A° € C. Since z + A € B, therefore (z + A)¢ € B. Thus it suffices to
show that (z + A)¢ = z + A°. Indeed, we have the following equalities

(x+A)°={yeR|y¢x+ A}
={yeR|y—z¢ A}
={yeR|y—z€ A%}
={yeR|yez+ A}
=z + A°.

Let {A,} C C. We wish to show that |J,, A, € C. We have that for each n € N, z + A, € B. It
would thus suffice to show that

w—i—UAn = U(a:—i—An).
n n
Indeed, take z+a € z+J,, An. Hence a € A, for some n € N. Consequently, z+a € x+ A,. Thus
z+a€lU,(zr+ Ay). Conversely, let z € U, (¢ + Apn). Then z = z + y, for y, € A,. Consequently,
z € z +,, An. This show that C is a o-algebra.
To complete the proof, we now need only show that C has all open intervals. This is imme-
diate, as we show now. Take any (a,b) C R. Since +(a,b) = (z+a,x+b) € B, therefore (a,b) € C.

2. Let £ € R and B be the Borel g-algebra of R. We wish to show that for all B € B, the
dilate z - B € B. Note that - B = {zb | b € B}. Consequently, we wish to show

z-BCB

where z - B = {x - B | B € B}. If x = 0, then - B = {0} and that is trivially inside B as
{0} =N,,(-1/n,1/n). Thus we now assume that z # 0. We use the following standard technique
to show the above inclusion.

Consider the following collection

c={BeB|z- BeB}.

Our goal is to show that C = B. Note that C C B. Conversely, we wish to show that B C C. This
would follow immediately if we show that C is a g-algebra containing all open intervals, as B is the
o-algebra generated by all open intervals.

We now establish that C is a o-algebra. Observe that - R = R. Indeed, as - R C R is clear,
we can also write any a € R as z -z 'a. We also have z - ) = (). Therefore R,() € C. Let A € C.
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We wish to show that A° € C. Since z - A € B, therefore (z - A)¢ € B. Thus it suffices to show that
(x-A)° =z - A° Indeed, we have the following equalities

(z-A)={yeR|y¢z-A}
={yeR|z7y ¢ 4}
={yeR|z"lyec A%
={yeR|yex- A%}
=z A°.

Let {A,} C C. We wish to show that J,, A, € C. We have that for each n € N, z- A, € B. It
would thus suffice to show that
m.UAn:U(x'An).

Indeed, take z-a € z - |J,, An. Hence a € A, for some n € N. Consequently, z-a € x - A,. Thus
z-a € U,(z-Ay). Conversely, let z € U, (z - An). Then z = z - y, for y, € A,. Consequently,
z € ¢ -|J,, An. This show that C is a o-algebra.

To complete the proof, we now need only show that C has all open intervals. This is immediate,
as we show now. Take any (a,b) C R. If z > 0, then we have z - (a,b) = (z - a,x - b) € B, therefore
(a,b) € C. If x < 0, then we have = - (a,b) = (x - b,z - a) € B, therefore (a,b) € C. O

Lemma 3.6.8. Let (X, .A) be a measurable space and let {p;}, be a finite collection of measures
n (X,A). Ifri,...,rn € R>q, then Y ;rip; is a measure on (X, A) (that is, positive linear
combination of measures is a measure).

Proof. Let (X, A) be a measurable space and {y;}?_; be a collection of measures on it. Let {r;}}; C
R>o. We wish to show that u = >, r;u; is a measure on (X,.A). First we may assume that each
r; > 0 asifany r; = 0, then p(A) = 377 ripi(A) = 35,4, ripi(A) +75p5(A), therefore if 1 (A) < oo,
then 7;u;(A) = 0 and if pu;(A) = oo, then since 0 - co = 0, therefore still 7;u;(A) = 0. Further, if
all r; = 0, then u = 0, which is the trivial measure. Consequently, we assume that r; > 0 for all
i1=1,...,n

We now show that p is a measure on (X,.4). We have u(@) = >0 rip;(0) = S0 17 -0 = 0.
Let {A,} C A be a collection of disjoint measurable sets. We wish to show that

7 (H Ak) = u(Ag).
We have k k
Ak) = iriﬂi (H Ak)
1 k
T4 io: i (Ag).-

1 k=1

(11

.
Il

|
M:

.
Il

‘We now claim that

ripi (Ag) (8.1)

M:

n o0 (o ]
Z Ti Z #i Z
i=1 k=1 k=1i=1
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and showing this will complete the proof as

[e.e] n [e o]

SN rimi(Ar) =D u(Ag).
k=11i=1 k=1

We have few cases for establishing Eq. (8.1).

1. If for all i = 1,...,n, the series Y poq pi(Ag) is finite. Then, D i 71> poq Hi(Ax) =
Yoig >opeq riti(Ag). Now, if 3, zpn, >, yn are two convergent positive series, then their linear
combination ¢, n+d >, yn is equal to >, cxp+dyy, where ¢,d € R>g. Indeed, this follows
at once from the equality clim, o0 25— Tk + dlimp_s00 D peq Yk = liMp 300 Dy Tk + dyk,
which follows from the fact that both the limit exists and ¢,d € R. Consequently, we have

ZZ zle(Ak = ZZ zﬂz(Ak
i=1k=1 k=11i=1

which is what we needed.
2. If there exists io = 1,...,n such that the series > g ti,(Ax) = co. In this case, in the Eq.
(8.1), the left side is co. The right side is also infinity as shown below:

o0
Z Z ripi(Ag) > Z Tio i (Ak)
k=11i=1
=00
where the first inequality follows from r; > 0 for all 4 = 1,...,n and measure being positive
by definition. Consequently, Eq. (8.1) follows in this case as well.
This completes the proof. O

Lemma 3.6.9. For any set X and a subset S C X, the collection
As={ACX|ACS or A°CS}

is a o-algebra on X.

Proof. Let X be a non-empty set, S C X and define
As:={ACX|ACSor A°C S}

We claim that this forms a o-algebra on X. As X¢ =0 C S, therefore X € Ag and ) € Ag. Let
A€ Ag. If A C S, then A€ is such that (A°)° = A C S, so A° € Ag. If A° C S, then A€ is such
that A° C S, so A° € Ag. So in both cases Ag is closed uncer complements.
Let {A,} C Ag be a collection of subsets. We wish to show that |J,, A, € As. We have three
cases.
Cl. A, C S for alln € N. Then |J,, An, C S and thus U,, An € As.
C2. JA,, such that A, € S. Then AS, C S. We then observe by De-Morgan’s law that

(UAn) =45 C A4, CS.

