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1 A guiding example

Let X be a compact Hausdorff topological space. In this section we would like to portray the main
point of scheme theory in the case of space X, that is, one can study the geometry over "base"
space completely by studying the algebra of ring of suitable functions over it. In particular, we
would like to establish the following result.

Proposition 1.0.1. Let X be a compact Hausdorff topological space. Denote R to be the ring
of continuous real-valued functions on X under pointwise addition and multiplication and denote
mSpec (R) to be the set of maximal ideals of R. Then,
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1. We have a set bijection:

mSpec (R) ∼= X.

2. We have that mSpec (R) and X are isomorphic as topological spaces:

mSpec (R) ∼= X

where mSpec (R) is given its Zariski topology.

Proof. 1. Let x ∈ X be an arbitrary point. Denote mx := {f ∈ R | f(x) = 0} to be the vanishing
ideal of point x. This ideal is maximal because the quotient R/mx

∼= R via the map f+mx 7→ f(x).
Indeed, it is a valid ring homomorphism and is surjective by virtue of the continuous map constant
at a point in R. Moreover, if f(x) = g(x) for f, g ∈ R, then f − g ∈ mx and hence f +mx = g+mx,
so it is injective as well. Now consider the function:

ϕ : X → mSpec (R)
x 7→ mx.

We claim that ϕ is bijective. To see injectivity, suppose mx = my for x, y ∈ X. Then, we have that
R/mx = R/my

∼= R. This tells us that for each f ∈ R, f(x) = f(y) ∈ R. Now assume that x ̸= y.
Since X is T1, therefore {x}, {y} are two disjoint closed subspaces of X. Then, by Urysohn’s lemma
(we have that X is compact Hausdorff), we get that there exists a continuous R-valued function
f : X → R such that f(x) = 0 and f(y) = 1, a contradiction. Hence x = y.

Pick any maximal ideal m ∈ mSpec (R). We show that it is kernel of evaluation at some point.
If not, then for all x ∈ M , there exists fx ∈ m such that fx(x) ̸= 0. As fx : M → R is continuous,
therefore there exists an open x ∈ U ⊆M such that fx(y) ̸= 0 for all y ∈ Ux. We have thus obtained
a cover ofM by {Ux}. By shrinking each Ux if necessary, we may assume that Ux ⊆ Cx ⊆ Vx where
Cx is a compact set of M and Vx is open in M . It follows by compactness that there is a finite
cover M =

⋃n
i=1 Uxi . As M is compact Hausdorff, therefore there exists smooth bump functions on

each open Uxi . Thus we have maps ρi : M → R such that ρi = 1 on Uxi . Consider then the map
g =

∑n
i=1 ρif

2
xi . This is a global smooth map g :M → R such that g(x) =

∑n
i=1 ρif

2
xi(x) ̸= 0 as for

any x ∈ X, there are finitely many Uxi containing x on which atleast one of fxi is non-zero and ρi
is 1. Hence g is invertible. As f2xi ∈ m, therefore g ∈ m and hence m = R, a contradiction. Thus α
is surjective.

2. Let us first establish that ϕ as in item 1 above is continuous. Indeed, let I ≤ R be an ideal and
V (I) = {m ∈ mSpec (R) | m ⊇ I}. A closed set of mSpec (R) looks exactly like above. We wish to
show that ϕ−1(V (I)) is closed in X. It is immediate to observe by item 1 that

ϕ−1(V (I)) =
⋂
f∈I
{x ∈ X | f(x) = 0}.

Since f : X → R is continuous, so it follows that ϕ−1(V (I)) is closed. This shows the continuity
of ϕ : X → mSpec (R). As X is compact and ϕ a bijective homeomorphism, it is thus sufficient to
show that mSpec (R) is Hausdorff.

Fix two points mx ̸= my in mSpec (R) for x ̸= y ∈ X. Fix two opens U, V of X such that
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x ∈ U , y ∈ V and U ∩ V = ∅. Let C = X \ U and D = X \ V . Note that C ∪ D = X.
Now applying Urysohn’s lemma on C,D yields f : X → R and g : X → R such that f(C) = 0,
f(D) = 1 and g(D) = 0, g(C) = 1. Consequently, fg = 0 over X. Now consider the basic opens
D(f), D(g) ⊆ mSpec (R). As f(x) ̸= 0 since x ∈ D, therefore D(f) ∋ x. Similarly, D(g) ∋ y. Since
D(f) ∩D(g) = D(fg) = D(0) = ∅, therefore x and y can be separated, as required.

Remark 1.0.2. An important corollary of the above result is that we can actually distinguish
between the points of X by looking at maximal ideals of R; for x, y ∈ X, x ̸= y if and only if
mx ̸= my. This is interesting because a fundamental goal of algebraic geometry is to study geometric
properties of varieties over an algebraically closed field k and dominant maps between them. A
fundamental equivalence tells that this is equivalent to studying the ring of regular functions over
such a variety. Moreover, this ring recovers the important topology on the variety (there can be
atleast two topologies on the variety if we are in, say C). Hence one motivation to undergo this
switch of viewpoint, where we try to do everything algebraically is that 1) we can completely recover
the points of the variety and the relevant topology on it and that 2) we have a broad generalization
of algebro-geometric techniques and constructions to an arbitrary commutative and unital ring R.

Caution 1.0.3. While in the sequel we will encounter spaces which are compact, it would rarely
(unless you are interested in Boolean rings) be the case that the spaces will be Hausdorff. However,
if one notices the way Hausdorff property is used in the above result, then one can see that if we
somehow makes sure that the space X constructed out of a ring R is such that every point of X
can be "distinguished" by functions on X in R, then you don’t need Hausdorff property. This is
precisely what will happen.

2 Affine schemes and basic properties
Let us first swiftly give an account of basic global constructions in scheme theory. The foundational
philosophy of scheme theory is to handle a space completely by the ring of globally defined nice
functions on it. This is taken to an unprecedented extreme by the definition of an affine scheme,
which tells us that one can even do geometry on the base space by the knowledge of globally defined
functions on the base space alone; you can indeed reconstruct the base space! So, we begin with
a general ring R and construct a topological space Spec (R). The way we will define its points is
by thinking of each point of this base space Spec (R) as that subset of R, each of whose function
becomes zero at a common point. One then sees that these are exactly the prime ideals of R.
Hence, the base space Spec (R) is:

Spec (R) := {p ⊂ R | p is a prime ideal of R}.

Next thing we wish to do is to actually get a space structure on this constructed base space, that
is, a topology on Spec (R). This is, again, given with the help of the ring R. In particular, we give
a topology on Spec (R) where every closed set is given by the zero locus of collections of functions
S ⊆ R, that is, V (S) := {p ∈ Spec (R) | p ⊇ S} = {x ∈ Spec (R) | f(x) = 0 ∀f ∈ S} where the last
equation tells one how to think about the definition of V (S). This is known as Zariski topology on
Spec (R) and is defined by the following:

A ⊆ Spec (R) is closed ⇐⇒ A = V (S) for some S ⊆ R.
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After defining the topology on Spec (R), one is interested in interested in understanding the set
of all germs of functions at a point p ∈ Spec (R). What are germs of functions at a point? Well,
heuristically, they are all possible ways a function can look different at the given point. So for this,
we have to atleast gather all those functions in R which takes different values at point p ∈ Spec (R).
Clearly this is given by the quotient domain R/p. Now from this, we construct the residue field of
Spec (R) at point p, denoted κ(p) := (R/p)⟨0⟩, that is, the fraction field of domain R/p. What does
this κ(p) denotes geometrically? Well, it denotes the field of all different values a function can take
at point p ∈ Spec (R). Now, if that is the case, then one sees that if one takes any function f ∈ R,
then "evaluating" f at p should yield a point f(p) in κ(p). Indeed, we have the natural quotient
maps:

R→ R/p→ κ(p).

So one should see

κ(p) as the field of possible values that a function f ∈ R can take at point p.

However, we have not yet made the set of germs at a point p. The relation between two functions
of having equal germs on R at a point p is given by the heuristic that f, g ∈ R should become
equal in some open neighborhood around p. Since we have a topology on Spec (R), so one can
actually do this formally. One will then see this that the set of all germs at point p are actually all
rational functions of R definable at p, that is, heuristically, f/g with g(p) ̸= 0 for f, g ∈ R. This
in our language turns out to be all the symbols of the form f/g with g /∈ p. This is exactly the
local ring Rp, the localization of the ring R (seen as ring of functions over Spec (R)) at the point
p ∈ Spec (R). So

germs of functions of R at p is Rp.

We will expand more on this when we will talk about the structure sheaf of Spec (R).

Let us now see a basic but important dictionary between the topology of space Spec (R) and
the algebra of ideals of R:

Lemma 2.0.1. Let R be a ring. We then have the following:
1. If a, b are two ideals of R, then V (ab) = V (a) ∪ V (b).
2. If {an} is a collection of ideals of R, then V (

∑
n an) =

⋂
n V (an).

3. If a, b are two ideals of R, then V (a) ⊆ V (b) if and only if
√
a ⊇
√
b.

Proof. 1. First, let us see that V (ab) ⊆ V (a) ∪ V (b). Take any p ⊇ ab. Suppose p /∈ V (a) and
p /∈ V (b). Then there exists f ∈ a, g ∈ b such that fg ∈ ab ⊆ p. Thus, f ∈ p or g ∈ p, a
contradiction in both cases. Second, it is easy to see that V (a) ∪ V (b) ⊆ V (ab) as if either p ⊇ a
or b ⊆ p, then since ab ⊆ a ∩ b ⊆ a, therefore ab ⊆ p.
2. Let p ⊇

∑
n an. Since ideals are abelian groups so the sum contains each an, hence p ⊇ an for

each n, and so p ∈
⋂
n V (an). Conversely, if p ⊇ an for each n, then p =

∑
n p ⊇

∑
n an.

3. (L =⇒ R) Since each prime ideal containing a also contains b, therefore the intersection of all
prime ideals containing a will contain the intersection of all prime ideals containing b.
(R =⇒ L) Take any prime ideal p ⊇ a. Since

√
a ⊇
√
b, therefore p ⊇ b.
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2.1 Topological properties of Spec (R)

Let us begin by an algebraic characterization of irreducible closed subspaces of Spec (R).

Lemma 2.1.1. Let R be a ring and X ↪→ Spec (R) be a closed subspace. Then the following are
equivalent:

1. X is irreducible.
2. There is a unique point p ∈ Spec (R) such that X = V (p).

One calls the point p the generic point of the irreducible closed subspace X1.

Proof. (1. ⇒ 2.) Since X is closed therefore X = V (a) for some ideal a of R. If we assume that
X ̸= V (p) for each prime p ⊆ R, then this holds true for points p ∈ X as well. Hence take p ∈ X
and consider the proper closed subset V (p) ⊊ X. Let q /∈ V (p). Then, V (q) ⊊ X as well. Hence
we get that V (p) ∪ V (q) = V (a), which stands in contradiction to the fact that X is irreducible.
Hence there exists a prime p ∈ Spec (R) such that X = V (p). Uniqueness is quite clear.
(2. ⇒ 1.) Suppose Y = V (a) and Z = V (b) are two closed subspaces of X = V (p) such that
X = Y ∪Z = V (a)∪V (b) = V (a∩ b) = V (ab) (Lemma 2.0.1). Assume that Y, Z are proper inside
X. Then, there are two points q1 ∈ Y \ Z and q2 ∈ Z \ Y . Algebraically, this is equivalent to
saying that q1 ⊇ a, q1 ̸⊇ b and q2 ⊇ b, q2 ̸⊇ a. It follows that q1 ∩ q2 is also a prime ideal which
contains a ∩ b = ab. Since X = V (ab) = V (p) ∋ p, hence it follows that q1 ∩ q2 ⊇ p as it already
contains ab. Thus q1 ∩ q2 ∈ V (a) ∩ V (b) ⊆ V (p). Since V (a) ∩ V (b) = V (a + b), hence it follows
that q1 ∩ q2 ⊇ a, b, which implies in particular that q1 ⊇ a, b, a contradiction.

Remark 2.1.2. The main idea of the above proof has been to first translate the topological
condition to algebraic, and then using the critical observation that the closed subspace V (p) contains
point p itself.

A simple corollary of above gives all closed points of an affine scheme.

Lemma 2.1.3. Let R be a ring. Then

{Closed points of Spec (R)} ∼= {Maximal ideals of R.}

Proof. Follows immediately from Lemma 2.1.1.

Let us next observe a simple but important observation about topology of Spec (R).

