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1 Introduction

We would like to state and portray the uses of some of the important and highly usable results of
integration theory, elucidating in the process the analytical thought which is of paramount impor-
tance in any route of exploration in this field1. We give bare-bone proofs as all this is standard,
but we will highlight the main part of the proof by ♥ or if there are many main parts, then by
♥♥ . . . (!) Let us first begin with some motivation behind modern measure theory.

We know that the class of all Riemann integrable functions on [a, b], denoted R([a, b]), is not
complete under pointwise limit (a sequential approximation of Dirichlet’s function shows that).
Further, motivated by Weierstrass approximation, one would like to have commutability results
between lim and

∫
, which again R([a, b]) lacks. Consequently, one is motivated to find a larger

class of "integrable" functions for which these defects would be rectified.

The idea that H. Lebesgue had was quite simple. He continued the idea of Riemann (that is, of
partitions) but made sure that the function under investigation is much more intertwined in with
it. Indeed, for a bounded function f : [a, b] → R, we contain the image Im (f) ⊆ [α, β] and then
consider a partition P = {Ii}ni=1 where Ii is an interval. Now choose ξi ∈ f−1(Ii) =: Ji for each i.
Consequently, we may naturally define Lebesgue sum of f w.r.t. P as follows

L(f,P) :=
n∑

i=1
f(ξi)m(Ji),

where m(Ji) is supposed to be some sort of measure of Ji. Note that Ji in general might be very
bad (may not even be an interval!). To complete this idea of "integration", we are naturally led to
considering more general notions of measures. Indeed, this is what we will pursue in this course.

Remark 1.0.1. (Pseudo-definition of measure) First, what do we expect from a notion of
measure on R? Perhaps the following is the minimum conditions we would require to call a function
"measure": A function µ : P(R)→ [0,∞] is said to be a pseudo-measure if it satisfies the following

1. (measure of intervals) for any interval I, the measure µ(I) = l(I) where l is the length
function,

2. (measure of disjoint unions) for any disjoint sequence of subsets {An}, µ (
⋃

nAn) =
∑

n µ(An),
1One may argue, instead, in whole of mathematics.
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3. (translation invariance) for any subset A and x ∈ R, we have µ(A+ x) = µ(A).
We will call such a function a pseudo-measure on R. Observe that for A ⊆ B, we obtain µ(A) ≤
µ(B) by breaking B = A ∪B \A. We call µ a pseudo-measure because it does not exists!

Theorem 1.0.2. (Vitali set) There exists no pseudo-measure on R. In paritcular, there exists a
set V ⊆ R such that for a pseudo-measure µ, µ(V ) /∈ [0,∞].

Proof. We will construct such a set V . Begin with the closed interval J = [0, 1]. Define an
equivalence relation ∼ on J given as follows:

x ∼ y ⇐⇒ x− y ∈ Q.

This can easily be seen to be an equivalence relation on J . We have first some observations to
make about this equivalence relation and the consequent partition of J that it entails.

1. Observe that the class of any rational r in J under ∼ is simply [0], as r − 0 ∈ Q.
2. Every equivalence class is countable in size. Indeed, for any x ∈ J , the class [x] is just

translate of x by rationals, which is countable.
3. There are uncountably many equivalence classes. Indeed, if there were atmost countably many

equivalence classes, then by statement 2 above, it would follow there are atmost countably
many elements in J , which is a contradiction.

Consequently, this equivalence relation partitions J into following classes:

J =
⋃
α∈I

[α]

where I is an uncountable set.

We would now construct the set V as follows. First, let us assume axiom of choice, so that
for each class [α], we may pick an element rα ∈ [α] and would thus obtain a subset of J , denoted
V = {rα | α ∈ I}. We call this the Vitali set.

Consider the set Q = [−1, 1] ∩ Q. Since it is countable so consider an enumeration Q = {qn}.
Now consider the translates V + qn for all n ∈ N and their union X = ⋃

n V + qn. We now observe
the following two facts about X.

1. If n ̸= m, then (V + qn) ∩ (V + qm) = ∅. Indeed, if x ∈ (V + qn) ∩ (V + qm), then
x = ra + qn = rb + qm. Consequently, ra− rb ∈ Q and hence [a] = [b]. But by single choice of
rc for each c ∈ I, we get ra = rb and thus qn = qm from above, which is a contradiction.

2. J = [0, 1] ⊆ X. Indeed, for any x ∈ [0, 1], consider the class [a] in which x is present.
Consequently we have a unique ra ∈ V corresponding to x which satisfies x ∈ [ra]. Thus,
x = ra + t where t ∈ Q. We may write t = qn to obtain that x ∈ V + qn, as desired.

3. X ⊆ [−1, 2]. Indeed, this follows immediately since X = ⋃
n V + qn where qns are rationals

in [−1, 1] and V ⊆ [0, 1].
With the above three observations, we obtain the following inclusions:

[0, 1] ⊆
⋃
n

V + qn ⊆ [−1, 2].
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Now, if we apply the pseudo-measure µ on the above inclusions, we will obtain the following:

1 ≤
∑
n

µ(V ) ≤ 3.

If µ(V ) = 0,∞, then we have an immediate contradiction. Else if 0 < µ(V ) <∞, then ∑
n µ(V ) =

∞ and we again have a contradiction. Thus, µ(V ) /∈ [0,∞], a contradiction.

Remark 1.0.3. The main issue in pseudo-measures is that we trying to get a measure on all of
the subsets of R. By Theorem 1.0.2, this is hopeless. What we shall now do instead is to obtain a
measure not on all of the subsets of R, but rather on only a subcollection of subsets of R, and we
shall choose this subcollection in a manner so that we don’t allow sets like Vitali sets. Indeed, this
becomes our point of departure for the abstract definition of σ-algebras and measure/measurable
spaces, the need for the right domain of a measure function.

1.1 Few introductory notions

These are few of the basic definitions that one might remember from real analysis.
• Limit Points : x ∈ X is called a limit point of a subset S ⊆ X if ∀ r > 0, ∃ a ̸= x such that
a ∈ S ∩Br(x). That is, ball of any size r around x contains atleast one point of S.

• Isolated Points : y ∈ S is called an isolated point of a subset S ⊆ X if ∃ r > 0 such that
(Br(y) \ {y}) ∩ S = Φ. That is, Br(y) contains no other point of S apart from y.

– Also note that every point of closure S is either a limit point or an isolated point of S.
– More specifically, any subset of Rd is closed if and only if it contains all of it’s limit

points.
• Perfect Set : A is called a perfect set if A = A′ where A′ is the set of all limit points of A.

More conveniently, if A does not contain any isolated points then it is a perfect set. R is a
perfect set.

• Symmetric Difference : A and B are two sets then symmetric difference is A∆B = (A \
B) ∪ (B \A).

• Power Set : Collection of all subsets of a set S, written as P (S).
• Lower Bound : A lower bound of a subset S of a poset (P,≤) is an element a ∈ P such that
a ≤ x for all x ∈ S.

• Infimum : A lower bound p ∈ P is called an infimum of S if for all lower bounds y of S in
P , y ≤ p.

• Limit Infimum : For a sequence {xn}, limit inferior is defined by:

lim inf
n→∞

xn = lim←−
n→∞

Å
inf
m≥n

xm

ã
= sup

n≥0
inf
m≥n

xm

= sup{inf{xm | m ≥ n} | n ≥ 0}.

(1)

• Upper Bound : An upper bound of a subset S of a poset P is an element b ∈ P such that
b ≥ x for all x ∈ S.

• Supremum : An upper bound u ∈ P is called a supremum of S if for all upper bounds z of
S in P , z ≥ u.
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• Limit Supremum : For a sequence {xn}, limit supremum is defined by:

lim sup
n→∞

xn = lim←−
n→∞

Ç
sup
m≥n

xm

å
= inf

n≥0
sup
m≥n

xm

= inf{sup{xm | m ≥ n} | n ≥ 0}

(2)

• Limit : Consider the sequence {xn} in [−∞,+∞], then lim←−n
xn is defined as

lim inf
n→∞

xn = lim sup
n→∞

xn := lim←−
n→∞

xn.

• Lower Sum : l(f,P) is the sum of the minimum functional values at the partition. That is,

l(f,P) =
n−1∑
i=0

mi(ai+1 − ai)

where mi = inf{f(x) | x ∈ [ai−1, ai]}.
• Upper Sum : Similarly,

u(f,P) =
n−1∑
i=0

Mi(ai+1 − ai)

where Mi = sup{f(x) | x ∈ [ai−1, ai]}.
Remember that the function is Riemann Integrable if l(f,P) = u(f,P).

• Countable Sets : Note the following,
1. Cardinality : Sets X and Y have the same cardinality if there exists a bijection from X

to Y .
2. Finite Set : A set is finite if it is empty or it has the same cardinality as {1, 2, . . . , n}

for some n ∈ N.
3. Countably Infinite : If the set has the same cardinality as N.
4. Enumeration : An enumeration of a countably infinite set X is a bijection of N onto X.

That is, an enumeration is an infinite sequence {xn} such that each of the xi’s are in X
and each element of X is xi for some i.

5. Countable : A set is countable if it is finite or countably infinite. For example, N is
countable, Q is also countable (!), R\Q (irrationals) is not countable, R is not countable.

• Totally Bounded : A subset B ⊆ X is totally bounded when it can be covered by a finite
number of r-balls for all r > 0. That is,

∀ r > 0, ∃N ∈ N, ∃a1, . . . , aN ∈ X such that B ⊆
N⋃

n=1
Br(an)

• Compact Set : A set K is said to be compact when given any cover of balls of possibly
unequal radii, there is a finite sub-collection of them that still covers the set K. That is,

K ⊆
⋃
i

Bri(ai) =⇒ ∃ i1, . . . , iN , K ⊆
N⋃

n=1
Brin (ain)

Note that compact metric spaces are totally bounded (!). Also, compact sets are closed.
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The problem begins with Riemann Integrable functions when we see that functions like Dirichlet
function (1 on irrational and 0 on rational points) can become measurable even when the function
is not continuous! This motivates the need of a formal notion of a measure.

We begin with some recollections from classical analysis of one real variable.
1. Every open set in R can be written as disjoint union of open intervals.

Proof. Let G ⊆ R be a open subset. Now by definition of an open subset, we have that for
any x ∈ G, there exists atleast one open subset U such that x ∈ U ⊆ G. Now consider the
following union of all such open subsets of x,

Ux =
⋃

x∈U⊆G

U

It’s now easy to see that Ux is the largest such subset of G, as any other V ⊆ G such that
x ∈ V is by definition contained in Ux. Moreover, Ux is an interval as it is an arbitrary union
of open intervals. Now, define the following relation on G:

y ∼ x ⇐⇒ y ∈ Ux

Now we clearly have that x ∈ Ux (reflexive); for y ∼ Ux we have U ⊆ Ux such that x, y ∈ U ,
hence x ∈ Uy (symmetric); for x ∈ Uy and y ∈ Uz, we have that x, y, z ∈ Uy, since z ∈ Uy ⊆ G
so Uy ⊆ Uz, so x ∈ Uz (transitive). Hence ∼ is an equivalence relation, hence ∼ partitions
the set G. Denote the set of all equivalence classes as I so we get

G =
⋃
I∈I

I

such that I1 ∩ I2 = Φ for any I1, I2 ∈ I. Now note that for any I ∈ I is open because each
I is generated by the relation ∼ such that y ∼ x iff y ∈ Ux. Hence for any z ∈ I, we have
z ∈ Ux ⊆ G where Ux is open. Therefore, we have G = ∪I∈II for disjoint open intervals in
I.

2. Prove that every non-empty perfect subset of R (or Rn) is uncountable. That is, if A = A′

then A is uncountable.
Proof. Take A ⊆ R to be a perfect subset. Since A it is perfect, therefore, it must contain
all of it’s limit points or, equivalently, contains no isolated points. Clearly, then, A cannot be
finite, but can only be countably infinite or uncountable. If it is uncountable, then the proof
is over. If A is countably infinite, then we can write A as the following :

A = {a1, a2, . . . }.

Construct a ball around ai1 of any radius r1 > 0. Since A is perfect, therefore ∃ ai2 ∈
Br1(ai1) ∩ A = C1. Similarly, for some r2 > 0, we have ai3 ∈ Br2(ai2) ∩ Br1(ai1) ∩ A = C2
such that ai1 /∈ C2 and so on. In general, we would have the following,

ain+1 ∈

(
n⋂

j=1
Brj (aij )

)
∩A = Cn.

Now, consider C = ∩nCn. Since Cn+1 ⊆ Cn, therefore C ̸= Φ. But, ai /∈ C for any i ∈ N as
ai /∈ Ci+1. Therefore we have a contradiction. Hence A cannot by countably infinite, it must
only be uncountable.
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3. In the definition of Lebesgue Outer measure on R, one can instead take CA to be collection
of infinite sequences of the any form from {[an, bn]}, {(an, bn)} or {(an, bn]}.

Proof. Refer Proof of Proposition 2.5.3.

4. Show the following:
N⋃

n=1
En =

N⋃
n=1

(
En ∩

(⋃
k<n

Ek

)c)

Proof. Take x ∈ ⋃N
n=1En. Then ∃ Ek for some a such that x ∈ Ea. Now, clearly, x ∈ Ea ⊆

(⋃k<aEk)c, hence x ∈ (Ea ∩ (⋃k<aEk)c). Hence, we have
⋃N

n=1En ⊆
⋃N

n=1 (En ∩ (⋃k<nEk)c).
The converse is easy to see too.

2 Measures

2.1 Algebras & σ-algebras

Definition 2.1.1. (Algebra/Field) Let X be an arbitrary set. A collection A ⊆ P (X) of subsets
of X is an algebra on X if:

• X ∈ A.
• A ∈ A =⇒ Ac ∈ A.
• For each finite sequence A1, A2, . . . , An ∈ A implies that

n⋃
i=1

Ai ∈ A

• For each finite sequence A1, A2, . . . , An ∈ A implies that
n⋂

i=1
Ai ∈ A

Definition 2.1.2. (σ-Algebra/σ-Field) Let X be an arbitrary set. A collection A ⊆ P (X) of
subsets of X is a σ-algebra on X if:

• X ∈ A.
• A ∈ A =⇒ Ac ∈ A.
• For each infinite sequence {Ai} such that Ai ∈ A, it implies that

∞⋃
i=1

Ai ∈ A

• For each infinite sequence {Ai} such that Ai ∈ A, it implies that
∞⋂
i=1

Ai ∈ A

Proposition 2.1.3. Let X be a set. Then the intersection of an arbitrary non-empty collection of
σ-algebras on X is a σ-algebra on X.
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Proof. Consider a collection C of σ-algebras on X. Denote A = ⋂
C as intersection of all σ-algebras

in C. We can now easily see that any subset in A would be present in every σ-algebra present in
collection C, hence, it would obey all properties of a σ-algebras. Therefore, A is a σ-algebra.

Corollary 2.1.4. Let X be a set and let F ⊆ P (X) be a family of subsets of X. Then there exists
a smallest σ-algebra on X that includes F.

Proof. Consider any given family F ⊆ P (X) and just take intersection of the family C of all
σ-algebras which contains F to construct this smallest σ-algebra.

Definition 2.1.5. (Generated σ-algebra) The smallest σ-algebra on X containing a given family
F ⊆ P (X) of subsets is called the σ-algebra generated by F, denoted as σ(F).

Definition 2.1.6. (Borel σ-algebra on Rd) It is the σ-algebra on Rd generated by the collection
of all open subsets of Rd, denoted as B(Rd).

Definition 2.1.7. (Borel Subsets of Rd) Any A ⊆ Rd is called a Borel subset of Rd if A ∈ B(Rd).

Proposition 2.1.8. The Borel σ-algebra on R, B(R), of Borel subsets of R is generated by each
of the following collection of sets:

1. The collection of all closed subsets of R.
2. The collection of all subintervals of R of the form (−∞, b].
3. The collection of all subintervals of R of the form (a, b].

Proof. To show all of these, consider the three σ-algebras A1,A2,A3 corresponding to conditions
1,2 & 3 respectively and try to prove A3 ⊆ A2 ⊆ A1 ⊆ B(R) together with B(R) ⊆ A3. The first
three inclusions are trivial to see. For the case that B(R) ⊆ A3, simply note that any open subset
can be made by unions of the sets of form (a, b] and by Homework-I,1, each open set is union of
open subsets.

Proposition 2.1.9. The σ-algebra B(Rd) of Borel subsets of Rd is generated by each of the fol-
lowing collections:

1. The collection of all closed subsets of Rd.
2. The collection of all closed half-spaces in Rd that have the form {(x1, . . . , xd) | xi ≤ b} for

some index i and some b ∈ R.
3. The collection of all rectangles in Rd that have the form

{(x1, . . . , xd) | ai < xi ≤ bi for i = 1, . . . , d}

Proof. Almost the same as in Proposition 2.1.8. A1 ⊆ B(Rd) trivially by definition. A2 ⊆ A1 as
{(x1, . . . , xd) | xi ≤ b} is closed itself. A3 ⊆ A2 by the observation that {(x1, . . . , xd) | ai < xi ≤ bi}
is made by the difference of two subsets of the form {(x1, . . . , xd) | xi ≤ bi} and {(x1, . . . , xd) | xi >
ai}, the latter is the complement of a certain subset in A2, moreover, {(x1, . . . , xd) | ai < xi ≤
bi for i = 1, . . . , d} is then constructed by intersection of d such subsets. Finally, B(Rd) ⊆ A3 can
be seen via the fact that open subsets in Rd are made by union of rectangles of type 3 and as such,
they are called open subsets.
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Lemma 2.1.10. Let X be a set and S ⊆ P (X) a class of subsets of X. Let A ⊆ X be a subset.
Denote by S ∩A = {B ∩A | B ∈ S}. Then,

σA(S ∩A) = σ(S) ∩A.

where σA(S ∩A) denotes the smallest σ-algebra over A generated by the class S ∩A ⊆ P (A).

Proof. It is easy to see that σA(S∩A) ↪→ σ(S)∩A by considering that S∩A ⊆ σ(S)∩A. Conversely,
we use the generating set principle. That is, since we wish to show that for any B ∈ σ(S), we have
B ∩A ∈ σA(S ∩A), therefore we define

S := {B ∈ σ(S) | B ∩A ∈ σA(S ∩A)}

and then observe quite easily that S is a σ-algebra over X inside σ(S) containing S. Thus S = σ(S),
as needed.

The following are some conditions for an algebra to become a σ-algebra.

Proposition 2.1.11. Let X be a set and let A be an algebra on X. Then, A is a σ-algebra on X
if either

• A is closed under the formation of unions of increasing sequence of sets, or,
• A is closed under the formation of intersections of decreasing sequence of sets.

Proof. Take any countably infinite collection of subsets A1, A2, · · · ∈ A where A is an algebra.
Due to the definition of an algebra, we have that Cn = ⋃n

i=1Ai ∈ A for any n ≥ 1 ∈ Z+. Now
note that C1 ⊆ C2 ⊆ . . . , that is, the sequence {Cn} forms an increasing sequence of sets. Hence,
by the requirement of the question, we have that ⋃∞

i=1Ci ∈ A. But then we also have that⋃∞
i=1Ai ⊆

⋃∞
i=1Ci ∈ A. Hence we have the required condition for part 1. For part 2, we can see

that Cc
1 ⊇ Cc

2 ⊇ . . . is a decreasing sequence of sets. Then we must have, by the requirement of
the question, that ⋂∞

i=1C
c
i = (⋃∞

i=1Ci)c ∈ A. But then by definition of algebra, we must have⋃∞
i=1Ci ∈ A, which already contains the countably infinite union ⋃∞

i=1Ai.

The following are some finiteness conditions we would like to have on measure spaces.

Definition 2.1.12. (Finiteness conditions) Let (X,A, µ) be a measure space. Then,
1. X is said to be finite if µ(X) <∞,
2. X is said to be σ-finite if there exists {An} ⊆ A such that ⋃

nAn = X and µ(An) <∞,
3. X is said to be semi-finite if for all A ∈ A such that µ(A) =∞, there exists B ⊆ A such that
B ∈ A and µ(B) <∞.

2.1.1 X-indexed R-series

We would now like to make sense of the sum ∑
x∈X f(x) where f : X → [0,∞] is an arbitrary

function.

Definition 2.1.13. (X-indexed R-series) Let f : X → [0,∞] be a function where X is a set.
We define the series ∑

x∈X f(x) as follows:

∑
x∈X

f(x) = sup
{∑

x∈F
f(x) | F ⊆ X is finite

}
.



2.2 Measures 11

The following are some basic properties of X-indexed R-series.

Proposition 2.1.14. Let X be a set and f : X → [0,∞] be a function. Denote S = {x ∈
X | f(x) > 0}.

1. If S is uncountable then
∑

x∈X f(x) =∞.
2. If S is countably finite then for any bijection ϕ : N→ S, we have∑

x∈X
f(x) =

∑
n∈N

f(ϕ(n)).

Proof. 1. Write S = ⋃
n Sn where Sn = {f(x) > 1/n}. Note that Sn forms an increasing sequence

of sets. As S is uncountable, there exists N ∈ N such that SN is uncountable. Consequently, for
any finite set F ⊆ SN , we have ∑

x∈F f(x) ≥
|F |
N . As ∑

x∈F f(x) ≤
∑

x∈X f(x), therefore

|F |
N
≤

∑
x∈X

f(x). (♥)

As F ⊆ SN is arbitrary finite set and SN is uncountable, therefore we get the desired result.

2. Pick any bijection ϕ : N→ S and pick a finite set F ⊆ X. We have ∑
x∈F f(x) =

∑
x∈F∩S f(x),

so replace F ⊆ X by a finite set F ⊆ S. Let n ∈ N be large enough so that ϕ({1, . . . , n}) ⊇ F .
Consequently, we have

∑
x∈F

f(x) ≤
n∑

k=1
f(ϕ(k)) ≤

∑
x∈X

f(x). (♥)

Take n→∞ in the above inequality to obtain

∑
x∈F

f(x) ≤
∞∑
k=1

f(ϕ(k)) ≤
∑
x∈X

f(x).

Take sup over all finite subsets F of X in the above inequality to obtain∑
x∈X

f(x) ≤
∑
n∈N

f(ϕ(n)) ≤
∑
x∈X

f(x),

which yields the desired result.

2.2 Measures

Definition 2.2.1. (Countably additive function) Let X be a set and A be a σ-algebra on X.
Function µ : A −→ [0,+∞] is said to be countably additive if it satisfies:

µ

Ç ∞⋃
i=1

Ai

å
=

∞∑
i=1

µ(Ai)

for each infinite sequence {Ai} of disjoint sets in A.
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Definition 2.2.2. (Measure) A measure on A is a function µ : A → [0,+∞] that is countably
additive and satisfies:

µ(Φ) = 0.
Remark 2.2.3. This is sometimes also referred as countably additive measure on A.
Definition 2.2.4. We have following definitions to compactly represent above definitions:

1. (Measure space) If X is a set, A is a σ-algebra on X and if µ is a measure on A, then the
triple (X,A, µ) is called a measure space.

2. (Measurable Space) If X is a set and A is a σ-algebra on X, then the pair (X,A) is called
a measurable space.

Proposition 2.2.5. Let (X,A, µ) be a measure space and let A,B ∈ A such that A ⊆ B. Then,
• We have µ(A) ≤ µ(B).
• Additionally, if A satisfies that µ(A) < +∞, then:

µ(B −A) = µ(B)− µ(A).

Proof. Note that A and B ∩ Ac are disjoint sets in the sigma algebra A. Hence we can write, by
countably additive property of µ, that:

µ(A ∪ (B ∩Ac)) = µ(B)
= µ(A) + µ(B ∩Ac)

Since µ(B ∩ Ac) ≥ 0, hence µ(A) ≤ µ(B). Moreover, if µ(A) <∞, then we can additionally write
µ(B ∩Ac) = µ(B)− µ(A).

Definition 2.2.6. Let µ be a measure on a measurable space (X,A). Then,
• (Finite measure) If µ(X) < +∞.
• (σ-Finite measure) If X = ⋃

iAi where Ai ∈ A such that µ(Ai) < +∞ for all i ∈ N.
Remark 2.2.7. In other words, a subset A ∈ A is σ-finite if it is a union of a countable sequence
of sets that are in A and are of finite measure under µ.

2.2.1 Elementary properties of measures

Proposition 2.2.8. Let (X,A, µ) be a measure space. If {Ak} is an arbitrary sequence of sets
that belong to A, then,

µ

Ç ∞⋃
k=1

Ak

å
≤

∞∑
k=1

µ(Ak).

Proof. Denote B1 = A1 and Bi = Ai ∩
Ä⋃i−1

k=1Ak

äc
. Note that Bi and Bj are disjoint for distinct

i and j. Since {Ak} ∈ A, therefore {Bi} ∈ A. Moreover, ⋃∞
i=1Bi =

⋃∞
k=1Ak by construction. We

then get,

µ

Ç ∞⋃
k=1

Ak

å
= µ

Ç ∞⋃
i=1

Bi

å
=

∞∑
i=1

µ(Bi)

≤
∞∑
i=1

µ(Ai) (∵ Bi ⊆ Ai by construction.)

Hence proved.
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2.3 Basic results on measure spaces

We have the following first result.
Proposition 2.3.1. Let (X,A, µ) be a measure space.

1. If A,B ∈ A and A ⊆ B, then µ(A) ≤ µ(B).
2. If A,B ∈ A and A ⊆ B where µ(A) <∞, then µ(B \A) = µ(B)− µ(A).
3. For any sequence {An} ⊆ A, we have

µ

Ç⋃
n

An

å
≤

∑
n

µ(An).

4. If {An} ⊆ A is an increasing sequence of measurable sets, then

µ

Ç⋃
n

An

å
= limnµ(An).

5. If {An} ⊆ A is a decreasing sequence of measurable sets where µ(A1) <∞, then

µ

Ç⋂
n

An

å
= limnµ(An).

6. If X is σ-finite, then X is semi-finite.

Proof. Statements 1. and 2. are immediate from the disjoint decomposition B = A⨿ (B \A). For
3. note that for any {An} ⊆ A, we can form a disjoint sequence {Bn} ⊆ A such that ⋃

nAn =∐
nBn and µ(Bn) ≤ µ(An). Statement 4. also follows from similar reasons, where we can now let

Bn = An \An−1. Let us do statement 5. in some detail.
Observe that the sequence C1 = ∅ and Cn = A1 \ An is an increasing sequence of sets. Thus,

we have by statement 4. that

µ

Ç⋃
n

Cn

å
= limnµ (Cn) . (♥)

We can write A1 = (A1 \An)⨿An. Using statement 2. we obtain that

µ(A1) = µ(Cn) + µ(An)
µ(A1)− µ(An) = µ(Cn). (♥♥)

We now claim that ⋂
nAn = A1 \

⋃
nCn. Indeed, for x ∈ ⋂

nAn, x ∈ An ⊆ A1 for all n
and thus x ∈ A1. But if x ∈ Cn for some n, then x /∈ An, consequently a contradiction. Hence
x ∈ A1 \

⋃
nCn. Conversely, for x ∈ A1 \

⋃
nCn and any n ∈ N, we have that if x /∈ An, then

x ∈ A1 \An = Cn, a contradiction. Hence the claim is proved.
As each Cn ⊆ A1, thus

⋃
nCn ⊆ A1. Consequently, by statement 2. and above claim we obtain

that

µ
Ä⋂

An

ä
= µ(A1)− µ

Ç⋃
n

Cn

å
= µ(A1)− limnµ(Cn)
= µ(A1)− limn (µ(A1)− µ(An))
= limnµ(An).
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This proves statement 5.
For statement 6. pick any A ∈ A with µ(A) = ∞. We wish to construct a subset B ⊆ A with

B ∈ A and 0 < µ(B) <∞. Let {Dn} ⊆ A be a collection of finite measure sets such that ⋃
nDn =

X. Note that we can assume Dn are disjoint by suitably replacing Dn by Dn \ D1 ∪ · · · ∪ Dn−1.
Assume to the contrary, so that for each B ⊆ A with B ∈ A, either µ(B) = 0 or µ(B) = ∞. Let
Dn ∩ A be such that Dn ∩ A ̸= ∅. Consequently, µ(Dn ∩ A) = 0 or ∞. The latter isn’t possible,
therefore µ(Dn ∩A) = 0 for all n ∈ N.

Since we have A = ∐
nDn ∩A, therefore µ(A) =

∑
n µ(Dn ∩A) = 0, a contradiction to the fact

that µ(A) =∞.

We now cover an important example of a measure.

Construction 2.3.2. (Measures from a positive function) Let (X,A) be a measurable space and
f : X → [0,∞] be a function. We construct the following map

{All functions X → [0,∞]} −→ {measures on (X,A)} .

Indeed, define

µf : A −→ [0,∞]
A 7−→

∑
x∈A

f(x).

We claim that µf forms a measure.
It is clear that µf (∅) = 0. Consequently we need to show that for a disjoint collection {An} ⊆ A,

we have

µf

Ç∐
n

An

å
=

∑
n

µf (An).

We first have that

µf

Ç∐
n

An

å
= sup

{∑
x∈F

f(x) | F ⊆
∐
n

An is finite
}

(1)

and

∑
n

µf (An) =
∑
n

sup
{∑

x∈G
f(x) | G ⊆ An is finite

}
. (2)

We first show that (1) ≤ (2). We need only show that for a finite set F ⊆ ⨿nAn, we have∑
x∈F f(x) ≤ (2). Indeed, as Fn := F ∩ An is a collection of disjoint finite set where Fn ⊆ An and

only for finitely many n is Fn non-empty, therefore ∑
x∈F f(x) =

∑
n

∑
x∈Fn

f(x) ≤ (2).
Conversely, we now wish to show that (2) ≤ (1). We use a standard technique for this. Pick

any ϵ > 0. For each n ∈ N, we obtain a finite set Gn ⊆ An such that

µf (An)−
ϵ

2n ≤
∑
x∈Gn

f(x). (♥)
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Summing this till N ∈ N, we obtain

N∑
n=1

(
µf (An)−

ϵ

2n
)
≤

N∑
n=1

∑
x∈Gn

f(x) =
∑

x∈⨿N
n=1Gn

f(x) ≤ (1).

Now take N →∞ and ϵ→ 0 to obtain the result2.

Observe that the map defined above in Construction 2.3.2 is neither injective nor surjective,
and that’s good, otherwise measure theory would have been redundant. We now study completions
of a measure space.

Remark 2.3.3. The goal of next few sections is to establish a good measure on Rn through which
we can proceed to a theory of integration of measurable functions. Indeed, this goal was achieved by
Lebesgue and he constructed what will be called the Lebesgue measure on Rn. Hence, one should
view the goal of the next few sections as to construct this measure space (Rn,M,m), which is
highly usable (as we will see in the integration theory) and is the gold standard of modern analysis.

2.4 Completion of a measure space

Definition 2.4.1. (Null sets and complete measure spaces) Let (X,A, µ) be a measure space.
A null set is an element A ∈ A such that µ(A) = 0. The collection of all null sets is written as
Null(A) ⊆ A. A measure space (X,A, µ) is said to be complete if for all A ∈ Null(A), P(A) ⊆ A.

Remark 2.4.2. Note that for a measure space (X,A, µ), the collection of all null sets Null(A)
contains ∅ and is closed under countable union. Indeed, for {An} ⊆ Null(A), we have µ(∪nAn) ≤∑

n µ(An) = 0 by Proposition 2.3.1, 3.

Definition 2.4.3. (Extension of measure spaces) Let (X,A, µ) and (X,A′, µ′) be two measure
spaces. Then we say that (X,A′, µ′) is an extension of (X,A, µ) if A′ ⊇ A and µ′|A = µ.

We will now for each measure space (X,A, µ) will construct an extension of it which will be
complete.

Construction 2.4.4. Let (X,A, µ) be a measure space. Consider the following collection

Â := {A ∪B | A ∈ A, B ⊆ N,N ∈ Null(A)}.

Define µ̂ : Â → [0,∞] as A ∪B 7→ µ(A).

Theorem 2.4.5. Let (X,A, µ) be a measure space. Then, (X, Â, µ̂) is a complete measure space
extending (X,A, µ). We call it the completion of (X,A, µ).

Proof. We need to show the following things.
1. Â is a σ-algebra,
2. µ̂ is a measure,
3. µ̂|A = µ,
4. (X, Â, µ̂) is complete.
2We call this the ϵ-wiggle around inf and sup technique.
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The first three are straightforward. We show 4. in some detail.
Pick A ∪ B ∈ Â such that µ̂(A ∪ B) = µ(A) = 0. Then A ∈ Null(A). Further, B ⊆ N where

N ∈ Null(A). Let C ⊆ A ∪ B. Then C = (C ∩ A) ∪ (C ∩ B). Since C ∩ A ⊆ A and C ∩ B ⊆ N ,
therefore C ⊆ A ∪N where A ∪N ∈ Null(A). Consequently, we may write C = ∅ ∪ C where C is
a subset of a null set. Hence C ∈ Â.

Example 2.4.6. Let X = {1, 2, 3} and A = {∅, X, {1}, {2, 3}}. Define µ : A → [0,∞] by µ(∅) =
0 = µ({2, 3}) and µ({1}) = µ(X). Clearly, (X,A, µ) is a measure space which is not complete. We
calculate its completion (X, Â, µ̂). By Construction 2.4.4, as the only null set is {2, 3}, we have

Â = {∅, X, {1}, {2, 3}, {2}, {3}, {1, 2}, {1, 3}}.

Hence Â = P(X). Similarly, µ̂ is easy to find by the definition in Construction 2.4.4.

2.5 Outer measures

Definition 2.5.1. (Outer measure) Let X be a set and let P (X) be the collection of all subsets
of X. An outer measure on X is a function µ∗ : P (X) −→ [0,+∞] such that:

• For the empty set Φ,
µ∗ (Φ) = 0

• If A ⊆ B ⊆ X, then
µ∗ (A) ≤ µ∗ (B) .

• If {An} is an infinite sequence of subsets of X, then

µ∗
Ç⋃

n

An

å
≤

∑
n

µ∗ (An)

Definition 2.5.2. (Lebesgue outer measure on R) For each subset A ⊆ R, let CA be the set
of all infinite sequences {(ai, bi)} of bounded open intervals such that A ⊆ ⋃

i(ai, bi). That is,

CA = {{(ai, bi)} | A ⊆ ∪i(ai, bi) and ai, bi ∈ R}

Then, λ∗ : P (R) −→ [0,+∞] is the Lebesgue outer measure, defined by:

λ∗ (A) = inf
®∑

i

(bi − ai)
∣∣∣∣∣ {(ai, bi)} ∈ CA

´
(3)

To verify that λ∗ is indeed an outer measure.

Proposition 2.5.3. Lebesgue outer measure on R is an outer measure and it assigns to each
subinterval of R it’s length.

Proof. Denote CA = {{(ai, bi)} | A ⊆ ∪i(ai, bi)}. To show that λ∗ is an outer measure, we first
need to show that λ∗ (Φ) = 0. For that, consider the set of all infinite sequences {(ai, bi)} ∈ CΦ,
that is (trivially) Φ ⊆ ∪i(ai, bi), such that ∑

i(bi − ai) < ϵ for all ϵ > 0. Then, if we denote
LA = {∑i(bi − ai) | {(ai, bi)} ∈ CA}, then inf LΦ = 0 as for any lower bound l of LA, if l > 0 then
∃ {(ai, bi)} ∈ CΦ such that ∑

i(bi − ai) < l, hence l ≤ 0, or inf LΦ = 0.
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Second, we need to show that if A ⊆ B ⊆ X, then λ∗ (A) ≤ λ∗ (B). For this, consider A ⊆ B.
Clearly, we have that CB ⊆ CA, therefore LB ⊆ LA and hence inf LB ≥ inf LA.
Third, we need to show that for any infinite sequence {An} of subsets of X,

λ∗
Ç⋃

n

An

å
≤

∑
n

λ∗ (An)

For this, consider the Lebesgue outer measure of An, that is, λ∗ (An). We must have, that for any
infinite sequence {(an,i, bn,i)} ∈ CAn , that

∞∑
i=1

(bn,i − an,i) ≥ λ∗ (An) .

Hence, consider that the difference is upper bounded according to n, that is the sequence {(an,i, bn,i)} ∈
CAn is such that,

∞∑
i=1

(bn,i − an,i)− λ∗ (An) ≤ ϵ/2n.

Now, we can cover the entire ⋃
iAi by the union of the above intervals, that is,⋃

i

Ai ⊆
⋃
n

⋃
i

(an,i, bn,i).

Now, we know that

λ∗
Ç⋃

i

Ai

å
= inf L∪iAi .

But since ∑
n

∑
i

(bn,i − an,i) ∈ L∪iAi ,

and ∑
n

Ç∑
i

(bn,i − an,i)− λ∗ (An)
å
≤

∑
n

ϵ/2n

which is equal to ∑
n

∑
i

(bn,i − an,i)−
∑
n

λ∗ (An) ≤ ϵ× 1

or, ∑
n

∑
i

(bn,i − an,i) ≤
∑
n

λ∗ (An) + ϵ

and since λ∗ (⋃iAi) = inf L⋃
i
Ai
, therefore,

λ∗
Ç⋃

i

Ai

å
≤

∑
n

∑
i

(bn,i − an,i) ≤
∑
n

λ∗ (An)

Hence proved.
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Now, we need to show that λ∗ assigns each subinterval it’s length.
For this first show that λ∗ ([a, b]) ≤ b− a. This is easy to show if we take,

[a, b] =
⋃
i

(ai, bi)

where (a1, b1) = (a, b), (ai, bi) = (a− ϵ/2i, a) for all even i and (aj , bj) = (b, b+ ϵ/2j) for all odd j.
Now, ∑

i

(bi − ai) = (b− a) +
∑

i=2,4,...
ϵ/2i +

∑
i=3,5,...

ϵ/2i

= b− a+
∑

i=1,2,...
ϵ/2i

= b− a+ ϵ

therefore λ∗ ([a, b]) = inf L[a,b] ≤ b− a+ ϵ for all ϵ > 0, hence λ∗ ([a, b]) ≤ b− a.
Now, to show the converse that b − a ≤ λ∗ ([a, b]), we first note that [a, b] is compact, so for any
infinite cover {(ai, bi)} ∈ C[a,b], there exists a finite subcover {(ai, bi)}ni=1 of [a, b]. Now, since λ∗ is
an outer measure, therefore,

b− a ≤
n∑

i=1
λ∗ ((ai, bi)) ≤

∞∑
i=1

λ∗ ((ai, bi)) ∈ L[a,b]

Therefore, b− a is a lower bound of L[a,b] and hence b− a ≤ inf L[a,b] = λ∗ ([a, b]).
Hence λ∗ ([a, b]) = b− a.
Now since, one can construct subintervals of the form (a, b] or [a, b) from the following manner:

(a, b] ⊆ (a, b)
⋃Ç⋃

n

[b, b+ ϵ/2n]
å

from which we get that λ∗ ((a, b]) ≤ b− a and also,

[a, b] ⊆ (a, b]
⋃Ç⋃

n

[a− ϵ/2n, a]
å

which yields b− a ≤ λ∗ ((a, b]). Similarly for (−∞, b] to show that λ∗ ((−∞, b]) = +∞.

Construction 2.5.4. (Lebesgue outer measure on Rn) Consider Rm and for an box I ⊆ Rn, by
which we mean a product of interval I = I1 × · · · × Im for Ii ⊆ R, denote v(I) to be its volume;
v(I) = ∏m

i=1 l(Ii). For any A ⊆ Rn, we define

µ∗(A) = inf
®∑

n

v(In) |
⋃
n

In ⊇ A, In are boxes
´
.

We claim that µ∗ forms an outer measure on Rn.
Indeed, µ∗(∅) = 0 as ∅ ⊆ (−1/k, 1/k)m for all n ∈ N so we have µ∗(A) ≤ 2m/nm. Taking

n→∞ does the job.
LetA ⊆ B in Rm. Observe that to show µ∗(A) ≤ µ∗(B) we need only show that {∑n v(In) |

⋃
n In ⊇ A, In are boxes} ⊇
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{
∑

n v(In) |
⋃

n In ⊇ B, In are boxes}. But this is trivial as and sequence of boxes {In} covering
B also covers A.

Finally we wish to show countable subadditivity. Pick {An} ⊆ P(Rm). We wish to show that

µ∗
Ç⋃

n

An

å
≤

∑
n

µ∗(An).

We use the ϵ-wiggle around sup and inf technique to show this, as discussed earlier in Construction
2.3.2. Pick any ϵ > 0 and observe that we have a sequence of boxes {In,k}k for each n ∈ N such
that ⋃

k In,k ⊇ An and

µ∗(An) +
ϵ

2n ≥
∑
k

v(In,k). (♥)

Observe further that ⋃
n

⋃
k In,k ⊇

⋃
nAn. Consequently, we have ∑

n

∑
k v(In,k) ≥ µ∗(⋃nAn).

Hence,

∑
n

(
µ∗(An) +

ϵ

2n
)
≥

∑
n

∑
k

v(In,k) ≥ µ∗
Ç⋃

n

An

å
.

Hence µ∗ is an outer measure on Rn.

Note that the only place we required knowledge about boxes explicitly was only to show that
µ∗(∅) = 0. This motivates the following simple result

Theorem 2.5.5. Let X be a set and S ⊆ P(X) be a collection of sets containing ∅ and X. Let
l : S → [0,∞] be a function such that l(∅) = 0. Then µ∗ defined by

µ∗ : P(X) −→ [0,∞]

A 7−→ inf
®∑

n

l(In) |
⋃
n

In ⊇ A, In ∈ S
´

is an outer measure on X.

Proof. Verbatim to Construction 2.5.4, except that µ∗(∅) = 0 follows now by the assumption that
l(∅) = 0 and ∅ ∈ P(X) so that ∅ forms its own covering.

2.6 Lebesgue measurability & Carathéodory’s theorem

Definition 2.6.1. (µ∗-measurable subset) Let X be a set and let µ∗ be an outer measure on
X. A subset B ⊆ X is µ∗-measurable if:

µ∗ (A) = µ∗ (A ∩B) + µ∗ (A ∩Bc)

holds for all subsets A ⊆ X.

Definition 2.6.2. (Lebesgue measurable subset of R) A subset B ⊆ R is called a Lebesgue
measurable subset of R if B is λ∗-measurable. That is, for any A ⊆ R, we must have:

λ∗ (A) = λ∗ (A ∩B) + λ∗ (A ∩Bc)
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Remark 2.6.3. Important to note are the following:
• Due to sub-additivity of µ∗ and A ⊆ (A ∩B) ∪ (A ∩Bc), we already have that

µ∗ (A) ≤ µ∗ (A ∩B) + µ∗ (A ∩Bc)

for any subsets A,B ⊆ X.
⋆ Due to the above fact, all that remains to be shown to ascertain that B ⊆ R is µ∗-measurable

is to show the following converse:

µ∗ (A) ≥ µ∗ (A ∩B) + µ∗ (A ∩Bc) .

for all A ⊆ X.

Proposition 2.6.4. Let X be a set and let µ∗ be an outer measure on X. Then each subset B ⊆ X
that satisfies µ∗ (B) = 0 or that satisfies µ∗ (Bc) = 0 is µ∗-measurable.

Proof. This result actually proves that for subset B ⊆ X which has zero outer measure under µ∗,
any other subset A ⊆ X would be such that µ∗ (A ∩B) = 0(!) After proving this, and from the re-
mark above, we would just be left to show that if µ∗ (B) = 0, then µ∗ (A) ≥ µ∗ (A ∩B)+µ∗ (A ∩Bc).
We show the former here, from which the latter follows naturally.

Consider B ⊆ X such that µ∗ (B) = 0. It’s true that A ∩ B ⊆ B. Now since µ∗ is an outer
measure on X, therefore, we must have µ∗ (A ∩B) ≤ µ∗ (B) = 0. This implies that µ∗ (A ∩B) = 0.
Now, we would see that the required condition follows naturally from the previous. First, note the
following:

A ∩B ⊆ A and A ∩Bc ⊆ A.

Hence, we can write:
µ∗ (A ∩B) ≤ µ∗ (A) and µ∗ (A ∩Bc) ≤ µ∗ (A) .

Now if µ∗ (B) = 0, then µ∗ (A ∩B) = 0 and then in the second inequality, we would have:

µ∗ (A ∩Bc) + µ∗ (A ∩B) ≤ µ∗ (A) + 0

Or, if µ∗ (Bc) = 0, then µ∗ (A ∩Bc) = 0 and then in the first inequality, we would have:

µ∗ (A ∩B) + µ∗ (A ∩Bc) ≤ µ∗ (A) + 0.

Hence, B is µ∗-measurable for any B ⊆ X which satisfies that either µ∗ (B) = 0 or µ∗ (Bc) = 0.

The following theorem is a fundamental fact about outer measures.