Consequently, U,, An € Ag.
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C3. A, € S for alln € N. Then A¢ C S for all n € N. We again observe by De-Morgan’s law
that

C
(UAn) =[A5 C A, CSVmeN,

Consequently, U,, A, € Asg.
In all three cases, |J,, An € Ag. Hence Ag is a o-algebra. O

Lemma 3.6.10. Let (X, A, ) be a semifinite measure space, and let u(A) = oo for some A € A.
If M > 0, then there exists B C A such that M < p(B) < 0.

Proof. Let (X, A, u) be a semi-finite measure space and A € A such that u(A) = co. We wish to
show that for all M > 0, there exists a subset B C A such that B € A and M < u(B) < 0.

We wish to show that there exists measurable subsets of A of arbitrarily large size. Therefore,
consider the collection

S={u(B)| BC A,Be€ A,uB) < oco}.

Denote | = supS. We wish to show that [ = oco. Pick a sequence {B,} C S such that
limy, ,o0opt(Bp) = . We first claim that

L (U Bn> =1 (10.1)

Clearly, U,, Bn, € A. Observe that since

W(Be) < 1 (U Bn)

for all £ € N, therefore taking k& — 0o, we easily obtain

l§u<LnJBn>.

ACOR

Let D; = By, Dy = By U By and in general D,, = B; U---U B,,. Then we observe that {D,} C A
forms an increasing sequence of sets with (J,, D, = U,, Bn. Consequently,

2 (U Bn) =pU (U Dk) = limg 0ot (Dy)-
n k

Since Dy C A is such that u(Dy) < Y%, u(B;) < oo (by subadditivity), therefore u(Dy) € S for
all k € N. Consequently,

Conversely, we wish to show that

hmk—)oolL(Dk) <l
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Therefore we obtain u (U,, Bn) < I. Hence this completes the proof of Eq. (10.1).

Since we wish to show that [ = oo, so assume to the contrary that I < co. It follows from Eq.
(10.1) that p (U,, Bn) < oo and therefore J,, B, € S. Let C = |J,, B,. Then consider A; = A\ C.
Since pu(A1) = p(A) — p(C) as u(C) < oo, therefore we have u(A;) = oo — u(C) = oco. It follows
from semifiniteness that there exists C; C A; such that C; € A and 0 < u(C1) < co. Note that
C; and C are disjoint. It follows that the disjoint union C; U C C A is such that u(C UCy) € S.
But since pu(C1 UC) = u(C1) + p(C) > u(C) =1, therefore S contains an element which is strictly
larger than its supremum, a contradiction. Hence [ = oo and this completes the proof. O

3.6.2 Lebesgue measure on R

In this section (R, M, m) denotes the Lebesgue measure space on R and m* denotes the Lebesgue
outer measure on R.

Lemma 3.6.11. FEvery Borel subset of R is Lebesgue measurable.

Proof. Let (R, M,m) be the Lebesgue measure space over R. We wish to show that the o-algebra
of Borel sets denoted B is in M. Denote by A the following:

A = {disjoint finite union of intervals of form (—o0,al, (b, 00), (a,b] for a < b € R}. (1.1)

By construction of Lebesgue measure, we know that A C M. We thus claim that the o-algebra
generated by A contains B, that is, (A) D B. This will conclude the proof.

Indeed, as we know that B is generated by all closed intervals of the form (—oo, a] for all a € R,
therefore it suffices to show that (—oo, a] € (A4), but that is a tautology as (—oo, a] is in .A. Hence
B C (A). O

Lemma 3.6.12. Let A be a subset of R and c € R. Then,
1. m*(A+c) =m*(A),
2. Ae M ifand only if A+ ce M,
3. if A€ M, then m(A+ c) = m(A).

Proof. Consider the Lebesgue measure space (R, M, m). Take A C R and for ¢ € R define A+c =
{a+c€R|a€ A}. Let us set up some notation. For any £ C R, we denote

C(E) = {{In} | UIn 2 A4, I, = (an,bn] € A} (%)

where A is the algebra defined in Eq. (1.1). Further, let us denote

YC(E) = {Zl(In) € [0,00] | {In} € C(E)} ()
n
where [((a,b]) = b — a is the length function. By definition, we have m*(E) := inf XC(E).
(i) : We first wish to show that the Lebesgue outer measure m* is translation invariant. That

is, m*(A + ¢) = m*(A). We first show m*(A + ¢) > m*(A). Pick any {I,} € C(A). Then we
claim that {I, + ¢} is an element of C(A + ¢). Indeed, denoting I, = (an,b,], we immediately
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get In + ¢ = (an + ¢, by, + ¢]. Now to see that |, (I, +¢c) 2 A+ ¢, pick any a + ¢ € A + ¢ where
a € A. Then, as U,, I, 2 A, therefore a € I, for some n and thus a + ¢ € I, + c. It follows that
{I, + ¢} € C(A + ¢). Further note that I(I,) = (I, + ¢) by definition. Consequently, we have

SC(A) C SC(A +c).

Taking infima, we yield m*(A) = inf XC(A) < inf ¥C(A + ¢) = m*(4 + ¢), that is m*(4) <
m*(A + c).

Conversely, we wish to show that m*(A) > m*(A+-c). For this, we use the standard technique of
e-wiggle around inf. Fix € > 0. By definition of m*(A), there exists {I,} € C(A) where I,, = (an, by,
such that

m*(A) + € > an — an. (2.1)

Note that we can write the above as

m*(A) + e > Z(bn +c¢)—(an+¢)
= Zl((an +c,bp+ ()
= Zl([n +c).

We have {I,, + ¢} € C(A + c) as shown previously, therefore we obtain
m*(A) + € > Zl(In +c¢) >inf EC(A+c¢) =m*"(A+c).
n

Hence we have m*(A) + ¢ > m*(A + ¢). Taking ¢ — 0, we obtain m*(A) > m*(A + ¢). This
completes the proof.

(i) : We next wish to show that A + ¢ € M if and only if A € M. Observe that it suffices
to show that A e M =— A+ ¢ € M. Indeed, for the converse, take B = A + ¢ € M. To show
that A € M, it would suffice to show that B — ¢ € M, which would follow at once by previous.
Hence, we may only show that Ae M — A+ce M.
Pick A € M. Fix € > 0. By regularity theorems, there exists open U 2 A such that
m*(U \ A) < e. We now claim the following three statements:
1. U+ c is open : Indeed, pick any x + ¢ € U + ¢ where x € U. As U is open, there exists § > 0
such that (x —§,z+0) C U. Consequently, (z—d+c,x+d+¢) C U +c, hence U + ¢ is open.
2. U+c contains A+c: Pick any a+c € A+c wherea € A. As U D A, therefore a+c € U +c.
3. U+c)\(A+c) equals (U\ A) + ¢ : We first show (U +¢)\ (A+¢c) C (U\ A) + c. Pick any
z+ce€(U+c)\(A+c). Thenz+ceU+candz+c¢ A+c. Thus,z € U and z ¢ A.
Hence z e U\ Aand thusz+ce U\ A+ec.
Conversely, pick z+c€ (U\A)+c. Thenz e U\ Aand thusz+ce€U+candz+c¢ A+c.
Thus  +c € (U +¢) \ (A+ ¢). This completes the proof of this claim.
By above three claims, we conclude that U + ¢ is an open set containing A + ¢ such that

MU +c\A+¢)=m*(U\A) + o) P m* U\ 4) <
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By regularity theorems, we conclude the proof.