Lemma 2.1.4. Let R be a ring. For f ∈ R, define Spec (R)f := {p ∈ Spec (R) | f /∈ p}. Then,
1. Spec (R)f ↪→ Spec (R) is an open set and such open sets form a basis of the Zariski topology

on Spec (R).
2. Spec (R)f ↪→ Spec (R)g if and only if f ∈

√
Rg.

Proof. 1. Clearly Spec (R)f = Spec (R) \V (f) where we know that V (f) = {p ∈ Spec (R) | f ∈ p}.
Hence Xf is open. It is also clear that if U ⊆ Spec (R) is open, then Spec (R) \ U = V (a) is closed
and hence U =

⋃
f∈a Spec (R)f . Further, Spec (R) = Spec (R)1 and ∅ = Spec (R)0.

1Such spaces where every irreducible closed set has a unique generic point are called sober spaces.



8 2 AFFINE SCHEMES AND BASIC PROPERTIES

2. This follows from the following equivalences. Let Spec (R)f ↪→ Spec (R)g, then we get the
following (we implicitly use Hilbert Nullstellensatz)

Spec (R)f ↪→ Spec (R)g ⇐⇒ f(p) ̸= 0 =⇒ g(p) ̸= 0 ⇐⇒ g(p) = 0 =⇒ f(p) = 0 ⇐⇒ V (g) ⊆ V (f)

⇐⇒
√
Rg ⊇

√
Rf ⊇ Rf ⇐⇒ f ∈

√
Rg.

This completes the proof.

Next we observe the equivalent formulation of partitions of unity in the context of algebra.

Lemma 2.1.5. Let R be a ring. Then,
1. If U ↪→ Spec (R) is any open set given by U =

⋃
f∈S Spec (R)f for some subset S ⊆ R, then

Spec (R) \ U = V

(∑
f∈S

Rf

)
.

2. Spec (R) =
⋃
f∈S Spec (R)f for some S ⊆ R if and only if the ideal of R generated by S is the

whole of R.

Proof. 1. Let U ↪→ Spec (R) be an open set. Then, p ∈ Spec (R) \ U ⇐⇒ p /∈ U ⇐⇒ ∀f ∈
S, p /∈ Spec (R)f ⇐⇒ ∀f ∈ S, f ∈ p ⇐⇒ p ⊇ S ⇐⇒ p ∈ V (S).
2. Follows from 1.

We next have an interesting observation that Spec (R) are always quasicompact2.

Lemma 2.1.6. Let R be a ring. Then Spec (R) is quasicompact.

Proof. Take any arbitrary basic open cover
⋃
f∈S Spec (R)f for some S ⊆ R. Then by Lemma 2.1.5,

2, we get that
∑
f∈S Rf ∋ 1 and hence there are f1, . . . , fn ∈ S such that g1f1 + . . . gnfn = 1 for

some gi ∈ R. Hence Spec (R) \
⋃n
i=1 = V (f1, . . . , fn) = V (R) = ∅.

Next, we see the topological effects on space Spec (R) of Noetherian hypothesis on ring R. In
particular, we see that the space Spec (R) itself becomes noetherian topological space, that is, it’s
closed sets satisfies descending chain condition.

Lemma 2.1.7. Let R be a ring. If R is noetherian, then Spec (R) is noetherian.

Proof. Use V (−) and I(−), where I(Y ) = {f ∈ R | f ∈ p∀p ∈ Y }. Rest is trivial.

We next discuss few things about the irreducible subsets of a closed set of Spec (R). Let
F ↪→ Spec (R) be a closed subset. Then we can contemplate irreducible subsets of F . Clearly, each
irreducible subset has to be in a maximal irreducible subset, which are called irreducible components
of Spec (R). We have few basic observations about irreducible components.

Lemma 2.1.8. Let R be a ring and F be a closed subset of Spec (R). Then,
1. Each irreducible component of F is closed.
2. If R is noetherian, then there are only finitely many irreducible components of Spec (R).
2it is customary in algebraic geometry to call the topological compactness as quasi-compactness; compactness in

algebraic geometry historically means Hausdorff and topological compactness.
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3. We have that

{Irreducible components of Spec (R)} = {Closed sets V (p), p is minimal prime}.

Proof. Statement 1. follows from Lemma 2.1.1. Statement 2. follows from Lemma 2.1.7 and the
fact that a noetherian topological space has only finitely many irreducible components. We now
show statement 3. If Z is an irreducible component, then it is closed and Z = V (p) by Lemma
2.1.1. We claim that p is a minimal prime. If not, then as every prime has a minimal prime, we will
have p′ ⊊ p such that p′ is minimal. Consequently, we get V (p′) ⊋ V (p). An another use of Lemma
2.1.1 yields that V (p′) is irreducible. But V (p) was irreducible component, giving a contradiction.
We deduce that p is a minimal prime, as required.

Conversely, if p is minimal, then V (p) is an irreducible closed set which cannot be contained in
a larger irreducible closed set as otherwise we will have V (p′) ⊋ V (p) and thus,

√
p′ ⊊

√
p (Lemma

2.0.1), but as the ideals are prime, so p′ ⊋ p, a contradiction to minimality.

Note that we are already in a position to prove some algebraic statements using topological
arguments, as the following lemma shows.

Lemma 2.1.9. Let A be a ring and let a1, . . . , an ∈ A generate the unit ideal in A. Then for all
m > 0, the collection am1 , . . . , amn ∈ A also generates the unit ideal in A.

Proof. From Lemma 2.1.6, 2, it follows that {D(ai)}i=1,...,n covers Spec (A). Since for any a ∈ A,
the basic open D(a) ⊆ Spec (A) is equal to D(am) as a prime p doesn’t contain a if and only if
it doesn’t contain any of its power. Consequently, we get that {D(ami )}i=1,...,n also forms a basic
open cover of Spec (A). An application of Lemma 2.1.6, 2 again proves the result.

2.2 The structure sheaf OSpec(R)

The next important thing we want to consider on Spec (R) is a sheaf of suitable nice functions over
it. This sheaf will be of utmost importance as it will not be treated as an additional structure, but
will be an integral part (in-fact, the most important part) of the definition of an affine scheme.

The question now is, what are nice functions over Spec (R) whose sheaf we should take. We turn
to classical algebraic varieties for that (one may skip the following if he/she find himself/herself to
be brave enough to face the abstraction of the structure sheaf). See Section 5 for more details.

Example 2.2.1. (Structure sheaf of an algebraic variety) Let k be an algebraically closed field.
An important aspect of varieties is their morphism. We will display this only in the affine case.
Let X,Y be two affine varieties. To define a morphism between X and Y , we would first need to
understand the notion of regular functions over any variety X. A function ϕ : X → k is said to be
regular if it is locally rational. That is, for each p ∈ X, there exists an open set U ∋ p of X and
there exists two polynomials f, g ∈ k[x1, . . . , xn] such that g(q) ̸= 0∀q ∈ U and ϕ|U = f/g. It then
follows that a regular function is continuous when X and k are equipped with its Zariski topology
(Lemma 3.1, [??] [Hartshorne]). We now define morphism of affine varieties.

A function ϕ : X → Y is said to be a morphism of varieties if
1. ϕ : X → Y is continuous,
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2. for each open set V ⊆ Y and a regular map f : V → k, the map f ◦ ϕ as below

V

ϕ−1(V ) k

ϕ f

f◦ϕ

is also a regular map.
Hence the main part of the data of a variety is the locally defined regular maps. This is what we
will take as our motivation in defining the structure sheaf over Spec (R), as this example tells us to
take care of these local functions to the base field. A question that may arise from this discussion is
how are we going to define a regular map from an open set U ↪→ Spec (R) when we don’t even have
a field. The answer is, as we discussed previously, to work with residue field at a point instead.

We now start to define the structure sheaf of Spec (R). First, let us give the following lemma,
which reduces the burden of construction only to basis elements of Spec (R).

Lemma 2.2.2. Let X be a topological space and B be a basis. Let F be an assignment over sets of
B which satisfies sheaf conditions for it. Then, F extends to a sheaf F over X.

Proof. The main observation here is that we can find the stalk of F at each point x just by the
knowledge of F , because of the basis B. Take any point x ∈ X. We see that we can get the stalk
Fx as follows:

Fx := lim−→
x∈B∈B

F (B).

Once we have the stalks, we can define the sections of F quite easily as follows. Let U ⊆ X be an
open set. Then F(U) is defined to be the subset of

∏
x∈U Fx of those elements (sx) where there

exists a basic open cover {Bi} of U and there exists elements si ∈ F (Bi) such that sx = (si)x for
each x ∈ Bi. One can check that this satisfies the conditions of a sheaf.

Construction 2.2.3. (The OSpec(R)) Let R be a ring. By virtue of Lemma 2.2.2, we will define
OSpec(R) only on basic open sets of the form Spec (R)f . Let X := Spec (R). Motivated by Example
2.2.1, take a basic open set Xf ↪→ X for some f ∈ R and then we wish to consider rational functions
over Xf . This means those functions of the form g/h for g, h ∈ R such that h(p) ̸= 0∀p ∈ Xf .
This is equivalent to demanding that h /∈ p∀p ∈ Xf , that is, Xh ⊇ Xf . This is again equivalent to
stating that f ∈

√
Rh by Lemma 2.1.4, 2. Hence fn = ah for some n ∈ N and a ∈ R. Thus, we see

that the notion of rational functions over Xf is equivalent to all functions of the form g/fn where
g ∈ R and n ∈ N. Commutative algebra has an apt name for this, that is, the localization of R at
f denoted by Rf := {a/fn | a ∈ R, n ∈ N} which is again a ring by natural operation on fractions
(see Special Topics, ??). Thus, we should define the sections over Xf as:

OX(Xf ) := Rf .

We would not verify the sheaf axioms here as it is a tedious but straightforward calculation. The
sheaf OX thus formed is called the structure sheaf on the spaceX. One should think of the sheaf OX
as natural as the ring R itself. In particular we will see in the next section that it indeed is the case.
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Next, we would like to see the stalks of this sheaf OX . To understand this, we would have to
understand the maps on sections induced by Xf ↪→ Xg. As we saw earlier, this is equivalent to
stating that fn = ag for some n ∈ N and a ∈ R. Hence, the induced map on sections are the
restriction maps of the sheaf and is given by

ρXg ,Xf
: Rg = OX(Xg) −→ OX(Xf ) = Rf

b/gm 7−→ bam/amgm = bam/fnm.

We are now ready to calculate the stalk. Take any point x ∈ X. The stalk becomes:

OX,x := lim−→
x∈Xf

OX(Xf )

= lim−→
x∈Xf

Rf

= lim−→
f /∈x

Rf

= Rx

where the last equality follows from a small colimit calculation (which should really be thought of
as a definition). Hence OX is a sheaf whose stalks are local rings. So we have a complete description
of the sheaf OX when X = Spec (R).

We finally define an affine scheme.

Definition 2.2.4. (Affine scheme) Let R be a ring. Then the pair (Spec (R),OSpec(R)) is called
an affine scheme.

Remark 2.2.5. (Evaluation of functions) Let (Spec (R),OSpec(R)) be an affine scheme. As noted
earlier, we now see how all rational functions over Spec (R) are exactly the elements of R. In
particular, since Γ(Spec (R),OSpec(R)) = R1 = R. Hence if we interpret OSpec(R) as the sheaf of
regular maps over Spec (R), then R itself appears as the globally defined regular maps.

Now take global map f ∈ R and any point p ∈ Spec (R). We can "evaluate" f at p via the
following composite (note that κ(p) = Rp/pRp

∼= (Rp)0, the last one is the fraction field of Rp

obtained by localizing at 0 ideal):

Γ(Spec (R),OSpec(R)) OSpec(R),p κ(p)

where the first map on the left is the inclusion into the direct limit and the map on right is the
natural quotient map. Algebraically, we have the following maps

R −→ Rp −→ Rp/pRp

given by

f 7−→ f

1 7−→
f

1 + pRp,

where f/1 + pRp denotes the class of all those functions in the stalk OSpec(R),p = Rp which takes
same value at p as f does.
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For completeness’ sake, we give a description of the section of the sheaf OSpec(R) on any open
set U ⊆ Spec (R).

Lemma 2.2.6. Let R be a ring and (Spec (R),OSpec(R)) the associated affine scheme. Let U ⊆
Spec (R) =: X be an open set. Then,

OX(U) =
{
(sp) ∈

∏
p∈U

Rp | ∀p ∈ U,∃ basic open Xg ∋ p & f/gn ∈ Rg s.t. sq = f/gn∀q ∈ Xg

}
.

More concretely, we have

OX(U)=
¶
s:U→

∐
p∈U

Rp | ∀p∈U, s(p)∈Rp & ∃ open p∈V⊆U & f,g∈R s.t. ∀q∈V, g/∈q & s(q)=f/g
©
.