Theorem 2.6.5 (Carathéodory). Let X be a set, let µ∗ be an outer measure on X and let Mµ∗ be
the collection of all µ∗-measurable subsets of X. Then,

• Mµ∗ is a σ-algebra.
• The restriction of µ∗ to Mµ∗ is a measure on Mµ∗.
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Proof. Act 1. Mµ∗ is an algebra.
First, it is clear that X,Φ ∈ Mµ∗ from Proposition 2.6.4, because µ∗ (Φ) = µ∗ (Xc) = 0. Now, if
B ∈ Mµ∗ , then µ∗ (A) = µ∗ (A ∩B) + µ∗ (A ∩Bc) ∀ A ⊆ X. But if we replace B by Bc in the
above, we would get the same equation, hence Bc ∈ Mµ∗ . So Mµ∗ is closed under complements.
Now, to show closed nature under finite unions, we take any two subsets B1, B2 ∈ Mµ∗ and show
that A ∪B ∈Mµ∗ . First we have

µ∗ (A) = µ∗ (A ∩B1) + µ∗ (A ∩Bc
1)

= µ∗ (A ∩B2) + µ∗ (A ∩Bc
2)

for any A ⊆ X. Now, we see that from the fact that B1 ∈Mµ∗ ,

µ∗ (A ∩ (B1 ∪B2)) = µ∗ (A ∩ (B1 ∪B2) ∩B1) + µ∗ (A ∩ (B1 ∪B2) ∩Bc
1)

= µ∗ (A ∩B1) + µ∗ (A ∩B2 ∩Bc
1)

Similarly, we have from the fact B2 ∈Mµ∗ ,

µ∗ (A ∩ (B1 ∪B2)c) = µ∗ (A ∩ (B1 ∪B2)c ∩B2) + µ∗ (A ∩ (B1 ∪B2)c ∩Bc
2)

= µ∗ (A ∩Bc
1 ∩Bc

2 ∩B2) + µ∗ (A ∩Bc
1 ∩Bc

2 ∩Bc
2)

= µ∗ (Φ) + µ∗ (A ∩Bc
1 ∩Bc

2)
= µ∗ (A ∩ (B1 ∪B2)c)

Now, adding the above results yield,

µ∗ (A ∩ (B1 ∪B2)c) + µ∗ (A ∩ (B1 ∪B2)) = µ∗ (A ∩ (B1 ∪B2)c) + µ∗ (A ∩B1) + µ∗ (A ∩B2 ∩Bc
1)

= µ∗ (A ∩Bc
1 ∩Bc

2) + µ∗ (A ∩Bc
1 ∩B2) + µ∗ (A ∩B1)

= µ∗ (A ∩Bc
1) + µ∗ (A ∩B1)

= µ∗ (A) .

Hence, B1 ∪B2 is µ∗-measurable, so B1 ∪B2 ∈Mµ∗ . Now, we can, for a finite collection of subsets
in Mµ∗ , we can proceed like above, to show that Mµ∗ is closed under finite union, hence showing
that Mµ∗ is an algebra.

Act 2. Mµ∗ is a σ-algebra.
All that is left to show that Mµ∗ is a σ-algebra is to show that it is closed under countable union.
We have already proved closed nature under finite union. We extend it via induction principle.
Suppose {Bi} is a sequence of disjoint subsets in Mµ∗ . For this, we first prove3 using induction
that, for all A ⊆ X and n ∈ N,

To Prove : µ∗ (A) =
n∑

i=1
µ∗ (A ∩Bi) + µ∗

Ç
A ∩
Ç

n⋂
i=1

Bc
i

åå
(4)

3But why to prove Eq. 4? The motivation for Eq. 4 comes from Part 1. More specifically, notice in the equation
where we added µ∗ (A ∩ (B1 ∪B2)c) and µ∗ (A ∩ (B1 ∪B2)). Note it’s 2nd line, this is the case when n = 2 in Eq. 4
combined with the fact that Bi’s are disjoint. Now why to take Bi’s to be disjoint? The reason for this comes from
the fact that for any infinite sequence of subsets {Ai}, one can construct infinite sequence of disjoint subsets, that is
: A1, A2 ∩Ac

1, A3 ∩ (A1 ∪A2)c, . . . and it’s union is again
⋃

n
An. Hence if we prove that a disjoint infinite sequence

is closed under union, then we could prove that any infinite sequence of subsets is closed under union too!
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For the case when n = 1, we see that it Eq. 4 reduces to µ∗ (A) = µ∗ (A ∩B1) + µ∗ (A ∩Bc
1). But

since Bi ∈Mµ∗ ∀ i ∈ N, therefore this is trivially true. Now, by the induction principle, we assume
that Eq. 4 is true uptill n and then we try to prove it for n+ 1 step. For this, since Bn+1 ∈Mµ∗

is disjoint to all other Bi’s, we have,

µ∗
Ç
A ∩

n⋂
i=1

Bc
i

å
= µ∗

ÇÇ
A ∩

n⋂
i=1

Bc
i

å
∩Bn+1

å
+ µ∗

ÇÇ
A ∩

n⋂
i=1

Bc
i

å
∩Bc

n+1

å
= µ∗ (A ∩Bn+1) + µ∗

Ç
A ∩

n+1⋂
i=1

Bc
i

å
where the last line follows from the fact that each Bi is disjoint to other Bj ’s, hence each Bc

j would
contain Bi and therefore Bn+1 ⊆

⋂n
i=1B

c
i . Now, substituting the above equation in Eq. 4 gives,

µ∗ (A) =
n∑

i=1
µ∗ (A ∩Bi) + µ∗ (A ∩Bn+1) + µ∗

Ç
A ∩

n+1⋂
i=1

Bc
i

å
=

n+1∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩

n+1⋂
i=1

Bc
i

å
Hence, by induction principle, Eq. 4 is true for all n ∈ N. Hence, now we can write,

µ∗ (A) ≥
∞∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩

∞⋂
i=1

Bc
i

å
=

∞∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩
Ç ∞⋃

i=1
Bi

åcå
Now, to prove that ⋃

iBi ∈Mµ∗ , we need to show

To Show : µ∗ (A) ≥ µ∗
Ç
A ∩

⋃
i

Bi

å
+ µ∗

Ç
A ∩
Ç⋃

i

Bi

åcå
This comes from previous result as follows:

µ∗ (A) ≥
∞∑
i=1

µ∗ (A ∩Bi) + µ∗
Ç
A ∩
Ç ∞⋃

i=1
Bi

åcå
≥ µ∗

Ç ∞⋃
i=1

(A ∩Bi)
å

+ µ∗
Ç
A ∩
Ç ∞⋃

i=1
Bi

åcå
= µ∗

Ç
A ∩

∞⋃
i=1

Bi

å
+ µ∗

Ç
A ∩
Ç ∞⋃

i=1
Bi

åcå (5)

Therefore, ⋃iBi ∈Mµ∗ . Now, as the previous footnote mentions, for every infinite sequence {Ci}
in Mµ∗ , we have a disjoint sequence of subsets as C1, C2 ∩ Cc

1, C3 ∩ Cc
2 ∩ C1, .... Now, this disjoint

sequence is closed under union as we just showed and since union of this disjoint sequence is equal
to the union of {Ci}, hence

⋃
iCi ∈Mµ∗ for any sequence {Ci} in Mµ∗ . Thus, Mµ∗ is a σ-algebra.
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Act 3. µ∗ restricted to Mµ∗ is a measure.
Consider {Bn} be an infinite sequence of subsets in Mµ∗ . Now, by finite subadditivity, we trivially
have

µ∗
Ç⋃

i

Bi

å
≤

∑
i

µ∗ (Bi)

Moreover, from Part 2 and setting A = ∪iBi, we get:

µ∗
Ç⋃

i

Bi

å
≥

∑
j

µ∗
Ç⋃

i

Bi ∩Bj

å
+ µ∗

Ç⋃
i

Bi ∩
Ç⋃

i

Bi

åcå
=

∑
j

µ∗ (Bj) + µ∗ (Φ)

=
∑
j

µ∗ (Bj) .

We hence have the complete proof.

Definition 2.6.6. (Lebesgue measure) The restriction of Lebesgue outer measure on R to the
collectionMλ∗ of Lebesgue measurable subsets of R is called Lebesgue measure. It would be denoted
by λ. Hence, we would work with the measure space (R,Mλ∗ , λ)4.

2.7 Does λ∗ (E) = 0 implies E is countable?

We would construct today a set which has measure 0, but not countable(!).
1. Take E0 = [0, 1].
2. Remove (1/3, 2/3) from E0 to form E1 = [0, 1/3] ∪ [2/3, 1].
3. Proceed in the same way to form E2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].
4. At nth step, En contains 2n subintervals and each of which is of length 1

3n .
5. We clearly have E0 ⊃ E1 ⊃ E2 ⊃ . . . .
6. Here, note that each En is a closed and compact subset of R.
7. The set

P =
∞⋂
n=0

En is known as Cantor Set.

2.7.1 Properties of Cantor set

Proposition 2.7.1. Lebesgue measure of Cantor Set is 0.

Proof. Note that Cantor Set is Lebesgue measurable as it is countable intersection of closed sets,
hence it is present in the Borel σ-algebra B(R) and hence is also in Mλ∗ . Hence, instead of λ∗, we

4From this point on-wards, whenever this text mentions that a given set is measurable in space (X,A, µ), it must
be assumed that the given set is in A, given that there is no ambiguity.
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can now write λ as P ∈Mλ∗ . Now, measure of Cantor set P can be written as:

λ (P ) = λ

Ç⋂
n

En

å
= lim←−

n→∞
λ (En)

= lim←−
n→∞

2n
3n

= lim←−
n→∞

1
1.5n

= 0.

Proposition 2.7.2. Cantor set is uncountable(!)

Proof. We will show that there exists a bijection between Cantor Set and an uncountable set,
specifically ternary system. For this, consider the ternary representation of every number in [0, 1].
What this means is that every number in [0, 1] can be represented only using the numbers 0, 1 and
2. Hence, one write 1

3 as 0.1 and 2
3 as 0.2. Now, (1/3, 2/3) = Ec

1 ∩ [0, 1] is the set that has been
removed from the process of creating E1 from E0. Clearly, every number in this Ec

1 ∩ [0, 1] is of the
form 0.1 . . . where . . . are all combinations of 0, 1 and 2. Therefore, we are now left with the E1
that has all the numbers represented as 0.0 . . . or 0.2 . . . .
As we saw in the generation of E1, the generation of E2 from E1 would hence involve removing
numbers of the forms 0.01 . . . and 0.21 . . . . And hence E2 would then be the set of numbers whose
first two decimal places are restricted to NOT have the digit 1; that is, E2 would be of form
0.02 . . . , 0.00 . . . , 0.20 . . . , 0.22 . . . .
Continuing like this, we see that En would have in ternary representation, all those numbers whose
first n digits are NOT 1. Hence, for any p ∈ P , p would have the ternary representation constructed
only from 0 and 2, but NOT 1.
Now, consider the map f : P → [0, 1] such that f(p) replaces each occurence of 2 by 1 in the
ternary representation of p. We now show that this map is surjective(!) so that P has atleast as
many elements as [0, 1]. To show this, take any x ∈ [0, 1] in it’s ternary form, and replace all 1 by
2 and denote it as x′. Clearly, x′ would be in P as x′ has all decimal digits generated by 0 and 2.
But f(x′) would be opposite action and would be equal to x. Therefore, we showed that for any
x ∈ [0, 1], ∃ x′ ∈ P such that f(x′) = x. Hence f is surjective. Therefore P has atleast as many
elements as [0, 1]. But since P ⊆ [0, 1] therefore P has atmost as many elements as [0, 1]. This
dichotomy suggests that

Cantor Set has as many elements as in [0, 1] (!)

But since [0, 1] is uncountable, therefore, P is uncountable.

With this, we conclude that for any set E ⊆ R, if λ∗ (E) = 0, then it’s NOT necessarily
true that E is countable.
We now see an extremely interesting example of a Non-measurable set.
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2.8 A non-measurable set

Theorem 2.8.1. There is a subset of R that is not Lebesgue measurable5.

Proof. We construct the proof in the following Acts:

Act 1. Equivalence Relation on R.
Construct the following relation ∼ on R:

x ∼ y ≡ x− y ∈ Q.

Clearly, ∼ is reflexive as x−x = 0 is rational; it is also symmetric as negative of a rational is also a
rational number; and it is also transitive as if x− y and y− z is rational, then x− y+ y− z = x− z
is sum of two rationals, which is also rational. Hence ∼ is an equivalence relation. Therefore ∼
partitions the whole R into equivalence classes. Note that each equivalence class of x would consist
elements of the form Q + x. But since Q is dense in R, therefore Q + x, that is each equivalence
class, is dense in R.
Now, each equivalence class clearly intersects (0, 1), therefore, inducing the Axiom of Choice on the
set of all equivalence classes, we can form a subset E ⊂ (0, 1) which contains exactly one element
from each of the equivalence classes. We will later prove that E is not Lebesgue measurable.

Act 2. E satisfies certain properties.
Consider the set Q ∩ (−1, 1). Clearly, this is countable as it’s subset of Q. Then, consider {rn} to
be the enumeration of Q∩ (−1, 1). Construct the sequence of subsets En = E + rn. We now verify
that {En} satisfies the following properties:

1. The sets En are disjoint.
2. ⋃

nEn is a subset of the interval (−1, 2).
3. The interval (0, 1) is included in ⋃

nEn.
Property 1 : Assume that En∩Em ̸= Φ for some n,m ∈ N such that n ̸= m. Then ∃e1, e2 ∈ E such
that e1 + rn = e2 + rm which means that e1 − e2 = rm − rn ∈ Q. But this cannot happen as e1, e2
are elements of E and E contains exactly one element from the equivalence class of ∼ intersected
with (0, 1). Therefore e1 − e2 /∈ Q. Which is a contradiction. Hence En ∩Em = Φ for all n,m ∈ N
such that n ̸= m.
Property 2 : Take x ∈ ⋃

nEn. This implies that x ∈ Em for some m ∈ N. But Em = E + rm =
{e+ rm | e ∈ E}. Since E ⊂ (0, 1) and rm ∈ Q∩ (−1, 1) ⊂ (−1, 1), therefore x ∈ E + rm ⊆ (−1, 2).
Hence ⋃

nEn ⊆ (−1, 2).
Property 3 : Take any x ∈ (0, 1). Now take the e ∈ E such that x ∼ e, or x − e ∈ Q. Hence
x ∈ Q+ e. That is x = r+ e. But since 0 < e < 1 and 0 < x < 1, therefore r = x− e ∈ Q∩ (−1, 1).
Hence x ∈ E + r and if we denote r = rn for some n ∈ N, we get x ∈ E + rn = En, therefore
x ∈

⋃
iEi. Hence (0, 1) ⊆ ⋃

iEi.

Act 3. E is Not Lebesgue measurable.
Assume that E is in-fact Lebesgue measurable. Now since En are disjoint (Property 1), therefore
we can write:

λ

Ç⋃
n

En

å
=

∑
n

λ (En) .

5See [Solovay70] for more information.



26 2 MEASURES

Now, since Lebesgue measure is translation invariant6, therefore λ (En) = λ (E + rn) = λ (E).
Two cases now arise for λ (⋃nEn):

1. If λ (E) = 0 : Then λ (⋃nEn) = 0. But

λ ((−1, 2)) = 3 ≤ λ
Ç⋃

n

En

å
(Property 3).

Therefore we have a contradiction.
2. If λ (E) ̸= 0 : Then λ (⋃nEn) =

∑
n λ (E) = +∞. But

λ

Ç⋃
n

En

å
≤ λ ((−1, 2)) = 3 (Property 2).

We again have a contradiction.
Hence, the set E is just not Lebesgue measurable!

2.9 Regularity

First consider the following proposition.

Proposition 2.9.1. Consider E ⊆ R. The following statements are equivalent:
1. E is Lebesgue measurable.
2. ∀ ϵ > 0, ∃ an open set O such that

E ⊆ O and λ∗ (O \ E) < ϵ.

3. ∃ a Gδ set G such that
E ⊆ G and λ∗ (G \ E) = 0.

Proof. The equivalence of each statement is as follows:
1 =⇒ 2. Consider E ⊆ R to be Lebesgue measurable. By above, for any E ⊆ R and any ϵ > 0,
there exists open set U such that E ⊆ U which satisfies

λ∗ (U) ≤ λ∗ (E) + ϵ.

Now since E ⊆ U , therefore,

λ∗ (U \ E) = λ∗ (U)− λ∗ (E)
≤ ϵ

2 =⇒ 3. Similarly, the above shows that there exists a Gδ set G such that E ⊆ G which sat-
isfies λ∗ (E) = λ∗ (G). This directly means that λ∗ (G \ E) = 0 because E ⊆ G so λ∗ (G \ E) =
λ∗ (G)− λ∗ (E).

3 =⇒ 1. Since G is Gδ set therefore it is intersection of open sets in R. Now since any
6Proof?
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open set in R is an union of open intervals (Homework I, 1) which is Lebesgue measurable and
therefore G is Lebesgue measurable. Now, we can write E as

E = G \ (G \ E)

where G \E is such that (from Statement 3) λ∗ (G \ E) = 0, therefore, by Proposition 2.6.4, G \E
is Lebesgue measurable. Hence E is also Lebesgue measurable.

Now, consider the next proposition, which is dual of the above.

Proposition 2.9.2. Consider E ⊆ R. The following statements are equivalent:
1. E is Lebesgue measurable.
2. ∀ ϵ > 0, ∃ closed set C such that

C ⊆ E and λ∗ (E \ C) < ϵ.

3. ∃ a Fσ set F such that
F ⊆ E and λ∗ (E \ F ) = 0.

Proof. Implications are as follows:
1 =⇒ 2. Suppose E ⊆ R is Lebesgue measurable. Note that if E is Lebesgue measurable
(that is E ∈ Mλ∗), then Ec is also Lebesgue measurable as Mλ∗ is a σ-algebra (Theorem 2.6.5).
Hence, using Proposition 2.9.1 on Ec gives us an open set O for all ϵ > 0 such that Ec ⊆ O and
λ∗ (O \ Ec) < ϵ. Now let’s take it’s complement. Therefore, C = Oc ⊆ E where C is clearly closed.
Now, E \Oc = O \ Ec7. Now,

λ∗ (E \Oc) = λ∗ (O \ Ec)
< ϵ

which proves the first implication.

2 =⇒ 3. From Proposition 2.9.1, we have that ∃ a Gδ set G such that Ec ⊆ G and λ∗ (G \ Ec) = 0.
Note that the complement of countable intersection of open sets is countable union of closed sets.
Therefore, F = Gc is an Fσ set. Now, Gc ⊆ (Ec)c = E. Now, we know that E \ Gc = G \ Ec.
Therefore, we have the result as follows:

λ∗ (E \Gc) = λ∗ (G \ Ec)
= 0.

3 =⇒ 1. Since F is an Fσ set, therefore, F ∈Mλ∗ . Moreover, as Statement 2 show, λ∗ (E \ F ) = 0,
thus by Proposition 2.6.4, E \ F ∈Mλ∗ . Since,

E = F ∪ (E \ F )

that is E is union of two Lebesgue measurable sets, therefore E ∈Mλ∗ , completing the proof.
7It’s not difficult to see as for any x ∈ E \Oc, x ∈ E but x /∈ Oc. Therefore, x ∈ O but x /∈ Ec, that is x ∈ O \Ec.

Similarly for the converse.
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Definition 2.9.3. (Complete measure Space) The measure space (X,A, µ) is complete if the
for any A ∈ A such that µ (A) = 0 implies that for any subset B ⊆ A,

µ (B) = 0.

Remark 2.9.4. Trivial to see are the following:
• Hence, if µ∗ is an outer measure defined onX, then the space (X,Mµ∗ , µ∗) is complete (follows

from Proposition 2.6.4).
• This means that the Lebesgue outer measure restricted to Lebesgue measurable subsets of R,

(R,Mλ∗ , λ) is complete.

Definition 2.9.5. (Completion of a measure Space) Let (X,A) be a measurable space and
let µ be a measure on A. The completion of A under µ is the collection Aµ of subsets A ⊆ X for
which there are sets E and F in A such that

E ⊆ A ⊆ F

and
µ (F − E) = 08.

3 Measurable functions
We now see the definition and basic properties of measurable Functions, which would later be used
to define Lebesgue integral.

Definition 3.0.1. (Measurable function) Let (X,A) be a measurable space and let A ⊆ X
which is in A. The function f : A→ [−∞,+∞], is called a measurable function9 if

{x | f(x) > α} for any α ∈ R is measurable (belongs in A).

Remark 3.0.2. Please note that the function f defined above has a measurable domain.

Proposition 3.0.3. Let (X,A) be a measurable space and A ∈ A. Let f : A → [−∞,+∞] be a
function. Then, the following statements are equivalent:

1. f is a measurable function.
2. For all α ∈ R, the set {x | f(x) ≥ α} ∈ A.
3. For all α ∈ R, the set {x | f(x) < α} ∈ A.
4. For all α ∈ R, the set {x | f(x) ≤ α} ∈ A.

Proof. The equivalence is shown as follows:
1 =⇒ 2. Since f is a measurable, therefore for all α ∈ R, the set {x | f(x) > α} ∈ A. This means
that Cα− 1

n
=
{
x | f(x) > α− 1

n

}
∈ A for all n ∈ N. Now, the following set

C =
⋂
n

Cα− 1
n
= {x | f(x) ≥ α}.

8Note that, in Exercise III, Q. 2, we proved that for any A ∈ A, this is trivially true. That is, all A-measurable
subsets are Aµ-measurable. In particular, E was a Fσ set and F was a Gδ set.

9One writes f as A-measurable function to denote the σ-algebra over whose subset the function f is defined.
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is measurable as C ∈ A because Cα− 1
n
∈ A for any n ∈ N, hence the countable intersection would

also be in A, hence measurable.
2 =⇒ 3. Since {x | f(x) ≥ α} ∈ A, therefore it’s complement {x | f(x) < α} ∈ A for any α ∈ R.
3 =⇒ 4. Since {x | f(x) < α} ∈ A for any α ∈ R, thus, Cα+ 1

n
= {x | f(x) < α + 1

n} ∈ A for all
n ∈ N, hence

C =
⋂
n

Cα+ 1
n
= {x | f(x) ≤ α}

and since each Cα+ 1
n
∈ A, therefore C ∈ A.

4 =⇒ 1. Since {x | f(x) ≤ α} ∈ A then it’s complement {x | f(x) > α} for all α ∈ R, making f
measurable.

Proposition 3.0.4. The following are basic examples of measurable functions:
• If f is a measurable function, then the set {x | f(x) = α} is measurable for all α ∈ R.
• Constant functions are measurable.
• The characteristic function χA defined by:

χA(x) =
®
1 x ∈ A
0 x /∈ A

is measurable if and only if A is measurable.
• Continuous functions are measurable.
• Let (X,A) be a measurable space. If f and g are measurable functions on X, then the sets

{x ∈ X | f(x) ̸= g(x)}
{x ∈ X | f(x) < g(x)}

are measurable (belongs to A).
• 10 Monotone functions are measurable.
• 11Consider f : R→ R is a differentiable function. Then f ′ is a λ-measurable function.

Proof. The first example is trivial to see in light of Proposition 3.0.3 by taking intersection of
{x | f(x) ≤ α} and {x | f(x) ≥ α}, both of which are measurable.
For second, consider the constant function f(x) = b ∀ x ∈ R. Now, for all α ∈ R, consider the
set f−1((α,∞)) = {x | f(x) > α}. If b > α, then we are done, if b ≤ α, then by previous result,
{x | f(x) ≤ α} is also measurable (equal to R and R ∈ A).
For third example, consider the set χA

−1(α,∞) = {x | χA(x) > α} for any α ∈ R. If α > 1, then
f−1(α,∞) = Φ ∈ A. If α = 1, then f−1[α,∞) = A, since χA(x) is given measurable, hence A is
measurable. Now, Assume that A is measurable. Then consider the set χA

−1(α,∞) for any α ∈ R.
As we saw previously, the case for α > 1 is trivial. For 0 < α ≤ 1, χA

−1(α,∞) = A ∈ A. Finally,
for α ≤ 0, χA

−1(−∞, α] = Φ ∈ A. Thus, χA is measurable.
For fourth, since f is continuous (so inverse of open sets is open, by definition), therefore f−1(α,∞)
is open in R, hence it must be Borel, hence measurable for any α ∈ R.

10Question 3 of Exercise 3.
11Question 4 of Exercise 3.
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For fifth, since f and g are measurable. Then due to next Proposition 3.0.5, we know that f − g
is also measurable. This means that for any α ∈ R,

{x ∈ X | f(x)− g(x) < α}

is measurable. Now set α = 0 to get the result. Moreover, from this, we also get that {x ∈
X | f(x)− g(x) > 0} is also measurable. Hence,

{x ∈ X | f(x)− g(x) ̸= 0} = {x ∈ X | f(x)− g(x) < 0}
⋃
{x ∈ X | f(x)− g(x) > 0}

is also measurable.
For sixth, we proceed as follows:
Consider the function f : A→ R where A ∈Mλ∗ to be monotone. Now, consider the following two
sets for any α ∈ R:

A1 = {x ∈ A | f(x) > α}
A2 =

(
f−1(α),∞

)
∩A

Now, take any x ∈ A1, then f(x) > α =⇒ x > f−1(α). Now if f−1(α) ∩ A = Φ, then
{x ∈ A | f(x) > α} = Φ which is trivially measurable and we would be done. If however
f−1(α) ∩ A ̸= Φ, then f−1(α) = {y ∈ A | f(y) = α} so that f(y) > α implies that y > f−1(α) so
that f(y) > f(f−1(α)) = α. Therefore, x > f−1(α), that is x ∈ A2, proving that A1 ⊆ A2.
Similarly, take x ∈ A2, therefore

x > f−1(α)
f(x) > f

(
f−1(α)

)
f(x) > α

x ∈ {x | f(x) > α}
x ∈ A1.

Therefore A2 ⊆ A1. Hence, A1 = A2. But since
(
f−1(α),∞

)
is an interval, hence measurable

and A is given measurable, therefore A2 =
(
f−1(α),∞

)
∩ A is measurable, which makes A1 =

{x | f(x) > α} = A2 measurable for all α ∈ R.
For seventh, the result is simple to see since we are given that f is λ-measurable due to continuity
(see Statement 4). Therefore, we can define the sequence of functions {fn} as follows:

fn(x) =
f
(
x+ 1

n

)
− f(x)

1
n

∀ x ∈ R.

As we can see, fn is λ-measurable due to Proposition 3.0.5. Hence, we can see that because
f ′(x) = lim←−h→0

f(x+h)−f(x)
h for any x ∈ R, and since lim←−n→∞ fn(x) = f(x), therefore fn → f ′ is

λ-measurable (Proposition 3.0.9).

Proposition 3.0.5. Let (X,A) be a measurable space and let A ∈ A. Consider two measurable
functions f, g : A −→ [0,+∞] and c ∈ R. Then,

1. f + c,
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2. f ± g
3. cf ,
4. fg

are also measurable.

Proof. 1. Since f is measurable, therefore the set {x | f(x) > α − c} = {x | f(x) + c ≥ α} is
measurable for any α ∈ R.
2. Both f and g are given measurable. The set (f + g)−1(α,∞) can be written as:

(f + g)−1(α,∞) = {x | f(x) + g(x) > α}
= {x | f(x) > α− g(x)}
= {x | f(x) > b}

where b ∈ [−∞, α]. Note that the case where g(x) = +∞ is trivial as f(x) > α − (+∞) ≡ f(x) >
−∞, which is by definition of co-domain of f . Now since {x | f(x) > b} is measurable for any
b ∈ R ⊃ (−∞, α] for any α ∈ R, therefore (f + g)−1(α,∞) is measurable for any α ∈ R.
3. Note that for c = 0, the function becomes constant and hence measurable (Proposition 3.0.4).
Consider the set (cf)−1(α,∞). We can write this as follows,

(cf)−1(α,∞) = {x | cf(x) > α}
= {x | f(x) > α/c}

where c ̸= 0. Since f is measurable, therefore {x | f(x) > α/c} is also measurable for any α ∈ R.
Hence cf is measurable.
4. Consider the set (f2)−1(−∞, α) for any α ∈ R.

(f2)−1(−∞, α) = {x | f2(x) < α}
= {x | −

√
α < f(x) <

√
α}

= {x | f(x) <
√
α}

⋂
{x | f(x) > −

√
α}

Therefore if f is measurable, then f2 is measurable. With this, we can simply write fg as:

fg = (f + g)2 − (f − g)2
4

which, by previous results (2 & 3), is measurable.

Proposition 3.0.6. 12 Let (X,A) be a measurable space. Consider a function f : A → R where
A ∈ A. Then the following are equivalent:

1. f is a A-measurable function.
2. f−1(U) is a measurable set ∀ open sets U ⊆ R.
3. f−1(C) is a measurable set ∀ closed sets C ⊆ R.
4. f−1(B) is a measurable set ∀ borel sets B ∈ B(R).

Proof. The proof is exactly the same as of Proposition 3.2.2.
12Question 1 of Exercise 3.
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Definition 3.0.7. (sequence of fuctions) If {fn} is a sequence of [−∞,+∞] valued functions
on A, then supn fn : A→ [−∞,+∞] is defined byÅ

sup
n
fn

ã
(x) = sup{fn(x) | n ∈ N}.

Remark 3.0.8. One similarly defines the following:
• The infimum: (

inf
n
fn
)
(x) = inf{fn(x) | n ∈ N}.

• The limit supremum: Å
lim sup

n
fn

ã
(x) = lim sup{fn(x) | n ∈ N}.

• The limit infimum: (
lim inf

n
fn
)
(x) = lim inf{fn(x) | n ∈ N}.

• The limit: Ç
lim←−
n

fn

å
(x) = lim←−{fn(x) | n ∈ N}.

Proposition 3.0.9. Let (X,A) be a measurable space and let A ∈ A. Consider {fn} be a sequence
of [−∞,+∞]-valued measurable functions on A. Then,

1. The functions supn fn and infn fn are measurable.
2. The functions lim supn fn and lim infn fn are measurable.
3. The function lim←−n

fn (whose domain is {x ∈ A | lim supn fn(x) = lim infn fn(x)}) is measur-
able.

Proof. Note that the set (supn fn)−1(−∞, α] = {x ∈ A | (supn fn)(x) ≤ α} = ⋂
n{x ∈ A | fn(x) ≤

α}. Therefore supn fn is measurable. Similarly, (infn fn)−1(−∞, α) = {x ∈ A | (infn fn)(x) < α} =⋃
n{x ∈ A | fn(x) < α}. Now, denote gk = supn≥k fn and hk = infn≥k fn. But since lim supn fn =

infn≥0 supk≥n fk = infn≥0 gn and {gn} is measurable by 1st property, therefore lim supn fn is also
measurable, similarly for lim infn.

3.1 Almost everywhere property.

Definition 3.1.1. (µ-almost everywhere) Let (X,A, µ) be a measure space. A property P of
points of X is said to hold µ-almost everywhere if the set

N = {x ∈ X | P does not hold for x}

has measure zero. That is,
µ (N) = 0.

Remark 3.1.2. Note that it’s not necessary for the set N to belong in A. The only requirement
is for the set N to be contained in a set F ∈ A and then µ (F ) = 0 (which automatically implies
that µ∗ (N) = 0).

But, if µ is complete then N ∈ A. See Definition 2.9.3.
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Definition 3.1.3. (Almost everywhere convergence) If {fn} is a sequence of functions on X
and f is a function on X, then

{fn} −→ f almost everywhere.

if the set
{x ∈ X | f(x) ̸= lim←−

n

fn(x)}

is of measure zero.

Proposition 3.1.4. Let (X,A, µ) be a measure space and let f and g be extended real valued
functions on X that are equal almost everywhere. If µ is complete and if f is measurable, then g
is also measurable.

Proof. Consider the region of non-equality as

N = {x | f(x) ̸= g(x)}.

Given to us is the fact that µ∗ (N) = 0 and since µ is complete, so N ∈ A. Now, consider the
following for any α ∈ R:

{x | g(x) ≥ α} = ({x | g(x) ≥ α} ∩N)
⋃

({x | g(x) ≥ α} ∩N c) .

Denote the set A = {x | g(x) ≥ α} ∩ N and B = {x | g(x) ≥ α} ∩ N c. Since for any x ∈
({x | g(x) ≥ α} ∩N c), f(x) = g(x), therefore, we can equivalently writeB = ({x | f(x) ≥ α} ∩N c).
Now N c ∈ A and due to Measurability of f , {x | f(x) ≥ α} ∈ A. Hence B ∈ A. Finally, due to
{x | g(x) ≥ α} ∩ N ⊆ N and µ being complete with µ (N) = 0, we get {x | g(x) ≥ α} ∩ N ∈ A,
completing the proof.

Proposition 3.1.5. Let (X,A, µ) be a measure space, let {fn} be sequence of extended real valued
functions on X and let f be an extended real valued function on X such that

{fn} −→ f almost everywhere.

If µ is complete and if each fn is measurable, then f is measurable.

Proof. As Proposition 3.0.9 shows, lim infn fn and lim supn fn are measurable. As the given con-
dition shows, lim infn fn is equal to f for almost all X. Hence Proposition 3.1.4 implies that f is
also measurable.

3.2 Cantor set

With the new tool in hand (measurable functions), we now turn back to the ever-interesting Cantor
set, this time, to prove the sheer size of the σ-algebra Mλ∗ in comparison to the Borel σ-algebra
B(R). In particular we show that B(R) ⊊ Mλ∗ .
But before that, we look at following results:
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Proposition 3.2.1. The function φ defined by

φ : [0, 1] −→ P

φ(α) =
∞∑
n=1

2bn
3n for α ∈ [0, 1]

where bn ∈ {0, 1} ∀ n ∈ N is measurable in Mλ∗.

Proof. Note that φ(α) thus maps a decimal number to it’s binary representation {bn}. First, we
define the following function:

φn : [0, 1] −→ {0, 1}
φn(α) = bn.

That is, φn maps α to it’s nth binary digit. We can see that φn(α) can be written as the following:

φn(α) = χEn =
®
1 if α ∈ En

0 otherwise.

where En is the intersection of countable sequence of sub-intervals of [0, 1]. Hence En is a Lebesgue
measurable subset of R, so it is in Mλ∗ . But, as Proposition 3.0.4, statement 3 shows, χEn = φn is
then a measurable function.
Now, the following arguments:

2
3nφn(α) =

2bn
3n is measurable (Proposition 3.0.5).ß2φn(α)

3n
™

is a sequence of measurale functions.®
n∑

k=1

2φn(α)
3n

´
is also a sequence of measurable functions (Proposition 3.0.5).

lim←−
n→∞

n∑
k=1

2φn(α)
3n is a measurable function (Proposition 3.0.9).

Hence the function which maps each real from [0, 1] to it’s binary representation is measurable.

Proposition 3.2.2. Let (X,A) be a measurable space. If f is a A-measurable function on A and
B ∈ B(R), then f−1(B) ∈ A.

Proof. Denote D be the following set:

D = {B ⊆ R | f−1(B) ∈ A}.

Now, note that,
1. Since f−1(R) = A ∈ A, therefore R ∈ D.
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2. If B ∈ D, then

Bc = R ∩Bc

and

f−1(Bc) = f−1(R ∩Bc)
= f−1(R) ∩ f−1(Bc)
= A ∩

(
f−1(B)

)c
Now since A ∈ A and f−1(B) ∈ A because B ∈ D, therefore f−1(Bc) ∈ A so that Bc ∈ D.

3. We know that from the basic results of set functions that

f−1
Ç⋃

n

Bn

å
=

⋃
n

f−1(Bn)

HenceD is a σ-algebra on R (!) Now, due to measurability of f , we know that the set {x | f(x) > α}
is in A, which is equivalent to saying that f−1(α,∞) ∈ A. This hence means that (α,∞) ∈ D

for any α ∈ R. Proposition 2.1.8 showed that a σ-algebra generated by such subsets of R is B(R).
Hence, for any B ∈ B(R), we have that B ∈ D. Therefore for any Borel set B, f−1(B) ∈ A13.

3.3 Sequence of functions approximating a measurable function.

We now show that any measurable function can be defined in terms of a simple function and a step
function. For this, we first define what we mean by simple functions in Definition 3.3.4. Before
that, let’s see few more interesting-but-basic properties of measurable functions.

Proposition 3.3.1. Let (X,A) be a measurable space and f be an extended real valued function
on A ∈ A. Define the following:

f+(x) = max(f(x), 0) and f−(x) = −min(f(x), 0).

Then, f is measurable if and only if f+ and f− both are measurable on A.

Proof. If f is measurable, then {x | f(x) ≥ α} is measurable. Note that f+(x) ≥ 0. Hence, for
the case when α > 0, the set {x | f+(x) ≥ α} = {x | f(x) > α} which is measurable due to
measurability of f . Similarly, if α = 0, then {x | f+(x) ≥ 0} = {x | f(x) > 0}⋃{x | f(x) = 0}
in which both sets are measurable in view of Proposition 3.0.4. Finally, for α < 0, we have
{x | f+(x) > α} = {x | f+(x) ≥ 0} which again is measurable. Now, f−(x) = −min(f(x), 0) =
max(−f(x), 0) and since −f is also measurable (Proposition 3.0.5), therefore if f is a measurable
function, then f+ and f− are both measurable functions too.
To show the converse, note that f = f+ − f− and since both are measurable, therefore f is also
measurable (Proposition 3.0.5).

Remark 3.3.2. Due to the above result, we can hence deduce that if f is a A-measurable function
then,

|f | = f+ + f− is a measurable function on A.
13This is a very interesting way to prove such a statement. Notice how we analyzed the set of all possible subsets

of R for which f−1(B) ∈ A right from the start!
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Proposition 3.3.3. Let (X,A) be a measurable space and A ∈ A. Let f : A→ [−∞,+∞]. Then,
1. If f is A-measurable and if B is a subset of A, then the restriction fB of f to B is also

A-measurable.
2. If {Bn} is a sequence of sets that belong to A such that A = ⋃

nBn and fBn is A-measurable
for each n, then f is also A-measurable.

Proof. The first result follows directly from the following observation:

{x ∈ B | fb(x) > α} = B
⋂
{x ∈ A | f(x) > α}

and the second result follows from the following:

{x ∈ A | f(x) > α} =
⋃
n

{x ∈ Bn | fBn(x) > α}.

both for any α ∈ R.

Definition 3.3.4. (Simple Function) A function is called simple if it has only finitely many
values. Equivalently, we say that f is simple if we can write it as the following:

f =
N∑
k=1

αkχEk
, αk ∈ R

where each Ek is a measurable set of finite measure.

Remark 3.3.5. Note that
• If Ek are intervals, then we say f to be a step function.

The following Proposition asserts that any measurable function can be approximated by
an increasing sequence of simple functions.

Proposition 3.3.6. Let (X,A) be a measurable space and let A ∈ A with f : A → [0,+∞] be a
measurable function on A. Then there exists a sequence {fn} of simple [0,+∞)-valued measurable
functions on A that satisfy

f1(x) ≤ f2(x) ≤ f3(x) ≤ . . .
and

lim←−
n→∞

fn(x) = f(x)

for any x ∈ A.

Proof. For the proof, construct the following sequence of sets, by dividing the whole interval [0, n]
for any n ∈ N into n2n number of intervals each of length 1

2n and denote the following set:

An,k =
ß
x ∈ A

∣∣∣∣k − 1
2n ≤ f(x) < k

2n
™

for any n ∈ N and k = 1, 2, . . . , n2n. With this construction, we can now define the following
function for each n:

φn : A→ [0,∞), defined as

φn(x) =
®

k−1
2n if x ∈ An,k for any k = 1, 2, . . . , n2n

n if x ∈ A−⋃
k An,k.
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Note that we can alternatively write φn(x) as the following (with more clarity):

φn(x) =
®

k−1
2n if f(x) ≤ n , where k−1

2n ≤ f(x) <
k
2n for some k ∈ {1, 2, . . . , n2n}

n if f(x) > n.

We now show that φn(x) ≤ φn+1(x) ∀ x ∈ A. Let’s first show this for f(x) ≤ n.
If f(x) ≤ n, then,

φn(x) =
k0 − 1
2n for some k0 ∈ {1, 2, . . . , n2n}

such that k0−1
2n ≤ f(x) <

k0
2n . Now, two cases arises:

• If k0−1
2n ≤ f(x) < 2k0−1

2n+1 : This is just the case that f(x) lies in the first half of the intervalî
k0−1
2n , k02n

ó
. Hence, in this case we get that:

k0 − 1
2n = 2k0 − 2

2n+1 ≤ f(x) < 2k0 − 1
2n+1

such that φn(x) = k0−1
2n = φn+1(x).

• If 2k0−1
2n+1 ≤ f(x) < k0

2n : This is the case when f(x) lies in the second half of the interval. In
this case, we see that,

2k0 − 1
2n+1 ≤ f(x) < 2k0

2n+1 = k0
2n

so that φn(x) = k0−1
2n = 2k0−2

2n+1 < 2k0−1
2n+1 = φn+1(x).

Hence from both the cases, we have φn(x) ≤ φn+1(x) for all x ∈ A such that f(x) ≤ n. One can
similarly see the same result for n < f(x) ≤ n + 1 and for f(x) > n + 1, φn(x) ≤ φn+1(x) follows
trivially. Hence, we have proved that ∀n ∈ N and x ∈ A,

φn(x) ≤ φn+1(x). (6)

Now, one can write the function φn as the following combination too:

φn(x) =
n2n∑
k=1

k − 1
2n χAn,k

+ nχA−
⋃

k
An,k

(7)

Due to the above representation of φn, the following steps becomes easier (& interesting) to see.
Now, first note that An,k is a measurable set because it’s intersection of two measurable sets.
Moreover, A − ⋃

k An,k is also a measurable set. Hence, in view of Proposition 3.0.4, Statement
3, we get that φn(x) is a measurable function for any n ∈ N. Therefore, {φn} is a sequence of
measurable functions adhering (6). We again find two cases:

• If f is finite : Now since f is finite, therefore ∃n0 ∈ N such that f(x) ≤ n0. Hence, one can
further deduce the following for all n ≥ n0 (hence f(x) ≤ n0 ≤ n),

f(x)− φn(x) = f(x)− k − 1
2n for some k ∈ {1, 2, . . . , n2n} such that k − 1

2n ≤ f(x) < k

2n

<
1
2n

Hence, as n→∞, |f(x)− φn(x)| → 0.
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• If f is infinite for some x ∈ A : If f is infinite, then ∀n ∈ N, f(x) > n. Hence,

φn(x) = n for all n ∈ N.

Therefore lim←−n→∞ φn(x) = +∞ = f(x) for particular x ∈ A where f is infinity.
Hence, in both cases, {φn} converges to f . The proof is therefore complete.

The following can be considered as an important corollary of the above Proposition.

Proposition 3.3.7. Let (X,A) be a measurable space and let A ∈ A with f : A → [−∞,+∞]
be a measurable function on A. Then there exists a sequence {fn} of simple (−∞,+∞)-valued
measurable functions on A that satisfy

|f1(x)| ≤ |f2(x)| ≤ |f3(x)| ≤ . . .

and
lim←−
n→∞

fn(x) = f(x)

for any x ∈ A.

Proof. Since f is a measurable function, therefore f+ and f− are measurable functions too (Propo-
sition 3.3.1). Now, since any function f can be written as

f = f+ − f−

therefore, by Proposition 3.3.6, we have two sequences {f (1)n } and {f (2)n } such that

f
(1)
n −→ f+ and f (2)n −→ f−

where f (1)1 (x) ≤ f (1)2 (x) ≤ . . . and f (2)1 (x) ≤ f (2)2 (x) ≤ . . . . Denote

fn(x) = f
(1)
n (x)− f (2)n (x)

Therefore, we see that

|fn(x)| = f
(1)
n (x) + f

(2)
n (x) ≤ f (1)n+1(x) + f

(2)
n+1(x) = |fn+1(x)|

Now, we can deduce that

|f(x)− fn(x)| =
∣∣∣f+(x)− f−(x)− f (1)n (x) + f

(2)
n (x)

∣∣∣
=
∣∣∣f+(x)− f (1)n (x)−

Ä
f−(x)− f (2)n (x)

ä∣∣∣
≤
∣∣∣f+(x)− f (1)n (x)

∣∣∣+ ∣∣∣f−(x)− f (2)n (x)
∣∣∣

→ 0 + 0

Hence proved.
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3.3.1 Replacing simple functions by step functions

We now prove a similar result akin to Proposition 3.3.6, where we show that any measurable
function can be approximated by a sequence of step functions, almost everywhere. But before that,
we prove a basic fact about Lebesgue measurable sets with finite measure.

Proposition 3.3.8. For any λ-measurable set E of finite measure and a given ϵ > 0, there exists
a finite sequence of open intervals {In}Nn=1 such that

λ

(
E∆

(
N⋃

n=1
In

))
< ϵ.

Proof. Take any ϵ > 0, then we have for any set E ⊆ R, a sequence of open intervals {In} such
that E ⊆ ⋃

n In and λ (⋃n In) ≤ λ (E) + ϵ or λ (⋃n In \ E) ≤ ϵ < 2ϵ. Now since {In} is a disjoint
sequence, therefore, λ (⋃n In) = ∑

n λ (In) and due to the fact that λ (E) < +∞, we get that∑
n λ (In) < +∞.