(73i) : We wish to show that if A € M, then m(A + ¢) = m(A). This is immediate from (%)
as m = m*|,,. O

Lemma 3.6.13. Let A be a subset of R and c € R. Then,
1. m*(cA) = |c| m*(4),
2. forc#0, A€ M if and only if cA e M,
3. if A€ M, then m(cA) = |c| m(A).

Proof. Let (R, M, m) be the Lebesgue measure space. Take any A C R and ¢ € R.

(i) : We first wish to show that m*(cA) = |¢|m*(A). If ¢ = 0, then the equality is immediate as
cA = {0} and we know that m*({0}) =0 as 0 € (—1/n,1/n] for all n € N so that m*({0}) < 2/n.
Taking n — oo, we get that m*({0}) = 0. So we assume from now on that ¢ # 0. We first
immediately reduce to showing either one of

m*(cA) > |c| m*(A) or m*(cA) < |¢|m*(A)

Indeed, the other side follows by replacing A by cA and replacing ¢ by 1/c in either of the above.
We now have two cases based on ¢ being positive or negative.

If ¢ > 0, then we proceed as follows. We follow the convention of Eqns (%) and (*x) as set up
in Q2. We use the standard technique of e-wiggle around inf. Fix € > 0. By definition of outer
measure, there exists {I,} € C(cA) where I,, = (an, by] such that

m*(cA) +¢e> Zl(In). (3.1)

As U, I, 2 cA and ¢ > 0, therefore we claim that (J,,(
Thus ca € (an,by]. Consequently, a € (an/c,b,/c|] = (
we have

I,) D A. Indeed, for any a € A, cA € I,,.
I,). Thus, {1I,} € C(A). Consequently,

1
i
C
>l (11n> =) 1l(In) > m*(A).
Consequently, >, I(I,) > em*(A). Using this in Eq. (3.1), we thus obtain

m*(cA) + € > Zl([n) > cm*(A).

Taking € — 0, we obtain m*(cA) > em*(A), as required.
If ¢ < 0, then we begin similarly to the previous case. Fix € > 0. There exists {I,} € C(A)
where I, = (an, by] such that

m*(A) +€> Y (1) (3.2)

Note that cI, = c(an,bn] = [cbn,can) as ¢ < 0 and this type of set is not half-open and is thus
not in A, the algebra of half-opens of Eq. (1.1). Consequently, we have to use e-wiggle to find a
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new collection of intervals obtained via cl,, which are half open but their sum of lengths in only in
e-neighborhood of those {cI,}. Indeed, for each n € N, we may construct

€ €
Jn = (Cbn - —l,C(J,n + W} .

Note that J, 2 cI,. As U, cI, 2 cA, therefore J,, J, 2 cA. Thus {J,,} € C(cA). Consequently,

m*(cA) < Z I(Jn)

2¢
= Zc(an - bn) + W

=Z—c(bn—an)+22in
= —cZ(bn —ap) +€
= —ch(In) +e

where the third line follows from the series being positive and thus we can rearrange such a series.
It thus follows by Eq. (3.2) and above that

m*(cA) < —c(m*(A) +€) + €
= —cm*(A) +€(1 —¢).

Taking € — 0, we obtain (—c = |c| as ¢ < 0)
m*(cA) < |c|m*(A)
as required. This completes the proof.

(i) : We now wish to show that for ¢ # 0, A € M if and only if cA € M. Note that this is
not true for ¢ = 0 as if we take a non-measurable set V' C R, then ¢V = {0} is measurable but V'
is not.
Pick ¢ # 0. We first note that showing only A € M = cA € M is sufficient. Indeed, the other
side follows by replacing ¢ by 1/c in the above. So we reduce to showing A € M — cA € M.
Pick A € M and ¢ # 0 in R. Fix € > 0. By regularity theorems, there exists open U \ A such
that m*(U \ 4) < /- We now claim the following statements:
1. cU is open : Pick cx € cU where z € U. As U is open therefore there exists 6 > 0 such that
(x — 6,2+ 6) CU. Consequently, c(x — d,z + ) = (c(x + 9),c(x — 6)) C cU and contain cz.
Hence cU is open.
2. cU contains cA : Pick any cx in cA. Then x € A. As U C A, therefore x € U and hence
cxecU.
3. cU \ cA equals c¢(U \ A) : For (C), pick any cz € cU \ cA. Then czx € cU and cx ¢ cA. Thus,
z €U and z ¢ A, that is € U \ A and thus cz € ¢(U \ A). Conversely to show (2), pick any
cx € ¢(U\ A) where z € U \ A. Thus, z € U and « ¢ A. Thus cx € cU and cx ¢ cA. Thus
cx € cU \ cA.



3.6 Applications-l : Measure spaces and measurable functions 57

Following the above three lemmas, we conclude that cU is an open set containing cA such that
m*(cU \ cA) = m*(c(U \ A) © le|m*(U \ 4) < || |—Z| =e
Thus by regularity theorems, cA € M as well.

(i%i) : We wish to show that if A € M, then m(cA) = |c|m(A). But this is immediate from
(i) as m = m*|,,. This completes the whole proof. O

Lemma 3.6.14. For each subseteq A C R, there exists a Borel subset B O A such that
m*(A) = m(B).

Proof. We wish to show that for each A C R, there exists a Borel set B D A such that m(B) =
m*(A). We divide into two cases based on outer measure of A. We will follow the notations of Eq.
() and ().

If m*(A) = oo. In this case, we claim that B = R will work. Indeed R is open and thus Borel.
We thus claim that m(R) = co. Indeed, for I, = (n,n + 1], n € Z, we have that {I,} are disjoint
and [[,, I, = R. As m is a measure and I,, are measurable, therefore

m(R) = Zm(In) = Zl = 00.

Hence B = R will work.
If m*(A) < oo, then we proceed as follows. For each N € N, there exists {IY} € C(A) such
that

nmm+%>2wm.