Proof. Follows from Lemma 2.2.2 and Construction 2.2.3.

2.2.1 Ring morphisms and Spec (−)

We now discuss some properties of ring morphisms and the associated map of affine schemes.

Lemma 2.2.7. 3 Let A be a ring and f ∈ A. Then, D(f) ⊆ Spec (A) is empty if and only if f is
nilpotent.

Proof. Both sides follow immediately from the Lemma ??.

We further obtain the following two results which corresponds to what happens on the level of
sheaves.

Proposition 2.2.8. 4 Let X = Spec (A) and Y = Spec (B) be two affine schemes and ϕ : A→ B
be a morphism of rings.

1. The ring map ϕ : A → B is injective if and only if the corresponding map of schemes
f : Y → X yields injective map of structure sheaves, that is, f ♭ : OX → f∗OY is injective.

2. If ϕ : A→ B is injective, then f : Y → X is dominant5.
3. The ring map ϕ : A → B is surjective if and only if the corresponding map of schemes

f : Y → X is a closed immersion.

Proof. 1. (L ⇒ R) It suffices to show that f ♭ is an injective map over basic opens of X. Pick any
g ∈ A and consider the basic open D(g) ⊆ X. We wish to show that the map

f ♭D(g) : OX(D(g)) −→ OY (f−1(D(g)))

is an injective homomorphism. Indeed, we first observe that OX(D(g)) ∼= Ag and f−1(D(g)) =
D(ϕ(g)), so that OY (D(ϕ(g))) ∼= Bϕ(g). It follows that the map f ♭D(g) : Ag → Bϕ(g) is the localiza-
tion map

ϕg : Ag −→ Bϕ(g)

a

gn
7−→ ϕ(a)

ϕ(g)n .

3Exercise II.2.18, a of Hartshorne.
4Exercise II.2.18 b,c,d of Hartshorne.
5that is, f has dense image.
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We wish to show that the above map is injective. If ϕ(a)/ϕ(g)n = 0, then for some k ∈ N we have
ϕ(g)kϕ(a) = 0. It follows by injectivity of ϕ that gka = 0 in A. Consequently, we can write

a

gn
= agk

gn+k
= 0.

(R ⇒ L) As a sheaf map is injective if and only if the kernel sheaf is zero (Theorem ??), where
the latter is equivalent to the fact that every map on sections is injective. Consequently, over X,
we get

f ♭X : Γ(OX , X) −→ Γ(OY , Y )

Since Γ(OX , X) ∼= A and Γ(OY , Y ) ∼= B, and the map f ♭X : A→ B is just ϕ itself, therefore we are
done.

2. We wish to show that for any basic non-empty open D(g) ⊆ X for g ∈ A, the intersection
D(g) ∩ f(Y ) is non-empty. We have the following equalities:

D(g) ∩ f(Y ) = {p ∈ X | p ∈ f(Y ) & g /∈ p}
= {ϕ−1(q) ∈ X | q ∈ Y, g /∈ ϕ−1(q)}
= {ϕ−1(q) ∈ X | q ∈ Y, ϕ(g) /∈ q}
= f(D(ϕ(g))).

Conequently, D(g)∩ f(Y ) is non-empty if and only if D(ϕ(g)) is non-empty, which in turn implies
by Lemma 2.2.7 that D(g) ∩ f(Y ) is non-empty if and only if ϕ(g) is not nilpotent. As g is not
nilpotent because D(g) is not empty, therefore ϕ(g) is not nilpotent as ϕ is injective.

3. (L ⇒ R) Let ϕ : A → B be surjective and I ≤ A be the kernel. We wish to show that
f : Y → X is a closed immersion. For that, we first need to show that f is a topological closed
immersion, that is its image is closed and is homeomorphic to it. We claim that f(Y ) = V (I) ⊆ X.
Indeed, for any ϕ−1(q) ∈ f(Y ), we have that I ⊆ ϕ−1(q). Thus, f(Y ) ⊆ V (I). Conversely, for
any p ∈ V (I), as ϕ is surjective and p contains I, therefore ϕ(p) ∈ Y is a prime ideal such that
ϕ−1(ϕ(p)) = p, so that q = ϕ(p) ∈ Y is such that f(ϕ(p)) = p, hence p ∈ f(Y ).

Next, we wish to show that f is homeomorphic to its image. It suffices to show that f : Y →
f(Y ) is a closed mapping. But this is immediate by the fact that a surjective map ϕ : A→ B with
kernel I induces an order preserving isomorphism of ideals of A containing I and ideals of B by
mapping ideals of B to those of A containing I via ϕ−1. Alternatively, one can see that A/I ∼= B
and Spec (A/I) ∼= V (I) = f(Y ), therefore application of Spec (−) functor would do the job.

Next, we wish to show that f ♭ : OX → f∗OY is surjective. We can check this on a basis of
X. Let D(g) ⊆ X for some g ∈ A. Indeed, for t ∈ (f∗OY )(D(g)) = OY (D(ϕ(g)) ∼= Bϕ(g), we
wish to find an open covering of D(g) say Ui and si ∈ OX(Ui) such that f ♭Ui

(si) = t|Ui
for each

i. Indeed, the open set D(g) as its own covering will suffice here as OX(D(g)) ∼= Ag and the map
f ♭D(g) = ϕg : Ag → Bϕ(g). As ϕ is surjective, therefore for t = b/ϕ(g)n ∈ Bϕ(g), we obtain a ∈ A
such that ϕ(a) = b and thus a/gn is mapped by ϕg to b/ϕ(g)n, as required.

(R ⇒ L) Let f : Y → X be a closed immersion. We wish to show that ϕ : A→ B is surjective.
Pick b ∈ B. We wish to show that there exists a ∈ A such that ϕ(a) = b. As the sheaf map
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f ♭ : OX → f∗OY is surjective, therefore there exists a basic open covering (which will be finite
by quasi-compactness of affine schemes, Lemma 2.1.6) namely {D(ai)}i=1,...,n of X together with
sections si ∈ OX(D(ai)) such that f ♭D(ai)(si) ∈ OY (f−1(D(ai))) is the restriction of b ∈ Γ(OY , Y ) to
D(ϕ(ai)), namely ρX,D(ϕ(ai))(b). As we have OX(D(ai)) ∼= Aai , OY (f−1(D(ai))) = OY (D(ϕ(ai))) ∼=
Bϕ(ai) and that the restriction ρY,D(ϕ(ai)) : Γ(OX , X)→ OX(D(ai)) is just the natural localization
map A→ Aai , therefore we may identify si = ci

a
ki
i

∈ Aai and ρX,D(ai)(b) =
b
1 ∈ Bϕ(ai). Consequently,

we have for each i = 1, . . . , n the following equation in Bϕ(ai)

b

1 = ϕ(ci)
ϕ(ai)ki

.

It follows that we obtain an equation of the form

ϕ(ami
i )b = ϕ(ciali)

for some mi, li ≥ 0. Taking M = maximi, we obtain

ϕ(ami )b = ϕ(di) (∗)

for some di ∈ A.
, 2, the collection {ai}i=1,...,n generates the unit ideal in A. By Lemma 2.1.9, it follows that the

collection {ami }i=1,...,n also generates the unit ideal in A. Consequently, we have r1am1 +· · ·+rnamn =
1 for some ri ∈ A. Using this in (∗), we yield

b = ϕ

Ç
n∑
i=1

ridi

å
,

as required6.

2.3 OSpec(R)-modules

As we pointed out in Construction 2.2.3, the structure sheaf OSpec(R) should really be thought of
as natural as the ring R itself. This way of thought will be justified in this section, where we will
see that, just like we can understand a ring by understanding the category of R-modules, we can
understand the structure sheaf OSpec(R) by understanding the category of soon to be constructed
OSpec(R)-modules.

Let R be a ring and M be an R-module. Just like we underwent a "geometrification" to go
from ring R (algebra) to the locally ringed space Spec (R) (geometry), we will also "geometrify" the
notion of an R-module. This will yield us a sheaf M̃ over Spec (R).

Definition 2.3.1. (M̃) Let R be a ring and M be an R-module. The following presheaf on
X := Spec (R) generated by the following definition on basic opens

Xf 7−→ M̃(Xf ) :=Mf =M ⊗R Rf
6Note that in the whole proof, we didn’t even required the fact that f : Y → X is also a topological closed

immersion!
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and restrictions given by

(Xf ↪→ Xg) 7−→M ⊗R Rg
id⊗ρXg,Xf→ M ⊗R Rf

defines a unique sheaf on Spec (R) corresponding to R-module M denoted M̃ .

The above construction gives the sheaf M̃ over R a structure of an OSpec(R)-module, that is,
a sheaf F of abelian groups where for each open U ⊆ Spec (R) the group F(U) is a OSpec(R)(U)-
module. Since M̃(Xf ) =M ⊗R Rf is an OX(Xf ) = Rf -module, therefore M̃ are basic examples of
OSpec(R)-modules.

A map η : F → G of OSpec(R)-modules is just a sheaf morphism where for each inclusion U ↪→ V
of Spec (R), we get that the following commutes

F(V ) G(V )

F(U) G(U)

ηV

ηU

where the top horizontal map is a OSpec(R)(V )-module homomorphism, bottom horizontal is a
OSpec(R)(U)-module homomorphism and the verticals are the restriction map of sheaves F and G,
which are also module homomorphisms w.r.t. OSpec(R)(V ) → OSpec(R)(U). The latter has the fol-
lowing meaning. If M is an R-module and N is an S-module, then a map φ :M → N is a module
homomorphism w.r.t f : R→ S if φ(r ·m) = f(r) · φ(m).

We thus get a functor ‹− : Mod(R) −→Mod(OSpec(R))

M 7−→ M̃

f :M → N 7−→ f̃ : M̃ → ‹N
where f̃Xf

:Mf → Nf is given by localization. We may denote flMod(OSpec(R)) ↪→Mod(OSpec(R))
to be the full subcategory of OSpec(R)-modules of the form M̃ .

An explicit form of the sheaf M̃ can be obtained by expanding the definition of the sheaf we
obtain from it’s definition on the basis.

Lemma 2.3.2. Let M be an R-module and consider the associated OSpec(R)-module M̃ . For any
open U ⊆ Spec (R), we have

M̃(U)∼=
¶
s:U→

∐
p∈U

Mp | ∀p∈U, s(p)∈Mp & ∃ open p∈V⊆U & ∃m∈M,f∈R s.t. ∀q∈V, f /∈q & s(q)=m/f
©

Proof. Follows from Remark ??.

We now collect properties of M̃ below.
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Proposition 2.3.3. Let R be a ring and M,N,Mi be R-modules for i ∈ I,
1.
Ä
M̃
ä
p
∼=Mp for all p ∈ Spec (R),

2. M̃(Spec (R)f ) ∼=Mf for all f ∈ R,
3. Γ(M̃, Spec (R)) ∼=M .

Proof. Statement 1 follows from the alternate definition given in Lemma 2.3.2. Indeed one considers
the function

ϕ :
Ä
M̃
ä
p
−→Mp

(U, s)p 7−→ s(p).

One immediately sees this is R-linear. Injectivity and surjectivity is then also trivially checked by
the above cited lemma.

Statements 3 follows from statement 2 by setting f = 1 and statement is just the Definition
2.3.1.

We can also understand how OSpec(R)-modules behave under morphism of affine schemes (see
direct and inverse image of modules at Section ??)

Lemma 2.3.4. 7 Let f : Spec (S)→ Spec (R) be a morphism of affine schemes associated to map
ϕ : R→ S of rings. Then,

1. if N is an S-module, then f∗‹N ∼= R̃N where RN is the R-module obtained by restriction of
scalars by ϕ,

2. if M is an R-module, then f∗M̃ ∼= ‰�(S ⊗RM) where S ⊗R M is the S-module obtained by
extension of scalars by ϕ.

Proof. The proof is routine with main observation being the facts that for g ∈ R, we have (RN)g ∼=
Nϕ(g) and for q ∈ Spec (S), we get the natural isomorphism (f∗M̃)q ∼=‰�(S ⊗RM)q.

Theorem 2.3.5. Let R be a ring. There is an equivalence of categories between those of R-modules
and OSpec(R)-modules of the form M̃ :

Mod(R) flMod(OSpec(R))
(̃−)

Γ(X,−)
≡

which moreover satisfies the following properties
1. (̃−) is an exact functor; if 0→M ′ →M →M ′′ → 0 is exact, then 0→›M ′ → M̃ → M̃ ′′ → 0

is exact,
2. (̃−) preserves tensor product; ‚�M ⊗R N ∼= M̃ ⊗OX

‹N ,
3. (̃−) preserves coproducts; ‚�⊕

i∈IMi
∼=

⊕
i∈I
›Mi.