Now, since λ (E) < +∞, therefore the sum∑
n λ (In) < +∞, hence, ∃N ∈ N such that∑∞

n=N+1 λ (In) <
ϵ. With this N , we now see that:

λ

(
E∆

N⋃
n=1

In

)
= λ

(
E \

N⋃
n=1

In

)
+ λ

(
N⋃

n=1
In \ E

)
(both are disjoint.)

≤ λ

(
E \

N⋃
n=1

In

)
+ λ

Ç⋃
n

In \ E
å

= λ

(
E \

N⋃
n=1

In

)
+ λ

Ç⋃
n

In \ E
å

= λ

(
E ∩

(
N⋃

n=1
In

)c)
+ λ

Ç⋃
n

In \ E
å

≤ λ

(
∞⋃

n=N+1
In

)
+ λ

Ç⋃
n

In \ E
å

∵ E ∩

(
N⋃

n=1
In

)c

⊆
∞⋃

n=N+1
In

≤ ϵ+ ϵ = 2ϵ

Hence, we get that for any finite Lebesgue measurable set E, for all ϵ > 0, ∃ a sequence of open
intervals {In}Nn=1 such that their symmetric difference is a set with measure ≤ ϵ.

Proposition 3.3.9. Consider (R,Mλ∗) to be the Lebesgue measurable space and A ∈ Mλ∗. Let
f : A→ [−∞,+∞] be a λ-measurable function. Then there exists a sequence of step functions {φk}
such that

φk −→ f almost everywhere.

Proof. We will prove first that for any characteristic function, there exists a sequence of step
functions converging to it. Let g = χA be the characteristic function on A. Continuing from
Proposition 3.3.8, we see that if we write the step-function φ as

ψ =
N∑
k=1

χIk
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where {Ik} is the set of open intervals such that λ
Ä
A∆
Ä⋃N

n=1 In
ää

< ϵ for a given ϵ > 0, from
Proposition 3.3.8, then we get that the set {x | g(x) ̸= ψ(x)} has upper bound on it’s measure
given as follows:{
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) = ψ(x)

}
⊆ A ∩

N⋃
k=1

Ik ∵ g(x) = ψ(x) iff x ∈ ∪Nk=1Ik and 0 for other x ∈ A{
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) ̸= ψ(x)

}
⊇

(
A ∩

N⋃
k=1

Ik

)c

⊇ A∆
N⋃
k=1

Ik.

Similarly, it’s easy to see that for any x such that g(x) ̸= ψ(x), we have x ∈ A∆⋃N
k=1 Ik so that we

get, {
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) ̸= ψ(x)

}
⊆ A∆

N⋃
k=1

Ik.

Hence, {
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) ̸= ψ(x)

}
= A∆

N⋃
k=1

Ik.

Therefore,

λ

({
x ∈ A ∪

(
N⋃
k=1

Ik

)
| g(x) ̸= ψ(x)

})
< ϵ

Therefore, for every n ≥ 1, there exists a step-function ψn so that the set En =
¶
x ∈ A ∪

Ä⋃N
k=1 Ik

ä
| g(x) ̸= ψn(x)

©
is such that

λ (En) <
1
2n .

Now, define the following two sets:

Fn =
∞⋃

j=n+1
Ej (a decreasing sequence)

F =
∞⋂
k=1

Fk.

For the set Fn, observe that

λ (Fn) = λ

(
∞⋃

j=n+1

)
≤

∞∑
j=n+1

λ (Ej)

<
∞∑

j=n+1

1
2j

= 1
2n



3.4 Egorov’s theorem 41

and for set F ,

λ (F ) = λ

Ç ∞⋂
k=1

Fk

å
= lim←−

k→∞
λ (Fk) ∵ {Fk} is measurable & decreasing.

= 0.

Note that {Fk} is measurable because any Ei is itself measurable because of Proposition 3.0.4,
Statement 5.
Now,

ψn(x) −→ g(x) ∀ x ∈ F c

because F c = F c
1 since {Fk} is a decreasing sequence, therefore F c is the set where g(x) satisfies

with the limit step function.
Finally, ψn ̸→ f ∀ x ∈ F , but since λ (F ) = 0, hence

ψn −→ g almost everywhere

Now, what we have proved so far is that for any characteristic function g = χA on a measurable
set, there exists a sequence of step functions converging to it point-wise almost everywhere. Since
from Proposition 3.3.6, there exists a sequence of simple functions converging to f , and since a
simple function h = ∑M

i=1 αiχEi is a finite combination of characteristics functions over measurable
sets, therefore there exists a sequence of step functions converging to f almost everywhere.
In particular if ψi

n −→ χEi almost everywhere, then ∑M
i=1 αiψ

i
n −→

∑M
i=1 αiχEi = h. Now by

Proposition 3.3.6, there exists the sequence {hn} of simple functions converging to f . Since

Kn =
{

Mn∑
i=1

αiψ
i
n

}
−→ hn almost everywhere,

where note that Kn = ∑Mn
i=1 αiψ

i
n is a step function because ψi

n is a step function and there are
finitely many (Mn) of them, and

{hn} −→ f

therefore,
Kn −→ f almost everywhere.

Hence proved.

3.4 Egorov’s theorem

We now discuss a very important result in the theory of measurable functions named after Dmitri
Fyodorovich Egorov, who published this result in 1911, thus establishing a condition required
for uniform convergence of a point-wise convergent sequence of measurable functions.
Theorem 3.4.1. (Egorov’s theorem) Let (R,Mλ∗ , λ) be the Lebesgue measure space on R.
Suppose {fk} is a sequence of real-valued, Lebesgue measurable functions on E ∈ Mλ∗ where
λ (E) < +∞. If

fk −→ f pointwise on E,
14 Then for each ϵ > 0, there exists a closed set Aϵ ⊂ E such that

14From Proposition 3.0.9, the limit of a sequence of measurable functions is also measurable, hence there’s no point
in writing extraneously the requirement for f to be also measurable.
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1. λ (E \Aϵ) < ϵ, and
2. fk −→ f uniformly on Aϵ.

Proof. We break down the proof in the following 3 parts.

Act 1. A Basic Construction.
For each pair of integers n, k, construct the following set:

En
k =
ß
x ∈ E : |fj(x)− f(x)| <

1
n
, ∀ j > k

™
.

Now, fix n, so that we have the following observations:

En
k ⊆ E

n
k+1 (8)

and since fk −→ f point-wise, therefore

lim←−
k→∞

k⋃
i=1

En
i = E. (9)

Hence

λ (E \ En
k ) −→ 0 as k →∞.

Note that the above result utilizes the fact that λ (E) < +∞. Now by the above, we can say that
∃ kn such that

λ
(
E \ En

kn

)
<

1
2n

which, by definition of En
k implies that

|fj(x)− f(x)| <
1
n
whenever j > kn and x ∈ En

kn .

Act 2. Constructing Aϵ.
Now choose N ∈ N such that

∞∑
n=N

1
2n <

ϵ

2

and define

Ãϵ =
∞⋂

n=N

En
kn (10)
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We now observe that

λ
(
E \ Ãϵ

)
= λ

Ç
E ∩

∞⋃
n=N

(
En

kn

)cå
= λ

Ç ∞⋃
n=N

E ∩
(
En

kn

)cå
≤

∞∑
n=N

λ
(
E ∩

(
En

kn

)c)
=

∞∑
n=N

λ
(
E \ En

kn

)
<

∞∑
n=N

1
2n

<
ϵ

2

Act 3. Finalé.
We now claim and prove the following:

Claim : fk −→ f uniformly on Ãϵ.

For this, let δ > 0 and choose n′ ≥ N such that 1
n′ < δ. Then

if x ∈ Ãϵ =⇒ x ∈ En′

kn′ =⇒ |fj(x)− f(x)| <
1
n′
< δ , ∀ j > kn′ . (11)

Note that this is just the definition of uniform convergence.
Finally, note that En

k is a Lebesgue measurable set due to Proposition 3.0.4, Statement 5. Hence,
Ãϵ is measurable. Now, by Proposition 2.9.2, Statement 2, there exists a closed set Aϵ ⊂ Ãϵ such
that

λ
(
Ãϵ \Aϵ

)
<
ϵ

2 .

Now,

ϵ > λ
(
E \ Ãϵ

)
+ λ

(
Ãϵ \Aϵ

)
≥ λ
Ä
E \ Ãϵ

⋃
Ãϵ \Aϵ

ä
= λ (E \Aϵ) .

Now, by (11), we see that fk −→ f uniformly for all x ∈ Aϵ ⊂ Ãϵ such that λ (E \Aϵ) < ϵ and Aϵ

is closed. Proof is now complete.

3.5 Lusin’s theorem

The following is the final important result on the basic theory of measurable functions, attributed
to Nikolai Nikolaevich Luzin who penned this theorem around 1912.
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Theorem 3.5.1. (Lusin’s theorem) Consider the Lebesgue measure space (R,Mλ∗ , λ). Suppose
f is a real-valued, Lebesgue measurable function defined over a Lebesgue measurable set E with
finite measure. Then for all ϵ > 0, there exists a closed set Fϵ ⊂ E with

1. λ (E \ Fϵ) < ϵ, and
2. The restriction f |Fϵ

of f over Fϵ is continuous.

Proof. From the Proposition 3.3.9, we have a sequence {fn} of step functions such that

fn −→ f almost everywhere.

Now, consider, for example the characteristic function over an interval χ[a,b]. Then, we can define
a function φ(x) for any δ > 0 as follows:

φ(x) =



0 x < a
x−a
δ/2 a ≤ x ≤ a+ δ

2
1 a+ δ

2 ≤ x ≤ b−
δ
2

b−x
δ/2 b− δ

2 ≤ x ≤ b
0 x > b

which then satisfies

{x ∈ R | φ(x) ̸= χ[a,b]} =
Å
a, a+ δ

2

ã⋃Å
b− δ

2 , b
ã

which then implies that,

λ
(
{x ∈ R | φ(x) ̸= χ[a,b]}

)
= λ

ÅÅ
a, a+ δ

2

ã⋃Å
b− δ

2 , b
ãã

= δ.

Note that φ(x) is also continuous over all R. Hence, for any step function (finite sum of χ[a,b]-type
functions) and δ > 0, one can construct a continuous function which does not satisfies with the
step function on a set with measure < δ.

Hence, for step-functions {fn}, corresponding to each fn, ∃ a continuous function φn and a set
En such that

En = {x | φn(x) ̸= fn(x)} and λ (En) <
1
2n .

Now, for all ϵ > 0, there exists a N ∈ N such that

∑
n≥N

1
2n <

ϵ

3 .

With the above fact, construct the set F ′ as follows:

F ′ =
(
A ϵ

3
\

⋃
n≥N

En

)
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where A ϵ
3
is the closed subset A ϵ

3
⊂ E such that 1. λ

Ä
E \A ϵ

3

ä
< ϵ

3 and 2. fn −→ f uniformly
on A ϵ

3
. This is guaranteed by Theorem 3.4.1 (Egorov’s Theorem).

Note that fn|F ′ is continuous ∀ n ≥ N because for any x ∈ F ′ =⇒ φn(x) = fn(x) ∀ n ≥ N and
since φn are already continuous ∀n ∈ N.

Furthermore, since F ′ ⊂ E and fn −→ f uniformly, then the restriction fn|F ′ is continuous and
converges uniformly to f |F ′ , which due to uniform convergence, is also continuous!

Now, note that En’s are measurable sets due to Proposition 3.0.4, Statement 5. Similarly, since A ϵ
3

is closed, therefore it is also measurable. Hence, F ′ is measurable.

Now by Proposition 2.9.2, there exists a closed set Fϵ ⊂ F ′ such that λ (F ′ \ Fϵ) < ϵ
3 . Note

that because Fϵ ⊂ F ′ and f |F ′ is continuous, therefore the restriction f |Fϵ
is also continuous.

Finally, combining
1. ∑

n≥N
1
2n <

ϵ
3 ,

2. λ
Ä
E \A ϵ

3

ä
< ϵ

3 ,
3. λ (F ′ \ Fϵ) < ϵ

3
it can be easily seen that Ä

E \A ϵ
3

ä⋃ (
F ′ \ Fϵ

)
= E \ Fϵ

Hence,

λ (E \ Fϵ) = λ
ÄÄ
E \A ϵ

3

ä⋃ (
F ′ \ Fϵ

)ä
≤ λ
ÄÄ
E \A ϵ

3

ää
+ λ

((
F ′ \ Fϵ

))
<

2ϵ
3

< ϵ.

which completes the proof.

3.6 Applications-I : Measure spaces and measurable functions

We now present applications of the above theory. This is, in particular, to showcase the true
strength of abstract analysis. This can also be used to strengthen one’s intuition about the topic.

3.6.1 σ-algebras and measure spaces

Lemma 3.6.1. Let (X,A, µ) be a measure space. Prove that µ is σ-finite if and only if there exists
a countable disjoint family of measurable sets {An} such that X = ∐

nAn and µ(An) < ∞ for all
n ∈ N.

Proof. Note that R =⇒ L is immediate from definition. Let µ be σ-finite. Then there exists
{Bn} ⊆ A such that µ(Bn) <∞ and ⋃

nBn = X. Define A1 = B1 and An = Bn \B1 ∪ · · · ∪Bn−1.
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As A is a σ-algebra, so {An} ⊆ A. Moreover, An ∩ Am = ∅ for all n ̸= m because if m > n15 and
x ∈ Am ∩An, then x ∈ Bm \B1 ∪ · · · ∪Bn ∪ . . . Bm−1 and x ∈ Bn \B1 ∪ . . . Bn−1, a contradiction.
As An ⊆ Bn, therefore µ(An) ≤ µ(Bn) < ∞. To complete the proof, we need only show that⋃

nAn = ⋃
nBn.

Pick any x ∈
⋃

nAn. Then x ∈ Bn \ B1 ∪ · · · ∪ Bn−1 for some n ∈ N. Thus, x ∈ Bn and
hence x ∈ ⋃

nBn. Conversely, pick x ∈
⋃

nBn. Then x ∈ Bn for some n ∈ N. Now, either
x ∈ Bn \ B1 ∪ · · · ∪ Bn−1 or x ∈ Bn ∩ (B1 ∪ · · · ∪ Bn−1). If the former is true, then x ∈ An

and we are done. If the latter is true, then we may assume x ∈ Bn−1 ∩ Bn. Now again either
x ∈ Bn−1 \B1∪· · ·∪Bn−2 or x ∈ Bn∩Bn−1∩ (B1∪· · ·∪Bn−2). Repeating this process inductively,
we will end up in either of the following cases:

1. x ∈ Ak for some 1 ≤ k ≤ n,
2. x ∈ B1 ∩ · · · ∩Bn.

As B1 = A1 by construction, therefore in either case we are done.

Lemma 3.6.2. Given S ⊆ P(X), denote by A(S) the σ-algebra generated by S. Then,

A(S) = A(A(S)).

Proof. Let X be a set and S ⊆ P(X) be an arbitrary collection of subsets of X. If X is empty then
the statement is vacuously true, so let X be non-empty. Since the σ-algebra generated by A(S) is
the intersection of all σ-algebras containing A(S), therefore we have that A(A(S)) = ⋂

C⊇A(S) C.
Since A(S) is a σ-algebra containing A(S), therefore A(A(S)) ⊆ A(S). Since A(S) ⊆ C for all
σ-algebras C containing A(S), therefore A(A(S)) ⊇ A(S).

Lemma 3.6.3. Let A(S) be the σ-algebra generated by a set S ⊆ P(X). Then, A(S) is the union
of the σ-algebras generated by Y as Y ranges over all countable subsets of S.

Proof. Let X be a non-empty set and S ⊆ P(X). We wish to show that

A(S) =
⋃

Y⊆S, countable
A(Y).

Let Y ⊆ S be a countable subcollection. Then, A(Y) ⊆ A(S). Consequently, ⋃Y⊆S, countableA(Y) ⊆
A(S). Conversely, we need to show that

A(S) ⊆
⋃

Y⊆S, countable
A(Y).

We claim that ⋃
Y⊆S, countableA(Y) is a σ-algebra containing S. This would complete the proof as

A(S) is the smallest σ-algebra containing S.
Denote Z = ⋃

Y⊆S, countableA(Y). As A(Y)s are σ-algebras, therefore Z contains X and ∅. Let
A ∈ Z. Then A ∈ A(Y) for some Y ⊆ S countable. Consequently, Ac ∈ A(Y) and thus Ac ∈ Z.
Let {An} ⊆ Z be a countable collection of sets. Then An ∈ A(Yn) for all n ∈ N. Further, we have
that Yk ⊆ A (⋃n Yn) for all k ∈ N as Yk ⊆

⋃
n Yn. As Yk are countable and countable union of

countable sets is countable, therefore ⋃
n Yn is countable. Thus, we have

Ak ∈ A(Yk) ⊆ A
Ç⋃

n

Yn

å
⊆ Z ∀k ∈ N.

15which we may assume wlog.
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Thus from above, we obtain that

⋃
k

Ak ∈
Ç⋃

n

Yn

å
⊆ Z.

Hence, Z is a σ-algebra. To complete the proof, we need only show that Z contains S.
Let A ∈ S. Then since {A} is a countable subset of S, therefore A({A}) is contained in Z and

thus A ∈ Z.

Lemma 3.6.4. The σ-algebra generated by
1. S = {(a, b] | a < b ∈ Q},
2. S = {(a, n] | a ∈ Q, n ∈ Z},

is the Borel σ-algebra on R.

Proof. 1. Let S = {(a, b] | a, b ∈ Q}. We wish to show that A(S) = B where B is the Borel
σ-algebra of R. Since (a, b] for a, b ∈ Q is contained in B as (a, b] = (a, b)∪⋂

n∈N(b− 1/n, b+1/n),
therefore S ⊆ B. Consequently, A(S) ⊆ B as B is the smallest σ-algebra containing open intervals.

Since we also know that B is generated by the collection of all closed intervals [a, b] in R,
therefore to show that B ⊆ A(S), it would suffice to show [a, b] ∈ A(S) where a < b in R. Pick
a < b in R. By density of Q, we may pick {an} to be an increasing sequence such that an ∈ Q,
an < a and limn→∞an = a. Similarly, we may pick a decreasing sequence {bn} such that bn ∈ Q,
bn > b and limn→∞bn = b. Consequently, we claim that

[a, b] =
⋂
n

(an, bn]

where (an, bn] ∈ S. Indeed, (⊆) is clear. For (⊇), take x ∈
⋂

n(an, bn]. Hence an < x ≤ bn. Taking
n→∞, we get a ≤ x ≤ b as desired. Thus, [a, b] ∈ A(S).

2. Let S = {(a, n] |a ∈ Q, n ∈ N}. We wish to show that A(S) = B where B is the Borel σ-algebra
of R. Since (a, n] for a ∈ Q and n ∈ N is contained in B as (a, n] = (a, n)∪⋂

k∈N(n− 1/k, n+1/k),
therefore S ⊆ B. Consequently, A(S) ⊆ B.

Since we also know that B is generated by the collection of all open intervals of the form (a,∞),
a ∈ R, therefore to show that B ⊆ A(S), it would suffice to show (a,∞) ∈ A(S) for all a ∈ R. Pick
(a,∞) for some a ∈ R. By density of Q, there exists a decreasing sequence {an} in R such that
an ∈ Q, an > a and limn→∞an = a. Consequently, we claim that

(a,∞) =
⋃
n

(an, n]

where (an, n] ∈ S. Indeed, for (⊆), take x ∈ (a,∞). We therefore have a < x <∞. As limn→∞an =
a and an > a for all n ∈ N, therefore there exists N ∈ N such that a < an ≤ aN < x for all n ≥ N .
Consequently, for some large n ∈ N greater than N such that x ≤ n, we obtain an < x ≤ n and
hence x ∈ (an, n]. For (⊇), take x ∈ ⋃

n(an, n] and thus we get a < an < x ≤ n < ∞. Thus,
(a,∞) ∈ A(S).

Lemma 3.6.5. The Borel σ-algebra on R2 is generated by

{(I × R) ∪ (R× J) | I, J ⊆ R, open intervals}.
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Proof. Let S = {(I × R) ∪ (R × J) | I, J ⊆ R is open}. We wish to show that A(S) = B where B
is the σ-algebra of R2.

As S is a collection of open sets of R2 and B is generated by all open sets of R2, therefore S ⊆ B
and thus A(S) ⊆ B.

We now wish to show that B ⊆ A(S). It would suffice to show that any open set U ⊆ R2 is in
A(S). Note that A(S) consists of all open rectanlges I × J = (I × R) ∩ (R × J). Thus, it would
suffice to show that U can be written as countable union of open rectangles. Recall that open
rectangles forms a basis for the usual topology on R2. Consider the collection of all open rectangles
K inside U whose vertices have both rational coordinates. We claim that the union of such open
rectangles is equal to U . Indeed, their union is inside U and for any x ∈ U , there exists an open
ball x ∈ B ⊆ U , so there exists an open rectangle K inside B which contains x and has vertices
which have both rational coordinates. Thus U is equal to the union of all such rectangles. Since
there are only countably many such open rectangles as they are parameterized by choice of 4 points
in Q2 ∩ U which is atmost countably many, therefore we have obtained a countable cover of U by
open rectangles. This completes the proof.

Lemma 3.6.6. Let (X,A, µ) be a measure space, and let A,B ∈ A. Then,

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

Proof. Observe that we can write

A ∪B = (A \ (A ∩B)) ∪B

where the right side is a disjoint union. Consequently, we have

µ(A ∪B) = µ(A \A ∩B) + µ(B). (6.1)

We now have two cases. If µ(A∩B) =∞, then since µ(A∩B) ≤ µ(A), µ(B) and µ(A) ≤ µ(A∪B),
therefore we get µ(A ∪B) = µ(A ∩B) = µ(A) = µ(B) =∞, so that the statement to be proven is
a tautology. Else if µ(A ∩B) <∞, then we can write

µ(A \A ∩B) = µ(A)− µ(A ∩B).

Consequently, by Eq. (6.1) and the fact that µ(A ∩B) <∞, we have

µ(A ∪B) = µ(A)− µ(A ∩B) + µ(B)
µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

This completes the proof.

Lemma 3.6.7. Let x ∈ R and let B be a Borel subset of R. Then, x+B and xB are Borel subsets
of R (that is, Borel subsets of R are translation and dilation invariant).

Proof. 1. Let x ∈ R and B be the Borel σ-algebra of R. We wish to show that for all B ∈ B, the
translate x+B ∈ B. Consequently, we wish to show

x+ B ⊆ B
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where x+ B = {x+B | B ∈ B}. We use the following standard technique to show this.
Consider the following collection

C = {B ∈ B | x+B ∈ B}.

Our goal is to show that C = B. Note that C ⊆ B. Conversely, we wish to show that B ⊆ C. This
would follow immediately if we show that C is a σ-algebra containing all open intervals, as B is the
σ-algebra generated by all open intervals.

We now establish that C is a σ-algebra. Since x+R = R and x+ ∅ = ∅, therefore R, ∅ ∈ C. Let
A ∈ C. We wish to show that Ac ∈ C. Since x+A ∈ B, therefore (x+A)c ∈ B. Thus it suffices to
show that (x+A)c = x+Ac. Indeed, we have the following equalities

(x+A)c = {y ∈ R | y /∈ x+A}
= {y ∈ R | y − x /∈ A}
= {y ∈ R | y − x ∈ Ac}
= {y ∈ R | y ∈ x+Ac}
= x+Ac.

Let {An} ⊆ C. We wish to show that ⋃
nAn ∈ C. We have that for each n ∈ N, x + An ∈ B. It

would thus suffice to show that

x+
⋃
n

An =
⋃
n

(x+An).

Indeed, take x+a ∈ x+⋃
nAn. Hence a ∈ An for some n ∈ N. Consequently, x+a ∈ x+An. Thus

x+ a ∈
⋃

n(x+An). Conversely, let z ∈
⋃

n(x+An). Then z = x+ yn for yn ∈ An. Consequently,
z ∈ x+⋃

nAn. This show that C is a σ-algebra.
To complete the proof, we now need only show that C has all open intervals. This is imme-

diate, as we show now. Take any (a, b) ⊆ R. Since x+(a, b) = (x+a, x+b) ∈ B, therefore (a, b) ∈ C.

2. Let x ∈ R and B be the Borel σ-algebra of R. We wish to show that for all B ∈ B, the
dilate x ·B ∈ B. Note that x ·B = {xb | b ∈ B}. Consequently, we wish to show

x · B ⊆ B

where x · B = {x · B | B ∈ B}. If x = 0, then x · B = {0} and that is trivially inside B as
{0} = ⋂

n(−1/n, 1/n). Thus we now assume that x ̸= 0. We use the following standard technique
to show the above inclusion.

Consider the following collection

C = {B ∈ B | x ·B ∈ B}.

Our goal is to show that C = B. Note that C ⊆ B. Conversely, we wish to show that B ⊆ C. This
would follow immediately if we show that C is a σ-algebra containing all open intervals, as B is the
σ-algebra generated by all open intervals.

We now establish that C is a σ-algebra. Observe that x · R = R. Indeed, as x · R ⊆ R is clear,
we can also write any a ∈ R as x · x−1a. We also have x · ∅ = ∅. Therefore R, ∅ ∈ C. Let A ∈ C.
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We wish to show that Ac ∈ C. Since x ·A ∈ B, therefore (x ·A)c ∈ B. Thus it suffices to show that
(x ·A)c = x ·Ac. Indeed, we have the following equalities

(x ·A)c = {y ∈ R | y /∈ x ·A}
= {y ∈ R | x−1y /∈ A}
= {y ∈ R | x−1y ∈ Ac}
= {y ∈ R | y ∈ x ·Ac}
= x ·Ac.

Let {An} ⊆ C. We wish to show that ⋃
nAn ∈ C. We have that for each n ∈ N, x · An ∈ B. It

would thus suffice to show that

x ·
⋃
n

An =
⋃
n

(x ·An).

Indeed, take x · a ∈ x · ⋃nAn. Hence a ∈ An for some n ∈ N. Consequently, x · a ∈ x · An. Thus
x · a ∈

⋃
n(x · An). Conversely, let z ∈ ⋃

n(x · An). Then z = x · yn for yn ∈ An. Consequently,
z ∈ x ·

⋃
nAn. This show that C is a σ-algebra.

To complete the proof, we now need only show that C has all open intervals. This is immediate,
as we show now. Take any (a, b) ⊆ R. If x > 0, then we have x · (a, b) = (x · a, x · b) ∈ B, therefore
(a, b) ∈ C. If x < 0, then we have x · (a, b) = (x · b, x · a) ∈ B, therefore (a, b) ∈ C.

Lemma 3.6.8. Let (X,A) be a measurable space and let {µi}ni=1 be a finite collection of measures
on (X,A). If r1, . . . , rn ∈ R≥0, then

∑
i riµi is a measure on (X,A) (that is, positive linear

combination of measures is a measure).

Proof. Let (X,A) be a measurable space and {µi}ni=1 be a collection of measures on it. Let {ri}ni=1 ⊆
R≥0. We wish to show that µ = ∑n

i=1 riµi is a measure on (X,A). First we may assume that each
ri > 0 as if any rj = 0, then µ(A) = ∑n

i=1 riµi(A) =
∑

i ̸=j riµi(A)+rjµj(A), therefore if µj(A) <∞,
then rjµj(A) = 0 and if µj(A) = ∞, then since 0 · ∞ = 0, therefore still rjµj(A) = 0. Further, if
all ri = 0, then µ = 0, which is the trivial measure. Consequently, we assume that ri > 0 for all
i = 1, . . . , n.

We now show that µ is a measure on (X,A). We have µ(∅) = ∑n
i=1 riµi(∅) =

∑n
i=1 ri · 0 = 0.

Let {An} ⊆ A be a collection of disjoint measurable sets. We wish to show that

µ

Ç∐
k

Ak

å
=

∑
k

µ(Ak).

We have

µ

Ç∐
k

Ak

å
=

n∑
i=1

riµi

Ç∐
k

Ak

å
=

n∑
i=1

ri

∞∑
k=1

µi(Ak).

We now claim that
n∑

i=1
ri

∞∑
k=1

µi(Ak) =
∞∑
k=1

n∑
i=1

riµi(Ak) (8.1)
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and showing this will complete the proof as
∞∑
k=1

n∑
i=1

riµi(Ak) =
∞∑
k=1

µ(Ak).

We have few cases for establishing Eq. (8.1).
1. If for all i = 1, . . . , n, the series

∑∞
k=1 µi(Ak) is finite. Then, ∑n

i=1 ri
∑∞

k=1 µi(Ak) =∑n
i=1

∑∞
k=1 riµi(Ak). Now, if

∑
n xn,

∑
n yn are two convergent positive series, then their linear

combination c∑n xn+d
∑

n yn is equal to ∑
n cxn+dyn, where c, d ∈ R≥0. Indeed, this follows

at once from the equality climn→∞
∑n

k=1 xk + dlimn→∞
∑n

k=1 yk = limn→∞
∑n

k=1 cxk + dyk,
which follows from the fact that both the limit exists and c, d ∈ R. Consequently, we have

n∑
i=1

∞∑
k=1

riµi(Ak) =
∞∑
k=1

n∑
i=1

riµi(Ak),

which is what we needed.
2. If there exists i0 = 1, . . . , n such that the series

∑∞
k=1 µi0(Ak) = ∞. In this case, in the Eq.

(8.1), the left side is ∞. The right side is also infinity as shown below:
∞∑
k=1

n∑
i=1

riµi(Ak) ≥
∞∑
k=1

ri0µi0(Ak)

=∞

where the first inequality follows from ri > 0 for all i = 1, . . . , n and measure being positive
by definition. Consequently, Eq. (8.1) follows in this case as well.

This completes the proof.

Lemma 3.6.9. For any set X and a subset S ⊆ X, the collection

AS = {A ⊆ X | A ⊆ S or Ac ⊆ S}

is a σ-algebra on X.

Proof. Let X be a non-empty set, S ⊆ X and define

AS := {A ⊆ X | A ⊆ S or Ac ⊆ S}.

We claim that this forms a σ-algebra on X. As Xc = ∅ ⊆ S, therefore X ∈ AS and ∅ ∈ AS . Let
A ∈ AS . If A ⊆ S, then Ac is such that (Ac)c = A ⊆ S, so Ac ∈ AS . If Ac ⊆ S, then Ac is such
that Ac ⊆ S, so Ac ∈ AS . So in both cases AS is closed uncer complements.

Let {An} ⊆ AS be a collection of subsets. We wish to show that ⋃
nAn ∈ AS . We have three

cases.
C1. An ⊆ S for all n ∈ N. Then ⋃

nAn ⊆ S and thus ⋃
nAn ∈ AS .

C2. ∃Am such that Am ̸⊆ S. Then Ac
m ⊆ S. We then observe by De-Morgan’s law thatÇ⋃
n

An

åc

=
⋂
n

Ac
n ⊆ Ac

m ⊆ S.

Consequently, ⋃nAn ∈ AS .
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C3. An ̸⊆ S for all n ∈ N. Then Ac
n ⊆ S for all n ∈ N. We again observe by De-Morgan’s law

that Ç⋃
n

An

åc

=
⋂
n

Ac
n ⊆ Ac

m ⊆ S ∀m ∈ N.

Consequently, ⋃nAn ∈ AS .
In all three cases, ⋃nAn ∈ AS . Hence AS is a σ-algebra.

Lemma 3.6.10. Let (X,A, µ) be a semifinite measure space, and let µ(A) =∞ for some A ∈ A.
If M > 0, then there exists B ⊆ A such that M < µ(B) <∞.

Proof. Let (X,A, µ) be a semi-finite measure space and A ∈ A such that µ(A) = ∞. We wish to
show that for all M > 0, there exists a subset B ⊆ A such that B ∈ A and M < µ(B) <∞.

We wish to show that there exists measurable subsets of A of arbitrarily large size. Therefore,
consider the collection

S = {µ(B) | B ⊆ A,B ∈ A, µ(B) <∞}.

Denote l = supS. We wish to show that l = ∞. Pick a sequence {Bn} ⊆ S such that
limn→∞µ(Bn) = l. We first claim that

µ

Ç⋃
n

Bn

å
= l (10.1)

Clearly, ⋃nBn ∈ A. Observe that since

µ(Bk) ≤ µ
Ç⋃

n

Bn

å
for all k ∈ N, therefore taking k →∞, we easily obtain

l ≤ µ
Ç⋃

n

Bn

å
.

Conversely, we wish to show that

µ

Ç⋃
n

Bn

å
≤ l.

Let D1 = B1, D2 = B1 ∪B2 and in general Dn = B1 ∪ · · · ∪Bn. Then we observe that {Dn} ⊆ A
forms an increasing sequence of sets with ⋃

nDn = ⋃
nBn. Consequently,

µ

Ç⋃
n

Bn

å
= µ

Ç⋃
k

Dk

å
= limk→∞µ(Dk).

Since Dk ⊆ A is such that µ(Dk) ≤
∑k

i=1 µ(Bi) < ∞ (by subadditivity), therefore µ(Dk) ∈ S for
all k ∈ N. Consequently,

limk→∞µ(Dk) ≤ l.
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Therefore we obtain µ (⋃nBn) ≤ l. Hence this completes the proof of Eq. (10.1).
Since we wish to show that l = ∞, so assume to the contrary that l < ∞. It follows from Eq.

(10.1) that µ (⋃nBn) <∞ and therefore ⋃
nBn ∈ S. Let C = ⋃

nBn. Then consider A1 = A \ C.
Since µ(A1) = µ(A) − µ(C) as µ(C) < ∞, therefore we have µ(A1) = ∞− µ(C) = ∞. It follows
from semifiniteness that there exists C1 ⊆ A1 such that C1 ∈ A and 0 < µ(C1) < ∞. Note that
C1 and C are disjoint. It follows that the disjoint union C1 ∪ C ⊆ A is such that µ(C ∪ C1) ∈ S.
But since µ(C1 ∪C) = µ(C1) + µ(C) > µ(C) = l, therefore S contains an element which is strictly
larger than its supremum, a contradiction. Hence l =∞ and this completes the proof.

3.6.2 Lebesgue measure on R

In this section (R,M,m) denotes the Lebesgue measure space on R and m∗ denotes the Lebesgue
outer measure on R.

Lemma 3.6.11. Every Borel subset of R is Lebesgue measurable.

Proof. Let (R,M,m) be the Lebesgue measure space over R. We wish to show that the σ-algebra
of Borel sets denoted B is inM. Denote by A the following:

A = {disjoint finite union of intervals of form (−∞, a], (b,∞), (a, b] for a < b ∈ R}. (1.1)

By construction of Lebesgue measure, we know that A ⊆ M. We thus claim that the σ-algebra
generated by A contains B, that is, ⟨A⟩ ⊇ B. This will conclude the proof.

Indeed, as we know that B is generated by all closed intervals of the form (−∞, a] for all a ∈ R,
therefore it suffices to show that (−∞, a] ∈ ⟨A⟩, but that is a tautology as (−∞, a] is in A. Hence
B ⊆ ⟨A⟩.

Lemma 3.6.12. Let A be a subset of R and c ∈ R. Then,
1. m∗(A+ c) = m∗(A),
2. A ∈M if and only if A+ c ∈M,
3. if A ∈M, then m(A+ c) = m(A).

Proof. Consider the Lebesgue measure space (R,M,m). Take A ⊆ R and for c ∈ R define A+ c =
{a+ c ∈ R | a ∈ A}. Let us set up some notation. For any E ⊆ R, we denote

C(E) =
®
{In} |

⋃
n

In ⊇ A, In = (an, bn] ∈ A
´

(∗)

where A is the algebra defined in Eq. (1.1). Further, let us denote

ΣC(E) =
®∑

n

l(In) ∈ [0,∞] | {In} ∈ C(E)
´

(∗∗)

where l((a, b]) = b− a is the length function. By definition, we have m∗(E) := inf ΣC(E).

(i) : We first wish to show that the Lebesgue outer measure m∗ is translation invariant. That
is, m∗(A + c) = m∗(A). We first show m∗(A + c) ≥ m∗(A). Pick any {In} ∈ C(A). Then we
claim that {In + c} is an element of C(A + c). Indeed, denoting In = (an, bn], we immediately
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get In + c = (an + c, bn + c]. Now to see that ⋃
n(In + c) ⊇ A + c, pick any a + c ∈ A + c where

a ∈ A. Then, as ⋃
n In ⊇ A, therefore a ∈ In for some n and thus a + c ∈ In + c. It follows that

{In + c} ∈ C(A+ c). Further note that l(In) = l(In + c) by definition. Consequently, we have

ΣC(A) ⊆ ΣC(A+ c).

Taking infima, we yield m∗(A) = inf ΣC(A) ≤ inf ΣC(A + c) = m∗(A + c), that is m∗(A) ≤
m∗(A+ c).

Conversely, we wish to show thatm∗(A) ≥ m∗(A+c). For this, we use the standard technique of
ϵ-wiggle around inf. Fix ϵ > 0. By definition ofm∗(A), there exists {In} ∈ C(A) where In = (an, bn]
such that

m∗(A) + ϵ >
∑
n

bn − an. (2.1)

Note that we can write the above as

m∗(A) + ϵ >
∑
n

(bn + c)− (an + c)

=
∑
n

l((an + c, bn + c])

=
∑
n

l(In + c).

We have {In + c} ∈ C(A+ c) as shown previously, therefore we obtain

m∗(A) + ϵ >
∑
n

l(In + c) ≥ inf ΣC(A+ c) = m∗(A+ c).

Hence we have m∗(A) + ϵ > m∗(A + c). Taking ϵ → 0, we obtain m∗(A) ≥ m∗(A + c). This
completes the proof.

(ii) : We next wish to show that A + c ∈ M if and only if A ∈ M. Observe that it suffices
to show that A ∈ M =⇒ A + c ∈ M. Indeed, for the converse, take B = A + c ∈ M. To show
that A ∈ M, it would suffice to show that B − c ∈ M, which would follow at once by previous.
Hence, we may only show that A ∈M =⇒ A+ c ∈M.

Pick A ∈ M. Fix ϵ > 0. By regularity theorems, there exists open U ⊇ A such that
m∗(U \A) < ϵ. We now claim the following three statements:

1. U + c is open : Indeed, pick any x+ c ∈ U + c where x ∈ U . As U is open, there exists δ > 0
such that (x− δ, x+ δ) ⊆ U . Consequently, (x− δ+ c, x+ δ+ c) ⊆ U + c, hence U + c is open.

2. U + c contains A+ c : Pick any a+ c ∈ A+ c where a ∈ A. As U ⊇ A, therefore a+ c ∈ U + c.
3. (U + c) \ (A+ c) equals (U \A) + c : We first show (U + c) \ (A+ c) ⊆ (U \A) + c. Pick any
x + c ∈ (U + c) \ (A + c). Then x + c ∈ U + c and x + c /∈ A + c. Thus, x ∈ U and x /∈ A.
Hence x ∈ U \A and thus x+ c ∈ U \A+ c.
Conversely, pick x+ c ∈ (U \A)+ c. Then x ∈ U \A and thus x+ c ∈ U + c and x+ c /∈ A+ c.
Thus x+ c ∈ (U + c) \ (A+ c). This completes the proof of this claim.

By above three claims, we conclude that U + c is an open set containing A+ c such that

m∗(U + c \A+ c) = m∗((U \A) + c) (ii)= m∗(U \A) < ϵ.
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By regularity theorems, we conclude the proof.

(iii) : We wish to show that if A ∈ M, then m(A + c) = m(A). This is immediate from (i)
as m = m∗|M.

Lemma 3.6.13. Let A be a subset of R and c ∈ R. Then,
1. m∗(cA) = |c|m∗(A),
2. for c ̸= 0, A ∈M if and only if cA ∈M,
3. if A ∈M, then m(cA) = |c|m(A).

Proof. Let (R,M,m) be the Lebesgue measure space. Take any A ⊆ R and c ∈ R.

(i) : We first wish to show that m∗(cA) = |c|m∗(A). If c = 0, then the equality is immediate as
cA = {0} and we know that m∗({0}) = 0 as 0 ∈ (−1/n, 1/n] for all n ∈ N so that m∗({0}) ≤ 2/n.
Taking n → ∞, we get that m∗({0}) = 0. So we assume from now on that c ̸= 0. We first
immediately reduce to showing either one of

m∗(cA) ≥ |c|m∗(A) or m∗(cA) ≤ |c|m∗(A)

Indeed, the other side follows by replacing A by cA and replacing c by 1/c in either of the above.
We now have two cases based on c being positive or negative.

If c > 0, then we proceed as follows. We follow the convention of Eqns (∗) and (∗∗) as set up
in Q2. We use the standard technique of ϵ-wiggle around inf. Fix ϵ > 0. By definition of outer
measure, there exists {In} ∈ C(cA) where In = (an, bn] such that

m∗(cA) + ϵ >
∑
n

l(In). (3.1)

As ⋃
n In ⊇ cA and c > 0, therefore we claim that ⋃

n(1c In) ⊇ A. Indeed, for any a ∈ A, cA ∈ In.
Thus ca ∈ (an, bn]. Consequently, a ∈ (an/c, bn/c] = (1c In). Thus, {1c In} ∈ C(A). Consequently,
we have ∑

n

l

Å1
c
In

ã
=

∑
n

1
c
l(In) ≥ m∗(A).

Consequently, ∑n l(In) ≥ cm∗(A). Using this in Eq. (3.1), we thus obtain

m∗(cA) + ϵ >
∑
n

l(In) ≥ cm∗(A).

Taking ϵ→ 0, we obtain m∗(cA) ≥ cm∗(A), as required.
If c < 0, then we begin similarly to the previous case. Fix ϵ > 0. There exists {In} ∈ C(A)

where In = (an, bn] such that

m∗(A) + ϵ >
∑
n

l(In). (3.2)

Note that cIn = c(an, bn] = [cbn, can) as c < 0 and this type of set is not half-open and is thus
not in A, the algebra of half-opens of Eq. (1.1). Consequently, we have to use ϵ-wiggle to find a
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new collection of intervals obtained via cIn which are half open but their sum of lengths in only in
ϵ-neighborhood of those {cIn}. Indeed, for each n ∈ N, we may construct

Jn =
(
cbn −

ϵ

2n+1 , can + ϵ

2n+1

]
.

Note that Jn ⊇ cIn. As
⋃

n cIn ⊇ cA, therefore
⋃

n Jn ⊇ cA. Thus {Jn} ∈ C(cA). Consequently,

m∗(cA) ≤
∑
n

l(Jn)

=
∑
n

c(an − bn) +
2ϵ

2n+1

=
∑
n

−c(bn − an) +
∑
n

ϵ

2n

= −c
∑
n

(bn − an) + ϵ

= −c
∑
n

l(In) + ϵ

where the third line follows from the series being positive and thus we can rearrange such a series.
It thus follows by Eq. (3.2) and above that

m∗(cA) < −c(m∗(A) + ϵ) + ϵ

= −cm∗(A) + ϵ(1− c).

Taking ϵ→ 0, we obtain (−c = |c| as c < 0)

m∗(cA) ≤ |c|m∗(A)

as required. This completes the proof.

(ii) : We now wish to show that for c ̸= 0, A ∈ M if and only if cA ∈ M. Note that this is
not true for c = 0 as if we take a non-measurable set V ⊆ R, then cV = {0} is measurable but V
is not.

Pick c ̸= 0. We first note that showing only A ∈M =⇒ cA ∈M is sufficient. Indeed, the other
side follows by replacing c by 1/c in the above. So we reduce to showing A ∈M =⇒ cA ∈M.

Pick A ∈ M and c ̸= 0 in R. Fix ϵ > 0. By regularity theorems, there exists open U \ A such
that m∗(U \A) < ϵ

|c| . We now claim the following statements:
1. cU is open : Pick cx ∈ cU where x ∈ U . As U is open therefore there exists δ > 0 such that

(x− δ, x+ δ) ⊆ U . Consequently, c(x− δ, x+ δ) = (c(x+ δ), c(x− δ)) ⊆ cU and contain cx.
Hence cU is open.

2. cU contains cA : Pick any cx in cA. Then x ∈ A. As U ⊆ A, therefore x ∈ U and hence
cx ∈ cU .

3. cU \ cA equals c(U \A) : For (⊆), pick any cx ∈ cU \ cA. Then cx ∈ cU and cx /∈ cA. Thus,
x ∈ U and x /∈ A, that is ∈ U \A and thus cx ∈ c(U \A). Conversely to show (⊇), pick any
cx ∈ c(U \ A) where x ∈ U \ A. Thus, x ∈ U and x /∈ A. Thus cx ∈ cU and cx /∈ cA. Thus
cx ∈ cU \ cA.
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Following the above three lemmas, we conclude that cU is an open set containing cA such that

m∗(cU \ cA) = m∗(c(U \A)) (i)= |c|m∗(U \A) < |c| ϵ
|c|

= ϵ.

Thus by regularity theorems, cA ∈M as well.