Define Uy = U, I)'. As each half open interval (a,b] = ,en(a,b+ 1/n) is a Borel set, therefore
Uy is a Borel set. Observe that

mwggﬁmm=2mm<ww+%

Note that in the above we have used the fact that Lebesgue measure restricted to half opens is
exactly the length function. We thus have for each V € N a Borel set Uy containing A such that

7WM<WMH%. (4.1)

Denote B = ﬂ%zl Un. Then each By is Borel and {Bg} is a decreasing sequence of sets.
Furthermore, N%—; Bk = (-1 Un. Denote B = N%_; Bx. Observe that B O A as Bg D A for
each K € N. Consequently, by continuity of m* we have

m(B) > m*(A).
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For the converse, first note that by Eq. (4.1), m(U;) < co. Thus by monotone convergence property
of measures, we obtain that limg_,.om(Bg) = m (%=1 Bx). It follows from above, Bx C Uk
and Eq. (4.1) that

m(B) =m < ﬁ BK>
K=1

= limg_,0om(Bk)
< limK_,oom(UK)
(4{1) limg o0 <m*(A) + l)
K
<m*(A).
Thus m(B) < m*(A) and we are done. O

Lemma 3.6.15. A bounded set E C R is measurable if and only if m*(A) = m*(ANE)+m*(ANE*°)
for all bounded subsets A C R.

Proof. Let E be a bounded set of R. We wish to show that E is measurable if and only if for all
bounded sets A C R, we get m*(A) > m*(AN E) + m*(AN E°).
The (=) is immediate from definitions. For (<), we proceed as follows. We wish to show that
for any F' C R, we have
m*(F) > m*(FNE)+m*(FnNE°).

Indeed, if m*(F') = oo, then there is nothing to show. So we assume m*(F) < co. Observe then
that m*(F N E),m*(FNE°) <m*(F) < co. Fix € > 0. There exists a sequence {I,} of half-opens
such that U,, I, 2 F and

m*(F)+¢e> Zm*(In)

where we are using the fact that measure of a half-open interval is its length. Observe that for each
n € N, we have m*(F) + ¢ > m*(I,), thus each I, is a half-open interval with bounded length,
hence I,, is bounded as a set. Consequently, we have

m*(F) +e> Zm*(In)
n
(by hypothesis) > Z m* (I, N E) +m* (I, N E°)

(by rearrangement of +ve series) = Z m* (In N E) + Z m* (In N E°)
n n

(by subadditivity) > m* (U I,N E) +m* <U I,N E°>
n n

(by UnI, 2 F) >m*(FNE)+m*"(FnE°).

This completes the proof. O
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3.6.3 Measurable functions

Notation 3.6.16. At times, we will write a subset of X as follows:
{zx € X | P; is true} = {P;, is true}.
This makes some constructions much more clearer to see and interpret.

Lemma 3.6.17. Let f : X — Y be a function and A be an algebra on' Y. Then,

(FTHA) = F7H(A)).

Proof. Let f: X — Y be a function and A be an algebra over Y. We wish to show that

(FTHA) = F7H(A)). (2.1)

We first claim that f~1({A)) is a o-algebra over X. Indeed, as Y, 0 € (A), we have f~1(Y) = X and
f~1(0) = 0. Further, if B € f~1({(A)), then B = f~!(A) for some A € {A). Hence B¢ = f~1(A)° =
f71(A°) and A° € (A) as (A) is a o-algebra. Finally, pick {B,} C f~1({A)). Then B, = f~1(A,)
for A, € (A). Consequently, U, Bn = U, f*(4n) = £~ (U, An) and since U,, An € (A), hence
this proves that f~1(({A)) is a o-algebra.

We now show (C) part of Eq. (2.1). Indeed, by above, it would suffice to show that f~!(A)
is contained in the o-algebra f~1({A)). Pick any B € f~1(A), so that B = f~!(A) where A € A.
As A C (A), therefore A € (A). It follows that B = f~1(A) € f~!((A)). This shows that
(f7HA)) S F7H(AD).

We now show (D) part of Eq. (2.1). We will use the standard technique of good sets for this.
Consider

C:={Ae(A) | f(4) e (AN} S A

We now claim the following two statements:

1. C is a o-algebra on Y : Indeed, Y = f~1(X) and 0 = f~*(0) where X, € (A) and X, €
(f~1(A)). Further, for A € C, we have f~(A) € (f1(A)) and thus (f~1(4))c = f~1(4°) €
(f~1(A)). Thus A° € C. Finally, pick {A,} C C. Then f~1(4,) € (f*(A)) for each n € N.
Thus, U, f~1(4n) = 71 (U, An) € (f1(A)). It then follows that ,, A, € C. This shows
that C is a o-algebra.

2. COA: Pickany A € A. As (f~1(A)) contains f~1(A), so f71(A) € (f~1(A)).

We now conclude the proof. As C is a o-algebra containing A and inside (A), therefore C = (A).
It follows that for each A € (A), we have f~1(A) € (f71(A)), that is f~1((A)) C (f~1(A)), as
required. This completes the proof. O

Lemma 3.6.18. Let (X, M, m) be the Lebesque measure space. Let A € M be a bounded set such
that 0 < m(A) < oo. For each 0 < M < m(A), there exists a B C A such that B € M and
m(B) =M.

Proof. There are two proofs that we wish to present, one uses Lemma 3.6.19 and other is indepen-
dent. The latter uses a nice technique which we would like to write down concretely.
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Method 1 : (Using Lemma 8.6.19) Consider the map

f:R—R
z +— m(AN(—o0,x]).

As A is a bounded set, therefore m(A) < oo as there exists a bounded interval I O A where
I = [¢,d]. By Lemma 3.6.19, the map f is a continuous map. Let a € R be such that a < ¢. Then
f(a) = m(AN (—o0,a]) = m(@) = 0. Let b € R such that b > d. Then, f(b) = m(AN (—o0,b]) =
m(A). On the interval J = [a,b] we have f(a) = 0 and f(b) = m(A). By intermediate value
property of f, there exists ¢ € J such that f(c) = M. Consequently, AN (—oo,c| is a measurable
subset of A whose measure is M.

Method 2 : (Exponential subdivision technique) We shall explicitly construct B C A such that
m(B) = M. First, we observe that the question is invariant under translation and dilation. Hence
we may, after suitable dilation and translation, assume that A C [0,1). For each n € N, consider
the following partition of [0,1)

1 1 1
Pn20<.’171=2—n<$2=2'2—n<"'<$2n_1:(2n—1)'2—n<1.