7We will call it the globalized extension and restriction of scalars.
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Proof. Let X = Spec (R). Consider the following map

HomR (M,N)→ HomOX

Ä
M̃, ‹Nä

f :M → N 7→ f̃ : M̃ → ‹N
ηX :M → N ←[ η : M̃ → ‹N

Now, beginning from η, we may show that (›ηX)Xg = ηXg for some basic open Xg ↪→ X. The result
follows from the fact that η : M̃ → ‹N is completely characterized by the map on global sections
ηX :M → N from the following square

Mg Ng

M N

ηXg

ηX

where the verticals are restrictions morphisms w.r.t R → Rg and the top horizontal is Rg-module
homomorphism and bottom is R-module homomorphism.

For statement 1, by Theorem ??, the question is local in nature. We deduce the result then
from Lemma ??.

For statement 2, we proceed as follows. To define an isomorphism

ϕ : M̃ ⊗OX
‹N → ‚�M ⊗R N

we need only define a map from the presheaf F given by U 7→ M̃(U) ⊗OX(U) ‹N(U) to ‚�M ⊗R N
such that on basic open sets, we have an isomorphism. Indeed, let D(f) ⊆ Spec (R) be an open set
for some f ∈ R. We define

ϕU :Mf ⊗Rf
Nf

∼=→ (M ⊗R N)f

as the obvious natural isomorphism. One checks that this does define ϕ to be a sheaf map.
For statement 3, as (̃−) is a left adjoint, therefore it preserves all colimits.

Remark 2.3.6. We will later see that on affine schemes Spec (R), the category flMod(OSpec(R))
is precisely the category of quasicoherent OSpec(R)-modules, which is a class of modules of utmost
importance in algebraic geometry.

3 Schemes and basic properties

We can now define scheme to be a locally ringed space (see Foundational Geometry, ??) with an
affine open covering.

Definition 3.0.1. (Schemes) A locally ringed space (X,OX) is a scheme if there exists an open
affine cover {(Spec (Ri),OSpec(Ri))} of (X,OX) such that OX|Spec(Ri)

∼= OSpec(Ri).
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As we go along in understanding schemes, it will be more and more apparent the need of sheaf
language to talk about the "generalized functions" over the scheme X. Indeed, there is a fine in-
terrelationship between the space structure of the scheme (X,OX) (that is, the topological space
X) and the function structure on the scheme (that is, the sheaf of functions OX). A big part of
learning scheme theory is to understand and use this relationship between them.

We will now bring some global topological properties of schemes which reflect their affine origins.
An analogue of Lemma 2.1.1 holds in the general case of schemes.

Lemma 3.0.2. 8 Let X be a scheme. The following are equivalent.
1. S ⊆ X is a closed irreducible subset.
2. There exists a point x ∈ S such that {x} = S.

Proof. (1. ⇒ 2.) Let U be an affine open in X intersecting S. Then U ∩ S is an open subset of S.
As open subsets of irreducibles are dense, therefore U ∩ S is dense in S. Consequently, it suffices
to show that there exists a point x ∈ U ∩S such that {x} = U ∩S. As open subsets of irreducibles
are irreducible, therefore U ∩ S is irreducible. Replacing X by U , we may assume X is affine. The
result then follows by Lemma 2.1.1.

(2. ⇒ 1.) Since x ∈ U for some open affine U ⊂ X, thus, x ∈ U ∩S. Since U ∩S ⊆ U and U is
open, therefore closure of {x} in U is same as closure of {x} in X. Now, {x} = S but {x} ⊆ U . It
thus follows that S ⊆ U and hence S is in an open affine. The result follows by Lemma 2.1.1.

Every open subspace of a scheme is a scheme.

Lemma 3.0.3. Let X be a scheme and U ⊆ X be an open subspace. Then (U,OX|U ) is a scheme.

Proof. Since for an affine scheme Spec (R), the basic open Spec (R)f ∼= Spec (Rf ) for f ∈ R,
therefore for an open subspace U ⊆ X and an affine open cover {Ui} of X, Ui ∩ U is open in Ui
and thus covered by affines of the form Spec (Rf ).

Write Sch to be the category of schemes and Sch/S to be the category of schemes over S.
Morphisms of schemes is merely the same concept as that of morphism of locally ringed spaces (see
Foundational Geometry, Chapter ??).

Definition 3.0.4. (Map of schemes) Let X and Y be two schemes. A map of underlying locally
ringed spaces (f, f ♯) : (X,OX) → (Y,OY ) is called a map of schemes. In a more expanded form,
f : X → Y is a continuous map and f ♯ : f−1OY → OX is a map of sheaves such that the induced
map (see Topics in Sheaf Theory, Chapter ??) on stalks for each x ∈ X

f ♯x : OY,f(x) → OX,x

is a map of local rings, i.e., (f ♯x)−1(mX,x) = mY,f(x).

An important theorem in global study of schemes is a complete characterization of schemes over
Spec (R), which is of-course of paramount importance.

8Exercise II.2.9 of Hartshorne.
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Theorem 3.0.5. Let X be a scheme and R be a ring. Then, there’s a natural bijection

HomSch (X,Spec (R)) ∼= HomRing (R,Γ(X,OX)).

In other words, we have the following adjunction9

Sch Ringop
Γ(−)

Spec(−)

⊣ .

Proof. The proof will be played out in two steps. In the first one we will show the candidates for
the unit and counit of this adjunction. In the second play we will show that they indeed satisfy
the required triangle identities.

Act 1 : The units and counits.

Let us first define the simpler one of them, the counit. For any R ∈ Ring, we define a natural
transformation ϵ : idRing → Γ◦Spec () given by (note how we adjusted for the contravariant nature
of Spec (−) and Γ(−))

ϵR : R −→ Γ(Spec (R)) ∼= R

f 7−→ f.

Thus, ϵR = idR. Hence, ϵ = idRingop .

Next, we define the more intricate part, which is the unit. Take any scheme X ∈ Sch. We
define η : idSch → Spec (Γ) on X by

ηX : X −→ Spec (Γ(X))
x 7−→ p = ηX(x) := {f ∈ Γ(X) | fx ∈ mx}.

Moreover, the map on structure sheaves is given by

(ηX)♭ : OSpec(Γ(X)) −→ (ηX)∗OX

where as the map on global sections we keep it id and on a basic open Spec ((Γ(X))f ) this is defined
on sections by

(ηX)♭Spec((Γ(X))f) : Γ(X)f ∼= OSpec(Γ(X))((Spec (Γ(X)))f ) −→ OX(η−1X ((Spec ((Γ(X))))f ))

by the unique map that is obtained in the following diagram

Γ(X)f OX(η−1X ((Spec (Γ(X)))f ))

Γ(X)
ρ

,

where, indeed, f ∈ Γ(X) is mapped to to an unit element in OX(η−1X ((Spec (Γ(X)))f because of
the following simple lemma:

9This is also sometimes called the algebra-geometry duality or the fundamental duality of algebraic geometry.
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(*) For a locally ringed space (X,OX) and an open subspace U ⊆ X, f ∈ OX(U) is a unit if and
only if fx /∈ mx ⊂ OX,x for all x ∈ U .

This construction has the following properties and we give the main idea which drives each one of
them.

1. ηX(x) is a prime ideal of Γ(X) : This follows from mx being a maximal (hence prime) ideal
of OX,x.

2. ηX is continuous : Working with basis and reducing to assumption that X = Spec (S) is
affine, we reduce to showing that {p ∈ Spec (R) | fp /∈ mp} is open, which is true as it is equal
to (Spec (S))f .

3. η : idSch → Spec () ◦ Γ is a natural transformation : We wish to show that commutativity of
the natural square. For a map of schemes f : X → Y , this reduces to showing that

∀x ∈ X, ηY (f(x)) = (f ♭Y )−1(ηX(x)).

This further follows from the observation that for g ∈ Γ(Y ), f ♭Y (g) ∈ mx ⇐⇒ fx(gf(x)) ∈ mx

and the latter is clearly true by the definition of maps of locally ringed spaces, where fx :
OY,f(x) → OX,x is the map on stalks.

Hence, we have obtained a map of schemes (ηX , η♭X) : X → Spec (Γ(X)). This is our candidate for
the unit of the adjunction.

Act 2 : η and ϵ satisfies the triangle identities.

It follows that we wish to show that the following two diagrams commute:

Γ(X) Γ(Spec (Γ(X))) ∼= Γ(X) Spec (R) Spec (Γ(Spec (R))) ∼= Spec (R)

Γ(X) Spec (R)
idΓ(X)

ϵΓ(X)

ΓηX

in Ring

Spec(ϵR)
idSpec(R)

ηSpec(R)

in Sch

.

This follows from a simple unraveling of the maps involved in the diagram as defined in Act 1.

Corollary 3.0.6. The above adjunction restricts to the following equivalence of categories:

AfSch Ringop
Γ(−)

Spec(−)

≡

.

Corollary 3.0.7. Let X be a scheme over Spec (R) for a ring R. Then, for any open affine
Spec (S) ⊆ X, S is an R-algebra. Consequently, all stalks OX,p are R-algebras.

3.1 Basic properties

We can now observe some more basic properties.
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3.1.1 Local rings at non-closed points

Let X be an arbitrary scheme and p ∈ X be a non-closed point. One can show that the local ring
OX,p is obtained by localizing local rings at closed points. Indeed, we have the following simple
observation in this direction.

Lemma 3.1.1. Let X be a scheme and p ∈ X be a non-closed point. Then, OX,p is isomorphic to
localization of a local ring OX,x at a prime ideal, where x ∈ X is a closed point.

Proof. Let p ∈ X be a non-closed point and U = Spec (A) be an open affine containing p. Con-
sequently, p corresponds to a prime ideal p ⪇ A which is not maximal. Let m ⪇ A be a maximal
ideal containing p and let m ∈ U be the corresponding closed point in X. As OX,p ∼= Ap and
OX,m ∼= Am, and since (Am)pm ∼= Ap, therefore we have that OX,p is obtained by localizing OX,m at
a prime ideal, as required.

Using ideas similar to above, we can also prove the following simple result.

Lemma 3.1.2. Let X be an integral scheme and η ∈ X be a non-closed point. Then the fraction
field of OX,η ∼= K(X) where K(X) is the function field of X.

3.1.2 Non-vanishing locus of a global section

We next see that how a global section of a scheme defines an open set which is the set of those
points where that element, when treated as a function, is non-zero. One then finds what the ring
of functions over this open set looks like. First, for any scheme X and any f ∈ Γ(OX , X), define
the non-vanishing locus of f by

Xf := {x ∈ X | f /∈ mX,x}.

We first have the following simple result about non-vanishing locus.

Lemma 3.1.3. Let f : X → Spec (B) be a scheme over a ring B and let g ∈ B. Let ϕ : B →
Γ(OX , X) be the map induced on the global sections. Then,

f−1(D(g)) = Xϕ(g).

Proof. Observe that x ∈ Xϕ(g) if and only if ϕ(g)x /∈ mX,x. As we have the following commutative
square

B Γ(OX , X)

OSpec(B),f(x) OX,x

ϕ

f♯x

where vertical arrows are image into the stalk, therefore we deduce that ϕ(g)x /∈ mX,x if and only
if f ♯x(gx) /∈ mX,x. As f ♯x is a local ring homomorphism, therefore f ♯x(gx) /∈ mX,x if and only if
gx /∈ mSpec(B),f(x) = f(x)Bf(x). As B → OSpec(B),f(x) is just localization map B → Bf(x), therefore
gx /∈ f(x)Bf(x) if and only if g /∈ f(x), that is f(x) ∈ D(g). This completes the proof.
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Proposition 3.1.4. 10 Let X be a scheme and f ∈ Γ(OX , X).
1. Let U = Spec (A) be an affine open subset of X and denote f̄ = ρX,U (f). Then, U ∩Xf =

D(f̄). Consequently, Xf ⊆ X is an open subscheme.
2. Let X be quasicompact and a ∈ Γ(OX , X) such that ρX,Xf

(a) = 0. Then, fna = 0 in
Γ(OX , X) for some n > 0.

3. Let X admit an affine open cover Ui such that Ui ∩Uj is quasicompact. If b ∈ OX(Xf ), then
there exists a ∈ Γ(OX , X) and n > 0 such that fnb = ρX,Xf

(a) in OX(Xf ).
4. There is an isomorphism of rings Γ(OXf

, Xf ) ∼= (Γ(OX , X))f .