(iii) : We wish to show that if A ∈ M, then m(cA) = |c|m(A). But this is immediate from
(i) as m = m∗|M. This completes the whole proof.

Lemma 3.6.14. For each subseteq A ⊆ R, there exists a Borel subset B ⊇ A such that

m∗(A) = m(B).

Proof. We wish to show that for each A ⊆ R, there exists a Borel set B ⊇ A such that m(B) =
m∗(A). We divide into two cases based on outer measure of A. We will follow the notations of Eq.
(∗) and (∗∗).

If m∗(A) =∞. In this case, we claim that B = R will work. Indeed R is open and thus Borel.
We thus claim that m(R) = ∞. Indeed, for In = (n, n + 1], n ∈ Z, we have that {In} are disjoint
and ∐

n In = R. As m is a measure and In are measurable, therefore

m(R) =
∑
n

m(In) =
∑
n

1 =∞.

Hence B = R will work.
If m∗(A) < ∞, then we proceed as follows. For each N ∈ N, there exists {INn } ∈ C(A) such

that

m∗(A) + 1
N
>

∑
n

l(INn ).

Define UN = ⋃
n I

N
n . As each half open interval (a, b] = ⋂

n∈N(a, b + 1/n) is a Borel set, therefore
UN is a Borel set. Observe that

m(UN ) ≤
∑
n

m∗(INn ) =
∑
n

l(INn ) < m∗(A) + 1
N
.

Note that in the above we have used the fact that Lebesgue measure restricted to half opens is
exactly the length function. We thus have for each N ∈ N a Borel set UN containing A such that

m(UN ) < m∗(A) + 1
N
. (4.1)

Denote BK = ⋂K
N=1 UN . Then each BK is Borel and {BK} is a decreasing sequence of sets.

Furthermore, ⋂∞
K=1BK = ⋂∞

N=1 UN . Denote B = ⋂∞
K=1BK . Observe that B ⊇ A as BK ⊇ A for

each K ∈ N. Consequently, by continuity of m∗ we have

m(B) ≥ m∗(A).
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For the converse, first note that by Eq. (4.1), m(U1) <∞. Thus by monotone convergence property
of measures, we obtain that limK→∞m(BK) = m (⋂∞

K=1BK). It follows from above, BK ⊆ UK

and Eq. (4.1) that

m(B) = m

Ç ∞⋂
K=1

BK

å
= limK→∞m(BK)
≤ limK→∞m(UK)
(4.1)
< limK→∞

Å
m∗(A) + 1

K

ã
≤ m∗(A).

Thus m(B) ≤ m∗(A) and we are done.

Lemma 3.6.15. A bounded set E ⊆ R is measurable if and only if m∗(A) = m∗(A∩E)+m∗(A∩Ec)
for all bounded subsets A ⊆ R.

Proof. Let E be a bounded set of R. We wish to show that E is measurable if and only if for all
bounded sets A ⊆ R, we get m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec).

The (⇒) is immediate from definitions. For (⇐), we proceed as follows. We wish to show that
for any F ⊆ R, we have

m∗(F ) ≥ m∗(F ∩ E) +m∗(F ∩ Ec).

Indeed, if m∗(F ) = ∞, then there is nothing to show. So we assume m∗(F ) < ∞. Observe then
that m∗(F ∩E),m∗(F ∩Ec) ≤ m∗(F ) <∞. Fix ϵ > 0. There exists a sequence {In} of half-opens
such that ⋃

n In ⊇ F and

m∗(F ) + ϵ >
∑
n

m∗(In)

where we are using the fact that measure of a half-open interval is its length. Observe that for each
n ∈ N, we have m∗(F ) + ϵ > m∗(In), thus each In is a half-open interval with bounded length,
hence In is bounded as a set. Consequently, we have

m∗(F ) + ϵ >
∑
n

m∗(In)

(by hypothesis) ≥
∑
n

m∗(In ∩ E) +m∗(In ∩ Ec)

(by rearrangement of +ve series) =
∑
n

m∗(In ∩ E) +
∑
n

m∗(In ∩ Ec)

(by subadditivity) ≥ m∗
Ç⋃

n

In ∩ E
å

+m∗
Ç⋃

n

In ∩ Ec

å
(by ∪nIn ⊇ F ) ≥ m∗(F ∩ E) +m∗(F ∩ Ec).

This completes the proof.
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3.6.3 Measurable functions

Notation 3.6.16. At times, we will write a subset of X as follows:

{x ∈ X | Px is true} = {Px is true}.

This makes some constructions much more clearer to see and interpret.

Lemma 3.6.17. Let f : X → Y be a function and A be an algebra on Y . Then,

⟨f−1(A)⟩ = f−1(⟨A⟩).

Proof. Let f : X → Y be a function and A be an algebra over Y . We wish to show that

⟨f−1(A)⟩ = f−1(⟨A⟩). (2.1)

We first claim that f−1(⟨A⟩) is a σ-algebra over X. Indeed, as Y, ∅ ∈ ⟨A⟩, we have f−1(Y ) = X and
f−1(∅) = ∅. Further, if B ∈ f−1(⟨A⟩), then B = f−1(A) for some A ∈ ⟨A⟩. Hence Bc = f−1(A)c =
f−1(Ac) and Ac ∈ ⟨A⟩ as ⟨A⟩ is a σ-algebra. Finally, pick {Bn} ⊆ f−1(⟨A⟩). Then Bn = f−1(An)
for An ∈ ⟨A⟩. Consequently, ⋃nBn = ⋃

n f
−1(An) = f−1 (⋃nAn) and since ⋃

nAn ∈ ⟨A⟩, hence
this proves that f−1(⟨A⟩) is a σ-algebra.

We now show (⊆) part of Eq. (2.1). Indeed, by above, it would suffice to show that f−1(A)
is contained in the σ-algebra f−1(⟨A⟩). Pick any B ∈ f−1(A), so that B = f−1(A) where A ∈ A.
As A ⊆ ⟨A⟩, therefore A ∈ ⟨A⟩. It follows that B = f−1(A) ∈ f−1(⟨A⟩). This shows that
⟨f−1(A)⟩ ⊆ f−1(⟨A⟩).

We now show (⊇) part of Eq. (2.1). We will use the standard technique of good sets for this.
Consider

C := {A ∈ ⟨A⟩ | f−1(A) ∈ ⟨f−1(A)⟩} ⊆ ⟨A⟩

We now claim the following two statements:
1. C is a σ-algebra on Y : Indeed, Y = f−1(X) and ∅ = f−1(∅) where X, ∅ ∈ ⟨A⟩ and X, ∅ ∈
⟨f−1(A)⟩. Further, for A ∈ C, we have f−1(A) ∈ ⟨f−1(A)⟩ and thus (f−1(A))c = f−1(Ac) ∈
⟨f−1(A)⟩. Thus Ac ∈ C. Finally, pick {An} ⊆ C. Then f−1(An) ∈ ⟨f−1(A)⟩ for each n ∈ N.
Thus, ⋃n f

−1(An) = f−1 (⋃nAn) ∈ ⟨f−1(A)⟩. It then follows that ⋃
nAn ∈ C. This shows

that C is a σ-algebra.
2. C ⊇ A : Pick any A ∈ A. As ⟨f−1(A)⟩ contains f−1(A), so f−1(A) ∈ ⟨f−1(A)⟩.

We now conclude the proof. As C is a σ-algebra containing A and inside ⟨A⟩, therefore C = ⟨A⟩.
It follows that for each A ∈ ⟨A⟩, we have f−1(A) ∈ ⟨f−1(A)⟩, that is f−1(⟨A⟩) ⊆ ⟨f−1(A)⟩, as
required. This completes the proof.

Lemma 3.6.18. Let (X,M,m) be the Lebesgue measure space. Let A ∈M be a bounded set such
that 0 < m(A) < ∞. For each 0 < M < m(A), there exists a B ⊊ A such that B ∈ M and
m(B) =M .

Proof. There are two proofs that we wish to present, one uses Lemma 3.6.19 and other is indepen-
dent. The latter uses a nice technique which we would like to write down concretely.
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Method 1 : (Using Lemma 3.6.19) Consider the map

f : R −→ R
x 7−→ m(A ∩ (−∞, x]).

As A is a bounded set, therefore m(A) < ∞ as there exists a bounded interval I ⊇ A where
I = [c, d]. By Lemma 3.6.19, the map f is a continuous map. Let a ∈ R be such that a < c. Then
f(a) = m(A ∩ (−∞, a]) = m(∅) = 0. Let b ∈ R such that b > d. Then, f(b) = m(A ∩ (−∞, b]) =
m(A). On the interval J = [a, b] we have f(a) = 0 and f(b) = m(A). By intermediate value
property of f , there exists c ∈ J such that f(c) = M . Consequently, A ∩ (−∞, c] is a measurable
subset of A whose measure is M .

Method 2 : (Exponential subdivision technique) We shall explicitly construct B ⊊ A such that
m(B) =M . First, we observe that the question is invariant under translation and dilation. Hence
we may, after suitable dilation and translation, assume that A ⊆ [0, 1). For each n ∈ N, consider
the following partition of [0, 1)

Pn : 0 < x1 =
1
2n < x2 = 2 · 12n < · · · < x2n−1 = (2n − 1) · 12n < 1.

Denote In,j = [ j−1
2n ,

j
2n ) for each j = 1, . . . , 2n. Observe that In,j are disjoint and, denoting An,j =

A ∩ In,j , we further have a disjoint collection {An,j} of measurable subsets16 of A such that

2n∐
j=1

An,j = A.

Further, we have that

2n∑
j=1

m(An,j) = m

(
2n∐
j=1

An,j

)
= m(A)

and that

m(An,j) ≤ m(In,j) =
1
2n .

Now, for each n ∈ N, let Nn be the largest index such that

Nn∑
j=1

m(An,j) ≤M.

16measurable because A and In,j are measurable
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By the choice of index Nn, we observe that

M <
Nn+1∑
j=1

m(An,j)

=
Nn∑
j=1

m(An,j) +m(An,Nn+1)

≤
Nn∑
j=1

m(An,j) +
1
2n .

Denoting Cn = ⨿Nn
j=1An,j , we obtain,

M − 1
2n <

Nn∑
j=1

m(An,j) = m (Cn) ≤M. (3.1)

We now claim that {Cn} is an increasing sequence of measurable subsets of A. First observe that
for each n ∈ N, we have that Nn+1 is either 2Nn − 1 or 2Nn. Indeed, pick any x ∈ Cn. Then
x ∈ An,j where j = 1, . . . , Nn. Expanding this, we have

x ∈ An,j

= A ∩
ï
j − 1
2n ,

j

2n
ã

= A ∩
Åï2(j − 1)

2n+1 ,
2j − 1
2n+1

ã
⨿
ï2j − 1
2n+1 ,

2j
2n+1

ãã
= An+1,2j−1 ⨿An+1,2j . (3.2)

As Nn+1 = 2Nn − 1 or 2Nn, therefore for j = 1, . . . , Nn, 2j = 2, . . . , 2Nn, hence in Eq. (3.2), we
obtain that x ∈ An+1,2j−1 or x ∈ An+1,2j and as 2j ≤ 2Nn, hence x ∈ Cn+1. This shows that
Cn ⊆ Cn+1.

Applying limn→∞ on Eq. (3.1), we thus obtain

M ≤ limn→∞m(Cn) ≤M.

Thus, by monotone convergence of measures, we conclude

M = limn→∞m(Cn)

= m

Ç⋃
n

Cn

å
.

As Cn ⊆ A for each n ∈ N, therefore ⋃
nCn ⊆ A. Consequently we have obtained a subset of A

whose measure is M .

Lemma 3.6.19. Let (X,M, µ) be the Lebesgue measure space and A ∈M be a bounded set. Then
the function

f : R −→ R
x 7−→ m(A ∩ (−∞, x])

is continuous.
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Proof. Let A ∈M which has finite measure. We wish to show that

f : R −→ R
x 7−→ m(A ∩ (−∞, x])

is continuous. Pick any a ∈ R and any ϵ > 0. We wish to find a δ > 0 such that |x− a| < δ implies
|f(x)− f(a)| < ϵ. We now have two cases with respect to the position of x and a in R.

1. If a ≤ x : then f(x)− f(a) can be rewritten as follows:

|f(x)− f(a)| = m(A ∩ (−∞, x])−m(A ∩ (−∞, a])
= m(A ∩ (−∞, x] \A ∩ (−∞, a])
= m(A ∩ (a, x])
≤ m((a, x])
= x− a.

Therefore taking δ = ϵ, we would be done.
2. If a > x : then |f(x)− f(a)| can be written as

|f(x)− f(a)| = |f(a)− f(x)|
= m(A ∩ (−∞, a])−m(A ∩ (−∞, x])
= m(A ∩ (x, a])
≤ m((x, a])
= a− x.

Thus, again, taking δ = ϵ would do the job.
This completes the proof.

Lemma 3.6.20. Let X be a measurable space and let f : X → R be a function. Suppose {x ∈
X | a ≤ f(x) < b} is measurable for all a < b. Then f is a measurable function.

Proof. As the Borel σ-algebra on R is generated by sets of the form [a,∞) for a ∈ R, therefore for
a fixed a ∈ R we need only show that f−1([a,∞)) is measurable in X.

We can write

f−1([a,∞)) = {a ≤ f(x)}
=

⋃
n>a in N

{a ≤ f(x) < n}.

As we are given that {a ≤ f(x) < b} are measurable for all a < b ∈ R and countable union of
measurable sets is measurable, therefore f−1([a,∞)) is measurable.

Lemma 3.6.21. All monotone functions f : R→ R are measurable.

Proof. We wish to show that all monotone functions f : R → R are measurable. Note that we
may first reduce to assuming that f is non-decreasing as if f is non-increasing, then −f will be
non-decreasing.
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Hence let f : R→ R is non-decreasing. As Borel σ-algebra of R is generated by intervals of the
form [a,∞), a ∈ R, therefore it suffices to check that f−1([a,∞)) is measurable in R. Observe

f−1([a,∞)) = {a ≤ f(x)}.

We now have two cases to handle.
1. If a ∈ f(R) : Then there exists b ∈ R such that f(b) = a. We may write

{a ≤ f(x)} = {a < f(x)} ⨿ {a = f(x)}.

Now since f is non-decreasing, therefore f(x) > f(y) implies x > y. Further, we have that
f−1(a) = {a = f(x)} is measurable as singletons are Borel. Consequently, we have

{a ≤ f(x)} = {f(b) < f(x)} ⨿ {a = f(x)}
= (b,∞)⨿ f−1(a).

Hence f−1([a,∞)) is measurable.
2. If a /∈ f(R) : We further have two cases.

(a) If there exists b ∈ R such that b /∈ {a ≤ f(x)} : Observe first that in this case f(b) < a.
We claim that in this case {a ≤ f(x)} is lower bounded by b. Indeed, suppose not. Then
there exists y < b such that y ∈ {a ≤ f(x)}. Then a ≤ f(y) ≤ f(b) < a, a contradiction.
Hence {a ≤ f(x)} is bounded below.
Let c = inf{a ≤ f(x)}, which now exists. Consequently, we have two more cases:
• If f(c) ≥ a : That is, if c ∈ {a ≤ f(x)}. Then we claim

{a ≤ f(x)} = [c,∞).

which is clearly a measurable. Indeed, for some x ∈ R such that f(x) ≥ a, then
x ≥ c. Conversely, if b ≥ c in R, then f(b) ≥ f(c) ≥ a, so b ∈ {a ≤ f(x)}. This
proves the claim.

• If f(c) < a : That is, if c /∈ {a ≤ f(x)}. Then we claim

{a ≤ f(x)} = (c,∞)

which is clearly a measurbale set. Indeed, for x ∈ R such that f(x) ≥ a, x > c.
Further x ̸= c as otherwise f(x) < a. Conversely, if b > c, then there exists d ∈
{a ≤ f(x)} such that c < d < b as c is the infimum. Consequently, a ≤ f(d) ≤ f(b).
Hence b ∈ {a ≤ f(x)}. This proves the claim.

(b) If there doesn’t exists any b ∈ R such that f(b) < a : Then for all b ∈ R we have f(b) ≥ a.
Consequently, f−1([a,∞)) = {a ≤ f(x)} = R, which is measurable.

Hence in all cases f−1([a,∞)) is a measurable set. This completes the proof.

Lemma 3.6.22. Let f : X → C be a complex measurable function on a measurable space X. Then,
there exists a complex measurable function g : X → C such that |g| = 1 and f = g |f |.

Proof. Let f : X → C be a measurable function. We wish to find a measurable function g : X → C
such that |g| = 1 and f = g |f |.
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As |f | = fχ{f(x)≥0} − fχ{f(x)<0}, therefore |f | is a measurable function. Denote E = {|f(x)| =
0}. Consequently, we define g as follows:

g(x) =
{

f(x)
|f(x)| if x ∈ Ec

1 if x ∈ E.

We first wish to show that g is measurable. For this, we shall use the fact that measurability of
g can be checked on a cover {Eα} of X such that g|Eα

is measurable. Thus in our case, we need
only show that g|E and g|Ec are measurable. On E, g is a constant, hence measurable. On Ec, g
is f/ |f |. As |f | is not zero on Ec, therefore by Lemma 3.6.24, f/ |f | is measurable. Hence, g is
measurable.

We now see that |g| (x) =
∣∣∣ f(x)
|f(x)|

∣∣∣ = 1 on Ec and |g(x)| = 1 on E. Thus |g| = 1 on X. Further, if
x ∈ E, then f(x) = 0 = g(x) |f | (x). If x ∈ Ec, then g(x) = f(x)

|f(x)| which implies |f(x)| g(x) = f(x).
This shows that in all cases, f = g |f |.

Example 3.6.23. It is not true that if f : [0, 1]→ R is a function whose each fibre is measurable,
then f is measurable.

Consider the following function

f : [0, 1] −→ R

x 7−→
®
x if x ∈ V c

x+N if x ∈ V

where V ⊆ [0, 1] denotes the Vitali set and N = 3. Then, for each y ∈ R, we have that f−1(y)
is atmost a singleton, which is measurable in [0, 1]. However, for any 1 < b < N , we see that
f−1((b,∞)) = V , which is not measurable. Hence f is a non-measurable function whose fibres are
measurable.

Lemma 3.6.24. Let f, g : X → C be a measurable function such that {g(x) ̸= 0} = X. Then f/g
is measurable.

Proof. Let f, g : X → C be a measurable function such that {g(x) ̸= 0} = X. Then we wish to
show that f/g is measurable.

We first have that (f, g) : X → R2 given by x 7→ (f(x), g(x)) is measurable. Consequently, we
consider the composite

X R2 \ {y = 0} R
(f,g) Φ

where Φ(x, y) = x
y . As Φ is continuous, therefore the composite Φ ◦ (f, g) is measurable. Conse-

quently, we obtain that the map x 7→ f(x)
g(x) is measurable, but this is exactly f/g over X. This

completes the proof.

Lemma 3.6.25. Let f, g : X → R be measurable functions and pick any r0 ∈ R. Then the map

h : X −→ R

x 7−→
®
r0 if f(x) = −g(x) = ±∞
f(x) + g(x) else
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is measurable17.

Proof. Let f, g : X → R be measurable functions and pick any r0 ∈ R. Then we wish to show that
the map

h : X −→ R

x 7−→
®
r0 if f(x) = −g(x) = ±∞
f(x) + g(x) else

is measurable.
Define the following sets

E = {f(x) =∞ = −g(x)}
F = {f(x) = −∞ = −g(x)}.

As E = f−1(∞)∩ g−1(−∞) and F = f−1(−∞)∩ g−1(∞), therefore they are measurable. Observe
that E and F are disjoint. We thus need only show that h restricted to E, F and X \ (E ⨿ F ) is
measurable.

1. On E : As h|E is constant r0, therefore h|E is measurable.
2. On F : As h|F is again constant r0, therefore h|F is measurable.
3. On X \ (E ⨿ F ) : We first deduce that

X \ (E ⨿ F ) = X ∩ Ec ∩ F c

= Ec ∩ F c

= ({f(x) ̸=∞} ∪ {g(x) ̸= −∞})
⋂

({f(x) ̸= −∞} ∪ {g(x) ̸=∞})

Let G = {f(x) ∈ R} and H = {g(x) ∈ R}. Then we may write X \ (E ⨿ F ) as

X \ (E ⨿ F ) = (G ∪H ∪ {f(x) = −∞} ∪ {g(x) =∞})
⋂

(G ∪H ∪ {f(x) =∞} ∪ {g(x) = −∞})

= (G ∪H) ∪
Ä
({f(x) = −∞} ∪ {g(x) =∞})

⋂
({f(x) =∞} ∪ {g(x) = −∞})

ä
= (G ∪H) ∪ {f(x) = −∞ = g(x)}︸ ︷︷ ︸

=:A

∪{f(x) =∞ = g(x)}︸ ︷︷ ︸
=:B

.

As h|G∪H is (f + g)|G∪H and on G ∪H, f + g : G ∪H → R, therefore h is measurable.
We thus reduce to checking that h|A and h|B are measurable. On both of them, one immedi-
ately observes that h is constant −∞ and∞ respectively. Hence, h|A and h|B are measurable.
As h restricted to G ∪ H, A and B is measurable therefore h restricted to X \ (E ⨿ F ) is
measurable.

This completes the proof.

Example 3.6.26. It is not true in general that if for a function f : X → R, the |f | : X → [0,∞]
is measurable then f is measurable.

17This question in particular shows that modifying a measurable function at a single point doesn’t affect measur-
ability at all.
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Indeed, consider the following function where V ⊆ [0, 1] denotes the Vitali set:

f : [0, 1] −→ R

x 7−→
®
−x if x ∈ V
x if x ∈ V c.

Then, |f | = id[0,1] which is measurable whereas f is not measurable as f−1((−∞, 0)) = V , which
is not a measurable set.

Lemma 3.6.27. Let (X1,AX1 , µ1) be a measure space, (X2,AX2) be a measurable space and f :
X1 → X2 be a measurable function. Then

µ2 : AX2 −→ [0,∞]
B 7−→ µ1(f−1(B))

is a measure on (X2,AX2).

Proof. We first immediately observe that µ2(∅) = µ1(f−1(∅)) = µ1(∅) = 0. We thus reduce to
showing that for any disjoint collection {Bn} ⊆ AX2 , we have µ2(

∐
nBn) = ∑

n µ2(Bn). To this
end, observe that

µ2

Ç∐
n

Bn

å
= µ1

Ç
f−1
Ç∐

n

Bn

åå
= µ1

Ç∐
n

f−1 (Bn)
å

=
∑
n

µ1(f−1(Bn))

=
∑
n

µ2(Bn).

This completes the proof.

Lemma 3.6.28. Let (X,A, µ) be a measure space and f : X → R be a measurable function such
that µ({|f(x)| ≥ ϵ}) = 0 for all ϵ > 0. Then f = 0 almost everywhere.

Proof. We first claim that it suffices to show that {|f(x)| > 0} is a null set. Indeed, this is because
{f(x) ̸= 0} = {|f(x)| > 0}. Hence it suffices to show that |f | = 0 a.e.

Define for each n ∈ N the following subset of X

En = {|f(x)| > 1/n}.

We claim that

{|f(x)| > 0} =
⋃
n∈N

En.

Indeed, for (⊆), pick x ∈ X such that |f(x)| > 0. Then there exists n ∈ N such that |f(x)| > 1/n.
Hence x ∈ En. Conversely pick x ∈ En, then by way of construction of En, we have |f(x)| > 1/n >
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0.
Observe that {En} is an increasing sequence of sets as if x ∈ En then |f(x)| > 1

n > 1
n+1 , so

x ∈ En+1. It then follows by monotone convergence property of measures that

µ({|f(x) > 0|}) = µ

Ç⋃
n

En

å
= limn→∞µ(En) = limn→∞0 = 0.

This completes the proof.

Example 3.6.29. The statement of Egoroff’s theorem depends crucially on the fact that each
function in the sequence {fn} is measurable. Indeed, we show by the way of an example that the
conclusion of Egoroff’s theorem is not true when fn’s are not measurable.

We wish to show that the statement of Egoroff’s theorem fails if we drop the condition that
functions be measurable.

Consider the measure space (Z,A, µ) where A = {∅,Z, 2Z,Z \ 2Z} and µ(∅) = 0 = µ(2Z),
µ(Z) = 1 = µ(Z \ 2Z). Consider the functions fn : (Z,A, µ) → R where R has the Borel measure,
given by

fn(k) =
k

n

for all k ∈ Z. Observe that {fn} pointwise converges to the constant 0 function at all points of
Z. Further note that fn is not measurable as f−1

n ({k/n}) = {k} is not a measurable set in A but
{k/n} is Borel measurable.

To show that this is a counterexample, it would suffice to show that there exists an ϵ0 > 0 such
that for all measurable sets E ∈ A, either µ(Ec) ≥ ϵ0 or fn does not converges uniformly to 0 on E.
We claim that in our situation, ϵ0 = 1/2 works. Indeed, for E = ∅, 2Z, we have µ(Ec) = 1 > 1/2.
Thus we reduce to showing that fn does not converges uniformly on Z and Z \ 2Z. Indeed, observe
that supk∈Z |fn(k)| = supk∈Z k/n = ∞ for each n ∈ N. As fn converges uniformly if and only if
supk∈Z |fn(k)| → 0 as n → ∞, therefore we deduce that fn does not converge uniformly over Z.
Similarly, it doesn’t converge uniformly over Z \ 2Z.

Lemma 3.6.30. Let f, g : R → R be continuous functions. If f = g almost everywhere, then
f = g.

Proof. Indeed, consider h = f − g. Suppose h ̸= 0, therefore there exists x0 ∈ R such that
h(x0) ̸= 0. By continuity of h, there exists ϵ > 0 such that (x0 − ϵ, x0 + ϵ) ⊆ {h(x) ̸= 0}. Hence,
2ϵ < m({h(x) ̸= 0}) = 0, which yields 0 < 2ϵ ≤ 0, a contradiction.

Lemma 3.6.31. Let (X,S, µ) be a measure space and fn, f : X → R be measurable functions such
that fn → f pointwise almost everywhere. Then, there exists measurable functions gn : X → R
such that fn = gn almost everywhere and gn → f pointwise.

Proof. Indeed, as fn converges pointwise to f almost everywhere, therefore the set E = {limn→∞fn(x) ̸=
f(x)} is a zero measure set. Consequently, we may define

gn : X −→ R

x 7−→
®
fn(x) if x /∈ E
f(x) if x ∈ E.
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We then observe that {gn(x) ̸= fn(x)} = E, which is of measure zero, hence gn = fn almost
everywhere. Furthermore, we see that for any x ∈ X,

limn→∞gn(x) =
®
limn→∞fn(x) = f(x) if x /∈ E
limn→∞f(x) = f(x) if x ∈ E.

Thus, limn→∞gn = f pointwise. This completes the proof.

Example 3.6.32. We wish to show that there exists continuous function f : R→ R and a Lebesgue
measurable function g : R→ R such that g ◦ f : R→ R is not Lebesgue measurable.

While learning about the existence of a non-Borel measurable set, one learns about the existence
of a homeomorphism ϕ : [0, 1] → [0, 2] such that m(ϕ(C)) = 1 > 0 where C ⊆ [0, 1] is the Cantor
set. Indeed, if C : [0, 1] → [0, 1] denotes the Cantor function, then ϕ is constructed by defining
ϕ(x) = C(x) + x. As, C(0) = 0 and C(1) = 1, therefore ϕ(0) = 0 and ϕ(1) = 2. Consequently, we
may define a continuous function f : R→ R as follows:

f(x) =


x− 1 if x > 2
ϕ−1(x) if x ∈ [0, 2]
x if x < 0.

Observe that f is continuous as f is obtained by gluing three continuous functions at points where
they agree.

As m(ϕ(C)) = 1 > 0 for Cantor set C, therefore there exists a non-measurable set V ⊆ ϕ(C) ⊆
[0, 2]. But since f(V ) = ϕ−1(V ) ⊆ ϕ−1(ϕ(C)) = C and C is a null set, therefore by completeness
of Lebesgue measure, it follows that f(V ) is a Lebesgue measurable set. Consequently, we may
define g = χf(V ) : R→ R, which is Lebesgue measurable as f(V ) is Lebesgue measurable. We thus
have

R R Rf g

cont. Leb. msble .

We claim that h := g ◦ f is not Lebesgue measurable. Indeed, observe that h−1({1}) = (g ◦
f)−1({1}) = f−1(g−1({1})) = f−1(f(V )). But as f restricted to [0, 2] is a homeomorphism from
[0, 2] to [0, 1] because on [0, 2], f is equal to ϕ−1, hence f−1(f(V )) = V . Hence h−1({1}) = V ,
where {1} is measurable but V ⊆ [0, 2] is non-measurable. This shows that h is not measurable.
This completes the proof.

4 Integration of measurable functions
Let’s first remind ourselves of the basic definition of a Riemann Integrable function. If we say that
the function f : R → R is Riemann Integrable, then the integral of f on [a, b], written as

∫ b
a f , is

given by the following two constructions on a partition P of [a, b],
• Lower Sum :

L(f, P ) =
∑
i

mi(ai − ai−1) where mi = inf
x∈[ai−1,ai]

f(x)

• Upper Sum:
U(f, P ) =

∑
i

Mi(ai − ai−1) where Mi = sup
x∈[ai−1,ai]

f(x)
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so that ∫ b

a
f = L(f, P ) = U(f, P ).

The chain of observations begins now. One can easily write the Lower and Upper Sum as the
following simple functions (remember that the partition is finitely many)

L(f, P ) =
∑
i

miλ ([ai−1, ai])

U(f, P ) =
∑
i

Miλ ([ai−1, ai])

Or, equivalently, we can define a lower step function as follows:

φP =
∑
i

miχ[ai−1,ai]

so that the Riemann integral is simply∫ b

a
f(x)dx = sup

P

∫ b

a
φP (x)dx

where supremum is defined over all partitions. But since, by definition, φP (x) ≤ f(x) ∀ x ∈ R, we
can alternatively define Riemann integral as∫ b

a
f(x)dx = sup

φP≤f

∫ b

a
φP (x)dx (12)

where the supremum is defined for all step functions on any partition P .

This definition presented in (12) provides the motivation for extending the definition of Integration
from Riemann to Lebesgue. In particular, note the definition of φP , usual measure on the intervals
is applied in Riemann’s definition. But, since we know that Borel σ-algebra is a proper subset of
Mλ∗ , then it just makes sense to replace ai−1 − ai by λ ([ai−1, ai]) in the motivation that it might
generalize the notion of integration.

4.1 Integration of non-negative measurable functions

Definition 4.1.1. (Lebesgue integral of a simple function) Consider φ : R → [0,+∞) be a
simple function as

φ =
N∑
i=1

αiχEi where αi ≥ 0 and λ (Ei) < +∞

Then, the Lebesgue integral of φ is defined as

∫
φdx =

N∑
i=1

αiλ (Ei)
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Definition 4.1.2. (Lebesgue integral of a measurable function) Suppose f : R → [0,+∞)
is a λ-measurable function, then the Lebesgue integral of f is defined as

⋆
∫
fdx = sup

φ≤f

∫
φdx where φ are the simple functions ≤ f . ⋆

Definition 4.1.3. (Lebesgue integral over a measurable set) Consider f : R → [0,+∞) to
be a λ-measurable function and E ⊆ R is Lebesgue measurable. Then,∫

E
fdx =

∫
f · χEdx

Remark 4.1.4. Therefore, the integral of a non-negative measurable function over a measurable
set is given by the integral18 of restriction of f to it and zero otherwise.

Proposition 4.1.5. Consider the two λ-measurable functions f, g : R → [0,+∞) and φ : R →
[0,+∞) be a simple-function, then the Lebesgue integral has the following properties:

1. Consider two Lebesgue measurable subsets A and B of R such that A ∩B = Φ. Then,∫
A∪B

φdx =
∫
A
φdx+

∫
B
φdx.

2. For any α ∈ R, ∫
αfdx = α

∫
fdx.

3. Integration for positive valued measurable functions is therefore distributive:∫
(f + g)dx =

∫
fdx+

∫
gdx.

4. If f(x) ≤ g(x) holds for all x ∈ R, then∫
fdx ≤

∫
gdx.

5. Consider A and B be Lebesgue measurable subsets of R such that A ⊆ B. Then,∫
A
fdx ≤

∫
B
fdx.

Proof. Part 1 : Since φ is simple, therefore we can write

φ =
N∑
i=1

αiχEi .

18From now on, any instance of integral should be presupposed by Lebesgue integral, of-course, unless otherwise
stated, in this text.
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Now, by definition∫
A∪B

φdx =
N∑
i=1

αiλ (Ei ∩ (A ∪B))

=
N∑
i=1

αiλ ((Ei ∩A) ∪ (Ei ∩B))

=
N∑
i=1

αiλ (Ei ∩A) + αiλ (Ei ∩B) ∵ Ei ∩A and Ei ∩B are disjoint.

=
∫
A
φdx+

∫
B
φdx

Part 2 & 3 : Can be seen easily from Theorem 4.2.1.

Part 4 : Note that we define∫
fdx = sup

φ≤f

∫
φdx where φ are simple functions.

Therefore, for any φ ≤ f , due to given condition f ≤ g, we would have φ ≤ g. Hence,∫
φdx ≤

∫
gdx

Since this is true for all simple φ ≤ f , therefore supφ≤f

∫
φdx ≤

∫
gdx, proving the result.

Part 5 : Consider the following:∫
A
fdx =

∫
fχAdx

≤
∫
fχBdx ∵ χA ≤ χB, then apply 4.

=
∫
B
fdx

Hence proved.

4.2 Monotone convergence theorem

This is arguably one of the most important theorem in Integration theory,

Theorem 4.2.1. (Monotone Convergence Theorem) Consider a sequence {fn} of R→ [0,+∞)
of λ-measurable functions which satisfies

fn(x) ≤ fn+1(x) ∀ x ∈ R and n

and suppose lim←−n→∞ fn exists. Then,∫
lim←−
n→∞

fn = lim←−
n→∞

∫
fn.
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Proof. Since fn ≤ fn+1, therefore, ∫
fn ≤

∫
fn+1 ≤

∫
lim←−
n→∞

fn.

Hence,

lim←−
n→∞

∫
fn ≤

∫
lim←−
n→∞

fn.

Therefore we have proved one inequality.

Now to prove the other inequality, consider any simple function φ ≤ lim←−n→∞ f . If we can show
that

∫
fn ≥

∫
φ for any n ∈ N, then we are done. To this goal, consider α ∈ (0, 1). Construct the

set19

En = {x | fn(x) ≥ αφ(x)} .

Clearly,
En ⊆ En+1 ∀ n ∈ N.

Now, ∫
fn ≥

∫
En

fn ≥ α
∫
En

φ. (13)

Moreover, we can see that
Claim 1 :

⋃
n

En = R.

This is easy to see as follows:

Take x ∈
⋃
n

En =⇒ x ∈ Ei0 for some i0 ∈ N.

=⇒ x ∈ R ∵ En are subsets of R.
Take x ∈ R =⇒ Either (1) x ∈ {x | fn(x)− αφ(x) ≥ 0} or (2) x ∈ {x | fn(x)− αφ(x) < 0} for any n ∈ N.

=⇒ If (1), then x ∈ En, else if (2), then ∵ φ ≤ lim←−
n→∞

fn, ∃ n′ s.t. x ∈ En′

=⇒ x ∈
⋃
n

En. Hence Claim 1.

Next, we can also see that

Claim 2 :
∫
En

φ −→
∫
φ

19After reading the proof, it should appear striking to the reader on actually how much the proof depends on this
construction. Both the claims in the following page utilizes this construction En to full extent! Hence, it is advised
(by Instructor) to purse such effective constructions in the problem sheets and your own proofs.
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This can be seen by expanding the simplicity of φ as follows:

lim←−
n→∞

∫
En

φ =
N∑
i=1

ai lim←−
n→∞

λ (Ai ∩ En)

=
N∑
i=1

aiλ

Ç⋃
n

Ai ∩ En

å
∵ {Ai ∩ En}n is increasing.

=
N∑
i=1

aiλ

Ç
Ai ∩

⋃
n

En

å
=

N∑
i=1

aiλ (Ai ∩ R) Claim 1.

=
N∑
i=1

aiλ (Ai) =
∫
φ Hence Claim 2.

Finally, take limit in (13) to get:

lim←−
n→∞

∫
fn ≥ lim←−

n→∞

∫
En

fn ≥ α lim←−
n→∞

∫
En

φ

= α
∫
φ Claim 2.

lim←−
n→∞

∫
fn ≥

∫
φ ∵ 0 < α < 1 is arbitrary.

Hence, for any simple function φ ≤ lim←−n→∞ fn, we have concluded that
∫
φ ≤ lim←−n→∞

∫
fn, hence

it must be true that ∫
lim←−
n→∞

fn = sup
φ≤lim←−n

fn

∫
φ ≤ lim←−

n→∞

∫
fn.

Combining the converse inequality at the beginning, we hence get the desired result.

Proposition 4.2.2. Consider a Lebesgue measurable function f : R→ [0,+∞). Then,∫
fdx = 0⇐⇒ f ≡ 0 almost everywhere.

Proof. L =⇒ R : Consider f is a non-negative real-valued function whose integral is zero.
Construct the set,

En =
ß
x | f(x) ≥ 1

n

™
.

In order to show that f ≡ 0 almost everywhere, it is hence sufficient to show that λ (En) = 0 ∀ n ∈ N
because it equivalently proves that the measure of the set where f is greater than zero is zero.
Now, consider the following function

gn = 1
n
χEn .
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Clearly, because gn is a simple function and

1
n
χEn(x) =

® 1
n if f(x) ≥ 1

n

0 otherwise

which clearly means that 1
nχEn ≤ f , therefore,∫

f = 0 = sup
φ≤f

∫
φ

≥
∫ 1
n
χEn

= 1
n
λ (En)

=⇒ λ (En) = 0 ∀ n ∈ N.

R =⇒ L : If a non-negative real-valued measurable function f is 0 almost everywhere, then for
any simple function φ ≤ f , φ must also be 0 almost everywhere, so that

∫
φ =

N∑
i=1

αiλ (Ei)

= 0

Since this is true for any simple φ ≤ f , therefore the supremum of all such
∫
φ must also be zero,

to make
∫
f = 0.

A simple corollary of the MCT tells us an equivalent story for decreasing sequence of maps
where first term is L1, as compared to the statement of MCT.

Corollary 4.2.3. Let (X,M,µ) be a measure space and let fn : X → R be a sequence of positive
measurable maps. Suppose

1. limnfn(x) exists and is equal to f(x) for some measurable f : X → R,
2. fn(x) ≥ fn+1(x) for all x ∈ X and n ∈ N,
3. f1(x) ∈ L1.

Then,

limn→∞

∫
X
fndµ =

∫
X
limn→∞fndµ.

Proof. Since f ≤ fn ≤ f1, therefore f ∈ L1. Now, consider the (not necessarily positive!) mea-
surable sequence gn = f − fn. Since fn decreases, therefore gn increases. Now, limngn = 0 as
limnfn = f . Since 0 ∈ L1, therefore Hence, by MCT, we get that limn

∫
X gndm =

∫
X limngndm.

Expanding it and using the fact that f is in L1 (so you can cancel
∫
X fdm both sides!) gives the

desired result.

Another important result which is of tremendous usability is the fact that Riemann and Lebesgue
agree on compact domains(!)
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Theorem 4.2.4. (Riemann = Lebesgue on [a, b]) Let [a, b] ⊆ R be a closed bounded interval and
f : [a, b] → R be a Riemann integrable map. Then, the Riemann integral and Lebesgue integral of
f agrees on [a, b]. That is, ∫ b

a
f(x)dx =

∫
[a,b]

fdm

where m is the Lebesgue measure of R.

4.3 Fatou’s lemma

Theorem 4.3.1. If {fn} is a sequence of Lebesgue measurable functions from R to [0,+∞), then,∫
lim inf

n
fn ≤ lim inf

n

∫
fn.

Proof. We will use Monotone Convergence Theorem to prove this result. Define

gk = inf
n≥k

fn

Therefore gk ≤ gk+1 with gk ≤ fn∀ n ≥ k. Then,∫
gk ≤

∫
fn∀ n ≥ k.

This implies that ∫
gk ≤ inf

n≥k

∫
fn.

Now, by MCT, ∫
lim←−
k

gk = lim←−
k

∫
gk

Therefore

lim←−
k→∞

inf
n≥k

∫
fn = lim inf

k

∫
fk ≥ lim←−

k→∞

∫
gk

=
∫

lim←−
k→∞

gk

=
∫

lim←−
k→∞

inf
n≥k

fn

=
∫

lim inf
k

fk

Hence Proved.

Remark 4.3.2. In fact,

Fatou’s Lemma ⇐⇒ Monotone Convergence Theorem.
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4.4 Integration of general R-Valued measurable functions

With the notion of integration of non-negative measurable function in place, it’s not difficult to see
how can one extend the same notion to measurable functions which takes value in the whole real
line.

Definition 4.4.1. (Lebesgue integral of a Real-Valued measurable Function) Consider
f : R→ R to be a measurable function such that

1.
∫
f+dx <∞, and

2.
∫
f−dx <∞.

If the above two conditions are satisfied, then f is called Lebesgue Integrable. Then, the Lebesgue
integral of f is defined as

⋆
∫
fdx =

∫
f+dx−

∫
f−dx ⋆

Remark 4.4.2. It’s important to note that the integral
∫
fdx =

∫
f+dx−

∫
f−dx is easily defined

for any measurable function, but f is called Lebesgue integral only when it’s value is finite!

Definition 4.4.3. (Lebesgue integral over a measurable set) Consider f : R→ R is measur-
able, f · χE is an Lebesgue Integrable function and E ⊆ R is also measurable. Then,∫

E
fdx =

∫
f · χEdx.

4.4.1 Basic properties of general Lebesgue integral

The following properties are direct extensions of Proposition 4.1.5 to the bigger class of Lebesgue
Integrable functions.

Proposition 4.4.4. Consider f, g : R→ R to be Lebesgue Integrable functions. Then,
1. For any α ∈ R, we have: ∫

αfdx = α
∫
fdx.

2. f + g is also Lebesgue Integrable, with∫
(f + g)dx =

∫
fdx+

∫
gdx.

3. If f ≡ 0 almost everywhere on R, then, ∫
fdx = 0.

4. If f ≤ g almost everywhere on R, then,∫
fdx ≤

∫
gdx.

5. If A and B are measurable sets such that A ∩B = Φ, then,∫
A∪B

fdx =
∫
A
fdx+

∫
B
fdx.
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Proof. S1 : Consider the case that α ≥ 0. Then,

(αf)+ = max(αf, 0) = αmax(f, 0) = αf+

(αf)− = −min(αf, 0) = −αmin(f, 0 = αf−

and since
∫
f+dx <∞ and

∫
f−dx <∞, therefore αf is also Lebesgue Integrable, with the integral

given as ∫
αf =

∫
αf+ −

∫
αf−

= α

Å∫
f+ −

∫
f−
ã

= α
∫
f

Now consider that α < 0, then

(αf)+ = max(αf, 0) = − |α|min(f, 0) = |α| f−

(αf)− = −min(αf, 0) = |α|max(f, 0) = |α| f+

Hence, αf is again Lebesgue Integrable, with the integral calculated as:∫
αf =

∫
(αf)+ −

∫
(αf)− = |α|

Å∫
f− −

∫
f+
ã
= − |α|

∫
f = α

∫
f.

S2 : First,

(f + g)+ ≤ f+ + g+

(f + g)− ≤ f− + g−

for all x ∈ R, so that f + g is Lebesgue Integrable. Now,

f + g = (f + g)+ − (f + g)−

= f+ − f− + g+ − g−

therefore,

(f + g)+ − (f + g)− = f+ − f− + g+ − g−

(f + g)+ + f− + g− = (f + g)− + f+ + g+∫
(f + g)+ + f− + g− =

∫
(f + g)− + f+ + g+∫

(f + g)+ +
∫
f− +

∫
g− =

∫
(f + g)− +

∫
f+ +

∫
g+ (∵ of Proposition 4.1.5, S3.)∫

(f + g)+ −
∫
(f + g)− =

∫
f+ −

∫
f− +

∫
g+ −

∫
g−∫

(f + g)+ −
∫
(f + g)− =

∫
f +

∫
g
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S3 : Given to us is that f ≡ 0 almost everywhere. This means that

{x ∈ R | f(x) ̸= 0} is of measure 0.

We can write it equivalently as the union of the following two disjoint sets

{x ∈ R | f(x) ̸= 0} = {x | f(x) > 0} ∪ {x ∈ R | f(x) < 0}.
λ ({x ∈ R | f(x) ̸= 0}) = λ

(
{x | f+(x) > 0}

)
+ λ

(
{x | f−(x) < 0}

)
= 0

Since measure is positive valued by definition, therefore, these two have to be individually be zero.
That is,

λ
(
{x | f+(x) > 0}

)
= λ

(
{x | f−(x) < 0}

)
= 0

Now, by Proposition 4.2.2, we get that ∫
f+ =

∫
f− = 0

which implies that ∫
f =

∫
f+ −

∫
f− = 0.