Denote I, j = [L=F, &) for each j = 1,...,2". Observe that I, ; are disjoint and, denoting A, ; =

ANI,;, we further have a disjoint collection {A, ;} of measurable subsets!® of A such that

271
I] 4. = A
j=1

Further, we have that

on on
Y m(An) =m (H An,j)
j=1 j=1
=m(A)
and that

1

m(An7.7) S m(In,]) = 2_n'

Now, for each n € N, let N,, be the largest index such that
Nn,

Z m(A,m-) S M.

J=1

Y measurable because A and I, ; are measurable
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By the choice of index N,,, we observe that

Nn+1
M < Z m(An,j)

j=1

Np,
= m(An;) +m(AnN,+1)
j=1

Nn, 1
<Y m(Ang) + o
j=1
Denoting C), = H;V:"IAn,j, we obtain,
1 &
M — on < lem(AnJ) =m(Cp) < M. (3.1)

We now claim that {C,} is an increasing sequence of measurable subsets of A. First observe that
for each n € N, we have that N, is either 2N, — 1 or 2N,. Indeed, pick any « € C,. Then
x € Apj; where j =1,..., N,. Expanding this, we have

T e An,j

j—1 7
=4n [ on 2_n>
2(j—1) 2j—1 2% —1 2j
=AnN <{ on+1 ’ on+1 il on+1 ) on+1
= Ant+1,2j-1 1L Any1 5. (3.2)
As Np41 = 2N, — 1 or 2N,,, therefore for j = 1,...,N,, 2j = 2,...,2N,, hence in Eq. (3.2), we
obtain that x € A,y12j-1 or ¢ € Apt12; and as 25 < 2N, hence x € C,y1. This shows that

Cn c C’n—i-1~
Applying lim,_,o, on Eq. (3.1), we thus obtain

M <lim,_,,cm(Cy) < M.

Thus, by monotone convergence of measures, we conclude

:m(LnJcn)

As C,, C A for each n € N, therefore |J,, C, C A. Consequently we have obtained a subset of A
whose measure is M. ]

Lemma 3.6.19. Let (X, M, u) be the Lebesque measure space and A € M be a bounded set. Then
the function

f:R—R
x +— m(AN (—oo,x])

s continuous.
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Proof. Let A € M which has finite measure. We wish to show that

f:R—R
z+— m(AN(—o0,x])
is continuous. Pick any a € R and any € > 0. We wish to find a § > 0 such that |z — a| < § implies

|f(z) — f(a)| < e. We now have two cases with respect to the position of z and a in R.
1. Ifa <z : then f(x) — f(a) can be rewritten as follows:

|f(z) = f(a)| = m(AN (=00, 2]) —m(AN (—o0,a])
=m(AN(—oo,z]\ AN (—00,a])
=m(AN (a,z])
m(( z))

Therefore taking § = ¢, we would be done.
2. If a > z : then |f(z) — f(a)| can be written as

|f(z) = f(a)] = |f(a) — f(z)|
(AN (—o0,a]) —m(AN (—o0,z])

(AN (z,al])

((z,al)

—X.

IA I
9333

Thus, again, taking § = € would do the job.
This completes the proof. O

Lemma 3.6.20. Let X be a measurable space and let f : X — R be a function. Suppose {x €
X | a < f(z) < b} is measurable for all a < b. Then f is a measurable function.

Proof. As the Borel o-algebra on R is generated by sets of the form [a, 00) for a € R, therefore for
a fixed a € R we need only show that f~!([a,o0)) is measurable in X.
We can write

FH(la,00)) = {a < f(2)}
= U {a < f(z) < n}.

n>a in N

As we are given that {a < f(z) < b} are measurable for all a < b € R and countable union of
measurable sets is measurable, therefore f~!([a, c0)) is measurable. O

Lemma 3.6.21. All monotone functions f : R — R are measurable.

Proof. We wish to show that all monotone functions f : R — R are measurable. Note that we
may first reduce to assuming that f is non-decreasing as if f is non-increasing, then —f will be
non-decreasing.
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Hence let f : R — R is non-decreasing. As Borel o-algebra of R is generated by intervals of the
form [a,00), a € R, therefore it suffices to check that f~!([a,0)) is measurable in R. Observe

f(la,00)) = {a < f(x)}.

‘We now have two cases to handle.
1. Ifa € f(R) : Then there exists b € R such that f(b) = a. We may write

{a < f(@)} ={a < f(z)} I{a = f(x)}.

Now since f is non-decreasing, therefore f(z) > f(y) implies z > y. Further, we have that
f~Ya) = {a = f(z)} is measurable as singletons are Borel. Consequently, we have

{a < f(2)} = {f(b) < f(z)} T {a = f(2)}
= (b,00) 1~ (a).

Hence f~!([a,o0)) is measurable.
2. Ifa ¢ f(R) : We further have two cases.

(a) If there exists b € R such that b ¢ {a < f(x)} : Observe first that in this case f(b) < a.
We claim that in this case {a < f(x)} is lower bounded by b. Indeed, suppose not. Then
there exists y < b such that y € {a < f(z)}. Then a < f(y) < f(b) < a, a contradiction.
Hence {a < f(z)} is bounded below.

Let ¢ = inf{a < f(z)}, which now exists. Consequently, we have two more cases:
e If f(c) >a: Thatis, if c € {a < f(x)}. Then we claim

{a < f(z)} = [¢, 00).

which is clearly a measurable. Indeed, for some z € R such that f(z) > a, then
z > c. Conversely, if b > c in R, then f(b) > f(c) > a, so b € {a < f(x)}. This
proves the claim.

e If f(c)<a: Thatis, if c¢ {a < f(x)}. Then we claim

{a < f(2)} = (¢, 00)

which is clearly a measurbale set. Indeed, for z € R such that f(z) > a, z > ¢
Further z # c as otherwise f(z) < a. Conversely, if b > ¢, then there exists d €
{a < f(z)} such that ¢ < d < b as c is the infimum. Consequently, a < f(d) < f(b).
Hence b € {a < f(x)}. This proves the claim.
(b) If there doesn’t exists any b € R such that f(b) < a: Then for all b € R we have f(b) > a.
Consequently, f~!([a,0)) = {a < f(z)} = R, which is measurable.
Hence in all cases f~!([a,00)) is a measurable set. This completes the proof. O

Lemma 3.6.22. Let f : X — C be a complex measurable function on a measurable space X. Then,
there exists a complex measurable function g : X — C such that |g| =1 and f = g|f|.

Proof. Let f: X — C be a measurable function. We wish to find a measurable function g : X — C
such that |g| =1 and f =g|f|.
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As |f| = fX{f@)>0} — FX{f(x)<0}, therefore |f| is a measurable function. Denote E = {|f(z)| =
0}. Consequently, we define g as follows:

fl=)
o(z) = |f 2] if x € E°
ifxeFE.