Proof. 1. We wish to show that {x ∈ U | f̄x /∈ mX,x} = {x ∈ U | f̄ /∈ x}, where x ∈ U in latter
is treated as a prime ideal of A. The side ” ⊆ ” follows from the fact that for x ∈ U , we have
OX,x ∼= Ax, mX,x

∼= xAx and the fact that the map into stalks OX(U) → OX,x is given by the
canonical map A → Ax, a 7→ a/1. One further would need the commutativity of the following
diagram:

OX,x

OX(U) Γ(OX , X)

.

The side ” ⊇ ” also follows from the commutativity of the above triangle together with the canon-
ical isomorphisms of the local ring and its maximal ideal.

2. TODO from notebook.

3.1.3 Locality of isomorphism on target

We now show a rather simple result on locality of isomorphism on target, but it is quite useful in
scenarios where one understands the map well on individual opens of target but not on the global
level.

Proposition 3.1.5. Let f : X → Y be a map of schemes and Y =
⋃
i∈I Ui be an open cover of Y

such that f |f−1(Ui) : f
−1(Ui)→ Ui is an isomorphism. Then, f is an isomorphism.

Proof. TODO from notes.

3.1.4 Criterion for affineness

We now show a useful criterion for a scheme to be affine. This also portrays the power of previous
result on locality of isomorphism.

Proposition 3.1.6. Let X be a scheme and denote A = Γ(OX , X). Then the following are equiv-
alent:

1. X is affine,
2. there exists f1, . . . , fr ∈ A such that Xfi are open affine subsets of X and ⟨f1, . . . , fr⟩ = A.

Proof. TODO from notes.

10Exercise II.2.16 of Hartshorne.
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4 First notions on schemes
Having defined schemes, our next goal is to bring to light some of the obvious definitions that one
can make on them. In some sense, having made the general definition of schemes, we are now
trying to go back to try and find where does varieties lie in this big world of Sch. Indeed, we will
see that the definitions introduced in the following few sections are bringing us ever closer to define
varieties as certain type of schemes, which will thus enable us to bring to light the most important
geometric notions on varieties.

4.1 Noetherian schemes

Definition 4.1.1. (Noetherian schemes) A scheme X is called locally noetherian if there exists
an affine open cover X = ∪i∈IUi where each Ui = Spec (Ai) where Ai is a noetherian ring. If
moreover, X is quasicompact, then X is called noetherian.

Remark 4.1.2. Since X = Spec (A) is already quasi-compact (Lemma 2.1.6), therefore for affine
schemes X, the notion of locally noetherian and noetherian are equal.

The only immediately important result about such schemes that one needs is that an affine
scheme is noetherian if and only if the obvious thing happens.

Lemma 4.1.3. Let X = Spec (A) be an affine scheme. Then, the following are equivalent:
1. X is a noetherian scheme.
2. A is a noetherian ring.

Proof. (2. ⇒ 1.) This follows from Remark 4.1.2 and the fact that localization of noetherian rings
are noetherian (Proposition ??).
(1. ⇒ 2.) Let X be noetherian. Then there is an affine open cover of X by spectra of noetherian
rings. Pick any ideal I ≤ A. We shall show it is finitely generated. There is a finite cover
{Spec (Afi)}ni=1 of Spec (A) where Afi are noetherian and fi ∈ A. Hence we have that the ideal
IAfi of Afi is finitely generated for all i = 1, . . . , n. By Lemma 2.1.5, 2, we see that f1, . . . , fn
generate the whole ring A. The result then follows by Lemma ??.

Example 4.1.4. By the Lemma 4.1.3, we observe that any of the variety over a field is a noetherian
scheme (technically, we are identifying the affine variety with its associated scheme, see Section ??,
Schemes associated to varieties). So any of your favorite variety

Spec
Å

k[x, y, z]
x2 + y2 − z3 − 1

ã
, k is algebraically closed

gives a (is a) noetherian scheme.

Our next goal is to show that a noetherian scheme is a noetherian space.

Proposition 4.1.5. If X is a noetherian scheme, then X is a noetherian space.

Proof. As X has a finite open affine cover by spectra of noetherian rings and such spectra are
noetherian schemes by Lemma 4.1.3, thus by the fact that finite union of noetherian spaces is
noetherian we can complete the proof.
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Local rings of a locally noetherian scheme are noetherian.

Lemma 4.1.6. If X is locally noetherian, then OX,x is a noetherian ring.

Proof. Since localization of a noetherian ring at a prime is again noetherian by Proposition ??,
therefore OX,x is noetherian.

Being locally noetherian is a local property.

Proposition 4.1.7. Let X be a locally noetherian scheme. If Spec (A) ⊆ X is an open affine, then
Spec (A) is noetherian and thus A is a noetherian ring.

Proof. Let Ui = Spec (Ai) be an open cover by noetherian affine schemes (Ai are noetherian).
Then, a finitely many of Ui will cover Spec (A) by quasi-compactness of Spec (A), say U1, . . . , Un.
Thus we obtain a finite basic open cover D(fi) of Spec (A) for fi ∈ A where each D(fi) ⊆ Uj for
some j such that D(fi) is also basic in Uj (Lemma 4.4.3). As Uj is noetherian, therefore if we
can show that OUj (D(fi)) is noetherian, then we would have shown that Afi is noetherian, which
would complete the proof by Lemma ??. We thus reduce to assuming X = Spec (A) noetherian
affine and to show that U = D(f) ⊆ X is noetherian for f ∈ A.

In this case, as A is noetherian, therefore by Corollary ??, the ring Af is noetherian, as required.

Another important aspect of noetherian schemes is quasi-compactness of intersection of open
affines.

Proposition 4.1.8. Let X be a noetherian scheme and U, V ⊆ X be two affine opens. Then U ∩V
is quasi-compact.

Proof. TODO

One can reduce a lot of arguments from non-noetherian to the noetherian case using the fol-
lowing.

Proposition 4.1.9. Let X be a finitely presented scheme over A. Then there exists a noetherian
ring A0 ↪→ A and a finitely presented scheme X0 over A0 such that the base change (X0)A is
isomorphic to X.

4.2 Reduced, integral schemes and function field

The following are the definitions required, which are clearly geometric in nature.

Definition 4.2.1. (Reduced and integral schemes) A scheme X is said to be reduced if local
rings OX,x for all x ∈ X is a reduced ring; have no nilpotents. A scheme X is said to be integral if
it is reduced and irreducible as a topological space.

The one basic result that must be seen about these two types of schemes is that they are
characterized by algebraic properties of local sections. Thus being reduced or integral, while defined
geometrically, is concretely controlled by the algebraic properties of the structure sheaf.

Lemma 4.2.2. Let X be a scheme. Then,
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1. X is reduced if and only if OX(U) is a reduced ring for each open set U ⊆ X 11.
2. X is integral if and only if OX(U) is an integral domain for each open set U ⊆ X.

Proof. 1. (L ⇒ R) Suppose for some open U ⊆ X there exists a section f ∈ OX(U) which is
nilpotent. Using the homomorphism OX(U) → OX,x given by s 7→ sx, we see that fx ∈ OX,x is a
nilpotent element.
(R ⇒ L) Suppose X is not reduced. Hence for some germ fx ∈ OX,x at some point x ∈ X is a
nilpotent where f ∈ OX(U) for some open x ∈ U ⊆ X. Since fnx = 0 for some n ∈ N, we get that
fn = 0 for some open W ⊆ U . Thus ρU,W (f) ∈ OX(W ) is a nilpotent element12.

2. (L ⇒ R) Pick any open U ⊆ X. We wish to show that OX(U) is an integral domain. In
other words, we wish to show the proposition for the open subscheme (U,OX|U ). Replacing X by
U , we reduce to showing OX(X) is an integral domain. So let f, g ∈ OX(X) be such that fg = 0.
We wish to show that either f = 0 or g = 0. Suppose neither f nor g is 0 but fg = 0. It follows from
Lemma 2.0.1, 1, that V (f) and V (g) covers X and hence by irreducibility of X, either V (f) = 0
or V (g) = 0, that is, f = 0 or g = 0.
(R ⇒ L) We first need to show that X is reduced. Indeed, by 1. it follows immediately as integral
domains are reduced. We then wish to show that X is irreducible. Indeed, if there are two open sub-
sets ofX say U1, U2 ⊆ X such that U1∩U2 = ∅, then we claim that OX(U1∪U2) ∼= OX(U1)×OX(U2).
Since both OX(U1),OX(U2) have 0 and 1, thus OX(U1∪U2) will have a zero-divisor, a contradiction.
Indeed, consider the following homomorphism, denoting U := U1 ∪ U2

OX(U) −→ OX(U1)×OX(U2)
s 7−→ (ρU,U1(s), ρU,U2(s)).

This is injective by locality axiom and surjective by gluing axiom of sheaves.

Corollary 4.2.3. Let X be a scheme. If X is integral, then all local rings OX,x are integral
domains.

Proof. Use Lemma 4.2.2, 2 together with the fact that localization of integral domains is an integral
domain.

Corollary 4.2.4. Let X = Spec (A) be an affine scheme. Then X is integral if and only if A is
an integral domain.

Proof. Use Lemma 4.2.2, 2 on global sections together to get one side. For the "only if" side, stalks
are reduced as they are integral (localizations of A) and X is irreducible as for any V (a)∪V (b) = X,
we have V (ab) = X and thus ab ⊆ n where n is the intersection of all prime ideals, the nilradical
(Lemma ??). Since A is integral, therefore 0 is prime as well and hence n = 0, making ab = 0.
Since A is integral, hence a = 0 or b = 0.

11Exercise II.2.3.a of Hartshorne.
12This is a very inefficient way of using the equality on stalks. Indeed, two germs are equal if and only if the

representatives are equal on some common shrinking of their domains. This is how usually people work with stalks
without being overly full of symbols.
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Remark 4.2.5. (Function field of an integral scheme) Let X be an integral scheme. Since X is
irreducible as a topological space, therefore there is a generic point η in X, i.e. a point whose closure
is the whole of X (Lemma 3.0.2). Now let Spec (A) ⊆ X be an affine open such that η ∈ Spec (A).
Thus, η is a generic point of Spec (A) as well. Hence η corresponds to the zero ideal of A, which
is indeed an integral domain from Lemma 4.2.2, 2. Since OX,η ∼= OSpec(A),η = A0, therefore OX,η
is a field, called the function field of the integral scheme X and is in particular given by field of
fractions of any domain A such that open Spec (A) contains η. We denote the function field of X
as K(X)13.

Using the fact that the generic point of an integral scheme X will be in every non-empty open
set, we can make some fascinating observations about the function field K(X), which thus justifies
its name.

Lemma 4.2.6. Let X be an integral scheme with function field K(X). Then for all x ∈ X, the
local ring OX,x is contained in K(X).

Proof. Let x ∈ X, η ∈ X be the generic point and U = Spec (A) be an open affine in X. By Lemma
4.2.2, 2, A is a domain. Clearly, η ∈ U and it corresponds to the zero ideal 0 ⪇ A. Further we have
OX,x ∼= Ap, p ∈ U is equal to the point x ∈ U . By definition K(X) = A0. The result follows by
observing that Ap ⊆ A0.

The following lemma shows that restriction of functions in an integral scheme is injective.

Lemma 4.2.7. Let X be an integral scheme and U ↪→ V be an inclusion of open sets. Then, the
restriction maps ρ : OX(V )→ OX(U) is an injective ring homomorphism.

Proof. By Lemma ??, we need only show that for any x ∈ V and any s ∈ OX(V ), we have
(V, s)x = 0 in OX,x. Let W = Spec (A) be an open affine containing x. As U is open in X and
X is irreducible, therefore it is dense. Consequently, U ∩W is an open non-empty set in X. We
may write ρV,W (s) = a ∈ A. Let D(f) ⊆ U ∩W be a basic open set of W . Since taking germs
commutes with restrictions, therefore we have the restriction map OX(W ) → OX(D(f)) which is
the localization map A→ Af , which takes a 7→ a

1 . As s on U is 0, therefore, s is 0 on W ∩ U and
thus on D(f). Consequently, we have a

1 = 0 in Af . As A is a domain by Lemma 4.2.2, it follows
that a = 0 in A. Thus, ρV,W (s) = 0, hence, (V, s)x = 0 in OX,x, as required.

Example 4.2.8. (Spec (Z)) Since Z is an integral domain, therefore by Corollary 4.2.4, X =
Spec (Z) is an integral scheme. Clearly, X as a topological space consists of all prime numbers and
a generic point given by the zero ideal 0. Further, the topology is thus given by cofinite topology.
At the level of stalks, we have that for a prime p ∈ X, OX,p ∼= Zp and we can describe Zp as all
those rationals whose denominator is not a multiple of prime p where p = ⟨p⟩ as Z is a PID (it’s
ED). Clearly, localizing X at the generic point 0 would yield OX,0 ∼= Q. More fascinatingly, for
a prime p = ⟨p⟩ in X, the residue field at point p is κ(p) = Zp/pZp

∼= Fp, the finite field with p
elements!