S4 :

Proposition 4.4.5. If f : R→ R is a Lebesgue Integrable Function, then,∣∣∣∣∫ fdx

∣∣∣∣ ≤ ∫
|f | dx

Proof. Simply note the following:∣∣∣∣∫ fdx

∣∣∣∣ = ∣∣∣∣∫ (f+ − f−) dx∣∣∣∣
=
∣∣∣∣∫ f+dx−

∫
f−dx

∣∣∣∣
≤
∣∣∣∣∫ f+dx

∣∣∣∣+ ∣∣∣∣∫ f−dx

∣∣∣∣
=

∫
f+dx+

∫
f−dx

=
∫ (

f+ + f−
)
dx

=
∫
|f | dx.
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4.5 Dominated convergence theorem

Theorem 4.5.1. Let {fn} be a sequence of measurable functions such that there exists a Lebesgue
Integrable function g which satisfies

|fn| ≤ g ∀ n.
Suppose that the limit lim←−n→∞ fn exists. Then lim←−n→∞ fn is Lebesgue Integrable and,

lim←−
n→∞

∫
fndx =

∫
lim←−
n→∞

fndx.

Proof. Since {fn} is a sequence of measurable functions, therefore, lim←−n→∞ fn = f is also measur-
able and |f | is bounded by g. But since g is Lebesgue Integrable, and fn and f are bounded by g,
then each fn and also f are also Lebesgue Integrable (Trivial to see).
Now, {g + fn} is a sequence of measurable functions. Moreover, since fn ≤ g for all n, therefore
fn + g ≥ 0, so that {fn + g} is a sequence of non-negative measurable functions.
Now using Fatou’s Lemma (Theorem 4.3.1), we get,∫

lim inf
n

(g + fn)dx ≤ lim inf
n

∫
(g + fn)dx∫ (

g + lim inf
n

fn
)
dx ≤

∫
gdx+ lim inf

n

∫
fndx∫

gdx+
∫

lim inf
n

fndx ≤
∫
gdx+ lim inf

n

∫
fndx∫

lim inf
n

fndx ≤ lim inf
n

∫
fndx ∵ g is L.I., so

∫
gdx <∞∫

fdx ≤ lim inf
n

∫
fndx ∵ lim sup

n
xn = lim inf

n
xn = lim←−

n

xn.

Similarly, since {g − fn} is also a sequence of non-negative measurable functions, therefore we can
use Fatou’s Lemma to conclude:∫

lim inf
n

(g − fn)dx ≤ lim inf
n

∫
(g − fn)dx∫

lim inf
n

(−fn) dx ≤ lim inf
n

Å
−

∫
fndx

ã
−

∫
lim sup

n
fndx ≤ − lim sup

n

∫
fndx ∵ lim inf

n
(−xn) = − lim sup

n
xn.∫

fdx ≥ lim sup
n

∫
fndx

We hence have that
lim sup

n

∫
fndx ≤

∫
fdx ≤ lim inf

n

∫
fndx

But it is also true that
lim inf

n

∫
fndx ≤ lim sup

n

∫
fndx.

Hence,
lim inf

n

∫
fndx = lim sup

n

∫
fndx = lim←−

n

∫
fndx =

∫
fdx

Hence proved.
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Proposition 4.5.2. Consider {fn} to be a sequence of Lebesgue Integrable functions such that

∞∑
n=1

∫
|fn| dx <∞.

Then,
1. The series

∞∑
n=1

fn(x) converges almost everywhere on R.

2. The sum

f =
∞∑
n=1

fn is Lebesgue Integrable.

3. The integral is ∫ ∞∑
n=1

fndx =
∞∑
n=1

∫
fndx.

Proof. S1. Denote the following:

ϕ =
∞∑
n=1
|fn|

Clearly, ϕ is a non-negative measurable function. Since we know that Lebesgue integral for non-
negative functions is countably additive, therefore,

∫
ϕdx =

∞∑
n=1

∫
|fn| dx <∞.

Now, if
∫
ϕ < ∞, then ϕ is finite almost everywhere on R20. Now, since ∑∞

n=1 fn is absolutely
convergent almost everywhere (last line), hence it is convergent almost everywhere too on R.

S2. Since |∑∞
n=1 fn| ≤

∑∞
n=1 |fn| = ϕ < ∞ (almost everywhere) and since we can modify the

set where ϕ is not defined (infinite) arbitrarily to make a new function which would be measurable
and equal to ∑∞

n=1 fn almost everywhere, therefore ∑∞
n=1 fn would be measurable.

S3. Define

φn =
n∑

i=1
fi.

Clearly, φn ≤ |
∑n

i=1 fi| ≤
∑n

i=1 |fi| ≤
∑∞

i=1 |fi| = ϕ. Therefore, φn is a sequence of measurable
functions and φn ≤ ϕ where ϕ is an Integrable function (given). Therefore, using Dominated

20For a non-negative measurable function f with given that
∫
fdx < ∞, the set E = {x ∈ R | f(x) = ∞} together

with supposition that λ (E) > 0 is such that; since
∫
fdx = supφ≤f

∫
φ, therefore, if we take φ = nχE for any

n > 0 then nχE < f . Hence
∫
fdx > nλ (E) for all n, so that

∫
fdx = ∞. But it’s a contradiction to

∫
fdx < ∞.

Therefore λ (E) = 0.
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Convergence Theorem (4.5.1), we get,

lim←−
n

∫
φndx =

∫
lim←−
n

φndx

lim←−
n

∫ n∑
i=1

fidx =
∫

lim←−
n

n∑
i=1

fidx

lim←−
n

n∑
i=1

∫
fidx =

∫ ∞∑
i=1

fidx ∵ Proposition 4.4.4, S2

∞∑
i=1

∫
fidx =

∫ ∞∑
i=1

fidx.

Hence proved.

4.6 Applications-II : Integration

We present important applications of the above results, showcasing the power of their usage. At
parts here, we are proving results from Folland’s exercises.

Lemma 4.6.1. The Lebesgue integral ∫ 1

0

xp − 1
log x dx

exists for p > −1.

Proof. The first idea is to break p into cases. In some cases, it is obvious why the above integral
exists, in others, we have to work. Denote fp(x) = xp−1

log x .
Act 1 : p > 0

In this regime, we can bound the
∫ 1
0 fp(x)dx by a fixed quantity. Indeed, since fp(x) is positive, it

will suffice. Observe that
xp − 1
log x = 1− xp

− log x ≤
1

− log x.

Now, − log x can be lower bounded by 1− ax for some 0 < a < 1 by an easy graphical observation.
Hence, continuing above, we get

xp − 1
log x ≤

1
1− ax.

The integral then translates to∫ 1

0

xp − 1
log x dx ≤ −

∫ 1

0

1
1− axdx = − log(1− a)

a
<∞.

Act 2 : −1 < p < 0
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This is the regime in which we got to work a bit. First, from some graphical observations about
xp − 1 and log x, we conclude the following:

1. xp − 1 is positive and log x is negative, so that xp−1
log x is negative.

2. Viewing 1/ log x as an attenuating factor21, we see that 0 < 1/ log x < −1 for 0 < x < 1/e
and 1/ log x ≤ −1 for 1/e ≤ x < 1.

3. On 1/e < x < 1, log x > 1− x. Hence 1/ log x < 1/1− x.
With this, we write our integral as∫ 1

0

xp − 1
log x dx =

∫ 1/e

0

xp − 1
log x dx+

∫ 1

1/e

xp − 1
log x dx

<
∫ 1/e

0
(1− xp)dx+

∫ 1

0

xp − 1
x− 1 dx

Now the first integral is bounded while the second is bounded as the derivative of xp exists at x = 1.

Lemma 4.6.2. Let f : R → R ∪ {∞,−∞} be a measurable map with (R,M,m) be a measure
structure on R. If there exists M > 0 such that for all E ∈ M such that 0 < m(E) < ∞ we have
that ∣∣∣∣ 1

m(E)

∫
E
fdm

∣∣∣∣ < M,

then

|f(x)| ≤M a.e..

Proof. Let A = {x ∈ R | |f(x)| > M}. We can write it as A = A+ ∪ A− where A+ = {x ∈
R | f(x) > M} and A− = {x ∈ R | f(x) < −M}. Clearly these are disjoint and covers A. Hence,
we wish to show

m(A) = m(A+) +m(A−) = 0

which is equivalent to showing that m(A+) = m(A−) = 0 as measures are always positive.

Act 1 : m(A+) = 0.

The way A+ and A− are defined, it is natural for the next step to be a consideration of integral of
f over these. Indeed, we observe that, due to the fact that f ∈ L1 and A+ ⊆ R

Mm(A+) =
∫
A+

M ≤
∫
A+
|f | ≤

∫
R
|f | dm <∞.

Thus,∞ >
∫
A+

fdm ≥Mm(A+). Note we dropped the absolute sign as f is positive on A+. Hence
m(A+) ̸=∞.

21we view 1/ log x as an attenuating factor instead of xp − 1 as if we remove 1/ log x, then we would be left with
xp − 1, whose integral is easy to find.
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Now suppose 0 < m(A+) <∞. Then by hypothesis, we can write∫
A+

fdm < Mm(A+),

which is a contradiction. Hence m(A+) = 0.

Act 2 : m(A−) = 0.

Again using f ∈ L1 and A− ⊆ R, we get∫
A−
|f | dm ≤

∫
R
|f | dm <∞.

Since
∣∣∣∫A−

fdm
∣∣∣ ≤ ∫

A−
|f | dm and since

∫
A−

fdm <
∫
A−
−Mdm = −Mm(A−) so that

∣∣∣∫A−
fdm

∣∣∣ >
Mm(A−), therefore we get

Mm(A−) <
∣∣∣∣∫

A−
fdm

∣∣∣∣ ≤ ∫
A−
|f | dm <∞.

Hence m(A−) ̸=∞. Now with this, if we assume ∞ > m(A−) > 0, then by hypothesis, we obtain∣∣∣∣∫
A−

fdm

∣∣∣∣ ≤ m(A−)M,

which contradicts the above inequality. Hence m(A−) = 0.

Lemma 4.6.3. Let f : R→ R be a measurable map where the domain R has a measure structure
(R,M,m). If f ∈ L1 and f ≥ 0, then for all E ∈M

limn→∞

∫
E
f

1
ndm = m(E).

Proof. The fundamental observation that one has to make here is that if y ∈ [0,∞), then y1/n

increases to 1 on (0, 1] and y1/n decreases to 1 on (1,∞). Indeed, pick any E ∈M and define

E≤ := E ∩ {x ∈ R | f(x) ≤ 1}
E> := E ∩ {x ∈ R | f(x) > 1}.

We thus have a disjoint measurable cover of E and hence m(E) = m(E≤) +m(E>). Hence we get
that

limn→∞

∫
E
f

1
ndm = limn→∞

∫
E≤

f
1
ndm+ limn→∞

∫
E>

f
1
ndm.

Now, we have two integrals to consider.

Act 1 : limn→∞
∫
E≤

f
1
ndm = m(E≤).
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Since f 1
n is a sequence of positive measurable maps increasing to 1, therefore by MCT, we get that

limn→∞

∫
E≤

f
1
ndm =

∫
E≤

limn→∞f
1
ndm

=
∫
E≤

1dm

= m(E≤).

Act 2 : limn→∞
∫
E>

f
1
ndm = m(E>).

It is this place where we will have to use the fact that f ∈ L1. Since f 1
n is a sequence of positive

measurable maps decreasing to 1 where f is L1. Hence, by Corollary 4.2.3 of MCT, we get that

limn→∞

∫
E>

f
1
ndm =

∫
E>

limn→∞f
1
ndm

=
∫
E>

1dm

= m(E>).

This completes the proof, as we have showed limn→∞
∫
E f

1
ndm = limn→∞

∫
E≤

f
1
ndm+limn→∞

∫
E>

f
1
ndm =

m(E≤) +m(E>) = m(E).

Lemma 4.6.4. Let (X,M,m) be a measure space and f : X × [a, b] → C be a function such that
f(x, t) : X → C is measurable for all t ∈ [a, b]. Let F (t) :=

∫
X f(x, t)dm. Suppose there exists

g ∈ L1 such that

|f(x, t)| ≤ |g(x)| ∀x ∈ X

for every t ∈ [a, b]. If limt→t0f(x, t) = f(x, t0) for every x ∈ X, then

limt→t0F (t) = F (t0).

Proof. Clearly we should use DCT. However, we first need to get a sequence of functions for
it. Indeed, since we know that limtn→t0f(x, t) = f(x, t0), thus for any sequence tn → t0, we
have limn→∞f(x, tn) = f(x, t0). Hence we may define fn(x) = f(x, tn) which are by definition
measurable. Moreover, we have |fn(x)| ≤ |g(x)| for all x ∈ X where g ∈ L1. Hence, by DCT, we
obtain

limn→∞F (tn) = limn→∞

∫
X
fn(x)dm =

∫
X
limn→∞fn(x)dm

=
∫
X
f(x, t0)dm

= F (t0).

Since tn → t0 is arbitrary, therefore limt→t0F (t) = F (t0).
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5 The Lp spaces
We now turn into some more abstract formulation for analysis of measurable functions, by analyzing
their class formed under certain definitions.

Definition 5.0.1. (Lp norm of a function) Consider any function f and p > 0. The Lp norm
of f , denoted ∥f∥p, is defined as:

∥f∥p =
Å∫
|f |p
ã 1

p

Definition 5.0.2. (The Lp Space) Consider (X,A, µ) to be a measure space. Suppose p > 0.
Then, the class of measurable functions defined as:

Lp (X,A, µ) = {f : X → R | ∥f∥p <∞} /(f ∼ g ⇐⇒ f = g a.e.).

Moreover, two measurable functions f, g ∈ Lp (X,A, µ) are said to be equal if and only if:

f = g almost everywhere on R.

Remark 5.0.3. Note that Lp (X,A, µ) is just the class of Integrable functions when p = 1.

Remark 5.0.4. Note carefully the use of word class rather than set. It is because that an element
of Lp (X,A, µ) is not a function, but a class of functions identified by the relation f ∼ g if and only
if f = g almost everywhere. But for out purposes, one can get away by writing f ∈ Lp (X,A, µ) to
mean that f is measurable and ∥f∥p <∞ so that |f |p is Integrable.

5.1 Algebraic properties of Lp space

We will now see some of the properties of Lp Spaces which reflects it’s algebraic nature. In partic-
ular, we would prove that Lp is a vector space for any p > 0. But proving that ∥ · ∥p is actually the
norm for functions in Lp (p ≥ 1) would require a lot of construction.

5.1.1 Lp is a vector space

Proposition 5.1.1. Consider (X,A, µ) to be a measure space. Then, the Lp space

Lp (X,A, µ) is a Vector Space.

Proof. First, let’s deal with the scalar multiplication. Note that the ground field here is R. For
any a, b ∈ R and f, g ∈ Lp (X,A, µ), we trivially have:

(ab)f = a(bf)
1f = f

a(f + g) = af + ag

(a+ b)f = af + bf

Now, to show that Lp(X,A, µ) is an abelian group under addition, the associativity, commutativity,
identity (f such that f = 0 a.e.) and inverse (for f , −f is the inverse) follows trivially. What



86 5 THE Lp SPACES

remains to be shown is that for f, g ∈ Lp (X,A, µ), f + g ∈ Lp (X,A, µ) too. To see this, note that
we know already, that f + g is measurable, what we need to then show is that

To Show : ∥f + g∥p <∞

for any p > 0. All we need to show is therefore,∫
|f + g|p <∞

To see this, note:

|f + g|p ≤ (|f |+ |g|)p

≤ 2pmax (|f |p , |g|p)
≤ 2p (|f |p + |g|p)

By Proposition 4.4.4 S4, ∫
|f + g|p ≤ 2p

Å∫
|f |p +

∫
|g|p
ã
<∞

Therefore, Lp (X,A, µ) is a Vector Space.

5.1.2 norm on Lp vector space

We first see that the norm defined at the beginning is actually not a norm in the case when p < 1.
Therefore, Lp Vector Space with norm ∥ · ∥p would make sense only when p ≥ 1.

Definition 5.1.2. (Norm on a vector space) Consider a Vector Space (V,R). A norm ∥ · ∥ on
V is a function

∥ · ∥ : (V,R)→ [0,∞)

satisfying following three conditions:
1. For any x ∈ (V,R),

∥x∥ = 0 ⇐⇒ x = 0V
2. For any x ∈ (V,R) and α ∈ R,

∥αx∥ = |α| ∥x∥

3. For any x, y ∈ (V,R)
∥x+ y∥ ≤ ∥x∥+ ∥y∥

Now suppose 0 < p < 1, then, it is simple to see ∥ · ∥p does not follow Triangle Inequality on
Lp (X,A, µ). To see this, note that for any a, b > 0 and p ∈ (0, 1), we have:

ap + bp > (a+ b)p (14)

This comes naturally from the relation:

tp−1 > (a+ t)1−p
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and then it’s integration.
Using (14), we can see that for any two sets E,F ∈ A such that E ∩ F = Φ, if we write

a = µ (E)1/p =
Å∫
|χE |p

ã 1
p

= ∥χE∥p

b = µ (F )1/p =
Å∫
|χF |p

ã 1
p

= ∥χF ∥p

then,

∥χE + χF ∥p =
Å∫
|χE + χF |p

ã 1
p

=
Å∫

(χE + χF )p
ã 1

p

=
Å∫ (

χp
E + χp

F

)ã 1
p

∵ χE · χF = χE∩F = χΦ = 0

=
Å∫

χp
E +

∫
χp
F

ã 1
p

= (ap + bp)
1
p

> a+ b Take power 1
p
both sides of Eq. (14)

= a+ b

= ∥χE∥p + ∥χF ∥p

Hence, there exists functions in Vector Space Lp (X,A, µ) for p ∈ (0, 1) such that ∥ · ∥p does not
satisfies the ∆-Inequality, hence ∥ · ∥p is not a norm on the vector space Lp (X,A, µ) for p ∈ (0, 1).

But what about p ≥ 1? It turns out we need more revelations, in terms of results, to prove
that for p ≥ 1, ∥ · ∥p is a norm on the vector space Lp (X,A, µ). We now discuss those revelations.

Lemma 5.1.3. Consider a ≥ 0, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b.

Proof. Consider the convex function ex. Since it is convex, therefore,

aλb1−λ = eλ ln a+(1−λ) ln b

≤ λeln a + (1− λ)eln b

= λa+ (1− λ)b

5.1.3 Hölder’s inequality

One of the important & frequently used inequalities which would be a stepping stone to show that
∥ · ∥p is a norm on Lp (X,A, µ) for p ≥ 1.
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Theorem 5.1.4. (Hölder’s inequality) Consider 1 < p, q <∞ such that

1
p
+ 1
q
= 1.

Then, for any f ∈ Lp (X,A, µ) and g ∈ Lq (X,A, µ)
1.

fg ∈ L1 (X,A, µ)
2. ∫

|fg| ≤
Å∫
|f |p
ã 1

p

·
Å∫
|g|q
ã 1

q

.
OR

∥fg∥1 ≤ ∥f∥p · ∥g∥q

Proof. From the above Lemma, we have that for any a > 0 and b > 0, the following holds:

a
1
p b

1
q ≤ a

p
+ b

q

Now, if we set

a = |f |p

(∥f∥p)p

b = |g|q

(∥g∥q)q

and then use the inequality in above lemma, we get:

|f | |g|
∥f∥p∥g∥q

≤ 1
p
· |f |

p

(∥f∥p)p
+ 1
q
· |g|

q

(∥g∥q)q
.

Now, because |f | |g| = |fg|, therefore from above inequality, we see that∫
|fg| <∞

hence fg ∈ L1 (X,A, µ). Furthermore, since we know that inequality is preserved in Integration,
therefore integrating the above inequality leads to the following:∫ |f | |g|

∥f∥p∥g∥q
≤

∫ 1
p
· |f |

p

(∥f∥p)p
+

∫ 1
q
· |g|

q

(∥g∥q)q
1

∥f∥p∥g∥q

∫
|fg| ≤ 1

p (∥f∥p)p
∫
|f |p + 1

q (∥g∥q)q
∫
|g|q

∥fg∥11
∥f∥p∥g∥q

≤ 1
p
+ 1
q
= 1

∥fg∥1 ≤ ∥f∥p∥g∥q

Hence proved.
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Remark 5.1.5. With Hölder’s Inequality, we are one step closer to proving that ∥f + g∥p ≤
∥f∥p + ∥g∥p for any f, g ∈ Lp (X,A, µ) where 1 ≤ p < ∞, to formally make ∥ · ∥p a norm on the
vector space Lp (X,A, µ). This is finally proved by Minkowski’s Inequality which we prove
now:

5.1.4 Minkowski’s inequality

Theorem 5.1.6. (Minkowski’s inequality) : Consider any f, g ∈ Lp (X,A, µ) and 1 ≤ p <∞.
Then Å∫

|f + g|p
ã 1

p

≤
Å∫
|f |p
ã 1

p

+
Å∫
|g|p
ã 1

p

OR,

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Proof. Since |f + g| ≤ |f |+|g|, therefore if p = 1, then the result follows immediately. Now consider
p > 1. Moreover, suppose that q > 1 is such that

1
p
+ 1
q
= 1.

Note that this also leads to following equations

(p− 1)q = p

p

Å
1− 1

q

ã
= 1
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Now, with this, we can bound ∥f + g∥pp as follows:

∥f + g∥pp =
∫
|f + g|p

=
∫
|f + g| · |f + g|p−1

≤
∫

(|f |+ |g|) · |f + g|p−1

=
∫
|f | · |f + g|p−1 +

∫
|g| · |f + g|p−1

=
∫ ∣∣∣|f | · |f + g|p−1

∣∣∣+ ∫ ∣∣∣|g| · |f + g|p−1
∣∣∣

=
∫ ∣∣f · (f + g)p−1∣∣+ ∫ ∣∣g · (f + g)p−1∣∣

= ∥f · (f + g)p−1∥1 + ∥g · (f + g)p−1∥1
≤ ∥f∥p · ∥(f + g)p−1∥q + ∥g∥p · ∥(f + g)p−1∥q Hölder’s Inequality (5.1.4)
= (∥f∥p + ∥g∥p) · ∥(f + g)p−1∥q

= (∥f∥p + ∥g∥p) ·
Å∫ ∣∣(f + g)p−1∣∣qã 1

q

= (∥f∥p + ∥g∥p) ·
Å∫

(f + g)(p−1)q
ã 1

q

= (∥f∥p + ∥g∥p) ·
Å∫

(f + g)p
ã 1

q

= (∥f∥p + ∥g∥p) ·
Å∫

(f + g)p
ã 1

p
· p
q

= (∥f∥p + ∥g∥p) · ∥f + g∥
p
q
p

∥f + g∥pp

∥f + g∥
p
q
p

≤ (∥f∥p + ∥g∥p)

∥f + g∥
p
Ä
1− 1

q

ä
p ≤ (∥f∥p + ∥g∥p)

∥f + g∥p ≤ ∥f∥p + ∥g∥p
Hence proved.

Remark 5.1.7. ⋆ Hence, in continuation of our effort to prove that ∥ · ∥p is a norm on the
vector space Lp (X,A, µ) for 1 ≤ p < ∞, we can now satisfactorily say that it is indeed such,
especially by Minkowski’s Inequality just proved. One also calls a vector space with norm a norm
space.

5.2 Properties of L1 maps

We would in this section quickly portray some of the easy properties of L1-maps which are good
to keep in mind. The first tells us that a high schooler’s dream of claiming a map to be zero if
integral is zero is almost true for L1 maps.
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Lemma 5.2.1. Let f : X → C be a measurable map where (X,M,m) is a measure space. Suppose
f ∈ L1. Then,

∫
F fdm = 0 for all F ∈M if and only if f = 0 almost everywhere.

Proof. One side is trivial. For the other, we may reduce to the case when f is real valued. Let
A = {x ∈ X | f−(x) > 0}. As f− is measurable, therefore A ∈ M . Since

∫
A fdm = 0, therefore∫

A f
+ − f−dm =

∫
A f

+ =
∫
A f

−dm. If x ∈ A, then f−(x) > 0, and hence f+(x) = 0. Hence∫
A f

+dm = 0 and hence
∫
A f

−dm = 0. Since f− ≥ 0, therefore f− = 0 almost everywhere.
We thus have

∫
X fdm =

∫
X f+dm = 0 as X ∈ M . Since f+ ≥ 0, therefore f+ = 0 almost

everywhere.

Lemma 5.2.2. Let (X,M,m) be a measure space and f : X → R be a measurable map with f ≥ 0.
Then,

m({x ∈ X | f(x) =∞}) = 0.

Proof. This again uses the standard idea of breaking the set which we wish to measure into sets
whose bounds on measure is known. Indeed, observe that

E := {f(x) =∞} =
⋂
n∈N
{f(x) > n} =:

⋂
n∈N

En.

Moreover, {En} is decreasing. Thus,

m(E) = limn→∞m(En).

Now we obtain bound on m(En). Indeed,

nm(En) =
∫
En

ndm ≤
∫
En

f(x)dm ≤
∫
X
f(x)dm =: I <∞.

Thus m(En) ≤ I/n. Hence limn→∞m(En) = 0.

5.3 Completeness of norm space Lp (X,A, µ)
We now see that the norm space Lp (X,A, µ) is actually a complete metric space on the metric
induced by the norm! But before stating the result, let us revisit the definitions of series, Cauchy
sequences & completeness for any arbitrary norm space (V,R, ∥ · ∥).

5.3.1 General definitions and results in normed spaces

Definition 5.3.1. (Convergent sequence) Let (V,R, ∥ · ∥) be a norm space and {xn} be a
sequence in it. Then {xn} is said to converge to x ∈ (V,R, ∥ · ∥) if

∥xn − x∥ −→ 0 as n→∞.

Definition 5.3.2. (Cauchy sequence) Let (V,R, ∥ · ∥) be a norm space and {xn} be a sequence
in it. Then {xn} is said to be a Cauchy sequence in (V,R, ∥ · ∥) if

∀ϵ > 0, ∃ N ∈ N such that ∥xn − xm∥ < ϵ ∀ n,m ≥ N.
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Definition 5.3.3. (Complete norm Space or Banach Space) A norm space (V,R, ∥·∥) is called
a Complete Metric Space or a Banach Space if

Every Cauchy sequence in (V,R, ∥ · ∥) is convergent in (V,R, ∥ · ∥).

Definition 5.3.4. (Series in a norm Space) A series in a norm space (V,R, ∥ · ∥) is defined as
∞∑
n=1

xn where xn ∈ (V,R, ∥ · ∥).

Definition 5.3.5. (Convergent series in a norm space) A series ∑∞
n=1 xn in a norm space

(V,R, ∥ · ∥) is said to be convergent if the sequence

{Sn} where Sn =
n∑

i=1
xi is convergent in (V,R, ∥ · ∥).

Definition 5.3.6. (Absolutely convergent series) Consider a series ∑∞
n=1 xn in a norm space

(V,R, ∥ · ∥). Then it is called absolutely convergent if and only if
∞∑
n=1
∥xn∥ <∞.

We now see the equivalent condition needed for a norm space to become a complete norm space:

Theorem 5.3.7. (Equivalent condition for a Banach space) Suppose that (V,R, ∥ · ∥) is a
norm space. Then,

(V,R, ∥ · ∥) is a Complete norm Space (or Banach Space) ⇐⇒ Every Absolutely Convergent Series is also Convergent in (V,R, ∥ · ∥).

Proof. L =⇒ R : Suppose (V,R, ∥ · ∥) is a Banach Space. Hence any Cauchy sequence in it
converges at a point within it. Now, take any Absolutely Convergent series, say,

∞∑
n=1

xn

in (V,R, ∥ · ∥). This means that
∞∑
n=1
∥xn∥ <∞.

Now this also means that if we write Sn = ∑n
i=1 xi, then

∥Sn − Sm∥ = ∥
n∑

i=1
xi −

m∑
i=1

xi∥

= ∥
m∑
i=n

xi∥

≤
m∑
i=n

∥xi∥
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Now since ∑∞
n=1 xn is absolutely convergent, therefore,

m∑
i=n

∥xi∥ ≤
∞∑
i=1
∥xi∥ <∞ ∀ n ≤ m ∈ N

also with the fact that ∑m
i=n ∥xi∥ −→ 0 as n,m→∞. Hence,

∥Sn − Sm∥ <∞ and ∥Sn − Sm∥ → 0 as n,m→∞.

Hence, {Sn} is a Cauchy sequence in (V,R, ∥ · ∥) and thus is convergent. Therefore, ∑∞
i=1 xi is also

convergent.

R =⇒ L : Suppose that (V,R, ∥ · ∥) is a norm space with given that every absolutely con-
vergent series converges. Since we need to show that (V,R, ∥ · ∥) is then a Banach space, hence we
now consider any arbitrary Cauchy sequence, say, {xn}.
Now, construct a new sequence from the taken Cauchy sequence {xn} as {yn} defined by the
following:

y1 = xN1 where N1 is such that ∥xn − xm∥ <
1
21 ∀ n,m ≥ N1

y2 = xN2 − xN1 where N2 is such that ∥xn − xm∥ <
1
22 ∀ n,m ≥ N2 > N1

... =
...

yk = xNk
− xNk−1 where Nk is such that ∥xn − xm∥ <

1
2k ∀ n,m ≥ Nk > Nk−1.

Now, with {yn} in hand, we see some peculiar properties of it, such as:

k∑
j=1

yj = xNk
.

and especially, we see that ∑
yn is absolutely convergent(!) as follows:

∞∑
j=1
∥yj∥ ≤ ∥y1∥+

∞∑
j=1
∥yj∥

≤ ∥xN1∥+
∞∑
j=1

1
2j

= ∥xN1∥+ 1 <∞ ∵ {xn} is Cauchy, so ∥xi∥ <∞∀i.

Now, since we are given that every absolutely convergent series in (V,R, ∥ · ∥) converges, therefore∑
yn also converges in (V,R, ∥ · ∥). But convergence of a series means convergence of it’s sequence

of partial sums Sn = ∑n
i=1 yi and Sn = xNn as shown above. Therefore, we have

{xNn} converges in (V,R, ∥ · ∥).
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Since {xNn} converges, therefore, if we suppose xNn → x, then:

∥xn − x∥ = ∥xn − xNn + xNn − x∥
≤ ∥xn − xNn∥+ ∥xNn − x∥ 2nd term → 0.
= ∥xn − xNn∥

Now, we know that n < Nn, therefore, ∃p ∈ N such that Nn > n ≥ Nn−p. Hence

∥xn − xNn∥ <
1

2n−p

and as n→∞, ∥xn − xNn∥ → 0 too. Therefore,

∥xn − x∥ → 0.

Hence, {xn} is a convergent sequence, apart from being Cauchy. Since the choice of {xn} was
arbitrary, therefore all Cauchy sequences are convergent. Hence (V,R, ∥ · ∥) is a Complete norm
Space or Banach Space.

5.3.2 Lp (X,A, µ) is a Banach space!

We now see that Lp (X,A, µ) is a Complete norm Space.
Theorem 5.3.8. The normed vector space Lp (X,A, µ) for 1 ≤ p <∞ is a Banach Space.
Proof. From the Theorem 5.3.7, we just need to equivalently show that any absolutely convergent
series is convergent.
Now consider {fk} in Lp (X,A, µ) to be absolutely convergent, so that

∞∑
k=1
∥fk∥p = B <∞.

Also consider the following sequence:

Gn =
n∑

k=1
|fk| and G =

∞∑
k=1
|fk| .

Clearly, for all n ∈ N we have

∥Gn∥p = ∥
n∑

k=1
|fk| ∥

≤
n∑

k=1
∥fk∥p ≤ B <∞.

Also note that {Gn} is an increasing sequence of positive-valued measurable functions.
Since lim←−n

Gn exists, therefore, by the Monotone convergence theorem (Theorem 4.2.1), we have:∫
lim←−
n

Gp
n =

∫
Gp

= lim←−
n

∫
Gp

n

≤ Bp
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Therefore, we have that
∫
Gp is finite almost everywhere on R (just consider the above result that∫

(Gp − χX) = 0 where µ (X) = Bp.)
Since Gp is finite almost everywhere, therefore G is finite almost everywhere. Hence, we get

∞∑
k=1

fk ≤
∞∑
k=1
|fk|

= G <∞ almost everywhere.

Now write
F =

∞∑
k=1

fk.

Clearly, we have

|F | =
∣∣∣∣∣ ∞∑
k=1

fk

∣∣∣∣∣
≤

∞∑
k=1
|fk|

= G <∞

and since fk are members of the vector space Lp (X,A, µ), we also have that F ∈ Lp (X,A, µ).
Now, we see that ∣∣∣∣∣F − n∑

k=1
fk

∣∣∣∣∣
p

≤ |F |+
∣∣∣∣∣ n∑
k=1

fk

∣∣∣∣∣
≤ G+G = 2G
≤ (2G)p ∵ 1 ≤ p <∞.
<∞

Now since |F −∑n
k=1 fk|

p <∞, hence it is in L1 (X,A, µ).
With the above inequality, we see that |F −∑n

k=1| is finite and is absolutely bounded by another
measurable function for each n, hence, we can now use the Dominated Convergence Theorem
(Theorem 4.5.1) to writeÇ

lim←−
n

∫ ∣∣∣∣∣F − n∑
k=1

fk

∣∣∣∣∣
på 1

p

=
Ç∫

lim←−
n

∣∣∣∣∣F − n∑
k=1

fk

∣∣∣∣∣
på 1

p

lim←−
n

∥F −
n∑

k=1
fk∥p = 0 Note that F =

∞∑
k=1

fk ∈ Lp (X,A, µ).

Hence, we have
∞∑
k=1

fk = F ∈ Lp (X,A, µ)

that is, the absolutely convergent series ∑fk
k=1 is also convergent in the same space! Therefore,

Lp (X,A, µ) is a Banach Space.
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6 Product measure

We now turn to product measure spaces. This concept would help us to formalize the notion of
double (or higher) integration over the so defined product measure spaces. In fact, this concept
actually shows the generality of the concept of measure spaces, which we might discuss afterwards.

To introduce formal notion of product measure space, we need a definition based framework to
work in, which we learn now:

Definition 6.0.1. (Premeasure) Consider an algebra22 A over a set X. The map

µ0 : A −→ [0,+∞]

is called a premeasure if it satisfies:
1. µ0 (Φ) = 0, and
2. For A1, A2, . . . a sequence of disjoint sets from A,

µ0

Ç ∞⋃
i=1

Ai

å
=

∞∑
i=1

µ0 (Ai)

Definition 6.0.2. (Outer measure by Premeasure) Consider an algebra A defined on set X.
Suppose µ0 : A→ [0,+∞] is a premeasure on it. We then define µ∗ as the following:

µ∗ : A −→ [0,+∞]

defined by, for A ⊆ X:

µ∗(A) = inf
® ∞∑

n=1
µ0 (En) | A ⊆

∞⋃
n=1

En where {En} is a sequence in A

´
Proposition 6.0.3. For an algebra A on X, µ∗ satisfies the following:

1. µ∗ is an Outer measure.
2. The collection of µ∗ measurable sets, Mµ∗, is a σ-algebra.
3. The σ-algebra generated by algebra A, B, is a proper subset of Mµ∗. That is,

B ⊊ Mµ∗

Proof. Clearly, µ∗ (Φ) = 0 as, the ∞ sequence of Φ, {An} where Ai = Φ ∀ i, is such that

Φ ⊆
⋃
i

Ai

and ∑
i

µ0 (Ai) = 0.

The next parts has proof similar to one done for Lebesgue Outer measure.
22Note that this just an algebra, not a σ-algebra.
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6.1 Some set theoretic concepts

We would need this concepts for later discussions.

Definition 6.1.1. (Elementary class/family) A collection of sets denoted by E is called an
elementary class if:

1. Φ ∈ E,
2. For any E,F ∈ E, then

E ∩ F ∈ E

3. If E ∈ E, then

∃ {Fn}Nn=1 where Fn’s are disjoint and in E such that Ec =
N⋃

n=1
Fn

Proposition 6.1.2. If E is an elementary class, then the collection A defined as:

For any A ∈ A, ∃ {En}Nn=1 where En’s are disjoint and in E such that A =
N⋃

n=1
En

is an Algebra.

Definition 6.1.3. (Monotone class) A collection of subsets of a set X denoted C ⊆ P (X) is
called a monotone class if:

1. For if {En} is a sequence of monotonically increasing sets from C, that is,

E1 ⊆ E2 ⊆ . . .

then,
∞⋃
n=1
∈ C.

2. For if {En} is a sequence of monotonically decreasing sets from C, that is,

E1 ⊇ E2 ⊇ . . .

then,
∞⋂
n=1
∈ C.

Proposition 6.1.4. Consider a family of monotone class given as {Cn}. Then,⋂
n

Cn is a monotone class.

Proof. Take any sequence of sets {In} from
⋂∞

n=1 Cn such that they are monotonically increasing,

I1 ⊆ I2 ⊆ . . . .
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Now, because each Ii ∈ Cn∀ n and it is a monotonically increasing sequence, therefore ⋃∞
i=1 Ii ∈

Cn ∀ n. Hence,
∞⋃
i=1

Ii ∈
⋂
n

Cn.

Similarly, suppose {Jn} is a monotonically decreasing sequence of sets from ⋂
n Cn,

J1 ⊇ J2 ⊇ . . .

Hence, each Ji ∈ Cn ∀ n. Since each Cn is a monotone class, therefore, ⋂∞
i=1 Ji ∈ Cn ∀ n. Hence,

∞⋂
i=1

Ji ∈
⋂
n

Cn.

Hence proved.

Definition 6.1.5. (Generated monotone class) Consider any S ⊂ P (X). Then, C(S) is called
the monotone class generated by S if C(S) is the smallest monotone class containing S.

Proposition 6.1.6. Let A be an Algebra. Suppose
• C(A) is the Monotone Class generated by A, and
• M is the σ-Algebra generated by A.

Then,
M = C(A).

6.2 Product measure space

Definition 6.2.1. (Measurable rectangle) Suppose (X,A, µ) and (Y,B, ν) are two measure
spaces. Suppose X × Y is the Cartesian Product of the sets X and Y . Then, A × B ⊆ X × Y is
called a measurable Rectangle if

A ∈ A and B ∈ B

Definition 6.2.2. (Elementary rectangles) Suppose (X,A, µ) and (Y,B, ν) are measure spaces.
Denote by K the collection of all measurable Rectangles. Then, we define Elementary Rectangles,
E, as the collection :

For any A ∈ E, ∃ {En}Nn=1 where En’s are disjoint measurable rectangles in K such that A =
N⋃

n=1
En.

Remark 6.2.3. ⋆ It is important to note that elementary rectangles E is an algebra, due to
Proposition 6.1.2.

Definition 6.2.4. (Product of measurable spaces) Denote A×B to be the σ-Algebra gen-
erated by E. Then,

(X × Y,A×B)

is the product of measurable Spaces (X,A) and (Y,B).
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Definition 6.2.5. (Product measure space) Suppose (X,A, µ) and (Y,B, ν) are two measure
Spaces. The product of these two measure Spaces is defined as the following triple:

(X × Y,A×B, µ× ν)

where
1. X × Y is the Cartesian Product of X and Y .
2. A × B is the σ-Algebra generated by Elementary Rectangles of the product X × Y under

respective measure spaces.
3. µ× ν is defined as:

(µ× ν) (A×B) = µ(A) · ν(B)
where A×B is a measurable Rectangle.

Remark 6.2.6. ⋆ Note the following:
• µ× ν defines a premeasure on Elementary Rectangles, E, which is an Algebra.
• With the premeasure µ× ν on E, we then construct the outer measure µ∗× ν∗ by premeasure

as done in Definition 6.0.2.
• As Proposition 6.0.3 shows, the collection of µ∗×ν∗ measurable sets from E forms a σ-Algebra,

that is, the σ-Algebra generated from all Elementary Rectangles. This is exactly what we did
now.

6.2.1 Properties of product measure space

Definition 6.2.7. (x & y sections) Suppose E ⊆ X × Y . Then we define
1. x-section as all y available in E if x is fixed:

Ex = {y ∈ Y | (x, y) ∈ E}

2. y-section as all x available in E if y is fixed:

Ey = {x ∈ X | (x, y) ∈ E}

Definition 6.2.8. (x & y sections of a function) Suppose f is a function on X × Y . Then,
1. x-Section of f given x ∈ X is just fx(y) = f(x, y).
2. y-Section of f given y ∈ Y is just fy(x) = f(x, y)

Proposition 6.2.9. Suppose (X,A) and (Y,B) are two measurable spaces and E ⊆ A×B. Then,
1. Ex ∈ B ∀x ∈ X , and
2. Ey ∈ A ∀y ∈ Y .

That is, each section of a subset of product of measurable spaces, A×B, is itself measurable.

Proof. Omitted.

Proposition 6.2.10. Suppose f : A×B −→ R is a A×B-measurable function. Then,
1. fx : B −→ R is a B-measurable function ∀x ∈ X.
2. fy : A −→ R is a A-measurable function ∀y ∈ Y .

That is, each section of a measurable Function on product measurable space is itself a measurable
function.

Proof. Trivial, same as Proposition 6.2.9.
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6.3 The Fubini-Tonelli theorem

This is perhaps the most important result of this course, whose proof can be found in any course
book, available on webpage.

Theorem 6.3.1. (Tonelli’s theorem) Suppose (X,A, µ) and (Y,B, ν) are two σ-finite23 measure
spaces. Consider an A×B-measurable function

f : X × Y −→ [0,+∞].

Then,
1. The function:

• g : X → [0,+∞] given by:

g(x) =
∫
Y
fxdν

is A-measurable.
• h : Y → [0,+∞] given by:

h(y) =
∫
X
fydµ

is B-measurable.
2. f satisfies: ∫

X×Y
fd(µ× ν) =

∫
X

Å∫
Y
fxdν

ã
dµ

=
∫
Y

Å∫
X
fydµ

ã
dν

Theorem 6.3.2. (Fubini’s theorem) Suppose (X,A, µ) and (Y,B, ν) be σ-finite measurable
spaces. Consider an A×B-measurable function which is also µ× ν-Integrable given as:

f : X × Y −→ [−∞,+∞]24.

Then,
1. We have that

• fx is ν-Integrable almost everywhere on Y .
• fy is µ-Integrable almost everywhere on X.

2. The following relation holds:∫
X×Y

fd(µ× ν) =
∫
X

Å∫
Y
fxdν

ã
dµ

=
∫
Y

Å∫
X
fydµ

ã
dν

23This means that there are finite {An} sets in A with finite measure such that
⋃

n
An = X. Similarly for (Y,B, ν).

24Note the target set here!
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6.4 Applications-III : Product and Fubini-Tonelli

Lemma 6.4.1. Let (X,Σ1, µ) and (Y,Σ2, ν) be two σ-finite measure space with f ∈ L1(µ) and
g ∈ L1(ν). Then the function h(x, y) = f(x)g(y) is in L1(µ× ν) and that∫

X×Y
hdµ× ν =

Å∫
X
fdµ

ãÅ∫
Y
gdν

ã
. (1.1)

Proof. We first show that h is measurable. Indeed, as X × Y → C given by (x, y) 7→ f(x) and
X × Y → C given by (x, y) 7→ g(y) are measurable as they are composites X × Y π1→ X

f→ C and
X × Y π2→ X

g→ C respectively, where we know that the projection πi are measurable, therefore
their pointwise product h(x, y) = f(x)g(y) is measurable as well. This shows that h is measurable.

Now note that we have
∫
X |f | dµ = M < ∞ and

∫
Y |g| dν = N < ∞. Furthermore, we have

|h|x = (|f | |g|)x = |f(x)| |g| and similarly |h|y = (|f | |g|)y = |g(y)| |f |. Consequently by Fubini-
Tonelli for L+(µ× ν), we obtain∫

X×Y
|h| dµ× ν =

∫
X

∫
Y
|h| dνdµ

=
∫
X

∫
Y
|f | |g| dνdµ

=
∫
X
|f |
Å∫

Y
|g| dν

ã
dµ

=
∫
X
N |f | dµ

= NM <∞.

Hence, h ∈ L1(µ× ν).
We now wish to show Eq. (1.1). Indeed, as h ∈ L1(µ × ν), therefore by Fubini-Tonelli for

L1(µ× ν), we obtain ∫
X×Y

hdµ× ν =
∫
X

∫
Y
hxdνdµ

=
∫
X

∫
Y
f(x)gdνdµ

=
∫
X
f(x)

Å∫
Y
gdν

ã
dµ

=
Å∫

X
fdµ

ãÅ∫
Y
gdν

ã
as needed.

Example 6.4.2. For X = Y = N, Σ1 = Σ2 = P(N) and µ = ν = # the counting measure, we wish
to restate the Fubini-Tonelli theorem in this setting.

First of all, we observe that both the spaces (X,Σ1, µ) and (Y,Σ2, ν) are σ-finite as N can be
covered by {En} where En = {n} is a finite measure subset. Hence the Fubini-Tonelli applies.