We first wish to show that g is measurable. For this, we shall use the fact that measurability of
g can be checked on a cover {Ey} of X such that g|p is measurable. Thus in our case, we need
only show that g|; and g|g. are measurable. On E, g is a constant, hence measurable. On E°, g
is f/|f|. As |f| is not zero on E°, therefore by Lemma 3.6.24, f/|f| is measurable. Hence, g is
measurable.

We now see that |g| (z) = ‘Iﬁgl =1on E°and |g(xz)| =1 on E. Thus |g| =1 on X. Further, if

z € E, then f(z) =0=g(z)|f| (x). If z € E°, then g(z) = |§E §| which implies |f(x)| g(z) = f(z).

This shows that in all cases, f = g|f|. O

Example 3.6.23. It is not true that if f: [0,1] — R is a function whose each fibre is measurable,
then f is measurable.
Consider the following function

f:[0,1] — R

T ifxeVve
T —
z+N ifzeV

where V' C [0, 1] denotes the Vitali set and N = 3. Then, for each y € R, we have that f~1(y)
is atmost a singleton, which is measurable in [0,1]. However, for any 1 < b < N, we see that
f~1((b,00)) = V, which is not measurable. Hence f is a non-measurable function whose fibres are
measurable.

Lemma 3.6.24. Let f,g: X — C be a measurable function such that {g(z) # 0} = X. Then f/g
is measurable.

Proof. Let f,g : X — C be a measurable function such that {g(z) # 0} = X. Then we wish to
show that f/g is measurable.

We first have that (f,g) : X — R? given by x — (f(z),g()) is measurable. Consequently, we
consider the composite

(f ,9) RQ \ { 0} (] R
where ®(z,y) = - As @ is continuous, therefore the composite ® o (f,9) is measurable. Conse-

quently, we obtain that the map =z — % is measurable, but this is exactly f/g over X. This

completes the proof. O
Lemma 3.6.25. Let f,g: X — R be measurable functions and pick any ro € R. Then the map
h:X —R

- i (x) = —g(z) = o0
f(x)+g(x) else
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is measurable'”.

Proof. Let f,g: X — R be measurable functions and pick any rg € R. Then we wish to show that
the map
h: X —R
if =— ==
fro if £(2) = —g(z) = oo
f(@)+g(z) else

is measurable.
Define the following sets

E={f(z) =00 = —g(z)}
F={f(z) = —o0 = —g(x)}.
As E = f~1(c0)Ng~l(—o0) and F = f~1(—00) N g~1(c0), therefore they are measurable. Observe
that E and F are disjoint. We thus need only show that h restricted to E, F and X \ (EIL F) is
measurable.
1. On E : As h|g is constant rg, therefore h|y is measurable.

2. On F': As hl| is again constant 7o, therefore h|p is measurable.
3. On X\ (EIIF) : We first deduce that

X\(EIIF)=XNE°NF°
=E°NF°
= ({f(z) # 00} U {g(z) # —oo}) ( ({f(z) # —o0} U {g(x) # o0})
Let G = {f(z) € R} and H = {g(x) € R}. Then we may write X \ (EII F) as
X\ (EILF) = (GUHU{f(z) = —00} U{g(z) = 00}) [ (G U H U{f(z) = 00} U {g(z) = —o0})
= (GUH)U (({f(z) = —oo} U{g(z) = 0o}) {f(z) = 00} U{g(z) = —o0}))

= (GUH)U{f(z) = —o0 = g(z)} U{f(z) = co = g(z)} .
=A =:B

As hlgug is (f +9)lgug and on GUH, f+ g: GUH — R, therefore h is measurable.
We thus reduce to checking that h|, and h|g are measurable. On both of them, one immedi-
ately observes that h is constant —co and oo respectively. Hence, h|, and h|z are measurable.
As h restricted to G U H, A and B is measurable therefore h restricted to X \ (E II F) is
measurable.

This completes the proof. O

Example 3.6.26. It is not true in general that if for a function f : X — R, the |f]| : X — [0, 00]
is measurable then f is measurable.

"This question in particular shows that modifying a measurable function at a single point doesn’t affect measur-
ability at all.
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Indeed, consider the following function where V' C [0, 1] denotes the Vitali set:
f:[0,1] — R

—x ifzeV
T —
T if x e VC.

Then, |f| = idjp,1) which is measurable whereas f is not measurable as f~*((—o0,0)) = V, which
is not a measurable set.

Lemma 3.6.27. Let (X1, Ax,,u1) be a measure space, (X2, Ax,) be a measurable space and f :
X1 — X5 be a measurable function. Then

w2 Ax, — [0, 00]
B— i (f~1(B))

is a measure on (X2, Ax,).

Proof. We first immediately observe that pa(0) = ui(f~1(0)) = ui(0) =
showing that for any disjoint collection {B,} C Ax,, we have p ( B,)

end, observe that
(1) (1)
(1)

= Z#l(f 1(Bn)
= ZH2(Bn)~

0. We thus reduce to
= >, 42(Bn). To this

This completes the proof. O

Lemma 3.6.28. Let (X, A, n) be a measure space and f : X — R be a measurable function such
that p({|f(z)| > €}) =0 for all e > 0. Then f =0 almost everywhere.

Proof. We first claim that it suffices to show that {|f(z)| > 0} is a null set. Indeed, this is because
{f(z) # 0} = {|f(z)| > 0}. Hence it suffices to show that |f| =0 a.e.
Define for each n € N the following subset of X
En ={|f(z)] > 1/n}.
We claim that
{If(@)] >0} = {J En.
neN

Indeed, for (C), pick z € X such that |f(z)| > 0. Then there exists n € N such that |f(z)| > 1/n.
Hence z € E,,. Conversely pick z € E,, then by way of construction of E,,, we have |f(z)| > 1/n >
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0.
Observe that {E,} is an increasing sequence of sets as if z € E, then |f(z)| > 1 > n+r1’ S0
x € Epy1. It then follows by monotone convergence property of measures that
p{|f(x) >0]}) =p <U E'n) = limp oo pt(Er) = lim, 4000 = 0.
n
This completes the proof. O

Example 3.6.29. The statement of Egoroff’s theorem depends crucially on the fact that each
function in the sequence {f,} is measurable. Indeed, we show by the way of an example that the
conclusion of Egoroff’s theorem is not true when f,’s are not measurable.

We wish to show that the statement of Egoroff’s theorem fails if we drop the condition that
functions be measurable.