Now for any affine scheme Spec (A), consider a map f : X → Spec (Z). By the fact that Z is
initial in category of rings, therefore Spec (Z) is terminal in the category of affine schemes (Corollary
3.0.6). Since any scheme is locally affine, it further follows that Spec (Z) is terminal in the category
of schemes.

13Exercise II.3.6 of Hartshorne.
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We now introduce a concept which will be used while discussing divisors.

Definition 4.2.9. (Center of a valuation) Let X be an integral scheme with function field K
and v : K → G be a valuation over K with valuation ring R ⊂ K. A center of v is defined to be a
point x ∈ X such that R dominates OX,x in K (see Definition ??).
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4.3 (Locally) finite type schemes over k

This section is the beginning of a theme which we would like to understand intimately, schemes
over a field. This is because most of the schemes we will encounter in nature will be varieties whose
coordinate rings would be algebras over a field. Here we first understand in scheme language the
first thing about coordinate rings of varieties over k, the fact that they are finitely generated as an
k-algebra. Indeed, this is what we seek from the following definition.

Definition 4.3.1. (Finite and locally finite type schemes over a field) Let k be a field and
let X → Spec (k) be a scheme over k. Then X is said to be locally finite type if there exists an affine
open covering {Spec (Ai)}i∈I of X such that each Ai is a finitely generated k-algebra. Moreover,
X is said to be finite type if X is locally finite type and quasi-compact.

Example 4.3.2. Our hyperboloid of one sheet (introduced in Example 5.1.3) has the following
coordinate ring:

k[x, y, z]
I(V (p))

where p(x, y, z) = x2 + y2 − z2 − 1, where we have chosen a = b = c = 1 for simplicity. Let
h := I(V (p)). Clearly Spec (k[x, y, z]/h) is a finite type k-scheme.

Great thing about the above definition is that it really doesn’t depend on the affine open cover
that is chosen.

Lemma 4.3.3. Let k be a field and X be a k-scheme. Then the following are equivalent.
1. X is of locally finite type over k.
2. For all open affine U ↪→ X, the ring OX(U) is finitely generated k-algebra.

Proof. (2. ⇒ 1.) Immediate.
(1. ⇒ 2.) We shall use Lemma ?? for this.Complete it’s proof,

Chapter ??.
4.4 Subschemes and immersions

These notions are important in what is to come next.

Definition 4.4.1. (Open subscheme) Let X be a scheme. An open set U ⊆ X has a canonical
scheme structure, given by (U,OX|U ). We call (U,OX|U ) an open subscheme of X.

Indeed, locally U will look affine via the open affine cover of X. We can relativize this notion
to define open immersions.

Definition 4.4.2. (Open immersion) A map f : X → Y of schemes is said to be an open
immersion if f : X → f(X) is a homeomorphism, f(X) ⊆ Y is open and f ♭|f(X) : OY |f(X) →
(f∗OX)|f(X) is an isomorphism.

We observe that for any point in an intersection of open subschemes is contained in some special
open subscheme. This is a very important result as this will be used as a technical tool to allow
passage from one open affine with certain properties to another open affine, all the time while
handling only basic open sets.
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Lemma 4.4.3. Let U = Spec (A), V = Spec (B) ↪→ X be two affine open subsets. For each
x ∈ U ∩ V , there exists an affine open subset x ∈ W ↪→ U ∩ V such that W = Spec (Af ) and
W = Spec (Bg) for some f ∈ A and g ∈ B. Moreover, under the isomorphism Af ∼= Bg, the
element f ∈ Af maps to g ∈ Bg.

Proof. By replacing B by Bg for some g ∈ B, we may assume that x ∈ V ⊆ U . Consequently,
let f ∈ A be such that DU (f) ⊆ V and contains x, where DU (f) = {p ∈ U | f /∈ p}. We thus
have x ∈ DU (f) ⊆ V ⊆ U . Consider the restriction h = ρU,V (f) ∈ OX(V ) = B. We claim that
DV (h) = DU (f). Denote ϕ : A → B obtained by V ⊆ U . We then have that ρU,V = ϕ and
h = ϕ(f). Thus q ∈ DV (h) ⇐⇒ h /∈ q ⇐⇒ ϕ(f) /∈ q ⇐⇒ f /∈ ϕ−1(q). As each p ∈ DU (f) is
ϕ−1(q) for some q ∈ V , therefore we are done. The last statement is immediate from above.

Closed subschemes are defined in not that obvious way in which we have defined open sub-
schemes, but at any rate, they are natural. We motivate the need for ideal sheaves as follows.
Let X be a scheme. Suppose a closed subset C ↪→ X intersects some collection of affine opens
{Spec (Ai)} and moreover it happens that C ∩ Spec (Ai) = C ∩ Spec (Aj) for some i ̸= j. Now by
Corollary 4.4.14 we may write C ∩ Spec (Ai) = Spec (Ai/ai) and C ∩ Spec (Aj) = Spec (Aj/aj) for
some ideals ai ⊆ Ai and aj ⊆ Aj . Hence, we get two different structure sheaves OSpec(Ai/ai) and
OSpec(Aj/aj) on on open subset of C. Thus we have to systematically track such identifications in
order to define a unique scheme structure on the closed set C. Indeed, we take the help of the
rich amount of constructions that we can make on the category of sheaves over a space (for more
information, see Section ??).

We first define closed immersions.

Definition 4.4.4. (Closed immersions) A map f : X → Y of schemes is a closed immersion if
f : X → f(X) is a homeomorphism, f(X) ⊆ Y is closed and f ♭ : OY → f∗OX is a surjective map.

Remark 4.4.5. Let f : X → Y be a closed immersion, so that f ♭ : OY → f∗OX is surjective. This
is equivalent to saying that for each point x ∈ X, the map on stalks (see Theorem ?? and Lemma
??)

f ♭f(x) : OY,f(x) −→ OX,x

is surjective. Observe that the above map is NOT the usual map on stalks f ♯x : OY,f(x) → OX,x.
Further observe that since f ♭ is surjective, therefore we have an ideal (see Section ??, Global algebra
for more details) I = Ker

Ä
f ♭
ä
≤ OY . We will later see that a closed subscheme is completely

determined by this ideal sheaf and in-fact these ideal sheaves gives us a family of good examples
of what will later be called quasicoherent modules over a scheme.

Remark 4.4.6. Let f : X → Y be a closed immersion. Then, the map f ♭ : OY → f∗OX is
surjective. Pick any x ∈ X. Since we have the following commutative square for any open set
V ∋ f(x) in Y

OY (V ) OX(f−1(V ))

OY,f(x) OX,x

f♭
V

f♯x

.
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It then follows from surjectivity of f ♭ and f : X → f(X) being a homeomorphism that the local
homomorphiosm f ♯x : OY,f(x) → OX,x is surjective. It is also a simple exercise to see that surjectivity
of f ♯x : OY,f(x) → OX,x for all x ∈ X implies surjectivity of f ♭ : OY → f∗OX .

Consequently, f : X → Y is a closed immersion if and only if f is a topological closed immersion
and for all x ∈ X, the local homomorphism f ♯x : OY,f(x) → OX,x is surjective.

A closed subscheme is then defined to be an isomorphism class of closed immersions.

Definition 4.4.7. (Closed subscheme & ideal sheaf) Let Y be a scheme. A closed subscheme
of Y is an isomorphism class of closed immersions over Y . That is, a closed subscheme is the class
[f : X → Y ] of closed immersions where two closed immersions f : X → Y and f ′ : X ′ → Y are
identified if there is an isomorphism X

∼=→ X ′ such that the following commutes

X X ′

Y
f f ′

∼=

.

For a closed subscheme f : X → Y , we define kernel of f ♭ : OY → f∗OX to be the ideal sheaf
corresponding to the closed subscheme f .

Remark 4.4.8. Note that this definition is not "unnatural" as every closed immersion f : X → Y
defines a closed set f(X) ⊆ Y and a scheme structure over it. We then just define a closed
subscheme to be the data of this closed set together with its scheme structure that is given by
f . Clearly to make such a definition via immersions, we would need to identify those immersions
which give same scheme structure on f(X) ⊆ Y .

We define an immersion as follows.

Definition 4.4.9 (Immersion). A map f : X → Z is said to be an immersion if f is an open
immersion into a closed subscheme of Z.

We first understand closed subscheme structures in affine schemes.

Lemma 4.4.10. Let X = Spec (R) be an affine scheme. Then every ideal a ≤ R defines a closed
subscheme of X.

Proof. Consider the closed set Y = V (a) ⊆ X. We endow Y with a scheme structure given by
the isomorphism Y ∼= Spec (R/a). Now the inclusion map i : (Y,OSpec(R/a)) → X is clearly a
topological closed immersion. Further, i♭ : OSpec(R) → i∗OSpec(R/a) is given on stalks (see Lemma
??) at point x ∈ Y as OSpec(R),x → OSpec(R/a),x which is just Rx → (R/a)x which is surjective.
Thus, a defines a closed subscheme structure on Y .

It is important to note that any other ideal b ≤ R such that V (a) = V (b) will define a possibly
different closed subscheme structure on the underlying topological space. This is another example
of the phenomenon that algebra has much more finer control over the geometric situation at hand.
For example, for X = Spec (k[x]), we have an = ⟨xn⟩ and note that V (an) = {⟨x⟩} ⊆ X. But each
ideal an defines a new closed subscheme structure on the same point ⟨x⟩ ∈ X.
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4.4.1 Properties of closed immersions

We discuss some general properties of closed immersions. We begin by observing that closed
immersions are local on target.

Proposition 4.4.11. Let f : X → Y be a morphism of schemes. Then the following are equivalent:
1. f is a closed immersion.
2. There is an affine open cover {Vi} of Y such that f : f−1(Vi)→ Vi is a closed immersion for

each i.

Proof. (1. ⇒ 2.) As f is a closed immersion, then f(X) ⊆ Y is a closed subset and f : X → f(X)
is a homeomorphism. Pick any open affine V = Spec (B) ⊆ Y . Then, we wish to show that
f : f−1(V )→ V is a closed immersion. Indeed, as f is a closed immersion, therefore f : f−1(V )→
V ∩ f(X) is a homeomorphism. As f(X) is closed in Y , therefore V ∩ f(X) is closed in V . This
shows that g := f |f−1(V ) is a topological closed immersion.

Next, we wish to show that the map g♭ : OV → g∗Of−1(V ) is a surjection. By Remark 4.4.6,
it suffices to show that for any x ∈ f−1(V ), the local morphism g♯x : OV,f(x) → Of−1(V ),x is a
surjection. Since g = f |f−1(V ), therefore g

♯
x = f ♯x because stalks commute with restrictions. Conse-

quently, we wish to show that f ♯x : OY,f(x) → OX,x is a surjection, but this is true by Remark 4.4.6
and the fact that f is a closed immersion.

(2. ⇒ 1.) We first wish to show that f is a topological closed immersion. We first establish
that f is a homeomorphism onto its image. Indeed, we have fi = f |f−1(Vi) : f

−1(Vi) → Vi ∩ f(X)
a homeomorphism for each i. Consequently, we have a map gi : Vi ∩ f(X) → f−1(Vi) which is a
continuous inverse of fi. Clearly gi forms a matching family for f(X) =

⋃
i Vi ∩ f(X) and thus

can be glued to form a global inverse g : f(X) → X of f . Consequently, f : X → f(X) is a
homeomorphism.

We wish to show that f(X) is closed in Y . As being a closed set is a local property, therefore
we need only check that Vi∩f(X) is a closed set in Vi, but this is exactly what our hypothesis that
fi : f−1(Vi)→ Vi a closed immersion guarantees.

Finally, we wish to show, by Remark 4.4.6, that f ♯x : OY,f(x) → OX,x is a surjection for each
x ∈ X. Indeed, as taking germs commute with restrictions, therefore f ♯x is the same local homo-
morphism as (fi)♯x : OVi,f(x) → Of−1(Vi),x where f(x) ∈ Vi, which is surjective as fi is a closed
immersion.

The following shows that closed immersions are stable under base change.

Proposition 4.4.12. 14 Let f : X → Y be a closed immersion and g : Y ′ → Y be any other map.
Then, the map p : X ×Y Y ′ → Y ′ is a closed immersion.