For any measurable h : X → C, we first claim that the integral
∫
X hdµ = ∑

n h(n). Indeed, we
first have by definition∫

X
hdµ =

∫
X
ℜ(h)+dµ−

∫
X
ℜ(h)−dµ+ i

Å∫
X
ℑ(h)+ −

∫
X
ℑ(h)−dµ

ã
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where each ℜ(h)±,ℑ(h)± are measurable functions X → [0,∞). Hence we reduce to assuming
h is a non-negative measurable function. In this case, we observe the following. Consider gn =∑n

k=1 h(k)χ{k}. Observe that gn are increasing and converges to f pointwise. Then by MCT, we
have

∫
X
hdµ = limn→∞

∫
X
gndµ

= limn→∞

∫
X

n∑
k=1

h(k)χ{k}dµ

= limn→∞

n∑
k=1

∫
X
h(k)χ{k}dµ

= limn→∞

n∑
k=1

h(k)

=
∞∑
k=1

h(k)

as needed.
Now pick any h ∈ L+(µ×ν). We first claim that

∫
X×Y hdµ×ν = ∑

n,m h(n,m). Indeed, we claim
that

∫
X×Y hdµ× ν = sup{

∫
X×Y ϕdµ× ν | 0 ≤ ϕ ≤ h, ϕ is simple} = sup{∑(n,m)∈F h(n,m) | F ⊆

N×N is finite} = ∑
n,m h(n,m), as needed. Let A = {

∫
X×Y ϕdµ× ν | 0 ≤ ϕ ≤ h, ϕ is simple} and

B = {∑(n,m)∈F h(n,m) | F ⊆ N× N is finite}. To show the above claim, we need only show that

supA = supB.

First suppose that B is not bounded. Then there exists a sequence bk ∈ B such that bk → ∞
as k → ∞. Let bk = ∑

(n,m)∈Fk
h(n,m) → ∞ as k → ∞, where Fk are finite sets. Hence,

construct ϕk = ∑
(n,m)∈Fk

h(n,m)χ{(n,m)}. Clearly, ϕk ∈ A is a simple function below h. As∫
X×Y ϕkdµ× ν = ∑

(n,m)∈Fk
h(n,m) = bk, therefore we get that A is unbounded as well.

Now suppose B is bounded. Then, A is bounded as well because for any simple function
0 ≤ ϕ ≤ h, ϕ cannot be supported on an infinite cardinality set as otherwise B will be unbounded.
Hence both supA and supB exists and we wish to show that they are equal. Note that the above
argument shows that for any simple function 0 ≤ ϕ ≤ h given by ϕ = ∑n

k=1 akχEk
, the integral∫

X×Y ϕdµ× ν = ∑n
k=1 ak#(Ek) is finite. Hence for any ϕ ∈ A, there exists a finite set F such that∫

X×Y ϕdµ×ν ≤
∑

(n,m)∈F h(n,m). Thus, supA ≤ supB. Conversely, pick any ∑
(n,m)∈F h(n,m) ∈

B for some finite F . Then, the simple function ϕ = ∑
(n,m)∈F h(n,m)χ{(n,m)} ∈ A is such that∫

X×Y ϕdµ × ν = ∑
(n,m)∈F h(n,m). Hence supB ≤ supA. This completes the proof that integral

of h over X × Y is just the double sum.
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Now by Fubini-Tonelli for L+, we obtain that∫
X×Y

hd(µ× ν) =
∑
n,m

h(n,m)

=
∫
X

∫
Y
hndνdµ

=
∫
X

∑
m

h(n,m)dµ

(by MCT) =
∑
m

∫
X
h(n,m)dµ

=
∑
m

∑
n

h(n,m).

Similarly, we also yield by an application of MCT that∫
X×Y

hd(µ× ν) =
∑
n,m

h(n,m)

=
∫
Y

∫
X
hmdµdν

=
∑
n

∑
m

h(n,m).

Now suppose h ∈ L1(µ× ν). Then by Fubini-Tonelli, we yield that∫
X×Y

hdµ× ν =
∑
n,m

h(n,m)

=
∫
X

∫
Y
hndνdµ

=
∫
X

∑
m

h(n,m)dµ

(by DCT as each hm ∈ L1(µ) by Fubini) =
∑
m

∫
X
h(n,m)dµ

=
∑
m

∑
n

h(n,m).

Similarly, we yield ∫
X×Y

hdµ× ν =
∑
n

∑
m

h(n,m).

Hence, we yield the following two statements from this discussion:
1. Let

∑
n,m an,m be a double series of non-negative real numbers. Then,∑

n,m

an,m =
∑
n

∑
m

an,m =
∑
m

∑
n

an,m.

2. Let
∑

n,m an,m be a double series of complex numbers such that∑
n,m

|an,m| <∞.
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Then, ∑
n,m

an,m =
∑
n

∑
m

an,m =
∑
m

∑
n

an,m.

This completes the analysis.

Example 6.4.3. Let c ∈ R and define f : [0,∞)→ R a map given by

f(x) = sin x2
x

+ cx

1 + x
.

Let a > 0. Then we wish to show that

limn→∞

∫ a

0
f(nx)dx = ac.

We claim that sinx
x is a bounded function over [0,∞). Indeed, fix ϵ > 0. As limx→0

sinx2

x = 0,
therefore there exists δ > 0 such that for x ∈ (0, δ), we have

∣∣∣ sinx2

x

∣∣∣ < ϵ. Furthermore, for x ≥ δ

we have
∣∣∣ sinx2

x

∣∣∣ ≤ 1
|x| ≤

1
δ . Hence taking M = max{ϵ, 1/δ}, we see that

∣∣∣ sinx2

x

∣∣∣ ≤ M over [0,∞).
Consequently, over [0,∞), we have

|f(x)| =
∣∣∣∣sin x2x

+ cx

1 + x

∣∣∣∣
≤ |M |+

∣∣∣∣ cx

1 + x

∣∣∣∣
≤M + |c| .

Thus, the sequence of measurable functions |f(nx)| is upper bounded by |g(x)| = M + |c| over
[0, a], which is L1 over [0, a]. Furthermore, we see that f(nx)→ c over (0, a] pointwise as n→∞.
Hence, by DCT, we obtain

limn→∞

∫ a

0
f(nx)dx =

∫ a

0
limn→∞f(nx)dx

=
∫ a

0
cdx

= ca

as needed.

Example 6.4.4. Let X = Y = [0, 1], Σ1 = Σ2 = B[0,1] the Borel σ-algebra on [0, 1] and µ =
Lebesgue measure over [0, 1] and ν = counting measure over [0, 1]. We wish to show that Fubini-
Tonelli doesn’t holds here for the function χD : X × Y → R where D = {(x, x) | x ∈ X}.

Let us first calculate
∫
X×Y χDdµ × ν. As χD is just a characteristic function, therefore we

simply have ∫
X×Y

χDdµ× ν = µ× ν(D).
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1. We claim that µ× ν(D) =∞. Indeed, by definition, we have

µ× ν(D) = inf
®∑

n

µ(In)ν(Jn) |
⋃
n

In × Jn ⊇ D, In × Jn ∈ R
´

whereR is the elementary family of all rectangles. We claim that for any such cover D ⊆ ⋃
n In×Jn,

we have ∑
n µ(In)ν(Jn) =∞. Indeed, it suffices to show that there is an n ∈ N such that µ(In) ̸= 0

and Jn is infinite. Suppose there is no such n. It then follows that if µ(In) ̸= 0, then Jn is finite.
Further, if µ(In) = 0, then Jn can be finite or infinite. Let

K := {n ∈ N | µ(In) ̸= 0}

and

L := {n ∈ N | µ(In) = 0}.

Consequently, K ∪ L = N.
Pick n ∈ K. Then, µ(In) ̸= 0 and Jn is finite. It follows that (In × Jn) ∩D is atmost a finite

set. Thus, ⋃n∈K In×Jn covers atmost a countable subset of D. Hence, it follows that ⋃n∈L In×Jn
covers an uncountable subset of D. Furthermore,

V := D \

(⋃
n∈L

(In × Jn) ∩D
)

=
⋃
n∈K

(In × Jn) ∩D is countable. (4.1)

For any n ∈ N, observe that

(In × Jn) ∩D = {(x, x) ∈ D | x ∈ In ∩ Jn}. (4.2)

From the preceding remark, it is thus clear that the set ⋃
n∈L(In × Jn) ∩ D = {(x, x) ∈ D | x ∈

In∩Jn for some n ∈ L} is uncountable, which further makes A := ⋃
n∈L In∩Jn ⊆ [0, 1] uncountable.

We claim that [0, 1] \A is countable. Indeed, by (4.1), we first see that

V = {(x, x) | x ∈ In ∩ Jn for some n ∈ K}
∼=

⋃
n∈K

In ∩ Jn.

Thus, ⋃n∈K In ∩ Jn is countable.
Observe that

[0, 1] =
( ⋃

n∈K
In ∩ Jn

)
∪

(⋃
n∈L

In ∩ Jn

)

because {In × Jn}n∈N covers D. Consequently, as A is uncountable, therefore

[0, 1] \A ⊆
⋃
n∈K

In ∩ Jn
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is countable by Eq. (4.3), as required.
As A ⊆ [0, 1] is such that [0, 1] \ A is countable therefore µ(A) = 1. But, A ⊆ ⋃

n∈L In,
therefore 1 = µ(A) = ∑

n∈Lm(In) = ∑
n 0 = 0 as In for n ∈ L is of measure 0. Hence we have

1 = µ(A) ≤ 0, a contradiction. This shows that ∑
n µ(In)ν(Jn) =∞ for each {In × Jn} ⊆ R such

that ⋃
n In × Jn ⊇ D. Thus,

µ× ν(D) =∞.

2. We claim that
∫
Y

∫
X χDdµdν = 0. Indeed, we have∫

Y

∫
X
(χD)y dµdν =

∫
Y

∫
X
χDydµdν

=
∫
Y
µ({(y, y)})dν

=
∫
Y
0dν

= 0,

as required.

3. We claim that
∫
X

∫
Y χDdνdµ = 1. Indeed, we have∫

X

∫
Y
(χD)xdνdµ =

∫
X

∫
Y
χDxdνdµ

=
∫
X
ν({(x, x)})dµ

=
∫
X
1dµ

= µ(X)
= 1,

as needed.
Hence, we have shown that for Fubini-Tonelli to work, we require both spaces to be σ-finite

(which is not the case here as Y is not σ-finite).

Example 6.4.5. We wish to construct an example of a monotone class of subsets of a non-empty
set X such that it is not a σ-algebra. Indeed, consider X = {1., 2, 3}. Define C := {∅, {1}, X}.
Then C is a monotone class as the only non-trivial increasing sequence of sets is ∅ ⊆ {1} and their
union is clearly {1} which is in C. Furthermore the only non-trivial decreasing sequence is X ⊇ {1},
whose intersection is {1}, which is in C. However, C is not a σ-algebra as {1}c = {2, 3} /∈ C.

Lemma 6.4.6. Let (X,Σ, µ) be a measure space and f : X → C be an L1(µ) map. For each
E ∈ Σ, define

ν(E) =
∫
E
fdµ.

1. If µ(E) = 0, then ν(E) = 0.
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2. If {En} ⊆ Σ is a disjoint collection, then

ν

Ç∐
n

En

å
=

∑
n

ν(En).

3. For all ϵ > 0, there exists δ > 0 such that

µ(E) < δ =⇒ |ν(E)| < ϵ.

Proof. 1. Note that ν(E) = 0 iff |ν(E)| = 0. Consequently, we see that

|ν(E)| =
∣∣∣∣∫

E
fdµ

∣∣∣∣ ≤ ∫
E
|f | dµ

≤ ∞ ·
∫
E
dµ

=∞µ(E)
=∞ · 0 = 0,

as needed.

2. Pick {En} ⊆ Σ to be a disjoint collection. Consider the sequence of measurable functions
gn = fχ∐n

k=1 Ek
. Observe that gn → fχ∐∞

k=1 Ek
pointwise as n → ∞. Furthermore, observe that

|gn| ≤ |f | and as f ∈ L1(µ), therefore we may apply DCT on {gn}.
Applying DCT, we yield∫∐∞

k=1 Ek

fdµ =
∫
X
fχ∐∞

k=1 Ek
dµ = limn→∞

∫
X
fχ∐n

k=1 Ek
dµ

= limn→∞

∫∐n

k=1 Ek

fdµ

= limn→∞

n∑
k=1

∫
Ek

fdµ

=
∞∑
k=1

∫
Ek

fdµ

=
∞∑
k=1

ν(Ek),

as needed.

3. As f ∈ L1(µ), therefore there exists a sequence of bounded functions gn ∈ L1(µ) such that
gn → f pointwise as n → ∞ and |gn| ≤ |f | over X. Fix E ∈ Σ of finite measure. It follows from
DCT applied on gn over X that

limn→∞

∫
E
|f − gn| dµ ≤ limn→∞

∫
X
|f − gn| dµ = 0.
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Fix ϵ > 0. The convergence of above limit yields that there exists N ∈ N such that∫
E
|f − gn| dµ < ϵ/2

for all n ≥ N . Thus, in particular,∫
E
|f | − |gN | dµ ≤

∫
E
|f − gN | dµ < ϵ/2.

Now, from above, we yield that

|ν(E)| =
∣∣∣∣∫

E
fdµ

∣∣∣∣ ≤ ∫
E
|f | dµ

≤ ϵ/2 +
∫
E
|gN | dµ.

As |gn| is bounded, therefore let |gN | ≤Mn for some MN ∈ [0,∞). Consequently,

|ν(E)| ≤ ϵ/2 +
∫
E
|gN | dµ

≤ ϵ/2 +
∫
E
MNdµ

≤ ϵ/2 +MNµ(E).

Hence, letting δ = ϵ/2MN , we yield that for any E ∈ Σ such that µ(E) < δ we have

|ν(E)| < ϵ/2 + ϵ/2
= ϵ.

This completes the proof.

Example 6.4.7. Let X = Y = N, Σ1 = Σ2 = P(N) and µ = ν = counting measure. Further,
define f : N× N→ R given by

f(m,n) =


1 if m = n,

−1 if m = n+ 1,
0 otherwise.

We wish to show that
1.

∫
X×Y |f | d(µ× ν) =∞,

2.
∫
X

∫
Y fdνdµ = 1,

3.
∫
Y

∫
X fdµdν = 0.

Before proving, we would first like to show that f is indeed measurable. Indeed, we may write
f = χD − χS where D = {(m,m) | m ∈ N} is the diagonal and S = {(n+ 1, n) | n ∈ N}. Both are
measurable subsets of Σ1 ⊗ Σ2 as D = ⋃

m{(m,m)} and S = ⋃
n{(n+ 1, n)}. Note that singletons

of X × Y are measurable as singletons in X and Y are measurable.
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1. Observe that |f | = χD + χS = χD⨿S where D and S are two disjoint subsets as defined
above. Consequently ∫

X×Y
|f | dµ× ν = µ× ν(D ⨿ S)

= µ× ν(D) + µ× ν(S).

We claim that both µ× ν(D) and µ× ν(S) are ∞.
Indeed, for any {In × Jn} for In × Jn ∈ R rectangles such that ⋃

n In × Jn ⊇ D, we see that if
(In × Jn) ∩ D ̸= ∅, then µ(In)ν(Jn) ≥ 1 as in this case In ∩ Jn ̸= ∅. As D is an infinite set and⋃

n(In× Jn)∩D = D, therefore ∑
n µ(In)ν(Jn) ≥ µ× ν (

⋃
n In × Jn) ≥ µ× ν(D) =∞. This shows

µ× ν(D) =∞.
Similarly, if {In × Jn} for In × Jn ∈ R is a collection of rectangles such that ⋃

n In × Jn ⊇ S,
then for each n for which (In × Jn) ∩D ̸= ∅ we deduce that µ(In)ν(Jn) ≥ 1. Hence, as above, we
again get that ∑

n µ(In)ν(Jn) =∞. This proves that
∫
X×Y |f | dµ× ν =∞.

2. We simply observe that by definition we have Dm = {m} and Sm = {m− 1}. Consequently,∫
X

∫
Y
fmdνdµ =

∫
X

∫
Y
χDm − χSmdνdµ

=
∫
X
ν(Dm)− ν(Sm)dµ

=
∫
X\{1}

(1− 1)dµ+
∫
{1}

(1− 0)dµ

= 1.

3. We simply observe that by definition Dn = {n} and Sn = {n+ 1}. Consequently,∫
Y

∫
X
fndµdν =

∫
Y

∫
X
(χDn − χSn)dµdν

=
∫
Y
µ(Dn)− µ(Sn)dν

=
∫
Y
1− 1dν

= 0.

This completes the proof.

7 Differentiation
We now study some of the interconnections between integration and differentiation and related
notions.

7.1 Differentiability

Definition 7.1.1. (Upper/Lower left & Upper/Lower right Derivatives) Suppose f : R −→
[−∞,+∞] is a function such that for all x ∈ R, f is defined on some open interval around x, then
we define the following quantities:
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• Upper Right Derivative :

D+f(x) = lim sup
h→0+

f(x+ h)− f(x)
h

• Lower Right Derivative :

D+f(x) = lim inf
h→0+

f(x+ h)− f(x)
h

• Upper Left Derivative :

D−f(x) = lim sup
h→0−

f(x+ h)− f(x)
h

• Lower Left Derivative :

D−f(x) = lim inf
h→0−

f(x+ h)− f(x)
h

Definition 7.1.2. (Differentiable function) The function f is said to be differentiable at x if
and only if:

D+f(x) = D+f(x) = D−f(x) = D−f(x).

Hence, a function is said to be differentiable if it is differentiable at all points of it’s domain.

7.2 Functions of bounded variation

We now study those functions which do not change too erratically over an interval. We already
have the notion of differentiability for the same, so we would see connections between such type of
functions and there differential character.

Definition 7.2.1. (Variations of a Function) Suppose we are given a function on an interval

f : [a, b] −→ R

and any partition P[a,b] = {a = x0, x1, x2, . . . , xk−1, xk = b} where xi < xi+1. Now, define the
following the following three quantities:

pP =
k∑

i=1
(f(xi)− f(xi−1))+

nP =
k∑

i=1
(f(xi)− f(xi−1))−

tP = pP + nP =
k∑

i=1
|f(xi)− f(xi−1)|

where P denotes the partition over which the sum is defined and it’s simple to observe that pP−nP =
f(b)− f(a). Also, x+ = max(x, 0) and x− = max(−x, 0).
Then, we finally define the following three quantities:
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• Positive Variation of f :
Pf = sup

P
pP .

• Negative Variation of f :
Nf = sup

P
nP .

• Total Variation of f :
Tf = sup

P
tP .

Definition 7.2.2. (Function of bounded variation) Suppose f : R → R is a given function.
Then f is said to be of bounded variation over interval [a, b] if

Tf [a, b] = Tf <∞.

The class of functions on a given interval [a, b] which are of bounded variation is denoted by:

BV ([a, b]) .

So that for any f ∈ BV ([a, b]), Tf <∞.

Remark 7.2.3. A function f is said to belong to BV ((−∞,∞)) if f belongs to each BV ([a, b]) for
each interval [a, b]. Clearly, in this case Tf (−∞,∞) = sup[a,b] Tf [a, b].

Proposition 7.2.4. Suppose f ∈ BV ([a, b]). Then,
1. f(b)− f(a) = Pf −Nf .
2. Tf = Pf +Nf .

Proof. Take any f ∈ BV ([a, b]). Then we have Tf [a, b] <∞. Now, we know that for any partition
P of [a, b], f(b) − f(a) = pP − nP . Now, take supremum over all partitions of [a, b], both sides of
the above, to write:

sup
P

(f(b)− f(a)) = sup
P

(pP − nP)

f(b)− f(a) = sup
P
pP − sup

P
nP Known result : sup

n
(xn − yn) = sup

n
xn − sup

n
yn.

= Pf −Nf

For the 2nd part, we have

Tf = sup
P
tP

= sup
P

(pP + nP)

= sup
P
pP + nP Known result : sup

n
(xn + yn) = sup

n
xn + sup

n
yn.

= Pf +Nf

Hence proved.

The following theorem is important as it characterizes the functions in BV ([a, b]).
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Proposition 7.2.5. The following result holds:

f ∈ BV ([a, b]) ⇐⇒ ∃ g, h which are monotonically increasing and finite on [a, b], such that f = g − h.

Proof. L =⇒ R : Consider the functions

g(x) = Pf [a, x] + f(a)
h(x) = Nf [a, x]

For any a ≤ x0 ≤ x1 ≤ b, we observe that:

g(x0) = Pf [a, x0] + f(a) ≤ Pf [a, x1] + f(a) = g(x1)
h(x0) = Nf [a, x0] ≤ Nf [a, x1] = h(x1)

because we are adding another partitioning point. Hence, g, h are monotonically increasing func-
tions on [a, b]. Hence, g(b) = Pf [a, b] + f(a) < ∞ as f is of bounded variation, so g is finite.
Similarly h is finite on [a, b]. Finally, we note that:

g(x)− h(x) = Pf [a, x] + f(a)−Nf [a, x]
= Pf [a, x]−Nf [a, x] + f(a)
= f(x)− f(a) + f(a)
= f(x)

Hence proved that if f ∈ BV ([a, b]), then there exists two monotonically increasing, finite functions
on [a, b] such that f is their difference.

R =⇒ L : Take any partition P[a, b] = a = x0 < x1 < x2 < · · · < xk = b. Now we see
that

tfP =
k∑

i=1
|f(xi)− f(xi−1)|

=
k∑

i=1
|g(xi)− h(xi)− g(xi−1) + h(xi−1)|

≤
k∑

i=1
|g(xi)− g(xi−1)|+

k∑
i=1
|h(xi)− h(xi−1)|

= tgP + thP
<∞

Hence Tf = supP t
f
P <∞. So f ∈ BV ([a, b]).

7.3 Differentiability of monotone functions & Lebesgue’s theorem

Definition 7.3.1. (Vitali covering) A collection C of closed, bounded, nondegenerate25 intervals
is said to cover a given set E in the sense of Vitali if:

For any x ∈ E and any ϵ > 0, ∃ I ∈ C such that x ∈ I & λ (I) < ϵ.
25An interval [a, b] is said to be nondegenerate if a < b.
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Theorem 7.3.2. (The Vitali covering lemma) Suppose E ⊂ R is of finite outer measure, that
is λ∗ (E) < ∞. Also consider a collection C of closed, bounded intervals which covers E in the
sense of Vitali. Then,

∀ ϵ > 0, ∃ disjoint & finite subcollection {Ik}nk=1 of C such that

λ∗
Ç
E \

n⋃
k=1

Ik

å
< ϵ.

The following is a generalization of mean value theorem from Calculus.

Proposition 7.3.3. Let f be an increasing function on a closed, bounded interval [a, b]. Then,
∀ α > 0, we have

λ∗
(
{x ∈ (a, b) | D+f(x) = D−f(x) ≥ α}

)
≤ 1
α
· (f(b)− f(a))

Proof. We first begin be denoting Eα = {x ∈ (a, b) | D+f(x) = D−f(x) ≥ α}. Now, construct the
following collection F of closed and bounded intervals [c, d] for which,

f(d)− f(c) ≥ α′(d− c)

where 0 < α′ ≤ α. Now take any x ∈ Eα. We hence see that D+f(x) ≥ α. Now for any ϵ > 0, we
can construct a closed bounded interval I =

[
x− ϵ

2 , x+ ϵ
2
]
for which λ∗ (I) = ϵ with x ∈ I. But

moreover, we have that

Df(x) = f(x+ ϵ/2)− f(x− ϵ/2)
ϵ

≥ α

f(x+ ϵ/2)− f(x− ϵ/2) ≥ ϵα ≥ ϵα′

Hence the interval
[
x− ϵ

2 , x+ ϵ
2
]
∈ F . Therefore, F covers Eα in the sense of Vitali(!)

Now, by Vitali Covering Lemma (Theorem 7.3.2), we get that

∀ ϵ > 0, ∃ finite disjoint {Ik}nk=1 from F such that λ∗
Ç
Eα \

n⋃
k=1

Ik

å
< ϵ

Now, observe that

Eα ⊆
n⋃

k=1
Ik ∪

Ç
Eα \

n⋃
k=1

Ik

å
Hence, by finite sub-additivity of outer measures, we get the following:

λ∗ (Eα) ≤ λ∗
Ç
Eα \

n⋃
k=1

å
+ λ∗

Ç
n⋃

k=1
Ik

å
< ϵ+

n∑
k=1

λ∗ (Ik)

≤ ϵ+
n∑

k=1

f(dk)− f(ck)
α′ Suppose Ik = [ck, dk].
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Now since f is an increasing function and Ik ⊂ [a, b] ∀ k, therefore we have:

n∑
k=1

f(dk)− f(ck) ≤ f(b)− f(a)

That is,

λ∗ (Eα) < ϵ+ 1
α′ · (f(b)− f(a))

But since ϵ > 0 and α′ ∈ (0, α] are arbitrary, therefore,

λ∗ (Eα) ≤
1
α
· (f(b)− f(a))

Hence proved.

7.3.1 Lebesgue’s differentiation theorem

This is also one of the most important theorems of this course. This theorem portrays that mono-
tonicity of a function is much better attribute of niceness of a function than the usual belief of
continuity, because we know example of continuous functions which is not differentiable, that is
the Weierstrass function. But with this theorem, if we are given a monotone function on an
open interval, then it ought to be differentiable almost everywhere on that interval. The same is
obviously not true for just continuous functions.

Theorem 7.3.4. (Lebesgue’s Differentiation Theorem) Suppose f is a monotone function
on open interval (a, b) to R. Then,

f is differentiable on (a, b) almost everywhere (!)

Corollary 7.3.5. A function f of bounded variation over an interval [a, b] is differentiable almost
everywhere in (a, b).

Proof. Lebesgue’s Differentiation Theorem (7.3.4) and the fact that any function of bounded vari-
ation is a difference of two increasing functions (Proposition 7.2.5).

7.4 Integration & differentiation in context

We now learn some relationships between differentiation and integration. But let us begin with the
following basic proposition.

Proposition 7.4.1. Let f : X → [0,+∞) be a measurable function which is Lebesgue Integrable
on a set E ⊆ X. Then,

∀ ϵ > 0, ∃ δ > 0 such that ∀ A ⊂ E with λ (A) < δ ,
∫
A
f < ϵ.
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Proof. Consider the following sequence {fn} of functions:

fn(x) =
®
f(x) if f(x) ≤ n
n if f(x) ≥ n

Now, we see that fn(x) ≤ fn+1(x) because if fn(x) = f(x) then fn(x) = f(x) ≤ n < n+ 1 so that
fn+1(x) = f(x). Hence {fn} is an increasing sequence. Therefore

fn −→ f almost everywhere

Hence, by Monotone Convergence Theorem (4.2.1), we get that∫
lim←−
n

fn = lim←−
n

∫
fn.

Now, observe the following: ∫
E
f − lim←−

n

∫
fn = 0

lim←−
n

∫
E
f − lim←−

n

∫
fn = 0

lim←−
n

∫
E
(f − fn) = 0

where we see that

(f − fn)(x) =
®
0 if f(x)− n ≤ 0
f(x)− n if f(x)− n ≥ 0.

From this, we can construct the following sequence of sets:

En = {x ∈ E | f(x)− n ≥ 0}.

Again, we see that for any x ∈ En, we would have f(x) ≥ n > n − 1, so that x ∈ En−1. Hence
{En} is a decreasing sequence of subsets of E.
We now observe that ∫

En

f ≥
∫
En

n = nλ (En) .

Hence, we get that, for any n ∈ N,

λ (En) ≤
1
n

∫
En

f

So that, we can choose n corresponding to any δ = ϵ/n such that

λ (En) ≤
1
n

∫
En

f < δ = ϵ/n

and ∫
En

f < nδ = ϵ.

Hence proved.
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7.4.1 Indefinite integral

The Indefinite integral of a Lebesgue Integrable function forms a sort of bridge between Integration
and Differentiation.

Definition 7.4.2. (Indefinite integral) Suppose f : [a, b] −→ R is a Lebesgue Integrable function.
We then define the indefinite integral of f as the following function:

F (x) =
∫ x

a
f(t)dt

Proposition 7.4.3. Suppose f : [a, b] −→ R is a Lebesgue Integrable function. Then,
1. F (x) is a continuous function on [a, b].
2. F (x) is of bounded variation on [a, b].

Proof. 1. Take any ϵ > 0. By Proposition 7.4.1, we get that

F (x) =
∫ x

a
f(t)dt < ϵ =⇒ ∃ δ > 0 & ∃A ⊂ [a, x] such that λ∗ (A) < δ.

In more precise words, ∀ϵ > 0, ∃δ > 0 such that whenever

|a− x0| = λ∗ ([a, x0]) < δ

then we would have

|F (x0)− F (a)| < ϵ∣∣∣∣∫ x0

a
f(t)dt−

∫ a

a
f(t)dt

∣∣∣∣ < ϵ∣∣∣∣∫ x0

a
f(t)dt

∣∣∣∣ < ϵ

which is just the definition of continuity.

2. Take any partition of [a, b], say, P([a, b]) = a = x0 < x1 < x2 < . . . xk−1 < xk = b. Now,
we see that,

tP =
k∑

i=1
|F (xi)− F (xi−1)|

=
k∑

i=1

∣∣∣∣∫ xi

a
f(t)dt−

∫ xi−1

a
f(t)dt

∣∣∣∣
=

k∑
i=1

∣∣∣∣∫ xi

xi−1
f(t)dt

∣∣∣∣
<

k∑
i=1

∫ xi

xi−1
|f(t)| dt

<∞

where last line follows because f is Lebesgue Integrable. Since our choice of partition P was
arbitrary, therefore supP tP <∞ hence F (x) is of bounded variation.
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Corollary 7.4.4. The Indefinite integral of a Lebesgue Integrable function is Differentiable almost
everywhere.

Proof. By-product of Lebesgue’s Differentiation Theorem (7.3.4), or more succinctly, Corollary
7.3.5.

Proposition 7.4.5. Suppose f : [a, b] −→ R is a Lebesgue Integrable function and

F (x) =
∫ x0

a
f(t)dt = 0 ∀ x ∈ (a, b).

Then, f = 0 almost everywhere on (a, b).

Proof. Suppose to the contrary that ∃ E ⊂ [a, b] such that f(x) ̸= 0 ∀ x ∈ E with λ∗ (E) > 0. By
Proposition 2.9.2, we get that ∃ G ⊂ E which is closed such that λ∗ (G) > 0 and λ∗ (E \G) = 0.
Hence (a, b) \G is open. Now consider the integral:∫

G
f =

∫
(a,b)

f −
∫
(a,b)\G

f

We know that
∫
(a,b) f = 0 as F (x) = 0 ∀ x ∈ (a, b). In a similar tone, we have f |(a,b)\G = 0 almost

everywhere because λ∗ (E \G) = 0 and f = 0 on (a, b) \ E anyways. Therefore, we have
∫
G f = 0.

But f |G ̸= 0 by definition of G ⊂ E. Hence we have a contradiction. Therefore such a set E cannot
exist. Thus f = 0 almost everywhere on (a, b) if F = 0 ∀ x ∈ (a, b).

Theorem 7.4.6. Let [a, b] be a finite interval and let f : [a, b] −→ R be a Lebesgue Integrable
function over it. Then,

F ′ = f almost everywhere in [a, b].

Proof. Omitted

7.4.2 Absolutely continuous functions

This is a more general form of continuity, and since it has connections with indefinite integral, we
then learn them here.

Definition 7.4.7. (Absolutely Continuous Function) A function f : [a, b] −→ R is said to be
Absolutely Continuous if

∀ ϵ > 0 , ∃ δ > 0 such that ∀ finite & disjoint collection of open intervals {(ak, bk)}nk=1 each subset of (a, b) which satisfies

n∑
k=1

(bk − ak) < δ,

also satisfies
n∑

k=1
|f(bk)− f(ak)| < ϵ.

Remark 7.4.8. Some straightforward results are:
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• Any Absolutely Continuous function is Continuous in usual sense. This follows trivially from
their definitions.

• Any Absolutely Continuous function is Uniformly Continuous. This also follows from the
definition.

Proposition 7.4.9. Suppose f : [a, b] −→ R is an Absolutely Continuous function. Then, f is of
Bounded Variation over [a, b].
Proof. Since f is an absolutely continuous function, therefore, for any fixed ϵ > 0, we can construct
the partition of [a, b], say P ′ = a = x0 < x1 < · · · < xk = b such that each (xi−1, xi) is of length
< δ. Clearly, we would then have that

k∑
i=1
|f(xi)− f(xi−1)| < kϵ.

Now, consider any arbitrary partition say P ≡ a = y0 < y1 < · · · < yN = b of [a, b]. Collect the
partition points of P as the open disjoint intervals {(yi−1, yi)}Ni=1. Then, for each ith interval in
this partition, we can further partition it into ki open disjoint intervals such that each has length
< δ. In particular, we would have the following partition of [yi−1, yi]:{

(zij−1, z
i
j)
}ki
j=1 where zi0 = yi−1 , ziki = yi.

Now, note that the variation of f over the [yi−1, yi] would then be:

|f(yi)− f(yi−1)| =
∣∣∣∣∣ ki∑
j=1

f(zij)− f(zij−1)
∣∣∣∣∣

≤
ki∑
j=1

∣∣∣f(zij)− f(zij−1)
∣∣∣

<
ki∑
j=1

ϵ = kiϵ ∵ zij − zij−1 < δ by construction

Now, the variation over whole of P would then be:

tP =
N∑
i=1
|f(yi)− f(yi−1)|

<
N∑
i=1

kiϵ

<∞

as ki is finite for all i. Hence proved.

This theorem relates Indefinite integral of a Lebesgue integral and Absolute Continuity.
Theorem 7.4.10. Suppose f : [a, b] −→ R is a Lebesgue Integrable function and it’s Indefinite
integral is denoted by the function F (x). Then,

F is an Indefinite integral ⇐⇒ F is Absolutlely Continuous.

Proof. Omitted.
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8 Signed measures and derivatives
The concept of signed measures is the next generalization that we seek to understand. So far we
have only encountered measures on a space which maps subsets to [0,∞]. But what happens when
we increase the co-domain to the whole [−∞,∞]? First of all, we can see clearly that a measure
shall not map some subsets to +∞ and some other subset to −∞ as we would then have the
problem of ∞−∞, and since we are not doing set theory here, hence we would refrain ourselves
only to such signed measures which either maps to (−∞,∞] or [−∞,∞) but not both.

Later we would see that having such a notion of signed measure actually leads to some very
striking results!

Definition 8.0.1. (Signed measure) Suppose (X,M) is a measurable Space. A function

ν : M −→ [−∞,+∞) OR ν : M −→ (−∞,+∞]

is called a Signed measure if it satisfies:
1. ν atmost maps sets either to +∞ or −∞, but not both26.
2. ν maps null-set to 0:

ν (Φ) = 0

3. ν follows countable additivity:

ν

Ç ∞⋃
i=1

Ai

å
=

∞∑
i=1

ν (Ai)

where {Ai} is any sequence of disjoint sets from M.

Definition 8.0.2. (Positive set) Suppose (X,M) is a measurable space and ν is a signed measure
on it. Then a set A ∈M is said to be a positive set w.r.t. ν if:

∀ S ⊆ A such that S ∈M , ν (S) ≥ 0.

Definition 8.0.3. (Negative set) Suppose (X,M) is a measurable space and ν is a signed measure
on it. Then a set B ∈M is said to be a negative set w.r.t. ν if:

∀ S ⊆ B such that S ∈M , ν (S) ≤ 0.

Remark 8.0.4. One could alternatively say that a set is a negative set if it is positive w.r.t. −ν.

Definition 8.0.5. (Null set) Suppose (X,M) is a measurable space and ν is a signed measure on
it. Then a set N ∈M is said to be a null set w.r.t. ν if

N is both a Positive and Negative set w.r.t. ν

Proposition 8.0.6. Suppose (X,M) is a measurable space and ν is a signed measure on it. Let
{Ai} be a sequence of positive sets w.r.t. ν. Then,

A =
⋃
i

Ai is a Positive Set w.r.t. ν.

26Hence the two possible choices for the ν above.
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Proof. We know that we can write the sequence {Ai} in the following form:

{Bi} where Bi’s are disjoint & Bi ⊆ Ai.

This can be easily be seen by B1 = A1 and Bi = Ai \ Bi−1. Hence {Bi} is a sequence of disjoint
positive sets. Moreover, we can see that

A =
⋃
i

Ai =
⋃
i

Bi.

Now, take any subset E ⊆ A, which we can simply write as:

ν (E) = ν (E ∩A)

= ν

Ç⋃
i

E ∩Bi

å
=

∑
i

ν (E ∩Bi)

> 0

because E ∩Ai ⊆ Bi and Bi is a positive set. Hence proved.

Remark 8.0.7. This is clearly also true for negative sets and null sets. That is, countable union
of negative (null) sets is also a negative (null) set.

Proposition 8.0.8. Suppose (X,M) is a measurable space and ν is a signed measure on it. If
E ∈M is such that ν (E) ≥ 0, then

∃ A ⊆ E such that A is a positive Set w.r.t. ν, A ∈M & ν (A) > 0.

Proof. Written in Diary at 26th September, 2018. Typeset it here when time allows.

8.1 The Hahn decomposition theorem

Theorem 8.1.1. (Hahn decomposition theorem) Suppose (X,M) is a measurable space and ν
is a signed measure on it. Then,

∃ positive Set A ∈M and negative Set B ∈M such that A ∪B = X & A ∩B = Φ

Moreover, any two such pairs (A,B) and (A′, B′) are unique upto the fact that

A∆A′ & B∆B′ are ν-Null Sets

8.2 The Jordan decomposition of a signed measure

We now, in a sense, generalize the Hahn Decomposition Theorem (8.1.1), but to the signed measure
ν itself. As usual, let’s first familiarize ourselves with some definitions.
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Definition 8.2.1. (Mutual singularity of signed measures) Let ν1 and ν2 be two measures
(NOT signed!) over measurable space (X,M). Then ν1 and ν2 are called mutually singular if

∃ A ∈M such that ν1(A) = ν2(Ac) = 0

and is then denoted by:
ν1 ⊥ ν2.

Theorem 8.2.2. (Jordan decomposition theorem) Suppose (X,M) is a measurable space and
ν is a signed measure on it. Then,

∃ measures ν+ & ν− on (X,M) such that ν = ν+ − ν− & ν+ ⊥ ν−

and such a decomposition of ν is unique.

8.3 The Radon-Nikodym theorem

This is one of the final and most important theorems of this course. As we will see, this theorem
gives us a notion of the derivative of a signed measure. However, we would not go more deeper into
that fact.
As usual, we first introduce some definitions.

Definition 8.3.1. (Total variation of a signed measure) The total variation of a signed
measure ν over some measurable space is defined by

|ν| = ν+ + ν−

where ν = ν+ − ν− is the Jordan Decomposition (Theorem 8.2.2) of ν.

Remark 8.3.2. Since ν+ and ν+ are the usual measures on the measurable space, therefore |ν| is
also a usual measure on the same measurable space.

Definition 8.3.3. (σ-finite signed measure) Suppose ν is a signed measure on measurable space
(X,M). Then ν is called σ-Finite if

∃ {Xn}∞n=1 where Xi ∈M and |ν(Xi)| <∞ such that
∞⋃
n=1

Xn = X

Remark 8.3.4. ν is σ-Finite ⇐⇒ |ν| is σ-Finite.

Definition 8.3.5. (Absolute continuity of usual measures) Suppose λ and γ are usual mea-
sures over a measurable space (X,M). If,

λ(E) = 0 for some E ∈M =⇒ γ(E) = 0

always, then γ is said to be absolutely continuous w.r.t. λ. This is denoted by γ ≪ λ.

Definition 8.3.6. (Absolute continuity of signed measures) Suppose µ and ν are signed
measures over a measurable space (X,M). If,

|µ| (E) = 0 for some E ∈M =⇒ ν(E) = 0

always, then ν is called absolutely continuous w.r.t. µ. This is denoted by ν ≪ µ.
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Theorem 8.3.7. (Radon-Nikodym theorem) Suppose (X,M) is a measurable space and λ & γ
are two σ-finite measures on it such that γ ≪ λ. Then,

∃ measurable Function w.r.t. λ f : X −→ [0,∞) such that

γ(E) =
∫
E
fdλ ∀ E ∈M

Moreover, f is unique up-to almost everywhere equality, that is, if γ(E) =
∫
E gdλ ∀ E ∈M, then,

f = g almost everywhere on X w.r.t. λ.

8.4 Applications-IV : Signed spaces

Lemma 8.4.1. Let (X,A) be a measurable space and µ, ν be two signed measures on it. Then
ν ≪ µ and µ ⊥ ν if and only if ν = 0.

Proof. (⇒) As µ ⊥ ν, therefore there exists a µ-null set A and a ν-null set B such that A⨿B = X.
For any measurable set E ⊆ X, we have E = (E ∩ A) ⨿ (E ∩ B). As E ∩ A ⊆ A, therefore
µ(E ∩ A) = 0. As ν ≪ µ, therefore ν(E ∩ A) = 0. Furthermore, since E ∩ B ⊆ B, therefore
ν(E ∩B) = 0. Hence,

ν(E) = ν(E ∩A) + ν(E ∩B)
= 0,

as needed.
(⇐) As for any measurable set E ⊆ X, we have ν(E) = 0, hence ν ≪ µ. Further, as X is

now ν-null and ∅ is µ-null, therefore X = X ⨿ ∅ gives us the required decomposition to claim that
µ ⊥ ν.

Lemma 8.4.2. Let (X,A) be a measurable space and µ, ν be two positive measures on it. The
following are equivalent.

1. ν ⊥ µ,
2. there exists a sequence {En} ⊆ A such that µ(En)→ 0 and ν(X \ En)→ 0 as n→∞.

Proof. (1. ⇒ 2.) As ν ⊥ µ, therefore there exists a ν-null set A and a µ-null set B such that
X = A ⨿ B. Hence, we may take En = A and X \ En = B for each n ∈ N. This provides the
required sequence.

(2. ⇒ 1.) We wish to construct A,B ⊆ X such that A⨿B = X and A is ν-null and B is µ-null.
To construct A and B, we proceed as follows.

We first observe that since µ(En) → 0, therefore there exists a subsequence of µ(En) say
µ(Enk) such that ∑

k µ(Enk) < ∞. Indeed, this is a consequence of a general result : for any
positive sequence {an} such that limnan = 0, we have that there exists a subsequence {ank} such
that ∑

k ank
< ∞. Indeed, for each k ∈ N there exists an nk ∈ N such that an ≤ 1/2k for all

n ≥ nk. Consequently, we see that ∑∞
k=1 ank ≤

∑∞
k=1 1/2k <∞, as required.

We apply the above result to {µ(En)} to obtain a subsequence {Enk}. We now replace {En}
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by {Enk} so that we may assume ∑
n µ(En) <∞.

Consider the sequence

Fn = X \
∞⋃
k=n

Ek

=
∞⋂
k=n

X \ Ek.

Observe that Fn is an increasing sequence and that each Fn ⊆ X \ En. Hence,

ν(Fn) ≤ ν(X \ En). (2.1)

Moreover, observe that since limn→∞ν(X \En) = 0, therefore limn→∞ν(Fn) = 0. Hence, we deduce
by monotone property of measures that

limn→∞ν(Fn) = ν

Ç⋃
n

Fn

å
.

Hence, by previous discussion, we further deduce that

limn→∞ν(Fn) = 0 = ν

Ç⋃
n

Fn

å
.

Thus A := ⋃
n Fn is a ν-null set. It now suffices to show that X \A is a µ-null set.

Observe that X \A can be written as

X \A =
∞⋂
n=1

X \ Fn

=
∞⋂
n=1

∞⋃
k=n

Ek.

We claim that X \A is a µ-null set. Indeed, denote

Sn =
∞⋃
k=n

Ek.

We wish to show that

µ

Ç ∞⋂
n=1

Sn

å
= µ

Ç ∞⋂
n=1

∞⋃
k=n

Ek

å
= 0.

Observe that Sn is a decreasing sequence. Furthermore, as µ(Sn) ≤
∑∞

k=n µ(Ek) < ∞, therefore
we may apply the monotone property of measures. Consequently, we yield the following

limn→∞µ(Sn) = µ

Ç ∞⋂
n=1

Sn

å
. (2.2)
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We now show that limn→∞µ(Sn) = 0. Indeed, denoting l = ∑
k µ(Ek) and ln = ∑n−1

k=1 µ(Ek), we
first see that limn→∞ln = l. Now observe that

µ(Sn) ≤
∞∑
k=n

µ(Ek) = l − ln−1

where the last equality follows from rearrangement of a positive convergent series. Hence, taking
limn→∞, we obtain that

limn→∞µ(Sn) ≤ l − l = 0,

that is, limn→∞µ(Sn) = 0. By Eq. (2.2), we deduce that X \A = ⋂
n Sn is a µ-null set, as needed.

This completes the proof.