Consider the measure space (Z, A, ) where A = {0,7Z,27,7 \ 2Z} and p(0) = 0 = u(2Z),
w(Z) =1 = p(Z\ 2Z). Consider the functions f, : (Z, A, u) — R where R has the Borel measure,
given by

for all k£ € Z. Observe that {f,} pointwise converges to the constant 0 function at all points of
7. Further note that f,, is not measurable as f,1({k/n}) = {k} is not a measurable set in .4 but
{k/n} is Borel measurable.

To show that this is a counterexample, it would suffice to show that there exists an ¢y > 0 such
that for all measurable sets E € A, either u(E€) > € or f, does not converges uniformly to 0 on E.
We claim that in our situation, ¢y = 1/2 works. Indeed, for E = (), 27, we have u(E°) =1 > 1/2.
Thus we reduce to showing that f,, does not converges uniformly on Z and Z \ 2Z. Indeed, observe
that supycy | fn(k)| = supgez k/n = oo for each n € N. As f,, converges uniformly if and only if
supcz | fn(k)| = 0 as n — oo, therefore we deduce that f,, does not converge uniformly over Z.
Similarly, it doesn’t converge uniformly over Z \ 2Z.

Lemma 3.6.30. Let f,g : R — R be continuous functions. If f = g almost everywhere, then
f=g

Proof. Indeed, consider h = f — g. Suppose h # 0, therefore there exists £y € R such that
h(zo) # 0. By continuity of h, there exists € > 0 such that (zo — €,z9 + €) C {h(z) # 0}. Hence,
2e < m({h(x) # 0}) = 0, which yields 0 < 2¢ < 0, a contradiction. O

Lemma 3.6.31. Let (X, S, 1) be a measure space and fr, f : X — R be measurable functions such
that f, — f pointwise almost everywhere. Then, there exists measurable functions g, : X — R
such that f, = g, almost everywhere and g, — f pointwise.

Proof. Indeed, as f,, converges pointwise to f almost everywhere, therefore the set E = {lim,, o0 fn(z) #
f(z)} is a zero measure set. Consequently, we may define

gn: X —R

s {fn(w) ifx ¢ E
f(z) ifzekFE.
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We then observe that {gn(z) # fn(z)} = E, which is of measure zero, hence g, = f, almost
everywhere. Furthermore, we see that for any z € X,

lim, oo fn(z) = f(x) fz¢FE

fitt-s0cn () = {limn_mf(x) =f@) izl

Thus, lim,_,.gn, = f pointwise. This completes the proof. O

Example 3.6.32. We wish to show that there exists continuous function f : R — R and a Lebesgue
measurable function g : R — R such that go f : R — R is not Lebesgue measurable.

While learning about the existence of a non-Borel measurable set, one learns about the existence
of a homeomorphism ¢ : [0,1] — [0, 2] such that m(¢(C)) =1 > 0 where C C [0, 1] is the Cantor
set. Indeed, if C : [0,1] — [0, 1] denotes the Cantor function, then ¢ is constructed by defining
o(z) = C(z) + z. As, C(0) =0 and C(1) = 1, therefore p(0) = 0 and (1) = 2. Consequently, we
may define a continuous function f: R — R as follows:

rz—1 ifx > 2
fl@)=q¢ ' (z) ifzel0,2]
T ifx <O.

Observe that f is continuous as f is obtained by gluing three continuous functions at points where
they agree.

As m(p(C)) =1 > 0 for Cantor set C, therefore there exists a non-measurable set V' C ¢(C) C
[0,2]. But since f(V) = o= 1(V) C ¢~ }(¢(C)) = C and C is a null set, therefore by completeness
of Lebesgue measure, it follows that f(V') is a Lebesgue measurable set. Consequently, we may
define g = x¢(v) : R = R, which is Lebesgue measurable as f (V) is Lebesgue measurable. We thus
have

cont H%‘eb ms le

We claim that h := g o f is not Lebesgue measurable. Indeed, observe that A~1({1}) = (g o
HTH) = g7 {1}) = f~Y(f(V)). But as f restricted to [0,2] is a homeomorphism from
[0,2] to [0, 1] because on [0,2], f is equal to ¢!, hence f~1(f(V)) = V. Hence h=1({1}) =
where {1} is measurable but V C [0, 2] is non-measurable. This shows that A is not measurable.
This completes the proof.

4 Integration of measurable functions

Let’s first remind ourselves of the basic definition of a Riemann Integrable function. If we say that
the function f : R — R is Riemann Integrable, then the integral of f on [a,b], written as f; f,is
given by the following two constructions on a partition P of [a, b],
e Lower Sum :
L(f,P) = Zmz a; — a;—1) where m; = inf  f(x)
z€[a;—1,a:]
e Upper Sum:
U(f,P)= ZMi(ai —a;—1) where M; = sup f(x)
7

ze[ai_l,ai]
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so that

[ r=rs.p=06,P),

The chain of observations begins now. One can easily write the Lower and Upper Sum as the
following simple functions (remember that the partition is finitely many)

L(f,P) = Zmi)‘ (lai-1,ai])
U(f,P) = ZMi)‘ ([ai-1,ai])

Or, equivalently, we can define a lower step function as follows:
op = Zmix[ai—l,ai]
i
so that the Riemann integral is simply

/ab f(z)dz = sup /ab ¢p(z)dz

where supremum is defined over all partitions. But since, by definition, ¢p(z) < f(z) Vz € R, we
can alternatively define Riemann integral as

b b
/ f(z)dz = sup / op(z)dz (12)
a ¢p<fJa
where the supremum is defined for all step functions on any partition P.

This definition presented in (12) provides the motivation for extending the definition of Integration
from Riemann to Lebesgue. In particular, note the definition of ¢p, usual measure on the intervals
is applied in Riemann’s definition. But, since we know that Borel o-algebra is a proper subset of
M+, then it just makes sense to replace a;—1 — a; by A([a;—1,a;]) in the motivation that it might
generalize the notion of integration.

4.1 Integration of non-negative measurable functions

Definition 4.1.1. (Lebesgue integral of a simple function) Consider ¢ : R — [0,+00) be a
simple function as

N
b= ZaiXEi where o; > 0 and A (E;) < 400

i=1

Then, the Lebesgue integral of ¢ is defined as

/ dz — éai)\ (E;)
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Definition 4.1.2. (Lebesgue integral of a measurable function) Suppose f : R — [0, +00)
is a A-measurable function, then the Lebesgue integral of f is defined as

* / fdx = sup / ¢dx where ¢ are the simple functions < f.| %
¢<f

Definition 4.1.3. (Lebesgue integral over a measurable set) Consider f : R — [0,400) to
be a A-measurable function and F C R is Lebesgue measurable. Then,

[ fdo= [ fxpdo

Remark 4.1.4. Therefore, the integral of a non-negative measurable function over a measurable
set is given by the integral'® of restriction of f to it and zero otherwise.