Proof. As f : X → Y is a closed immersion, therefore by Proposition 4.4.11, there is an affine
open cover {Vi = Spec (Bi)} of Y such that f : f−1(Vi)→ Vi is a closed immersion. Consequently,
f−1(Vi) ∼= f(f−1(Vi)) ⊆ Vi is a closed subscheme, thus f−1(Vi) ∼= Spec (Bi/bi) (see Corollary
4.4.14). Consider g−1(Vi) ⊆ Y ′ and cover it by open affines Uij . Hence, we obtain an affine open

14Exercise II.3.11, a of Hartshorne.
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cover of Y ′ given by {Uij = Spec
Ä
B′ij

ä
}i,j . We claim that p−1(Uij) → Uij is a closed immer-

sion. Indeed, by Lemma 6.4.8, we have p−1(Uij) ∼= Uij ×Vi f−1(Vi) ∼= Spec
Ä
B′ij ⊗Bi Bi/bi

ä
∼=

Spec
Ä
B′ij/biB

′
ij

ä
, which thus makes p : p−1(Uij) → Uij equivalent to the scheme morphism

Spec
Ä
B′ij/biB

′
ij

ä
→ Spec

Ä
B′ij

ä
obtained by the natural quotient homomorphism (this follows from

the tensor product square obtained by the fiber product Uij ×Vi f−1(Vi)). Consequently, it is a
closed immersion by Proposition 2.2.8, 3, as required.

4.4.2 Closed subschemes and ideal sheaves

We now study closed subschemes of arbitrary schemes. To read the following results, see Section 9
on quasicoherent modules.

Proposition 4.4.13. Let X be a scheme.
1. If I ≤ OX is the ideal sheaf of a closed subscheme Y ↪→ X, then I is a quasicoherent OX-

module. If further X is Noetherian, then I is coherent.
2. If I ≤ OX is an ideal of OX such that it is quasicoherent, then I determines a unique closed

subscheme Y ↪→ X where Y is given by Supp (OX/I).
3. Consequently, we have a correspondence

Quasicoherent ideal
sheaves I ≤ OX upto
isomorphism

 ∼= {Closed subschemes
Y ↪→ X

}
.

Proof. 1. This follows from the following facts; closed subschemes are quasicompact separated
maps, that direct image of quasicoherent is quasicoherent for such maps and that kernels of maps
of quasicoherent modules is quasicoherent. The second statement follows from reducing to affine
and using the fact that we know all quasicoherent modules over affine.
2. Pick an ideal sheaf I ≤ OX which is quasicoherent and let Y = Supp (OX/I) := {x ∈
X | OX,x/Ix ̸= 0}. Then consider i : (Y,OX/I) ↪→ (X,OX). It is straightforward to see that
the kernel of i♭ is exactly I. We wish to show that this is a topological closed immersion and that
the map i♭ is surjective. Clearly i is homeomorphic to its image, thus we need only show that its
image is a closed set. This is a local property, so let X = Spec (R), so that I = ã for an ideal a ≤ R.
Now Y = {p ∈ Spec (R) | (R/a)p ̸= 0} = {p ∈ Spec (R) | p ⊇ a} = V (a). Thus i is a topological
closed immersion. Now the surjectivity of the map i♭ : OX → i∗OX/I follows from going to stalks
via Lemma ??. The uniqueness of (Y,OX/I) w.r.t. I is clear.

Note that the main use of quasicoherence of I in statement 2 was to make sure that the support
of OX/I is indeed closed. We have a straightforward, but important corollary.

Corollary 4.4.14. Let X = Spec (A) be an affine scheme. We have the following bijection

{Closed subschemes Y ↪→ X} {Ideals a ≤ A}/ ∼=
I7→Γ(I,X)

(Spec(A/a),fiA/a)← [a

∼= .

Note that fiA/a ∼= OSpec(A/a).

Proof. Follows immediately from Proposition 4.4.13 and Corollary 9.1.12.
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5 Varieties

Most examples of schemes that we will encounter in the wild are quasi-projective/affine varieties.
Therefore, we first cover them in a semi-classical setting not involving schemes. We will then show
how to interpret them as finite type separated integral schemes over the base field. This will enable
us to use the machinery we will be developing for schemes in the study of varieties. Indeed, by
the end of this section, we will comfortably replace the definition of a variety to mean a separated,
integral finite type scheme over an algebraically closed field.

5.1 Varieties over an algebraically closed field-I

We define varieties as zero sets of certain polynomials over an algebraically closed field k. We
assume that the reader is aware of the Zariski topology that is present over Ank . Let us first give
the classical version of affine varieties.

Definition 5.1.1. (Affine algebraic variety) Let k be an algebraically closed field and let Ank
be the affine n-space. An affine algebraic variety is an irreducible closed subset of Ank .

We recall that the Hilbert Nullstellensatz further tells us that for any ideal a ≤ k[x1, . . . , xn],
the zero set of the ideal Z(a) ⊆ Ank is such that the ideal it generates is equal to the radical of the
ideal, I(Z(a)) =

√
a.

Let A ⊆ Ank be an affine algebraic set. Then, the affine coordinate ring of A is defined to be
the following finitely generated k-algebra

k[A] := k[x1, . . . , xn]
I(A)

where I(A) ≤ k[x1, . . . , xn] is the ideal generated by A. An important simple lemma to keep in
mind for future is the following.

Lemma 5.1.2. Let k be an algebraically closed field. Then B is a finitely generated k-algebra
without nilpotent elements if and only if B is an affine coordinate ring of an algebraic set.

Proof. One side is trivial and the other uses Nullstellensatz.

Example 5.1.3. (Hyperboloid of one sheet) A recurring example that we choose to study in this
notebook, amongst the others, is the hyperboloid of one sheet. This is given by the following
equation

x2

a2
+ y2

b2
− z2

c2
= 1.

In the affine space over R, A3
R, we can draw it as shown in Figure 1.

We may simply call it a hyperboloid. This hyperboloid determines an affine variety given by the
zero set of the polynomial

p(x, y, z) = x2/a2 + y2/b2 − z2/c2 − 1 ∈ k[x, y, z]
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Figure 1: A hyperboloid of one sheet as a subvariety of A3
R. The parameters are a = 1.05, b =

1.05, c = 1.

for any field k. Let X = V (p) ⊆ A3
k. The coordinate ring is given by

k[X] = k[x, y, z]
I(V (p)) .

As we shall see, we will associate to the above variety (X,OX) a scheme by considering the spec-
trum of the coordinate ring, Spec (k[X]).

We will understand this fantastic example in much more detail as we develop more tools to
handle it.

We now define projective varieties. Consider an algebraically closed field. Then the projective
n-space is defined to be the quotient Pnk := An+1

k / ∼ where (a0, . . . , an) ∼ (b0, . . . , bn) if and only if
there exists λ ∈ k× such that ai = λbi for all i = 0, 1 . . . , n. A point of Pnk is denoted by [a0 : · · · : an]
and this presentation of the point is called the homogeneous coordinates of the point. Assuming
that the reader is aware about graded rings and the natural grading of k[x0, . . . , xn], we observe
that we can talk about the zeroes of a homogeneous polynomial p(X) ∈ k[x0, ,̇xn] as follows:

Z(p) := {P ∈ Pnk | p(P ) = 0}.

Indeed, one observes that a homogeneous polynomial is zero at a point P ∈ Pnk in a manner which
is independent of the choice of representation of P in terms of the homogeneous coordinates of P .
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With this in our hand, we further define the zero set of a homogeneous ideal a ≤ k[x0, . . . , xn] as

Z(a) := {P ∈ Pnk | f(P ) = 0∀f ∈ Ta}

where Ta is the set of all homogeneous elements of a. Remember that an ideal in a graded ring is
homogeneous if and only if it is generated by the set of all of its homogeneous elements.

Lemma 5.1.4. Let k be a field. Then
1. For any two homogeneous ideals a, b ≤ k[x0, . . . , xn], we have Z(ab) = Z(a) ∪ Z(b).
2. For any family of homogeneous ideals {ai}{i ∈ I}, we have ∩i∈IZ(ai) = Z(

∑
i∈I ai).

Proof. Straightforward unravelling of definitions.

Therefore we obtain a topology on Pnk where a set Y ⊆ Pnk is closed if and only if Y = Z(ai) for
a homogeneous ideal ai of k[x0, . . . , xn]. This is called the Zariski topology of Pnk .

Definition 5.1.5. (Projective algebraic variety) Let k be an algebraically closed field. An
irreducible algebraic set of Pnk is said to be a projective algebraic variety in Pnk .

Let V ⊆ Pnk be a projective algebraic variety. Then the ideal generated by V in k[x0, . . . , xn]
is I(V ) which is the ideal generated by the following set of homogeneous polynomials: {f ∈
k[x0, . . . , xn] | f is homogeneous and f(P ) = 0}.

For a projective algebraic set Y ⊆ Pnk , we define its homogeneous coordinate ring to be the
following k-algebra

k[Y ] := k[x0, . . . , xn]
I(Y )

where I(Y ) is the homogeneous ideal of Y .

Definition 5.1.6 (Zero set and ideal of an algebraic set). Define for any set T ⊆ k[x0, ,̇xn]
of homogeneous elements the zero set of T as Z(T ) = {p ∈ Pnk | f(p) = 0 ∀ f ∈ T}. For any Y ⊆ Pnk ,
define I(Y ) as the ideal in k[x0, . . . , xn] generated by {f ∈ k[x0, . . . , xn] | f is homogeneous & f(p) =
0 ∀p ∈ Y }.

To distinguish between affine and projective cases, we will reserve Z(a) for zero set of a homo-
geneous ideal in projective space and V (a) as the zero set of an ideal in the affine space.

We now show that how the projective space Pnk is covered by n + 1 copies of affine space Ank .
Before that we discuss few maps which allows us to treat affine case projectively.

5.1.1 Homogenization and dehomogenization

One way to move back and from affine to projective setting is to use to fundamental functions
between k[y1, . . . , yi, . . . , yn] and k[x0, . . . , xn]h.
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Definition 5.1.7. ((De)homogenization) Let k be an algebraically closed field and let A :=
k[y1, . . . , yn] and B := k[x0, . . . , xn]h, the set of all homogeneous polynomials in k[x0, . . . , xn].
Consider the following two functions

di : B −→ A

f(x0, . . . , xn) 7−→ f(x0, . . . , xi−1, 1, xi+1, . . . , xn)
hi : A −→ B

g(y1, . . . , yn) 7−→ xeig

Å
x0
xi
, . . . ,

xi−1
xi

,
xi+1
xi

, . . . ,
xn
xi

ã
where e is the degree of g and i = 0, . . . , n. The map hi is called the ith-homogenization map and
di is called the ith-dehomogenization map.

Using this, we can establish the result in question.

Proposition 5.1.8. Let k be an algebraically closed field and consider the projective n-space over
k, Pnk . Then, there exists n + 1 open subspaces say Ui ⊆ Pnk , such that Pnk =

⋃n
i=0 Ui and for each

i, Ui is homeomorphic to Ank .

Proof. Consider the n+ 1 open subspaces of Pnk as follows:

Ui := Pnk \Hi

where Hi = Z(⟨xi⟩) is the algebraic set obtained by all those points whose ith homogeneous coor-
dinate is zero. Now consider the map

ϕi : Ui −→ Ank

[a0 : · · · : an] 7−→
Å
a0
ai
, . . . ,

ai−1
ai

,
ai+1
ai

, . . . ,
an
ai

ã
.

One can check that this pulls closed sets to closed sets by using the ith-homogenization map.
Conversely, one can define the map

θi : Ank −→ Ui

(a1, . . . , an) 7−→ (a1, . . . , ai−1, 1, ai+1, . . . , an)

and this can again be checked to be continuous by an application of ith dehomogenization map.

Corollary 5.1.9. Let k be an algebraically closed field and Y ⊆ Pnk be a projective algebraic variety.
Then, in the notation of Proposition 5.1.8, for each i = 0, . . . , n, Y ∩Ui is an affine algebraic variety.

Proof. This follows from the observation that Y ∩ Ui is a closed set of Ui ∼= Ank . The irreducibility
follows from the fact that open subsets of irreducible spaces are irreducible.
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5.1.2 Properties of algebraic sets in Pnk
We now present some basic properties of algebraic sets in Pnk .

Lemma 5.1.10. 15 (Homogeneous Nullstellensatz) Let k be an algebraically closed field and let
a ≤ k[x0, . . . , xn] be a homogeneous ideal. Then,

I(Z(a)) =
√
a.