Example 8.4.3. We wish to find Lebesgue decomposition of ν = m+ δ0 where m is the Lebesgue
measure and δ0 is the Dirac delta measure at 0 ∈ R.

Indeed, as (R,M) is a σ-algebra, therefore the Lebesgue decomposition theorem holds. We see
an immediate candidate for Lebesgue decomposition of ν with respect to m as follows:

ν = νa + νs

where we set νa = m and νs = δ0. Indeed, this works as m≪ m holds trivially and δ0 ⊥ m because
of the decomposition R = {0}⨿(R2 \{0}) where we see immediately that {0} is m-null and R2 \{0}
is δ0-null.

Example 8.4.4. Let p(x) = x2 − 6x+ 1 be a function R→ R. Consider the signed measure

ν(E) =
∫
E
pdm

on (R,M).
1. We first wish to show that (R,M, ν) is σ-finite. Indeed, let Xn = [n, n+ 1]. We claim that

−∞ < ν(Xn) < ∞ for each n ∈ N. Now, observe that over Xn, the polynomial is a continuous
function supported on a compact interval, hence it achieves a maxima and a minima, say Mn and
mn respectively. Consequently, we have mn ≤ p ≤Mn over Xn.∫

Xn

mndm ≤
∫
Xn

pdm ≤
∫
Xn

Mndm

and thus −∞ < mn ≤ ν(Xn) ≤Mn <∞ for each n. Hence ν is σ-finite.

2. We wish to find the Hahn-decomposition of R w.r.t. ν. That is, we wish to find a decom-
position R = P ⨿N such that P is a ν-positive set and N is a ν-negative set.

Observe that p(x) has two real roots c1, c2 ∈ R. Consequently, we see that over N = [c1, c2] the
polynomial p(x) is negative and hence ν(E) =

∫
E pdm ≤ 0 for any measurable E ⊆ N . Thus N is

a negative set. Similarly, define P = (−∞, c1)∪ (c2,∞). Then observe that p(x) is positive over p,
thus ν(E) ≥ 0 for any measurable E ⊆ P .

3. We now wish to find the Jordan decomposition of ν. Indeed, define ν+(E) := ν(E ∩ P ) and



8.4 Applications-IV : Signed spaces 125

ν−(E) := −ν(E ∩N) where X = P ⨿N is the Hahn decomposition. These are positive measures
such that ν = ν+ − ν−. Furthermore, ν+ ⊥ ν− as P is ν−-null and N is ν+-null by construction.

4. We wish to find the Lebesgue decomposition of ν with respect to the Lebesgue measure m.
Indeed, we claim that ν ≪ m, which will immediately show that the Lebesgue decomposition of ν
with respect to m is simply ν = ν + 0 where ν ≪ m and 0 ⊥ m. Indeed, take any measurable set
E ⊆ X such that m(E) = 0. As p is measurable therefore

ν(E) =
∫
E
pdm = 0.

Hence ν ≪ m, completing the proof.
Lemma 8.4.5. Let (X,A, µ) be a measure space, {En}Nn=1 ⊆ A and {cn}Nn=1 ⊆ R≥0. Consider the
positive measure

ν(E) =
N∑

n=1
cnµ(E ∩ En)

for some fixed En ∈ A. Then,
1. ν ≪ µ,
2. dν/dµ = ∑N

n=1 cnχEn.
Proof. 1. We wish to show that ν ≪ µ. Indeed, pick any E ∈ A such that µ(E) = 0. As µ is
positive, consequently µ(E ∩En) = 0 for each n = 1, . . . , N as E ∩En ⊆ E. Hence, we deduce that
ν(E) = 0. Thus ν ≪ µ.

2. We now wish to find the Radon-Nikodym derivative dν/dµ, which exists as ν ≪ µ. Indeed, this
means we need to find a measurable function f : X → [0,∞] such that

ν(E) =
∫
E
fdµ

for each E ∈ A. We claim that the following simple function

f =
N∑

n=1
cnχEn

is the required derivative. Indeed, observe that∫
E
fdµ =

∫
E

N∑
n=1

cnχEndµ

=
N∑

n=1
cn

∫
E
χEndµ

=
N∑

n=1
cn

∫
X
χEn∩Edµ

=
N∑

n=1
cnµ(E ∩ En)

= ν(E),
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as required.

Lemma 8.4.6. Let (X,A) be a measurable space and µ, ν be two positive measures. Suppose ν ≪ µ.
Then,

1. if the derivative dν/dµ > 0 µ-almost everywhere, then µ≪ ν,
2. Assuming both µ and ν are σ-finite, if the derivative dν/dµ > 0 µ-almost everywhere, then

µ≪ ν and

dµ

dν
=
Å
dν

dµ

ã−1
µ-almost everywhere.

Proof. 1. We first wish to show that if the derivative dν/dµ > 0 µ-almost everywhere, then µ≪ ν.
Denote f = dν/dµ. Suppose E ∈ A is such that ν(E) = 0. Thus ν(E) =

∫
E fdµ = 0. As f > 0

µ-almost everywhere, therefore consider the sequence En = {f(x) ≥ 1/n}. Clearly, ⋃nEn = X \N
as f > 0 over X, where N = {f(x) = 0} is a µ-null set. Hence, ⋃

nE ∩ En = E \ N . Thus,
µ(E \N) ≤∑

n µ(E ∩ En). Now,
1
n
µ(E ∩ En) ≤

∫
E∩En

fdµ ≤
∫
E
fdµ = 0.

Thus, µ(E ∩ En) = 0 for each n ∈ N. Hence,

µ(E \N) ≤
∑
n

ν(E ∩ En) = 0

and thus µ(E) = µ(E ∩N) + µ(E \N) = 0 + 0 = 0.

2. Assuming both µ and ν are σ-finite, we now wish to show that if the derivative dν/dµ > 0
µ-almost everywhere, then µ≪ ν and

dµ

dν
=
Å
dν

dµ

ã−1
µ-almost everywhere.

We have shown that µ ≪ ν in the item 1 above. By Radon-Nikodym theorem, we have the
derivative g = dµ/dν which is a measurable function g : X → [0,∞] such that

µ(E) =
∫
E
gdν.

Denote f = dν/dµ : X → [0,∞] which is such that

ν(E) =
∫
E
fdµ.

We are given that f > 0 µ-almost everywhere. We wish to show that g = 1/f µ-almost everywhere.
As we have seen that for an L+ function h, we obtain a positive measure given by µh =

∫
E hdµ,

therefore we deduce that µ = νg and ν = µf . Consequently, denoting N = {f(x) = 0} to be the
µ-null set, we obtain ∫

E

1
f
dν =

∫
E\N

1
f
fdµ+

∫
E∩N

1
f
dν

=
∫
E\N

dµ+ 0

= µ(E \N).
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As µ(E ∩N) = 0, therefore adding this to above we add∫
E

1
f
dν = µ(E \N) + µ(E ∩N) = µ(E).

Thus by almost everywhere uniqueness of Radon-Nikodym derivative of µ w.r.t. ν, we see that
1/f = g µ-almost everywhere.

Lemma 8.4.7. Let (X,A) be a measurable space with µ and ν be two finite positive measures.
Suppose

f = dν

d(µ+ ν) .

Assume that 1− f > 0. Then,

ν(E) =
∫
E

f

1− f dµ,

equivalently, that
dν

dµ
= f

1− f .

Proof. We first show that g := 1 − f is equal to the derivative dµ/d(µ + ν). Observe that g > 0.
Indeed, for this, we need to show that for any E ∈ A, we have

µ(E) =
∫
E
gd(µ+ ν).

To this end, we see that by definition of f and finiteness of µ, ν and thus µ + ν as measures, we
may deduce ∫

E
gd(µ+ ν) =

∫
E
(1− f)d(µ+ ν)

=
∫
E
d(µ+ ν)−

∫
E
fd(µ+ ν)

= µ(E) + ν(E)− ν(E)
= µ(E),

as required. We may therefore write µ = (µ+ν)g as the notation introduced in the class for positive
measures defined by positive measurable functions.

Next, we claim that the function f/g is the derivative dν/dµ. For this, we wish to show that
for any measurable E ∈ A, we have that

ν(E) =
∫
E

f

g
dµ.

As µ = (µ+ ν)g, hence we see that ∫
E

f

g
dµ =

∫
E

f

g
gd(µ+ ν)

=
∫
E
fd(µ+ ν)

= ν(E),
as required.
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Example 8.4.8. Let (N,P(N)) be a measurable space and ν be a σ-finite signed measure. Further,
let µ be the counting measure on (N,P(N)).

1. We wish to show that ν ≪ µ. This is immediate, as µ(E) = 0 if and only if E = ∅, and
hence ν(E) = 0 by definition.

2. We now wish to compute the derivative dν/dµ. This is straightforward, for we first observe
that the following function

f : N −→ [0,∞]
n 7−→ ν({n})

is measurable. Indeed, this is because the σ-algebra on N is the power set P(N). We thus claim
that

f = dν

dµ
.

Indeed, pick any measurable set E ⊆ N. Note that it is countable in size. Observe that∫
E
fdµ =

∑
n∈E

f(n)

=
∑
n∈E

ν({n})

= ν

(∐
n∈E
{n}

)
= ν(E)

where the second-to-last equality is obtained from the fact ν is a measure. This completes the
proof.

Lemma 8.4.9. Let (X,A) be a measurable space and µ, ν be two σ-finite positive measures on
(X,A). Let λ = µ+ ν. Then the following are equivalent

1. µ ⊥ ν,
2. if f = dµ/dλ and g = dν/dλ, then

fg = 0 λ-almost everywhere.

Proof. (1.⇒ 2.) As µ ⊥ ν, therefore there exists a ν-null set A and a µ-null set B such that

A⨿B = X. (9.1)

For any measurable E ⊆ X, we have

µ(E) =
∫
E
fdλ

ν(E) =
∫
E
gdλ.
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We first observe that if any of the µ or ν is the zero measure, then we are done. Indeed, for if
µ = 0, then we deduce that µ(X) = 0 and hence f = 0 λ-a.e. Consequently, fg = 0 λ-a.e. Hence,
we may now assume that none of the µ and ν are 0 measures.

Observe that since µ(B) = 0, therefore
∫
B fdλ = 0. As λ(B) = µ(B) + ν(B) = ν(B), therefore

we deduce from the fact that ν ̸= 0 and ν(A) = ν(X \B) = 0 that ν(B) ̸= 0. Hence,

λ(B) ̸= 0. (9.2)

For exactly the same reasoning applied on ν(A) = 0, we deduce that

λ(A) ̸= 0. (9.3)

Hence, we have that
∫
B fdλ = 0 =

∫
A gdλ. By Eqns (9.2) and (9.3), we conclude that f = 0 λ-a.e.

over B and g = 0 λ-a.e. over A.
Consider the set N = {f(x) ̸= 0} ∩ {g(x) ̸= 0}. Writing

N = (N ∩A)⨿ (N ∩B),

we observe that
1. N ∩A is ν-null as A is ν-null,
2. N ∩A is µ-null as {g(x) ̸= 0} ∩A is λ-null and over A, we have λ = µ,
3. N ∩B is µ-null as B is µ-null,
4. N ∩B is ν-null as {f(x) ̸= 0} ∩B is λ-null and over B, λ = ν.

Hence, we see that N ∩A and N ∩B both are λ-null. Consequently, N is λ-null.

(2. ⇒ 1.) For any measurable E ⊆ X, we have

µ(E) =
∫
E
fdλ

ν(E) =
∫
E
gdλ.

Consider the following measurable sets

A = {g(x) = 0}
B = {g(x) ̸= 0} ∩ {f(x) = 0}
N = {g(x) ̸= 0} ∩ {f(x) ̸= 0}.

Clearly, X = A ⨿ B ⨿ N . Furthermore, as fg = 0 λ-a.e, therefore N is λ-null. Over A we see
that ν is 0 and over B we see that µ is 0. As N is λ-null, therefore it is both µ and ν-null as well.
Consequently, we have

X = A⨿ (B ⨿N)

where A is ν-null and B ⨿N is µ-null, as required.

Lemma 8.4.10. Let (X,A, ν) be a signed space. Then,
1. dν+

d|ν| = χP ,
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2. dν−

d|ν| = χN .

Proof. First, observe that these derivatives exists because ν+ ≪ |ν| and ν− ≪ |ν|. By Jordan
decomposition of ν, we have

ν = ν+ − ν−

where ν+(E) = ν(P ∩E) and ν−(E) = −ν(N ∩E), where X = P ⨿N is the Hahn-decomposition
of X into a positive set P and a negative set N obtained by ν and E ∈ A.

1. We claim that dν+

d|ν| is given by χP . To this end, we need only show that

ν+(E) =
∫
E
χPd |ν|

as by Radon-Nikodym theorem, we know that the derivatives are unique |ν|-almost everywhere,
and therefore ν-almost everywhere.

Now, we see that ∫
E
χPd |ν| = |ν| (E ∩ P )

= ν+(E ∩ P ) + ν−(E ∩ P )
= ν(E ∩ P ∩ P )− ν(E ∩ P ∩N)
= ν(E ∩ P )− ν(∅)
= ν+(E),

as needed.

2. We proceed similarly as above and claim that χN is the derivative dν−

d|ν| . Indeed, we see that
∫
E
χNd |ν| = |ν| (E ∩N)

= ν+(E ∩N) + ν−(E ∩N)
= ν(E ∩N ∩ P )− ν(E ∩N ∩N)
= ν(∅)− ν(E ∩N)
= ν−(E),

as required.

Lemma 8.4.11. Let (X,A, ν) be a signed space and let f : X → C be a measurable function.
Define ∫

X
fdν =

∫
X
fdν+ −

∫
X
fdν−

where ν = ν+ − ν− is the Jordan decomposition of ν. Then,
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1. we have ∣∣∣∣∫
X
fdν

∣∣∣∣ ≤ ∫
X
|f | d |ν| ,

2. for any E ∈ A, we have

|ν| (E) = sup
ß∣∣∣∣∫

E
fdν

∣∣∣∣ | |f | ≤ 1
™
.

Proof. 1. We may write ∣∣∣∣∫
X
fdν

∣∣∣∣ = ∣∣∣∣∫
X
fdν+ −

∫
X
fdν−

∣∣∣∣
≤
∣∣∣∣∫

X
fdν+

∣∣∣∣+ ∣∣∣∣∫
X
fdν−

∣∣∣∣
≤

∫
X
|f | dν+ +

∫
X
|f | dν−. (11.1)

We now claim that
∫
X |f | dν+ +

∫
X |f | dν− =

∫
X |f | d |ν|. Indeed, we first observe that for any

E ∈ A, we have ν+(E) =
∫
E χPd |ν| and ν−(E) =

∫
E χNd |ν|. Consequently, we get∫

X
|f | dν+ +

∫
X
|f | dν− =

∫
X
|f |χPd |ν|+

∫
X
|f |χNd |ν|

=
∫
X
|f | (χP + χN )d |ν|

=
∫
X
|f | · 1d |ν|

=
∫
X
|f | d |ν| , (11.2)

as required. Hence we conclude by Eqns (11.1) and (11.2).

2. Let Z := {|
∫
E fdν| | |f | ≤ 1}. We first see that for any measurable f : X → C with

|f | ≤ 1, we have the following by item 1 above∣∣∣∣∫
E
fdν

∣∣∣∣ ≤ ∫
E
|f | d |ν|

≤
∫
E
d |ν|

≤ |ν| (E).

Hence, supZ ≤ |ν| (E).
For the converse, we wish to show that |ν| (E) ≤ supZ. If supZ =∞, then there is nothing to

be shown. So we may assume supZ <∞. As the constant function 1 is in the collection, therefore

|ν(E)| ≤ supZ <∞. (11.3)

In order to show |ν| (E) ≤ supZ, it suffices to find a measurable function f : X → C such that
|f | ≤ 1 and |ν| (E) ≤ |

∫
E fdν|. Indeed, denoting by X = P ⨿N to be the Hahn-decomposition of
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X obtained by ν, we consider f = χP − χN . Clearly, image of f is {−1, 0, 1} as A ∩B = ∅, hence
|f | ≤ 1. Moreover, we observe that∣∣∣∣∫

E
fdν

∣∣∣∣ = ∣∣∣∣∫
E
fdν+ −

∫
E
fdν−

∣∣∣∣
=
∣∣∣∣∫

E
(χP − χN )dν+ −

∫
E
(χP − χN )dν−

∣∣∣∣ . (11.4)

By Eq. (11.3), we deduce that ν+(E) and ν−(E) are finite. Furthermore, over E we have that χP

and χN are both in L1(ν+) and L1(ν−). With this, we may continue Eq. (11.4) as follows∣∣∣∣∫
E
fdν

∣∣∣∣ = ∣∣∣∣∫
E
χPdν

+ −
∫
E
χNdν

+ −
∫
E
χPdν

− +
∫
E
χNdν

−
∣∣∣∣

=
∣∣∣∣∫

E
χPdν

+ − 0− 0 +
∫
E
χNdν

−
∣∣∣∣

= ν+(E ∩ P ) + ν−(E ∩N)
= ν+(E) + ν−(E)
= |ν| (E).

where in the second equality we have used the fact the fact that ν+(E) := ν(E ∩P ) and ν−(E) :=
ν(E∩N). This shows that for some f : X → C measurable with |f | ≤ 1 we have |

∫
E fdν| = |ν| (E),

which consequently shows that |ν| (E) ≤ supZ. This completes the proof.

Example 8.4.12. We wish to find those signed spaces (X,A, ν) which satisfies property 1 below.
Further, we also wish to find those which satisfies 2 as below:

1. For c the counting measure on (X,A), we have c≪ ν.
2. For x0 ∈ X and the Dirac measure δx0 , we have δx0 ≪ ν.

1. Let E ∈ A. We know that c(E) = 0 iff E = ∅. Consequently, if ν(E) = 0, then c(E) = 0 iff
E = ∅. That is, ν(E) = 0 iff E = ∅. Hence all those signed spaces (X,A, ν) whose only null set is
∅ can only be such that c≪ ν.

2. Let E ∈ A. We know that δx0(E) = 0 iff x0 /∈ E. Thus if ν(E) = 0 and δx0 ≪ ν, then
x0 /∈ E. Hence, (X,A, ν) is a signed space such that all its null sets does not contain x0. This
completes the characterizations.

Lemma 8.4.13. Let (X,A, ν) be a signed space. Then,
1. If {En} ⊆ A be an increasing collection of measurable sets, then

ν

Ç⋃
n

En

å
= limn→∞ν(En).

2. If {En} ⊆ A be a decreasing collection of measurable sets such that ν(A1) is finite, then

ν

Ç⋂
n

En

å
= limn→∞ν(En).
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Proof. 1. Denote F1 = E1 and Fn = En \ En−1 for n ≥ 2. Observe that {Fn} are disjoint, but⋃
n

En =
∐
n

Fn. (9.1)

Now observe that En = Fn ⨿ En−1. This is recursive relation, which when unravelled, yields

En = Fn ⨿ Fn−1 ⨿ · · · ⨿ F1.

Applying ν yields

ν(En) =
n∑

k=1
ν(Fk). (9.2)

It follows from Eqns (9.1) and (9.2) that

ν

Ç⋃
n

En

å
= ν

Ç∐
n

Fn

å
=

∞∑
k=1

ν(Fk)

= limn→∞

n∑
k=1

ν(Fk)

= limn→∞ν(En),

as needed.

2. Consider the sequence F1 = E1 and Fn = E1 \ En for n ≥ 2. Note that {Fn} is increas-
ing. Hence by item 1, we have

ν

Ç⋃
n

Fn

å
= limn→∞ν(Fn). (9.3)

Now observe that

E1 = Fn ⨿ En

for each n ∈ N. Hence, applying ν we yield

ν(E1) = ν(Fn) + ν(En).

As ν(E1) is finite, therefore the RHS in above equation is finite. Consequently, each term in the
above equation is finite. Hence we may write it as

ν(E1)− ν(Fn) = ν(En).

Taking n→∞ yields

ν(E1)− limn→∞ν(Fn) = limn→∞ν(En)
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which by Eq. (9.3), yields

ν(E1)− ν
Ç⋃

n

Fn

å
= limn→∞ν(En). (9.4)

We now claim that if A ∈ A and B ⊆ A in A is such that ν(B) is finite, then ν(A\B) = ν(A)−ν(B).
Indeed, we may write A = (A \ B) ⨿ B where A \ B is measurable as well. Applying ν, we yield
ν(A) = ν(A \B) + ν(B). As ν(B) is finite, therefore we may subtract both sides by ν(B) to yield
ν(A \B) = ν(A)− ν(B), as desired.

Using the above proved statement on Eq. (9.4), we obtain

limn→∞ = ν

Ç
E1 \

⋃
n

Fn

å
= ν

Ç
E1 ∩

⋂
n

F c
n

å
= ν

Ç⋂
n

E1 ∩ F c
n

å
= ν

Ç⋂
n

En

å
,

as desired.

Lemma 8.4.14. Let (X,Σ, µ) be a measure space and f, g : X → [0,∞) be two non-negative
measurable functions such that f(x)g(x) = 0 for almost all x ∈ X. Suppose for each E ∈ Σ we
have

µ(E) =
∫
E
fdµ.

Define for each E ∈ Σ

ν(E) =
∫
E
gdµ.

Then µ ⊥ ν.
Proof. We know that ν as defined is a positive measure. Let N = {f(x)g(x) ̸= 0}. This is a
null-set. Consequently, we wish to find A and B measurable subsets such that X = A⨿B with A
being µ-null and B being ν-null.

Define A = {f(x) = 0} and B = {g(x) = 0 & f(x) ̸= 0}. Observe that X = A ⨿ B ⨿ N . Let
X1 = A⨿N and X2 = B. Consequently X = X1⨿X2. Now, for any measurable A′ ⊆ X1, we may
write A′ = (A′ ∩A)⨿ (A′ ∩N)

µ(A′) =
∫
A′∩A

fdµ+
∫
A′∩N

fdµ =
∫
A′∩A

0dµ+
∫
A′∩N

fdµ = 0 + 0 = 0

where the latter term is zero because it is an integral over a measure 0 subset. Similarly, for any
measurable B′ ⊆ X2, we see that

ν(B′) =
∫
B′
gdµ =

∫
B′

0dµ = 0.

Hence we have shown that X1 is µ-null and X2 is ν-null, as required.
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Lemma 8.4.15. Let (X,A, ν) be a signed space. Then,
1. If A ∈ A is a positive set, then B ⊆ A such that B ∈ A is also a positive set.
2. If {An} ⊆ A is a sequence of positive sets, then

⋃
nAn is a positive set.

Proof. 1. Pick any C ⊆ B. As B ⊆ A, therefore C ⊆ A. As A is positive, thus ν(C) ≥ 0, as needed.

2. Let B1 = A1 and Bn = An \ (A1 ∪ · · · ∪ An−1). Then observe that {Bn} is a disjoint se-
quence of sets in A, each positive as well by item 1. Furthermore, observe that∐

n

Bn =
⋃
n

An.

Now pick any E ⊆ ⋃
nAn and denote En = E∩Bn. Then, since Bn are disjoint, thus so is {E∩Bn}.

Furthermore E = ∐
nEn. Hence, we obtain

µ(E) = µ

Ç∐
n

En

å
=

∑
n

µ(En).

As each Bn is a positive set, so En = E ∩ Bn is a positive set as well by item 1. Consequently,
µ(En) ≥ 0 for all n ∈ N. Hence, from above, we deduce that

µ(E) =
∑
n

µ(En) ≥ 0,

as needed.

9 The dual of Lp (Rn) : Riesz Representation theorem

Definition 9.0.1. (Linear Functional) Suppose (V,R, ∥ · ∥) is a Banach Space. A linear27 map
f : V −→ R is called a linear functional.

Definition 9.0.2. (Bounded linear functional) A linear functional φ : V −→ R where (V,R, ∥·∥)
is a Banach space is called bounded if

∃ c ≥ 0 such that |φ(x)| ≤ c∥x∥ ∀ x ∈ V.

The space of all such bounded linear functionals is denoted by

B(V ).

That is, any φ ∈ B(V ) is a bounded linear functional.

Proposition 9.0.3. Suppose (V,R, ∥ · ∥V ) is a Banach Space and B (V ) is the space of bounded
linear functionals over V . Then,

B (V ) forms a Vector Space
27f(αv1 + βv2) = αf(v1) + βf(v2) ∀ v1, v2 ∈ V and α, β ∈ R. Or more simply, a morphism in the Category of

Vector Spaces Vect :):
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and the map
∥ · ∥ : B (V ) −→ [0,∞)

defined by

∥φ∥ = sup
ß |φ(x)|
∥x∥V

: x ∈ V
™

= inf {c : |φ(x)| ≤ c∥x∥V , x ∈ V }

for any φ ∈ B (V ) forms a norm on the Vector Space B (V ).

Proof. Take any two φ1, φ2 ∈ B (V ) and α, β ∈ R. By the very nature of their existence, φ1 & φ2
have to be bounded linear functionals. Suppose

|φ1(x)| ≤ c1∥x∥V
|φ2(x)| ≤ c2∥x∥V

∀ x ∈ V . Then αφ1 is a function such that:

|αφ1(x)| ≤ αc1∥x∥V

Hence αφ1 ∈ B (V ). Similarly, βφ2 ∈ B (V ). Now, since we have that

|φ1 + φ2| ≤ |φ1|+ |φ2|

Therefore, φ1 + φ2 ∈ B (V ). Hence, B (V ) is a Vector Space.

To see that ∥ · ∥ is a norm over B (V ), we see that for any α ∈ R and φ ∈ B (V ), we trivially
get that

∥αφ∥ = |α| ∥φ∥

and, for f1, f2 ∈ B (V ), we also note that

∥f1 + f2∥ ≤ ∥f1∥+ ∥f2∥

Hence, ∥ · ∥ is a norm on Vector Space B (V ).

9.1 B (V ) is a Banach Space

Proposition 9.1.1. Suppose V is a Banach Space. Then B (V ) is a Banach Space.

Proof. Take any Cauchy sequence {φn} in B (V ). Now, since φn’s are bounded linear functionals,
therefore,

∃ cn ≥ 0 such that |φn(x)| ≤ cn∥x∥V ∀ x ∈ V
Now take any x ∈ V . Since φn(x) ∈ V , we therefore have a sequence {φn(x)} in R. We now note
that

|φn(x)− φm(x)| ≤ ∥x∥V × sup
ß |φn − φm|
∥x∥V

: x ∈ V
™

= ∥φn − φm∥∥x∥V .
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Hence, {φn(x)} is a Cauchy sequence in R. Now write

φ(x) = lim←−
n

φn(x).

Since R is complete, therefore φ(x) ∈ R. But our choice of x was arbitrary, hence φ(x) =
lim←−n

φn(x) <∞ ∀ x ∈ V . Hence φ ∈ B (V ).

Moreover,

lim←−
n

∥φn∥ = lim←−
n

sup
ß |φn(x)|
∥x∥V

: x ∈ V
™

= sup
®
lim←−
n

|φn(x)|
∥x∥V

: x ∈ V
´

= sup


∣∣∣lim←−n

φn(x)
∣∣∣

∥x∥V
: x ∈ V


= sup

ß |φ(x)|
∥x∥V

: x ∈ V
™

= ∥φ∥

Hence proved.

10 Remarks on Banach spaces
Following are some exercises, examples and remarks on Banach spaces.

10.1 Normed linear spaces

Remark 10.1.1. a) We claim that any linear space could be normed. Let X be a linear space
and {bj} be a Hamel basis. Then for each x ∈ X there are unique finitely many non-zero elements
cx1 , . . . , cxk ∈ K such that x = cx1bj1 + . . . cxkbjk . Define the following map

∥ − ∥ : X −→ R≥0

x 7−→ max{|cx1 | , . . . , |cxk |}.

We claim that ∥ − ∥ is a norm. Indeed, if ∥x∥ = 0, then cxi = 0 for all i = 1, . . . , k. Consequently,
x = 0. If x = 0, then it is clear by uniqueness of cxi that all cxi = 0.

Consider c ∈ K and x ∈ X. Then ∥cx∥ = max |ccx1 | , . . . , |ccxk
| = |c|max{|cx1 | , . . . , |cxk

|} =
|c| ∥x∥.

We finally wish to show triangle inequality. Pick x, y ∈ X. Then, (we allow cxi and cyi to be
zero)

∥x+ y∥ = max{|cx1 + cy1 | , . . . , |cxk + cyk |}
≤ max{|cx1 |+ |cy1 | , . . . , |cxk |+ |cyk |}
≤ max{|cx1 | , . . . , |cxk |}+max{|cy1 | , . . . , |cyk |}
= ∥x∥+ ∥y∥.
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Hence every linear space is normable.

b) We claim that not all metric on a linear space X comes from a norm on X. Indeed, consider
the following metric:

d : X ×X −→ R≥0

(x, y) 7−→
®
1 if x ̸= y

0 if x = y.

Indeed it is clear that d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y. For triangle inequality, we need
only consider the case when x ̸= y and to show that for any z ∈ X we have

1 = d(x, y) ≤ d(x, z) + d(y, z).

It is clear that we need only show that d(x, z) and d(y, z) are both not simultaneously 0. Indeed,
if both are simultaneously 0, then x = z = y, a contradiction. Hence d is indeed a metric.

We claim that d is not induced by any norm. Indeed, assume to the contrary it is induced by
a norm ∥ − ∥. It follows that

∥x∥ = d(x, 0) =
®
1 if x ̸= 0
0 if x = 0.

Since ∥− ∥ is a norm, it follows that for any c ̸= 1 in K and x ̸= 0 in X, we must have ∥cx∥ = 1 as
cx ̸= 0. We now have the following contradiction

1 = ∥cx∥ = |c| ∥x∥ = |c| ≠ 1.

This completes the proof.

Remark 10.1.2. We wish to show that the following are equivalent for a linear space X with a
function ∥ : ∥X → R≥0 satisfying ∥x∥ = 0 iff x = 0 and ∥cx∥ = |c| ∥x∥ for all c ∈ K and x ∈ X:

1. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.
2. The closed unit ball B1[0] = {x ∈ X | ∥x∥ ≤ 1} is convex.

(1.⇒ 2.) Pick x, y ∈ B1[0] and c ∈ [0, 1]. We wish to show that cx+(1− c)y ∈ B1[0]. Indeed, since
∥x∥, ∥y∥ ≤ 1, therefore we have

|cx+ (1− c)y| ≤ |c| ∥x∥+ |1− c| ∥y∥
≤ c+ (1− c)
= 1.

(2.⇒ 1.) Pick x, y ∈ X. If any of the x or y is 0, then triangle inequality is immediate. Hence we
may assume x and y are both not 0. Then x

∥x∥ ,
y

∥y∥ ∈ B1[0]. Let c = ∥x∥
∥x∥+∥y∥ so that 1−c = ∥y∥

∥x∥+∥y∥ .
It is clear that c ∈ [0, 1]. By convexity of B1[0], it follows that

c
x

∥x∥
+ (1− c) y

∥y∥
∈ B1[0].
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But we have

c
x

∥x∥
+ (1− c) y

∥y∥
= x

∥x∥+ ∥y∥ +
y

∥x∥+ ∥y∥

hence the RHS above is in B1[0]. Taking norm, we see

∥ x

∥x∥+ ∥y∥ +
y

∥x∥+ ∥y∥∥ =
∥x+ y∥
∥x∥+ ∥y∥ ≤ 1

from which we get

∥x+ y∥ ≤ ∥x∥+ ∥y∥,

as required.

Example 10.1.3. Consider C[a, b] be the R-vector space of all continuous functions on [a, b]. Define
for any 1 ≤ p <∞

∥f∥p :=
Å∫ b

a
|f(t)|p dt

ã 1
p

.

a) We wish to show that ∥−∥p is a norm on C[a, b]. Indeed, if f ∈ C[a, b] such that ∥f∥p = 0, then
we have ∫ b

a
|f(t)p| dt = 0.

We wish to show that f = 0. Suppose not, so that f(t0) ̸= 0 at a point t0 ∈ [a, b]. If t0 = a or b,
then by continuity there is a point in (a, b) where f is non-zero. Replace t by that point in (a, b). It
follows by continuity that there exists δ > 0 such that f is non-zero on I = [t0 − δ, t0 + δ] ⊆ (a, b).
Let m = mint∈I |f(t)|p > 0 which exists as f is continuous on compact I and f ̸= 0 on I. Then

0 =
∫ b

a
|f(t)|p dt ≥

∫ t0+δ

t0−δ
mdt = m · (2δ) > 0,

a contradiction. It follows that f = 0 on [a, b].
We now wish to show triangle inequality. For this, we invoke the fact that C[a, b] is contained

inside the linear space Lp[a, b] of R-valued Lebesgue measurable functions on [a, b]. Moreover, the
function

∥f∥p :=
Å∫

[a,b]
|f |p dm

ã1/p
for f ∈ Lp[a, b] defines a norm. Moreover if f is continuous, then the above Lebesgue integral on
[a, b] agrees with the usual Riemann integral. So we may conclude that there is an inclusion of
linear spaces

(C[a, b], ∥ − ∥p) ⊆ (Lp[a, b], ∥ − ∥p) .
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We know that (Lp[a, b], ∥−∥p) forms a normed linear space, where triangle inequality is established
by Minkowski’s inequality. Using the same theorem on the subspace (C[a, b], ∥ − ∥p), we get the
desired result.

b) We claim that (C[0, 2], ∥ − ∥1) is not complete. It suffices to show a Cauchy sequence which is
not convergent. Indeed consider fn(x) as follows:

fn(x) =
®
xn if x ∈ [0, 1]
1 if x ∈ (1, 2].

We first claim that (fn) is Cauchy in C[0, 2]. Indeed, for n ≥ m, we have

∥fn − fm∥1 =
∫ 2

0
|fn(x)− fm(x)| dx

=
∫ 1

0
|xn − xm| dx

=
∫ 1

0
xm − xndx

=
∫ 1

0
xmdx−

∫ 1

0
xndx

= 1
m+ 1 −

1
n+ 1

≤ 1
m+ 1 .

So for a fixed ϵ > 0, let N ∈ N be such that 1/N < ϵ. Then for all n,m ≥ N , we have

∥fn − fm∥1 ≤
1

m+ 1 ≤
1

N + 1 < ϵ,

as needed. Next, we claim that (fn) doesn’t converge in C[0, 2]. Indeed, it would suffice to show
that it converges in L1[0, 2] to a non-continuous function. Indeed, consider the following simple
function

f = χ[1,2].

This is not continuous in [0, 2]. We claim that fn → f in L1[0, 2]. Indeed, we have

∥fn − f∥1 =
∫
[0,2]
|fn − f | dm =

∫
[0,1]
|fn − f | dm+

∫
[1,2]
|fn − f | dm

=
∫
[0,1]
|fn − f | dm =

∫ 1

0
|xn| dx,

where the last equality comes from Riemann and Lebesgue integrals being equal on compact inter-
vals for Riemann integrable functions. Consequently, we have

∥fn − f∥1 =
1

n+ 1
which converges to 0 as n → ∞. Hence in L1[0, 2], fn → f . As C[0, 2] ⊆ L1[0, 2] with the given
norm, it follows that (fn) ⊆ C[0, 2] does not converge in C[0, 2].
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Example 10.1.4. Let X = (C[0, 1], ∥ · ∥∞). We wish to calculate the following:
1. d(f1, C) where f1(t) = t and C is the linear subspace of all constant functions,
2. d(f2, P ) where f2(t) = t2 and P is the linear subspace of polynomials of degree at most 1.

1. We claim that d(f1, C) = 1/2. Indeed, we have

d(f1, C) = inf
c∈C
∥f1 − c∥ = inf

c∈C
sup
t∈[0,1]

|t− c|

= inf
c∈C

®
c if 1

2 ≤ c <∞
1− c if −∞ < c < 1

2 .

= 1
2 ,

as needed.

2. We claim that d(f2, P ) = 1/8. Pick any at+ b ∈ P for a, b ∈ R. We first show that

sup
t∈[0,1]

∣∣t2 − at− b∣∣ = max
ß
−b, 1− a− b, a

2

4 + b

™
. (∗)

Indeed, consider the discriminant a2 +4b of f(t) = t2− at− b. There are two cases to be had here:
1. If a2+4b ≤ 0 : Then the maximum of |f(t)| is equal to that of f(t) and is achieved only on the

boundary at t = 0 or 1 because f(t) ≥ 0 for all t ∈ [0, 1]. Consequently, supt∈[0,1] |f(t)| = −b
or 1− a− b.

2. If a2 + 4b > 0 : Then the maximum of |f(t)| is either on boundary at t = 0, 1 or at the point
of minima of f(t) at t = a/2, which thus becomes a point of maxima for |f(t)|. It follows
that supt∈[0,1] |f(t)| = −b, 1− a− b or a2

4 + b.
These two cases shows the claim in Eqn (∗).

Consider now f(a, b) = max
¶
−b, 1− a− b, a24 + b

©
as a function f : R2 → R. We wish to find

inf(a,b)∈R2 f(a, b). First we observe the following three regions:
1. The region R1 : This is

R1 = {(a, b) ∈ R2 | f(a, b) = −b}.

2. The region R2 : This is

R2 = {(a, b) ∈ R2 | f(a, b) = 1− a− b}.

3. The region R3 : This is

R3 =
ß
(a, b) ∈ R2 | f(a, b) = a2

4 + b

™
.

We now analyze bounds on a point (a, b) ∈ Ri as follows.
1. If (a, b) ∈ R1 : Then we have

−b > 1− a− b
−b > a2/4 + b
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solving which, we get bounds

a < 1

b < −a
2

8 .

Hence, to minimize b, we need to maximize a, thus to get that b < −1/8. So we have
(a, b) = (1,−1/8) as a point of minima for −b.

2. If (a, b) ∈ R2 : Then we have

1− a− b > −b

1− a− b >
a2

4 + b

solving which we get bounds

a < 1

b <
1
2 −

a

2 −
a2

8 .

Hence to minimize 1 − a − b, we have to maximize a and b. Doing so yields a = 1 and
b = −1/8. Hence (a, b) = (1,−1/8) is a point of minima for 1− a− b.

3. If (a, b) ∈ R3 : Then we have

a2

4 + b < −b

a2

4 + b < 1− a− b

solving which, we get bounds

b > −a
2

8

b > −a
2

8 −
a

2 + 1
2 .

Hence to minimize a2

4 +b, we have to minimize b and a. Doing so, we obtain b = −a2/8 which
thus yields

a > 1.

Hence to minimize a, we have to take a = 1. Consequently, (a, b) = (1,−1/8) is a point of
minima for a2/4 + b.

From all the three cases above, we see that f minimizes at the point (a, b) = (1,−1/8). Indeed, we
see that (1,−1/8) ∈ R1 ∩R2 ∩R3 as all three functions −b, 1− a− b and a2/4 + b are equal at it.
Consequently, the inf(a,b)∈R2 f(a, b) = 1/8, as required.
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10.2 Properties

Proposition 10.2.1. Let X be a normed linear space. The following are equivalent:
1. X is a Banach space.
2. S1(X) = {x ∈ X | ∥x∥ = 1} is a complete subset of X.

Proof. content...

Proposition 10.2.2. Let X be a normed linear space. Then the following are equivalent:
1. X is a Banach space.
2. Absolutely convergent series in X are convergent in X.

Proof. 1.⇒ 2. Pick an absolutely convergent series ∑
n xn in X so that∑

n

∥xn∥ <∞.

It follows that Tn = ∑n
k=1 ∥xk∥ is a Cauchy sequence in R. We wish to show that ∑

n xn converges
in X. It suffices to show that the sequence Sn = ∑n

k=1 xk converges in X. We reduce to showing
that (Sn) is Cauchy. Fix ϵ > 0. For any n ≥ m, we have

∥Sn − Sm∥ = ∥xm+1 + · · ·+ xn∥
≤ ∥xm+1∥+ · · ·+ ∥xn∥

=
∣∣∣∣∣
Ç

n∑
k=1
∥xk∥

å
−
Ç

m∑
k=1
∥xk∥

å∣∣∣∣∣
= |Tn − Tm| < ϵ

some N ∈ N and n,m ≥ N since (Tn) is Cauchy in R. This shows that (Sn) is Cauchy, as required.
2. ⇒ 1. Pick a Cauchy sequence (xn) ⊆ X. We wish to show that there is a convergent

subsequence of (xn). We first find a subsequence of (xn) which is better behaved. Indeed, by
Cauchy condition, we find for each k ≥ 0 a positive integer Nk ∈ N such that

∥xn − xm∥ <
1
2k

for all n,m ≥ Nk. We may assume Nk to be the least such possible by well-ordering on N. Then
we see that Nk+1 ≥ Nk by minimality hypothesis. Thus consider the subsequence (xNk

) of (xn).
Observe that

∥xNk+1 − xNk
∥ < 1

2k

as Nk+1, Nk ≥ Nk. We replace (xn) by the subsequence (xNk
) so that we may assume

∥xn+1 − xn∥ <
1
2n ∀n ∈ N. (3)

We now find the limit to which (xn) converges. Indeed, define the following sequence in X:

yn−1 =
n−1∑
k=1

xk+1 − xk

= xn − x1.
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We claim that ∑
n xn+1 − xn is an absolutely convergent series. Indeed, denote

Sn−1 :=
n−1∑
k=1
∥xk+1 − xk∥

≤
n−1∑
k=1

1
2k

where the latter bound follows from Eqn. (3). Then, we see that for any n ∈ N

Sn ≤
n∑

k=1

1
2k <

∞∑
k=1

1
2k =M <∞. (4)

That is, (Sn) is a monotonically increasing positive bounded sequence in R, therefore (Sn) is
convergent. This shows that the series ∑

n xn+1 − xn is absolutely convergent. By our hypothesis,
it follows that ∑

n xn+1 − xn is convergent in X. That is, the sequence

yn−1 =
n−1∑
k=1

xk

of partial sums is convergent in X. But since yn−1 = xn − x1, it follows that (xn) is a convergent
sequence in X, as required.

10.3 Bases & quotients

Lemma 10.3.1. If X is a normed linear space with a Schauder basis, then X is separable.

Proof. Let (bn) ⊆ X be a Schauder basis. Consider the following subset

D =
®

n∑
k=1

qkbk | qk ∈ E, n ∈ N
´

where E ⊆ K is a countable dense subset. It is clear that D is countable. We claim that D is dense
in X.

Pick any point x ∈ X. Since (bn) is a Schauder basis, there exists (ck) ⊆ K such that

x =
∞∑
k=1

ckbk

where the series converges in X. Pick a ball Bϵ(x) around x. We wish to show that Bϵ(x)∩D ̸= ∅.
Indeed, consider N ∈ N large enough such that

∥x−
N∑
k=1

ckbk∥ <
ϵ

2 . (9)

Moreover, for each k = 1, . . . , N , consider qk ∈ E such that

|ck − qk| <
ϵ

2 · 2k∥bk∥
(10)
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which exists by density of E in K. Hence, we have by Eqns (9) and (10) the following inequalities:

∥x−
N∑
k=1

qkbk∥ ≤ ∥x−
N∑
k=1

ckbk∥+ ∥
N∑
k=1

(ck − qk)bk∥

<
ϵ

2 +
N∑
k=1
|ck − qk| ∥bk∥

<
ϵ

2 + 1
2

N∑
k=1

ϵ

2k

= ϵ

2 + ϵ

2

Å
1− 1

2N
ã

<
ϵ

2 + ϵ

2 = ϵ,

as needed. This shows that ∑N
k=1 qkbk ∈ Bϵ(x), that is D is dense in X.

Proposition 10.3.2 (2 out of 3 property). Let X be a normed linear space and Y ⊆ X be a closed
linear subspace. Then,

1. X,Y Banach implies X/Y Banach.
2. X,X/Y Banach implies Y Banach.
3. Y,X/Y Banach implies X Banach.

Proof. 1. We have done in class that if X is Banach then for any closed linear subspace Y , X/Y
is Banach.

2. We need the following lemma here:

Lemma 10.3.3. Let X be a Banach space and Y ⊆ X be a linear subspace. Then the following
are equivalent:

1. Y is complete.
2. Y is closed.

Proof of Lemma 10.3.3. 1. ⇒ 2. Take (yn) ⊆ Y be a convergent sequence in X such that it con-
verges to x ∈ X. We wish to show that x ∈ Y . Indeed, as (yn) ⊆ Y is convergent, so it is Cauchy.
Since Y is complete, it follows that (yn) converges to a point in Y . By uniqueness of point of
convergence in a Hausdorff space, x ∈ Y .

2. ⇒ 1. Pick a Cauchy sequence (yn) ⊆ Y . We wish to show that it converges in Y . Indeed,
(yn) as a sequence in X is Cauchy and thus by completeness of X, we deduce that yn → x in X.
But since Y is closed, therefore by uniqueness of point of convergence, we must have x ∈ Y , as
required.

Since X is Banach and Y is closed, it follows from Lemma 10.3.3 that Y is complete.