Proposition 4.1.5. Consider the two A-measurable functions f,g : R — [0,+00) and ¢ : R —
[0,+00) be a simple-function, then the Lebesque integral has the following properties:
1. Consider two Lebesgue measurable subsets A and B of R such that AN B = ®. Then,

[ do= /A ddz + /B ddz.

/afda:=a/fdm.

3. Integration for positive valued measurable functions is therefore distributive:

/(f+g)da:=/fda:+/gda:.

4. If f(z) < g(x) holds for all x € R, then

/fdxg /gdac.

5. Consider A and B be Lebesgue measurable subsets of R such that A C B. Then,

/Afde/deac.

Proof. Part 1 : Since ¢ is simple, therefore we can write

2. For any o € R,

N
=) aixs.
i=1

¥From now on, any instance of integral should be presupposed by Lebesgue integral, of-course, unless otherwise
stated, in this text.
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Now, by definition

N
s pdx = ;ai)\ (E;N (AU B))

- iai)\ ((E;n A)U (E;N B))

N
= Zai)\ (B;NA)+ oA (E;N B) . E;N A and E; N B are disjoint.

= zqudz + /B ¢dx

Part 2 & 3 : Can be seen easily from Theorem 4.2.1.

Part 4 : Note that we define

/ fdx = sup / ¢dx where ¢ are simple functions.
¢<f

Therefore, for any ¢ < f, due to given condition f < g, we would have ¢ < g. Hence,

/¢dm§/gdm

Since this is true for all simple ¢ < f, therefore sup ¢ [ ¢dz < [ gdz, proving the result.

Part 5 : Consider the following:

[ tdo= [ fxade

< /fXBdiE XA < XxB, then apply 4.

=/deac

Hence proved. O

4.2 Monotone convergence theorem
This is arguably one of the most important theorem in Integration theory,

Theorem 4.2.1. (Monotone Convergence Theorem) Consider a sequence { f,} of R — [0, +00)
of A-measurable functions which satisfies

fo(@) < fur1(@)Vz €ER and n

and suppose @n_)oo fn exists. Then,

[ im o= m [ 5.

n—oo
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Proof. Since f, < fn41, therefore,

/fnS/fnﬂ S/n%ilofw
Hence,

m o< [ m g

n—oo
Therefore we have proved one inequality.
Now to prove the other inequality, consider any simple function ¢ < @n_mo f. If we can show

that [ f, > [ ¢ for any n € N, then we are done. To this goal, consider a € (0,1). Construct the
set!®

|Bn = {2 | fulw) > ag()} |

Clearly,
E,CE,;1VneN.

/fnz/Enfnza/EnaS- (13)

Claim 1 : UE" =R.

Now,
Moreover, we can see that

This is easy to see as follows:

Take x € UE" = z € E;, for some iy € N.
n

= z€R .- E, are subse
Take z € R = Either (1) z € {z | fo(z) — ap(x) > 0} or (2) z € {z | fu(z) — agp(xz) < 0} for any n € N.
= If (1), then = € E,, else if (2), then "¢ < im fn, 3 n st.x € Ey

n—oo

= € UEn. Hence Claim 1.
n

Next, we can also see that

Claim 2 : /Enqs—>/¢

19 After reading the proof, it should appear striking to the reader on actually how much the proof depends on this
construction. Both the claims in the following page utilizes this construction E, to full extent! Hence, it is advised
(by Instructor) to purse such effective constructions in the problem sheets and your own proofs.
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This can be seen by expanding the simplicity of ¢ as follows:

N
lim / o= a; lim A(4iNE,)
n =1

n—oo n—oo

N

= Z a;\ (U A; N En) - {A; N E,}, is increasing.
i=1 n
N

= Zai)\ (Ai N UE")
=1 n
N

=Y a;A (A4 NR) Claim 1.
i=1
N

= Zai)\ (A) = /qﬁ Hence Claim 2.
i=1

Finally, take limit in (13) to get:

nggo/fnzn%énfnzan%én¢
=a/¢ Claim 2.

lim /fn > /¢ » 0 < a <1 is arbitrary.
n—o0

Hence, for any simple function ¢ < @n_’oo fn, we have concluded that [ ¢ < mn—)oo J fn, hence
it must be true that

/ngl;fn= sup /¢Sngl;/fn.

¢<lmfo
Combining the converse inequality at the beginning, we hence get the desired result. O

Proposition 4.2.2. Consider a Lebesgue measurable function f : R — [0,400). Then,
/ fdx = 0 <= f =0 almost everywhere.

Proof. L = R : Consider f is a non-negative real-valued function whose integral is zero.
Construct the set,

En:{x|f(a:)2%}.

In order to show that f = 0 almost everywhere, it is hence sufficient to show that A (E,) =0V n € N
because it equivalently proves that the measure of the set where f is greater than zero is zero.

Now, consider the following function

1
gn = —XE,-
n
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Clearly, because g, is a simple function and

1 {% if f(z) >
0

—XE,\Z) = .
TLX (z) otherwise

which clearly means that %XEn < f, therefore,

[£=0=suw [¢
¢<f
1

2/—XEn
n

1
—E)\(En)
= \(E,)=0VneN.

R = L : If a non-negative real-valued measurable function f is 0 almost everywhere, then for
any simple function ¢ < f, ¢ must also be 0 almost everywhere, so that

N
/ 6= a:\(E)
=1
=0

Since this is true for any simple ¢ < f, therefore the supremum of all such [ ¢ must also be zero,
to make [ f =0. O

A simple corollary of the MCT tells us an equivalent story for decreasing sequence of maps
where first term is L!, as compared to the statement of MCT.

Corollary 4.2.3. Let (X, M, 1) be a measure space and let f, : X — R be a sequence of positive
measurable maps. Suppose

1. lim, f,.(z) exists and is equal to f(zx) for some measurable f : X — R,

2. fu(x) > foy1(x) forallz € X andn €N,

3. f (.’L‘) e L.
Then,

limn_,oo/anduz/Xlimn_,oofndu.

Proof. Since f < f, < f1, therefore f € L'. Now, consider the (not necessarily positive!) mea-
surable sequence g, = f — f,. Since f, decreases, therefore g, increases. Now, lim,g, = 0 as
lim, f, = f. Since 0 € L1, therefore Hence, by MCT, we get that lim, [y gndm = [y lim,g,dm.
Expanding it and using the fact that f is in L' (so you can cancel [ v fdm both sides!) gives the
desired result. O

Another important result which is of tremendous usability is the fact that Riemann and Lebesgue
agree on compact domains(!)



4.3 Fatou'