3. Pick a Cauchy sequence (xn) ⊆ X. We wish to show that that it converges. We have a
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sequence (xn + Y ) ⊆ X/Y . We first claim that (xn + Y ) is Cauchy. Indeed, we have

∥xn − xm + Y ∥ = inf
y∈Y
∥xn − xm + y∥

≤ ∥xn − xm∥ < ϵ

for all n,m ≥ N for some N ∈ N as (xn) ⊆ X is Cauchy. As X/Y is Banach, it follows that
(xn + Y )→ (x+ Y ) in X/Y . Consequently, for a fixed ϵ > 0, we get

∥xn − x+ Y ∥ = inf
y∈Y
∥xn − x+ y∥ < ϵ/2 < ϵ

for all n ≥ N for some N ∈ N. It follows from above that there is a sequence (yn) ⊆ Y such that

∥xn − x+ yn∥ ≤ ϵ/2 < ϵ. (1)

We claim that (yn) ⊆ Y is Cauchy. Indeed, we first see from Eqn. (1) that

∥xn + yn − x∥ < ϵ

for all n ≥ N . Consequently, the sequence (xn+yn) ⊆ X converges to x ∈ X. Hence, (xn+yn) ⊆ X
is Cauchy, from which we get N ∈ N such that

∥xn + yn − xm − ym∥ = ∥xn − xm − (ym − yn)∥ < ϵ

for each n,m ≥ N . We may write by triangle inequality the following:

|∥xn − xm∥ − ∥yn − ym∥| ≤ ∥xn − xm − (ym − yn)∥ < ϵ

so that

∥yn − ym∥ < ∥xn − xm∥+ ϵ (2)

for all n,m ≥ N . As (xn) ⊆ X is Cauchy, so for some N ′ ∈ N we have ∥xn − xm∥ < ϵ for all
n,m ≥ N ′. Replacing N by maximum of N ′ and N , we obtain from Eqn. (2) the following:

∥yn − ym∥ < 2ϵ ∀n,m ≥ N.

This shows that (yn) ⊆ Y is Cauchy. As Y is complete, therefore yn → y ∈ Y . As xn + yn → x in
X, therefore xn → x− y in X, thus showing that X is complete.

Proposition 10.3.4. The Banach space ℓp is separable for all 1 ≤ p <∞.

Proof. Recall that

ℓp =
®
(xn) | xn ∈ K &

∑
n

|xn|p <∞
´

with the norm being ∥(xn)∥p = (∑n |xn|
p)1/p. Let D ⊆ K be a countable dense subset of K (which

exists as R and C are separable in their usual topology). Using D we will construct a countable
dense subset F ⊆ ℓp. Indeed, consider the following subset of ℓp:

F =
⋃
N≥0

FN
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where

FN = {(xn) ∈ ℓp | xn ∈ D, xn = 0 ∀n ≥ N} .

We see that FN is countable as finite product of countable sets is countable and thus F is a countable
union of countable sets, showing that F is countable. We next claim that F is dense in ℓp.

Pick any open set Br(y) ⊆ ℓp. Note that

Br(y) =
®
(xn) ∈ ℓp |

∑
n

|xn − yn|p < rp
´
.

As y = (yn) ∈ ℓp, therefore
∑

n |yn|
p =M <∞. Now observe that for all ϵ > 0, there exists N ∈ N

such that
∞∑
k=n

|yn|p < ϵ (5)

for all n ≥ N . As D ⊆ K is dense and each yn ∈ K, therefore choose

xn ∈ Brn(yn) ∩D ⊆ K

where rn = r

2
n+1
p

for all n ∈ N. Hence,

|xn − yn|p <
rp

2 · 2n

for all n ∈ N. As ∑∞
n=1 r

p/2n+1 = rp/2, therefore
∑
n≥1
|xn − yn|p <

rp

2 . (6)

This shows that the element (xn) ∈ Br(y) ⊆ ℓp.
Now, fix ϵ > 0 so that there exists K ∈ N large enough using Eqn. (5) such that

∞∑
n=K

|yn|p < ϵ. (7)

Using Eqn. (6) and (7), we can write

K−1∑
n=1
|xn − yn|p +

∞∑
n=K

|yn|p <
K−1∑
n=1

rp

2 · 2n +
∞∑

n=K

|yn|p

<
rp

2

Å
1− 1

2K
ã
+

∞∑
n=K

|yn|p

<
rp

2

Å
1− 1

2K
ã
+ ϵ

<
rp

2

Å
1− 1

2N
ã
+ ϵ
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for all N ≥ K. So let N →∞ so that we obtain
K−1∑
n=1
|xn − yn|p +

∞∑
n=K

|yn|p ≤
rp

2 + ϵ.

Thus taking ϵ = rp

4 , we get K̃ ∈ N such that
K̃−1∑
n=1
|xn − yn|p +

∞∑
n=K̃

|yn|p ≤
3rp
4 < rp. (8)

Define x̃ ∈ ℓp as follows:

x̃n =
®
xn if n ≤ K̃ − 1
0 if n ≥ K̃.

Then x̃ ∈ FK̃ and by Eqn. (8) it follows that
∞∑
n=1
|x̃n − yn|p < rp.

Consequently, x̃ ∈ F ∩Br(y), as needed.

Example 10.3.5 (ℓ∞ is not separable). We wish to show that ℓ∞ does not have a Schauder basis.
By Lemma 10.3.1, it suffices to show that ℓ∞ is not separable. Suppose to the contrary that
D ⊆ ℓ∞ is a countable dense set. We will derive a contradiction to countability of D. Indeed,
consider κ = {0, 1} and the subset κ∞ ⊆ ℓ∞ of all sequences formed by 1 and 0. Observe that κ∞
is uncountable.

Pick any x ∈ κ∞. We first claim that B1/2(x) ∩ κ∞ = {x}. Indeed, if y ∈ B1/2(x), then
supn |xn − yn| < 1/2. It follows that there exists 0 < ϵ < 1/2 such that

|xn − yn| < ϵ ∀n ∈ N.

As xn = 0 or 1, therefore ®
−ϵ < yn < ϵ if xn = 0
1− ϵ < yn < 1 + ϵ if xn = 1.

(9)

Hence, if y ∈ κ∞, then by Eqn. (9) it follows that yn = xn for all n ∈ N and thus x = y.
We next show that for x ̸= x′ ∈ κ∞, the open balls B1/2(x) ∩ B1/2(x′) = ∅. Since x ̸= x′,

we may assume WLOG that there exists m ∈ N such that xm = 0 and x′m = 1. Thus, if y ∈
B1/2(x) ∩B1/2(x′), then by Eqn. (9), it follows that

−ϵ < ym < ϵ

1− ϵ < ym < 1 + ϵ.

Since ϵ = 1/2, therefore the above inequalities give a contradiction. Hence B1/2(x) ∩B1/2(x′) = ∅.
We now complete the proof. As D ⊆ ℓ∞ is dense, therefore D∩B1/2(x) ̸= ∅ for all x ∈ κ∞. Pick

one dx ∈ D ∩ B1/2(x) for each x ∈ κ∞. By above two claims, it follows that we have an injective
map

f : κ∞ ↪→ D,

but κ∞ is uncountable and D is countable, a contradiction. This completes the proof.
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10.4 Continuous linear transformations

Example 10.4.1. We wish to show that the inverse of a bounded linear operator may not be
bounded. Indeed consider X = (P [0, 1]1, ∥ · ∥sup) to be the normed linear space of all polynomials
whose least degree term is of degree 1. Similarly, consider Y = (P [0, 1]2, ∥ · ∥sup) to be the normed
linear space of all polynomials whose least degree term is of degree 2. We consider the following
linear map

T : X −→ Y

p 7−→
∫
pdx

so that if p(x) = anx
n + . . . a1x, then T (p) = an

n+1x
n+1 + · · ·+ a1

2 x
2. We claim that T is bounded.

Indeed,

∥T (p)∥ = ∥ an
n+ 1x

n+1 + · · ·+ a1
2 x

2∥

= sup
x∈[0,1]

∣∣∣∣ an
n+ 1x

n+1 + · · ·+ a1
2 x

2
∣∣∣∣

= sup
x∈[0,1]

∣∣∣∣x · Å an
n+ 1x

n + · · ·+ a1
2 x
ã∣∣∣∣

≤ sup
x∈[0,1]

|x| sup
x∈[0,1]

∣∣∣∣Å an
n+ 1x

n + · · ·+ a1
2 x
ã∣∣∣∣

≤ 1 · sup
x∈[0,1]

|anxn + . . . a1x|

= sup
x∈[0,1]

|p(x)|

= ∥p∥.

Thus indeed, T is a bounded linear transformation. We next claim that the following linear trans-
form is an inverse of T :

U : Y −→ X

q 7−→ q′

so that if q(x) = anx
n + . . . a2x

2, then U(q) = nanx
n−1 + · · ·+ 2a2x. Indeed, we see that

T ◦ U(q) = T
(
nanx

n−1 + · · ·+ 2a2x
)

= nan
xn

n
+ . . . 2a2

x2

2
= q.

Similarly, for p(x) = anx
n + . . . a1x, we see that

U ◦ T (p) = U

Å
an
n+ 1x

n+1 + · · ·+ a1
2 x

2
ã

= an
n+ 1(n+ 1)xn + · · ·+ a1

2 (2)x

= p.
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This shows that U is inverse of T . We now show that U is unbounded. Indeed,

∥U(xn)∥ = ∥nxn−1∥
= sup

x∈[0,1]

∣∣nxn−1∣∣
= n · 1
= n · ∥xn∥.

This shows that for all n ≥ 2, there exists qn(x) ∈ Y given by qn(x) = xn+1 such that

∥U(qn)∥ = n+ 1 > n = n∥qn∥,

making U unbounded. This completes the proof.

10.5 Miscellaneous applications

Example 10.5.1. We wish to construct an additive function f : R → R which is not continuous.
Indeed, consider the Hamel basis of R over Q and denote it by B. We know that B is not finite.
Observe that any additive map f : R→ R is Q-linear as

f

Å
p

q
x

ã
= pf

Å1
q
x

ã
and since qf

Ä
1
qx
ä
= f(x), thus,

f

Å
p

q
x

ã
= p

q
f(x).

Since any function B → R can be extended Q-linearly to R → R, therefore we now construct a
function f : B → R and show that its Q-linear extension f̃ : R→ R cannot be continuous at 0.

Pick any sequence (bn) ⊆ B and consider the following sequence in R

xn = bn
n⌈|bn|⌉+n

where ⌈z⌉ is the ceiling function (smallest integer larger than z). Note that the denominator of xn
is a positive integer. Observe that xn → 0 as n→∞.

Define the following function f : B → R:

f(b) =
®
n⌈|bn|⌉+n if b = bn

1 else.

Extend this function to a Q-linear map f̃ : R → R, so that it is additive. We claim that f̃ is not
continuous at 0. Indeed, we have xn → 0 as n→∞, but

f̃(xn) = f̃

Å
bn

n⌈|bn|⌉+n

ã
= 1
n⌈|bn|⌉+n

f̃(bn) =
1

n⌈|bn|⌉+n
n⌈|bn|⌉+n = 1

and thus f̃(xn) = 1 ̸→ f̃(0) = 0 as n→∞, making f̃ discontinuous at 0, as needed.
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Proposition 10.5.2. Let X be a normed linear space over field K and T : X → K be a linear
functional. If T is unbounded, then Ker (T ) ⊆ X is dense.

Proof. Since T is unbounded, therefore we first claim that T is unbounded on each B1/n[0]. Indeed,
if there exists n0 ∈ N such that T is bounded on B1/n0 [0], then for any x ∈ X, we have x

n0∥x∥ ∈
B1/n0 [0]. Thus, by boundedness of T on B1/n0 [0], there exists K ∈ R>0 such that∣∣∣∣T Å x

n0∥x∥

ã∣∣∣∣ ≤ K.
By linearity it follows from above that

|Tx| ≤ Kn0∥x∥

for all x ∈ X. This makes T bounded, a contradiction. Hence T is unbounded on each B1/n[0].
Consequently, for each n ∈ N, there exists yn ∈ B1/n[0] such that ∥Tyn∥ ≥ n. It follows that

yn → 0 as n→∞ since yn ∈ B1/n[0]. Further, observe that

zn = yn
Tyn

− x

Tx
∈ Ker (T ).

Now we claim that zn → x
Tx as n→∞. Indeed, since

∥ yn
Tyn
∥ = 1
|Tyn|

∥yn∥ ≤
1
n
∥yn∥ < ∥yn∥

and since ∥yn∥ → 0 as n → ∞, therefore this shows that yn
Tyn
→ 0 as n → ∞. It follows that

zn → x
Tx as n→∞, as required.

As zn ∈ Ker (T ), therefore T (x)zn ∈ Ker (T ) by linearity. Thus T (x)zn → x as n → ∞. This
shows the density of Ker (T ), thus completing the proof.

The following is a generalization of Riesz lemma to r = 1.

Proposition 10.5.3. Let X be a normed linear space and Y ⊆ X be a finite dimensional proper
linear subspace. Then there exists x1 ∈ S1(X) = {x ∈ X |∥x∥ = 1} such that

d(x1, Y ) = 1.

Proof. Pick x ∈ X \ Y . As Y is finite-dimensional in X, therefore it is closed in X. Hence,
d(x, Y ) > 0. We first claim that there exists ỹ ∈ Y such that

d(x, Y ) = d(x, ỹ). (10)

Indeed, since d(x, Y ) = infy∈Y d(x, y) = M , therefore there exists a sequence (yn) ⊆ Y such that
d(x, yn)→M as n→∞. Fix ϵ > 0. Thus, there exists N ∈ N such that |d(x, yn)−M | < ϵ for all
n ≥ N . That is, 0 < d(x, yn) < M + ϵ for all n ≥ N . Since g(y) := d(x, y) is a continuous map on
Y , therefore we have that

(yn)n≥N ⊆ K = g−1([0,M + ϵ])
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where K ⊆ Y is a closed subset of Y . We now claim that K is bounded. Pick y ∈ K. Then

∥y∥ = d(y, 0) ≤ d(y, x) + d(x, 0)
< M + ϵ+ d(x, 0).

This shows thatK is bounded. As Y is finite-dimensional normed linear space, therefore generalized
Heine-Borel holds and we deduce that K is a compact subset of Y . Since in a metric space
compactness is equivalent to sequentially compact, therefore K is sequentially compact. It follows
that (yn)n≥N ⊆ K has a subsequence which converges, say to ỹ ∈ K ⊆ Y . Replace (yn) by that
subsequence so that we may write yn → ỹ and d(x, yn) → M . By continuity of g, it follows that
g(yn) = d(x, yn) → g(ỹ) = d(x, ỹ), but d(x, yn) → M , thus by uniqueness of limits in a Hausdorff
space, it follows that d(x, ỹ) =M , as needed. This completes the proof of claim in Eqn. (10).

We now complete the proof. Consider the vector

x1 =
x− ỹ
∥x− ỹ∥

∈ X.

We claim that d(x1, Y ) = 1. Indeed,

d(x1, Y ) = inf
y∈Y
∥ x− ỹ
∥x− ỹ∥

− y∥

= 1
∥x− ỹ∥

inf
y∈Y
∥x− (ỹ + ∥x− ỹ∥y)∥

= 1
∥x− ỹ∥

inf
y∈Y
∥x− y∥

where the last equality follows from the bijection provided by affine transformations Y → Y map-
ping as y 7→ ay+ x for a ∈ K and x ∈ Y , using the linearity of Y . From above equalities, it follows
from Eqn. (10) that

d(x1, Y ) = 1
∥x− ỹ∥

inf
y∈Y
∥x− y∥

= 1
∥x− ỹ∥

d(x, Y )

= 1
d(x, ỹ)d(x, Y ) = 1,

as required to complete the proof.

11 Main theorems of functional analysis
There are four major theorems in basic functional analysis, which we discuss now.

Theorem 11.0.1 (Uniform boundedness principle). Let X be a Banach space and Y be a normed
linear space. Consider a collection of bounded linear transformations (Ti)i∈I ⊆ B(X,Y ) such that
for each x ∈ X, the subset (Tix)i∈I ⊆ Y is bounded. Then, (∥Ti∥)i∈I is bounded in R, that is,
(Ti)i∈I ⊆ B(X,Y ) is a bounded set.
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Theorem 11.0.2 (Open mapping & bounded inverse theorem). Let X and Y be Banach spaces
and T : X → Y be a surjective bounded linear map. Then,

1. T is an open map.
2. If T is a bijection, then T is a homeomorphism.

Theorem 11.0.3 (Closed graph theorem). Let X and Y be Banach spaces and T : X → Y be a
linear transformation. Then the following are equivalent:

1. T is continuous/bounded.
2. The graph Γ(T ) = {(x, Tx) ∈ X × Y | x ∈ X} is closed in X × Y .

We now show how all three are equivalent.

Theorem 11.0.4. Let X and Y be Banach spaces. Then the following implications are true:
1. CGT =⇒ UBP.
2. BIT =⇒ OMP.
3. CGT =⇒ OMP.

Proof. 1. Closed graph theorem (CGT) states that a linear map T : X → Y is bounded if and only
if Γ(T ) = {(x, Tx) ∈ X × Y | x ∈ X} is a closed set in X × Y . We wish to show that uniform
boundedness principle (UBP) holds, that is, if (Ti)i∈I is a non-empty collection of bounded linear
maps from X to Y such that for each x ∈ X, the set (Ti(x))i∈I ⊆ Y is bounded, then the set
(∥Ti∥)i∈I ⊆ R is a bounded set.

Pick any collection (Ti)i∈I ⊆ B(X,Y ) such that for all x ∈ X, there exists Mx ∈ R+ such that
supi∈I ∥Tix∥ ≤Mx. We wish to show that (∥Ti∥)i∈I is bounded. Indeed, to this end, we contstruct
a new norm on X, using which, we will show the above.

Define the following for each x ∈ X:

∥x∥1 := ∥x∥+ sup
i∈I
∥Tix∥.

This is well-defined, as (Tix) is a bounded set in Y . We now make the following claims:
C1. (X, ∥ · ∥1) is a normed linear space.
C2. (X, ∥ · ∥1) is a Banach space.

Assuming the above two claims to be true, let us first show how this will complete the proof. We
consider the map

id : (X, ∥ · ∥)→ (X, ∥ · ∥1).

We claim that this is a continuous linear transformation. Indeed, by CGT, we need only show that
Γ(id) is closed. That is, (denote X1 = (X, ∥ · ∥1))

Γ(id) = {(x, x) ∈ X ×X1 | x ∈ X} ⊆ X ×X1

is closed. Indeed, consider any sequence (xn, xn) ⊆ Γ(id) which is convergent in X × X1. Then
suppose xn → x in X and xn → x′ in X1. We claim that x = x′, so that (xn, xn) → (x, x) and
since (x, x) ∈ Γ(id), so this will show that Γ(id) is closed.

Indeed, we have xn → x in X, so ∥xn−x∥ → 0 as n→∞. Similarly, ∥xn−x′∥1 → 0 as n→∞.
Since

∥xn − x′∥1 = ∥xn − x′∥+ sup
i∈I
∥Tixn − Tix′∥ → 0
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as n → ∞, therefore supi∈I ∥Tixn − Tix′∥ → 0 and ∥xn − x′∥ → 0 as well. The latter says that
xn → x in X. By uniqueness of limits, we conclude that x = x′, as required. This shows that
id : X → X1 is continuous linear transform by CGT, hence bounded.

We wish to bound sup∥x∥=1 ∥Tix∥. Pick any x ∈ X with ∥x∥ = 1. Then we have for each i ∈ I
that

∥x∥1 = ∥x∥+ sup
i∈I
∥Tix∥

≥ 1 + ∥Tix∥.

Thus, for each i ∈ I, we have

∥Tix∥ ≤ ∥x∥1 − 1 ≤ ∥x∥1.

It follows that

sup
∥x∥=1

∥Tix∥ ≤ sup
∥x∥=1

∥x∥1 = ∥id∥ <∞,

as required. Hence we now need only prove the claims C1 and C2.
To see claim C1, proceed as follows. Observe that if ∥x∥1 = 0, then ∥x∥ = 0, so x = 0. Further

we have for any c ∈ K that ∥cx∥1 = ∥cx∥ + supi∈I ∥Ti(cx)∥ = |c| ∥x∥ + |c| supi∈I ∥Tix∥ = |c| ∥x∥1.
Finally, to see triangle inequality, we see that

∥x+ y∥1 = ∥x+ y∥+ sup
i∈I
∥Tix+ Tiy∥

≤ ∥x∥+ ∥y∥+ sup
i∈I

(∥Tix∥+ ∥Tiy∥)

≤ ∥x∥+ ∥y∥+ sup
i∈I
∥Tix∥+ sup

i∈I
∥Tiy∥

= ∥x∥1 + ∥y∥1,

as required. This shows claim C1.
To see claim C2, proceed as follows. Take any Cauchy sequence (xn) ⊆ X1. We wish to show

that it converges. We claim that (xn) is Cauchy in X. Indeed, for any ϵ > 0, we have N ∈ N such
that for any n,m ≥ N we have

∥xn − xm∥ ≤ ∥xn − xm∥1 < ϵ

and for each j ∈ I, we have

∥Tjxn − Tjxm∥ ≤ sup
i∈I
∥Tixn − Tixm∥ ≤ ∥xn − xm∥1 < ϵ/2.

Thus, we get by former that (xn) is Cauchy, so convergent to say x ∈ X. We claim that (xn)
converges to x in X1. In the latter, by letting m → ∞, we obtain that for each j ∈ I and each
n ≥ N , we have

∥Tjxn − Tjx∥ ≤ ϵ/2 < ϵ.
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Thus, taking supi∈I , we further obtain that for each n ≥ N we have

sup
i∈I
∥Tixn − Tix∥ ≤ ϵ/2 < ϵ.

Now, we may write

∥xn − x∥1 = ∥xn − x∥+ sup
i∈I
∥Tixn − Tix∥

< ϵ/2 + ϵ/2 = ϵ

for n ≥ N , as requird. This completes the proof.

2. Consider any bounded linear map T : X → Y which is surjective. We wish to show that T is
an open mapping using bounded inverse theorem. Indeed, as T is bounded, therefore Ker (T ) is a
closed linear subspace. Going modulo Ker (T ), we get a linear transformation T̃ : X/Ker (T )→ Y
such that the following commutes:

X Y

X/Ker (T )

π

T

T̃

We first claim that T̃ is bounded. Indeed, as for any x + Ker (T ) ∈ X/Ker (T ) we have T̃ (x +
Ker (T )) = Tx, therefore

∥T̃ (x+Ker (T ))∥ = inf
z∈Ker(T )

∥T (x+ z)∥ = inf
z∈Ker(T )

∥Tx∥ = ∥Tx∥.

This shows that T̃ is a bounded linear map which is injective and surjective. Thus, T̃ is a bijection
and thus by BIT, we get that T̃ is a homeomorphism. In particular, we see that T̃ is an open map.
Now consider the map π : X → X/Ker (T ). We wish to show that π is an open map. Let U ⊆ X
be an open set and pick any point x+Ker (T ) ∈ π(U) ⊆ X/Ker (T ) where x ∈ U . As there exists
Bϵ(x) ⊆ U , thus we claim that Bϵ(x+Ker (T )) ⊆ π(U). Indeed, if y +Ker (T ) ∈ Bϵ(x+Ker (T )),
then ∥x− y +Ker (T )∥ < ϵ. As

∥x− y +Ker (T )∥ = inf
z∈Ker(T )

∥x− y + z∥ < ϵ,

thus there exists z ∈ Z such that ∥x − y + z∥ < ϵ. Thus, y − z ∈ Bϵ(x) ⊆ U . Hence,
y − z +Ker (T ) = y +Ker (T ) ⊆ π(U), as needed.

3. We first show that closed graph theorem (CGT) implies bounded inverse theorem (BIT). Indeed,
this combined with item 2 above will show that CGT =⇒ OMP. Let T : X ↠ Y be a surjective
bounded linear transformation which is a bijection. We then wish to show that the inverse linear
transformation of T , T−1 : Y → X, is also bounded. By CGT, it is equivalent to showing that the
graph Γ(T−1) ⊆ Y ×X is a closed set. Since T is a bijection, we get

Γ(T−1) = {(y, T−1y) ∈ Y ×X | y ∈ Y }
= {(Tx, x) ∈ Y ×X | x ∈ X}
∼= {(x, Tx) ∈ X × Y | x ∈ X}
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where the last homeomorphism is induced by restricting the natural homeomorphism Y × X →
X × Y . It follows that Γ(T−1) is closed in Y ×X since Γ(T ) is closed in X × Y by CGT (as it is
continuous), as required.

We next see that it is important in closed graph theorem for X and Y to be Banach.

Example 11.0.5. We wish to show that there exists a linear map T : X → Y where X and Y are
normed linear spaces such that T is unbounded and the graph Γ(T ) ⊆ X × Y is closed.

Indeed, consider X = C1[0, 1]∗ to be the subspace of C1[0, 1] of those functions f such that
f(a) = 0 and Y = C[0, 1]∗ both with sup norm. Define

T : X −→ Y

f(x) 7−→ f ′(x)

to be the derivative map. We know that T is unbounded as fn(x) = xn ∈ C1[0, 1] has norm 1
but its derivative has unbounded norm. We wish to show that Γ(T ) is closed in X × Y . Indeed,
consider any sequence (fn) ⊆ X such that (fn, Tfn) ⊆ Γ(T ) is convergent in X × Y . As projection
map are continuous, it follows that (fn) ⊆ X and (Tfn) = (f ′n) ⊆ Y are convergent. Let fn → f in
X and f ′n → g in Y . As X and Y are in sup norm, it follows that fn → f and f ′n → g uniformly.
As fn(0) = 0, it follows by the theorem on uniform convergence and derivatives that fn converges
uniformly to a differentiable function which we know is f and f ′ = g. That is Tf = g. This shows
that (fn, T fn) → (f, Tf) in X × Y , that is, (fn, T fn) converges in Γ(T ). This shows that Γ(T ) is
closed. Yet, T is unbounded, as required.

Similarly, the hypothesis of completeness is essential in uniform boudnedness principle.

Example 11.0.6. We wish to show that the hypothesis of completeness of the domain in uniform
boundedness principle is essential.

Indeed, let X = R∞ ⊆ (ℓ2, ∥ · ∥2) of all eventually zero sequences in ℓ2 with the induced norm.
Then X is not Banach as (x(n)k ) = (1, 1/2, . . . , 1/n, 0, . . . ) is a sequence in X which is Cauchy but
it is not convergent. We now construct a sequence of functionals fn : X → K such that for all
(xk) ∈ X, the sequence (fn((xk)))n is bounded in K but still (∥fn∥)n ⊆ R is unbounded.

Consider

fn : X −→ K

(xk) 7−→
n∑

k=1
xk.

Pick any (xk) ∈ X. Then,

|fn((xk))| =
∣∣∣∣∣ n∑
k=1

xk

∣∣∣∣∣ ≤
∣∣∣∣∣ ∞∑
k=1

xk

∣∣∣∣∣ <∞
as there are only finitely many non-zero elements, thus for each (xk) ∈ X, (fn((xk)))n is bounded.
Moreover,

∥fn∥ = sup
(xk)∈X

|fn((xk))|
∥(xk)∥

≥ |
∑n

k=1 xk|Ä∑∞
k=1 |xk|

2
ä1/2
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for any (xk) inX. We claim that ∥fn∥ → ∞ as n→∞. Indeed, consider (x(n)k ) = (1, 1/2, . . . , 1/n, 0, . . . ).
Then, ∥(x(n)k )∥ = 1 + 1/22 + . . . 1/n2 < M for a fixed M > 0 and for all n. Further, by above we
have

∥fn∥ ≥
|
∑n

k=1 1/k|
∥(x(n)k )∥

>
1
M

n∑
k=1

1
k
→∞

as n→∞, as required.

We wish to next prove the main theorems using an important technical lemma.

Theorem 11.0.7 (Zabreiko’s lemma). Let X be a Banach space and p : X → R≥0 be a seminorm.
If p is countably subadditive, then p is continuous.

Proof. Let us first define a seminorm on a Banach space.

Definition 11.0.8 (Seminorm and countably subadditive functions). Let X be a normed
linear space. A function p : X → R≥0 is said to be a seminorm if p(αx) = |α| p(x) for all α ∈ K
and x ∈ X and p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

The function p is said to be countably subadditive if for every convergent series ∑
n xn in X,

we have

p

Ç ∞∑
n=1

xn

å
≤

∞∑
n=1

p(xn)

In proving Zabreiko’s lemma, we would need a notion of absorbing sets.

Definition 11.0.9 (Absorbing set). Let X be a normed linear space. A subset A ⊆ X is said
to be absorbing if for all x ∈ X, there exists sx ∈ R>0 such that x ∈ tA for all t ≥ sx.

Note that if A is absorbing, then −A is also absorbing. We now state the following proposition,
which will be used in proving Zabreiko’s lemma.

Proposition 11.0.10. Let X be a normed linear space, p : X → R≥0 be a function and A ⊆ X.
1. If A is absorbing, then 0 ∈ A.
2. If X is Banach and A is closed convex and absorbing, then A contains a neighborhood of 0.
3. If p is a seminorm, then if p is continuous at 0, then p is continuous on X.

Proof. 1. As A is absorbing, therefore for all x ∈ X, there exists sx ∈ R>0 such that x ∈ tA for all
t ≥ sx. Let x = 0. Then, there exists s0 ∈ R>0 such that x ∈ tA for all t ≥ s0. Pick any t ≥ s0, we
get 0 = ta for some a ∈ A. As t ̸= 0, it follows that a = 0, as required.

2. Let A ⊆ X be closed convex and absorbing. Then first observe that

D = A ∩ (−A) ⊆ A
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is non-empty as 0 ∈ A (and thus so is in −A). We claim that for any S ⊆ D, we have

1
2S + 1

2(−S) ⊆ D.

Indeed, pick any s1−s2
2 ∈ 1

2S + 1
2(−S). We wish to show that s1−s2

2 ∈ A and s1−s2
2 ∈ −A. Thus,

we reduce to showing that s1−s2
2 , s2−s1

2 ∈ A. It is easy to see that A ∩ −A is convex as A and −A
are convex. As s1, s2 ∈ S ⊆ A ∩ −A thus −s1,−s2 ∈ S ⊆ A ∩ −A as well. Now, by convexity of
A ∩ −A, we get

s1 − s2
2 ,

s2 − s1
2 ∈ A ∩ −A,

as required.
We claim that D◦ is non-empty. This will complete the proof as by above we will have that

1
2D

◦ + 1
2(−D◦) ⊆ D is open in D and since it contains 0, we would have shown that A contains an

open set containing 0.
Suppose to the contrary that D◦ = ∅. We wish to derive a contradiction to the fact that A is

an absorbing set. Indeed, first observe that for all n ∈ N, we have (nD)◦ = ∅ and nD is closed.
This gives us that for each n ∈ N, the set Yn = X − (nD) is an open dense subset of X. Pick any
x ∈ X −D. As X −D is open, there exists B1 = Br1(x) ⊆ X −D where r1 < 1. As X − 2D is
dense, therefore (X−2D)∩ (B1)◦ is non-empty and thus we get a closed ball B2 of radius less than
1/2 in B1. Continuing this, we have a sequence of closed balls B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ . . . with
radius of Bn less than 1/n and Bn ∩ nD = ∅. Let xn be the center of Bn. We claim that (xn) is a
Cauchy sequence. Indeed, for any 1/k we have

∥xn − xm∥ < 2/k

for all n,m ≥ k. As X is complete therefore there exists x ∈ X such that xn → x. Thus x ∈ Bn

for all n ∈ N, that is, x /∈ nD for all n ∈ N. As A is absorbing, therefore there exists sx ∈ R>0 such
that x ∈ tA for all t ≥ sx. As −A is also absorbing, thus we get s′x ∈ R>0 such that x ∈ −tA for all
t ≥ s′x. Let n ∈ N be larger than both sx, s′x. Then we have that x ∈ nA and x ∈ −nA. It follows
that x ∈ nA ∩ (−nA) = nD, a contradiction to the fact that x /∈ D. This completes the proof of
item 2.

3. Let xn → x in X where x ̸= 0. We wish to show that p(xn) → p(x). Indeed, since
xn − x → 0 and p is continuous at 0, we get p(xn − x) → p(0) = 0. Thus for any ϵ > 0, we
have p(xn − x) = |p(xn − x)| < ϵ for all n ≥ N . As p(xn) − p(x) ≤ p(xn − x) by seminorm
crieterion, we get |p(xn)− p(x)| < ϵ for all n ≥ N . It follows that p(xn)→ p(x), as required.

Using the above proposition, we now prove Zabreiko’s lemma.

Proof of Theorem 11.0.7. By Proposition 11.0.10, 3, we reduce to proving that p is continuous at
0. We claim that it is sufficient to show that there is an open ball Br(0) of radius r > 0 at 0 such
that p(Br(0)) is a bounded set in R≥0. Indeed, for any sequence (xn) in X converging to 0, which
we may assume to be contained in Br(0), we get that p(xn) ∈ p(Br(0)) for all n ∈ N. We wish to
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show that p(xn)→ p(0) = 0. Indeed, if p(Br(0)) is upper bounded by M > 0, we thus get for any
x ∈ Br(0) the following bound:

p(x) = ∥x∥p
Å
x

∥x∥

ã
≤M∥x∥.

Consequently, we have

p(xn) ≤M∥xn∥.

As ∥xn∥ → 0 as n→∞, it follows by above that p(xn)→ 0 as n→∞, as required.
So we reduce to showing that there exists an open Br(0) of 0 in X such that p(Br(0)) is a

bounded set. Consider A! = {x ∈ X | p(x) < 1}. We claim that A is an absorbing set. Indeed, for
any x ∈ X, we have ∥x∥ such that for all t ≥ ∥x∥ we have x ∈ tA! since p(x/t) = p(x)/t < 1/t, so
p(t · x/t) < 1, as required. This shows that A! is absorbing. We claim that A = A! is absorbing
as well. Indeed, observe that since A contains an absorbing set, namely A!, then A is absorbing as
well.

We next show that A is convex. Note that since closure of convex set is convex and A! is convex
since if x, y ∈ A!, then p((1− t)x+ ty) ≤ (1− t)p(x)+ tp(y) < (1− t)+ t = 1, therefore A is convex.
Thus, A is closed convex absorbing set in a Banach space. By Proposition 11.0.10, 2, it follows
that A has a neighborhood of 0.

We now find the required ball Br(0) so that p(Br(0)) is bounded. Indeed consider r > 0 such
that Br(0) ⊆ Ā and fix a point x ∈ Br(0). Pick a point x1 ∈ A such that ∥x− x1∥ < r/2, that is,
x1 ∈ Br/2(x) ∩ Br(0) ⊆ 1

2A. Thus x − x1 ∈ 1
2Br(0) ⊆ 1

2A ⊆
1
2Ā. Now there exists x2 ∈ 1

2A such
that ∥x− x1 − x2∥ ≤ r/22, that is, x2 ∈ Br/22(x− x1) ∩Br/2(0) ⊆ 1

22A. Continuing this, we get a
sequence (xn) in A such that xn ∈ 1

2n−1A and ∥x −∑n
k=1 xk∥ < r

2n . It follows that ∑n
k=1 xk → x

as n→∞.
By countable sub-additivity of p, it follows that

p(x) = p

Ç ∞∑
k=1

xk

å
≤

∞∑
k=1

p (xk) .

As xk ∈ 1
2kA, therefore p(xk) <

1
2k by definition of A. Thus, ∑∞

k=1 p(xk) ≤ 1, and thus p(x) ≤ 1.
As x ∈ Br(0) was arbitrary, we have thus shown that p(Br(0)) ≤ 2, as required.

Theorem 11.0.11. One can derive OMT, UBP, CGT from Zabreiko’s lemma (Theorem 11.0.7).

Proof. (Zabreiko ⇒ OMT) Let T : X ↠ Y be a surjective linear transformation between Banach
spaces. By translation and scaling homeomorphism, we reduce to showing that T (B1(0)) is open.
Define

p : Y −→ R≥0

y 7−→ inf{∥x∥ | Tx = y}.

We claim that p is a countably subadditive semi-norm, so that by Theorem 11.0.7, we will get p is
continuous. This is sufficient as

T (B1(0)) = p−1([0, 1))

which is easy to see. So we reduce to showing that p is a countably subadditive seminorm.
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1. p is countably subadditive : Let ∑
n yn be a covergent series in Y . We wish to show that

p (∑n yn) ≤
∑

n p(yn). Indeed, fix ϵ > 0. We get the following

p(yn) +
ϵ

2n ≥ ∥xn∥

for each n ∈ N where xn ∈ X is such that Txn = yn. Summing till N we get
N∑

n=1
p(yn) +

N∑
n=1

ϵ

2n ≥
N∑

n=1
∥xn∥ ≥ ∥

N∑
n=1

xn∥

and since T (x1 + · · ·+ xn) =
∑N

n=1 yn, we get that ∥x1 + · · ·+ xn∥ ≥ p(
∑N

n=1 yn). This yields
that

N∑
n=1

p(yn) +
N∑

n=1

ϵ

2n ≥ p
(

N∑
n=1

yn

)
.

Taking N →∞ and then ϵ→ 0, the result follows.
2. p is a seminorm : Fact that p(cy) = |c| y is immediate from definition. Subadditivity follows

from item 1.
(Zabreiko ⇒ UBP) Let X,Y be Banach and (Ti)i∈I ⊆ B(X,Y ) be a family of bounded linear
transformations such that for all x ∈ X, the set (Ti(x))i∈I ⊆ Y is bounded. We wish to show that
(∥Ti∥)i∈I is bounded in R.

Consider

p : X −→ R≥0

x 7−→ sup
i∈I
∥Ti(x)∥.

We claim that p is a countably subadditive seminorm. Indeed, then it would follow by Theorem
11.0.7 that p is continuous. Then there exists δ > 0 such that ∥x∥ < δ implies |p(x)| ≤ 1. As p is a
seminorm, therefore we would obtain

∥x∥ < 1 =⇒ p(x) < 1/δ.

As ∥Ti∥ = sup∥x∥<1 ∥Tix∥ and p(x) < 1/δ for ∥x∥ < 1 where

p(x) = sup
i∈I
∥Tix∥ < 1/δ

therefore ∥Tix∥ < 1/δ for all ∥x∥ < 1, which would thus tield ∥Ti∥ ≤ 1/δ, as required. So we reduce
to showing that p is a countably subadditive seminorm.

1. p is countably subadditive : Let ∑
n xn be a convergent series in X. We wish to show that

p (∑n xn) ≤
∑

n p(xn). Indeed, we have

p

Ç∑
n

xn

å
= sup

i∈I
∥Ti

Ç∑
n

xn

å
∥ = sup

i∈I
∥
∑
n

Tixn∥ ≤ sup
i∈I

∑
n

∥Tixn∥ ≤
∑
n

sup
i∈I
∥Tixn∥ =

∑
n

p(xn)

where supi∈I ∥Tixn∥ exists and is bounded as by hypothesis, the set (Tix)i∈I is bounded for
any x ∈ X. This shows that p is countably subadditive.
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2. p is a seminorm : Fact that p(cy) = |c| y is immediate from definition. Subadditivity follows
from item 1.

(Zabreiko ⇒ CGT) Let T : X → Y be a linear transformation between Banach spaces. We wish
to show that T is bounded if and only if Γ(T ) ⊆ X × Y is closed.

(⇒) is immediate by considering the inverse image at 0 of X × Y → Y of (x, y) 7→ Tx− y.
(⇐) Consider the following function

p : X −→ R≥0

x 7−→ ∥Tx∥.

We claim that p is a countably subadditive seminorm. Indeed, this would imply that p is continuous
by Theorem 11.0.7. Note that it is sufficient to show that {∥Tx∥ | ∥x∥ < 1} is bounded. But this
set is same as p(B1(0)). Thus, we reduce to showing that p(B1(0)) is bounded. Indeed, this follows
as there exists δ > 0 such that

∥x∥ < δ =⇒ p(x) < 1

which by seminorm property is equivalent to

∥x∥ < 1 =⇒ p(x) < 1/δ.

This shows that p(B1(0)) < 1/δ, as needed. We thus reduce to showing that p is a countably
subadditive seminorm.

1. p is countably subadditive : Let ∑
n xn be a convergent series in X. We wish to show that

p (∑n xn) ≤
∑

n p(xn). Indeed, we have

p

Ç∑
n

xn

å
= ∥T

Ç∑
n

xn

å
∥

where since (∑n
k=1 xk,

∑n
k=1 Txk) is in the graph and is convergent where graph is closed,

therefore T (∑n xn) =
∑

n Txn. Thus,

∥T
Ç∑

n

xn

å
∥ = ∥

∑
n

Txn∥ ≤
∑
n

∥Txn∥ =
∑
n

p(xn).

This shows that p is countably subadditive.
2. p is a seminorm : Fact that p(cy) = |c| y is immediate from definition. Subadditivity follows

from item 1.
This completes the proof of Theorem 11.0.7.

This completes the proof.

12 Strong & weak convergence
These are important definitions as these protray that how fundamental importance this topic gives
to functionals, anyways, its functional analysis so we must be very comfortable with constructing
and manipulating functionals on a normed linear space.
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Definition 12.0.1 (Strong & weak convergence). Let X be a normed linear space and (xn) ⊆
X be a sequence in X. Then, (xn) is said to be strongly convergent if there exists x ∈ X such that
∥xn − x∥ → 0 as n → ∞. Further (xn) is said to be weakly convergent if there exists x ∈ X such
that for all functionals f ∈ X∗, the sequence (f(xn))→ f(x) in K. In the former case x is said to
be the strong limit and in the latter case x is said to be the weak limit.

The following showcases a nice property of weak convergence.

Proposition 12.0.2. Let X be a normed linear space and xn → x weakly in X. Then

∥x∥ ≤ lim inf
n→∞

∥xn∥.

Proof. As f(xn)→ f(x) for all f ∈ X∗, therefore we will construct a functional using Hahn-Banach
through which the desrired inequality is straightforward. Indeed, by separation theorem applied
on point x, we get that there exists f ∈ X∗ such that ∥f∥ = 1 and f(x) = ∥x∥. Consequntly, we
get by weak convergence that

f(xn)→ f(x) = ∥x∥.

Now, for each n ∈ N we have

|f(xn)| ≤ ∥f∥∥xn∥ = ∥xn∥.

Taking liminf both sides, we obtain

lim inf
n→∞

|f(xn)| ≤ lim inf
n→∞

∥xn∥.

As f(xn)→ f(x), therefore lim infn→∞ |f(xn)| = |f(x)| = ∥x∥. Thus we get

∥x∥ ≤ lim inf
n→∞

∥xn∥,

as required.

Definition 12.0.3 (Weakly Cauchy and complete). A normed linear space X is weakly com-
plete if every weakly Cauchy sequence is weakly convergent, where a sequence (xn) in X is weakly
Cauchy if for all f ∈ X∗, the sequence (f(xn)) is Cauchy. Thus, unravelling this, we have that X is
weakly complete if for any sequence (xn) in X such that (f(xn)) is Cauchy in K for each f ∈ X∗,
there exists x ∈ X such that f(xn)→ f(x) for each f ∈ X∗.

Proposition 12.0.4. Any reflexive normed linear space X is weakly complete.

Proof. Recall X is reflexive if the James map ev : X → X∗∗ is surjective. Since we have seen that
ev is an isometric embedding, therefore reflexivity tells us ev is an isometric isomorphism.

To show that X is weakly complete, pick any weakly Cauchy sequence (xn) in X. Then, for
each f ∈ X∗, the sequence f(xn) is Cauchy in K. As K is complete, it follows that f(xn) converges
and let f(xn)→ cf where cf ∈ K. We claim that the mapping

ϕ : X∗ −→ K
f 7−→ cf
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is a bounded linear map. This will complete the proof as by reflexivity we will have a unique x ∈ X
such that evx = ϕ and thus evx(f) = f(x) = cf = ϕ(f), that is,

f(x) = lim←−
n→∞

f(xn)

for all f ∈ X∗, which shows that (xn) weakly convergent, as required. We thus reduce to proving
that ϕ is a bounded linear map.

To see linearity, pick any f, g ∈ X∗ and α ∈ K to observe that

ϕ(f + αg) = cf+αg = lim←−
n

(f + αg)(xn) = lim←−
n

f(xn) + α lim←−
n

g(xn) = cf + αcg

since each f(xn) and g(xn) converges because they are Cauchy. To see boundedness, we first show
that the set {xn} ⊆ X is a bounded set. Indeed, by a corollary of uniform boundedness principle
we have that a set Y ⊆ X is bounded if and only if f(Y ) ⊆ K is bounded for each f ∈ X∗. For
Y = {xn} and any f ∈ X∗, we see that f(Y ) = (f(xn)) is bounded as f(xn)→ cf . It follows that
{xn} is a bounded set, as required. Consequently, let ∥xn∥ ≤M for all n ∈ N. We thus have

|ϕ(f)| = |cf | = lim←−
n

|f(xn)| ≤ lim sup
n
∥f∥∥xn∥ ≤ ∥f∥ ·M.

Hence, ϕ is a bounded linear map, as required.
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