Proof. Denote by V (a) ⊆ An+1 to be the vanishing set of a in the affine n+1-space. This is called
the affine cone of the ideal a in An+1. We claim that I(Z(a)) ↪→ I(V (a)) since if f ∈ I(Z(a)) is
homogeneous, then f(P ) = 0 for all P ∈ Z(a) = {P ∈ Pnk | g(P ) = 0 ∀g ∈ a}. Pick any point
Q ∈ V (a) ⊆ An+1

k . We see that g(Q) = 0 for all g ∈ a. We wish to show that f(Q) = 0. As any
point Q ∈ V (a) determines a point P ∈ Z(a) by scaling, that is P = λQ, we get by homogeneity
of f that f(Q) = f(λP ) = λdf(P ) = 0, that is, f ∈ I(V (a)), as required. By affine Nullstellensatz,
it follows that I(Z(a)) ⊆

√
a. The converse is straightforward.

The following tells us when is a projective algebraic set is empty.

Lemma 5.1.11. 16 Let a ≤ k[x0, . . . , xn] = S be a homogeneous ideal. Then, the following are
equivalent:

1. Z(a) = ∅ in Pnk ,
2.
√
a is either S or S+,

3. a ⊇ Sd for some d > 0.

Proof. (1. ⇒ 2.) The main idea here is again to reduce to affine case by considering the affine
cone. Observe that if Z(a) = ∅, then V (a) ⊆ {0} (where V (a) is the vanishing in An+1

k as in
the proof of Lemma 5.1.13). Indeed, if not then there exists p = (p0, . . . , pn) ∈ V (a) such that
p ̸= 0. It follows that [p0 : · · · : pn] ∈ Z(a) since any homogeneous element f of a vanishes at p
in An+1

k . Now if V (a) = ∅, then by the affine nullstellensatz, we get
√
a = S. If V (a) = 0, then√

a = I(0) = ⟨x0, . . . , xn⟩ = S+.
(2. ⇒ 1.) As

√
a = I(V (a)) = S or S+, therefore V (

√
a) = V (a) = ∅ or 0. It follows again that

Z(a) = ∅.

(2. ⇒ 3.) TODO.

Akin to affine varieties, we also have some basic results in projective algebraic sets.

Lemma 5.1.12. 17 Let Pnk be the projective n-space over k and let S = k[x0, . . . , xn]
1. If Y1 ⊆ Y2 in Pnk , then I(Y1) ⊇ I(Y2).
2. If T1 ⊆ T2 in S be subsets of homegeneous elements, then Z(T1) ⊇ Z(Y2).
3. If Y1, Y2 ⊆ Pnk , then I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).
4. If Y ⊆ Pnk , then Z(I(Y )) = Y .

Proof. content...
15Exercise I.2.1 of Hartshorne.
16Exercise I.2.2 of Hartshorne.
17Exercise I.2.3 of Hartshorne.
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Some consequences of the homogeneous nullstellensatz yields us the familiar results as in the
affine case.

Lemma 5.1.13. 18 Let k be an algebraically closed field and consider the projective n-space Pnk .
Then,

1. There is a bijection

{
All algebraic sets Y ⊆ Pnk

}
{All homogeneous radical ideals of k[x0, . . . , xn]}

I

Z

.

2. An algebraic set Y ⊆ Pnk is irreducible if and only if I(Y ) is a prime ideal in k[x0, . . . , xn].
3. Pnk is a projective algebraic variety.

Remark 5.1.14. A corollary of the above lemma is that one can look at projective algebraic
varieties in Pnk akin to homogeneous prime ideals in k[x0, . . . , xn], thus telling us another hint at
how the idea of schemes might have looked back in the days.

Proof of Lemma 5.1.13. 1. This is a direct consequence of homogeneous nullstellensatz (Lemma
5.1.10) and the fact that Z(I(Y )) = Ȳ for any Y ⊆ Pnk .

2. (L ⇒ R) Suppose Y = Z(a) is irreducible and I(Z(a)) =
√
a is not prime. Then there exists

f, g /∈ a such that fg ∈
√
a. Consider the ideals b := ⟨f,

√
a⟩ and c := ⟨g,

√
a⟩. We then observe that

Z(b), Z(c) ⊆ Z(a) and Z(b) ∪ Z(c) = Z(bc) = Z(
√
a) = Z(a), where we have used Lemma 5.1.10

in the second last equation and the fact that fg ∈
√
a in third last. This yields a contradiction to

the irreducibility of Y .
(R ⇒ L) Suppose I(Y ) is prime but Y is not irreducible. Consequently, there are proper closed
sets Y1, Y2 ⊆ Y such that Y1 ∪ Y2 = Y . Further, we obtain that I(Yi) ⪈ I(Y ) for each i = 1, 2. It
then follows that there exists fi ∈ I(Yi) \ I(Y ) such that fi /∈ I(Yj), j ̸= i. Consequently, we have
f1f2 ∈ k[x0, . . . , xn] such that f1f2(P ) = f1(P )f2(P ) = 0 for all P ∈ Y , as Y = Y1 ∪ Y2. We thus
have a contradiction to primality of I(Y ).

3. Since I(Pnk) = I(Z(0)) =
√
0 = 0, then by 2., Pnk is irreducible. Note we have used the fact

that k[x0, . . . , xn] is an integral domain.

One of the reasons that one might be interested in projective varieties is that they "compactify"
the question at hand, that is, there are no "missing points" in the ambient space. We will see more
into this when we will see projective morphisms and invertible modules, but for now, it is good to
keep in mind that reframing your question in the projective spaces/varieties may give you more
handle (and of-course, machines) to solve the question at hand. In the same vein, we now see that
every affine variety can be embedded compactly into a projective space, and this embedding is
called the projective closure of the affine variety.

Definition 5.1.15. (Projective closure of affine varieties) Let k be an algebraically closed
field and consider an affine variety X ⊆ Ank . For any i = 0, . . . , n, consider the homeomorphism

θi : Ank 7−→ Ui

(a1, . . . , an) 7−→ [1 : a1 : · · · : an],
18Exercise I.2.4 of Hartshorne.
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as we considered in Proposition 5.1.8. Then, the ith-projective closure of X into Pnk is given by the
closure θi(Y ) ⊆ Pnk as a subspace in Pnk . We will usually say the 0th projective closure of X to be
simply the projective closure of X.

Consider an affine variety X ⊆ Ank and consider X ⊆ Pnk to be the projective closure of X. Let
I(X) ≤ k[y1, . . . , yn] be the affine ideal of X and let I(X) ≤ k[x0, . . . , xn] be the homogeneous ideal
of projective closure. A natural question is that how the homogeneous ideal I(X) is connected to
the affine ideal I(X). The following proposition answers that.

Proposition 5.1.16. Let k be an algebraically closed field and X ⊆ Ank be an affine variety. Let
I(X) ≤ k[y1, . . . , yn] be the affine ideal of X and let I(X) ≤ k[x0, . . . , xn] be the homogeneous ideal
of projective closure. Then,

I(X) = ⟨h0(I(X))⟩

where h0 : k[y1, . . . , yn]→ k[x0, . . . , xn] is the 0th homogenization function (Definition 5.1.7).

Proof. Since X ⊆ Ank is irreducible and closure of irreducible is irreducible, therefore X ⊆ Pnk is
irreducible. It would thus suffice to show that

X = Z(h0(I(X))).

Indeed, this would imply that h0(I(X)) is a homogeneous prime ideal by Lemma 5.1.13, 1, thus
applying I(−) would yield the result. We therefore show the above equality. Consider any closed
set Y ⊇ X in Pnk . We then wish to show that Y ⊇ Z(h0(I(X))). Since Y ⊆ Pnk is closed, therefore
Y = Z(a) for some homogeneous ideal a in k[x0, . . . , xn]. It would thus suffice to show that

a ↪→ h0(I(X)).

It would further suffice to show the above inclusion only for homogeneous elements, as a is generated
by homogeneous elements. Consequently, pick any homogeneous polynomial f ∈ a. We can write

f(x0, . . . , xn) = xe0g

Å
x1
x0
, . . . ,

xn
x0

ã
for some g ∈ k[y1, . . . , yn] and e = deg f . In other words, f = h0(g). Now since Y ⊇ X, therefore
f(P ) = 0∀P ∈ X ⊆ Pnk , that is, if P = [1 : a1, . . . , an] ∈ X, then f(1, a1, . . . , an) = 0 and thus
g(a1, . . . , an) = 0. Hence g ∈ I(X) ≤ k[y1, . . . , yn]. Thus f = h0(g) where g ∈ I(X), that is,
f ∈ h0(I(X)), as required.

5.1.3 Dimension, hypersurfaces and complete intersections

Let us first understand how the notion of dimension plays out with the Krull dimension of homo-
geneous coordinate ring of a projective variety.

Proposition 5.1.17. Let k be an algebraically closed field and X ⊆ Pnk be a projective k-variety.
Then,

1. dim k[X] = dimX + 1,
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2. dimX = dimUi ∩X where Ui ⊆ X is an affine open subset as in Proposition 5.1.8, for all
i = 0, . . . , n.

Proof. We will prove the two statements together. The main technique here is, as usual, to reduce
the computations to one of the affine patches. Let Ui ⊆ Pnk be the hyperplane where xi ̸= 0. We
know that Uis covers Pnk and each Ui is isomorphic to Ank . Denote Xi = Ui ∩ X so that Xi is
an open subvariety of X. Further denote k[X]h to be the homogeneous coordinate ring of X and
k[Xi]a the affine coordinate ring of Xi. Note that k[Xi]a = k[x0, . . . , x̂i, . . . , xn]/diI(X) where di is
the ith dehomogenisation map. We would now like to note two things to move forward:

1. dimX = dimXj for some j = 0, . . . , n,
2. k[X]hxi ∼= k[Xi]a[xi, 1/xi]19.

The first statement is immediate from the fact that dimY = supi dimUi for any space Y with
Ui an open covering. The second statement is the heart of the proof. Indeed, consider the map
k[X]hxi → k[Xi]a[xi, 1/xi] which takes an element f/xni and treats it as a polynomial in xi, 1/xi
with coefficients in k[Xi]a. One immediately checks all the necessary conditions to ensure that this
is an isomorphism.

Observe that ifK/k is algebraic, thenK(x)/k(x) is algebraic. It follows that trdeg k[Xi]a[xi, 1/xi] =
1 + trdeg k[Xi]a. We now complete the proof. We may assume dimX = dimX0. Consequently,
via Proposition 5.3.10, 6 and Theorem ??, we obtain the following equalities:

dim k[X]h = trdeg k[X]h = trdeg k[X]hx0 = trdeg k[X0]a[x0, 1/x0] = 1 + trdeg k[X0]a

= 1 + dim k[X0]a = 1 + dimX0 = 1 + dimX.

The statement 2. follows from the following equalities:

dimXi = dim k[Xi]a = trdeg k[Xi]axi = trdeg k[Xi]a[xi, 1/xi]− 1 = trdeg k[X]hx0 − 1
= trdeg k[X]h − 1 = dimX + 1− 1 = dimX.

We would now like to establish the following result, which will later motivate the definition of
Weil divisors and of complete intersections.

Lemma 5.1.18. Let k be an algebraically closed field and X ⊆ Pnk be a projective k-variety. Then,
the following are equivalent

1. dimX = n− 1.
2. The homogeneous ideal I(X) ≤ k[x1, . . . , xn] is generated by a single irreducible homogeneous

polynomial.

Proof. (1. ⇒ 2.) By Proposition 5.1.17, 1, we have dim k[X] = n, where k[X] = k[x0, . . . , xn]/I(X).
By Theorem ??, we have ht I(X) = 1. Since any height 1 prime ideal of a UFD is principal, therefore
I(X) is principal. Since I(X) is homogeneous, therefore the statement 2. follows.
(2. ⇒ 1.) By Proposition 5.1.17, 2 and Theorem ??, we have

dimX = dimX0 = dim k[X0]a = n− ht d0(I(X)).
19This statement can be seen as a generalization of Lemma 5.3.11.
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We need only show that ht d0(I(X)) = 1. Since I(X) = ⟨p(x0, . . . , xn)⟩, therefore do(I(X)) =
⟨p(1, x1, . . . , xn)⟩. Since k[x0, . . . , xn] is a UFD and an easy observation about UFDs yields that
height 1 prime ideals are exactly principal prime ideals, therefore the result follows.

5.1.4 Cones

5.1.5 d-uple embedding

5.1.6 Veronese surface

5.1.7 Segre embedding
To complete cones, d-
uple, Veronese, Segre
and quadrics, Chap-
ter ??.5.2 Morphism of varieties

We have defined affine and projective varieties so far. One would often, however, would like to
know whether a subset of An or Pn is an open subspace of some affine or projective variety. Due
to to this need, we define the following.

Definition 5.2.1. (Quasi-affine/projective variety) A subset X of An or Pn is said to be
quasi-affine or quasi-projective if X is an open subset of an affine or projective variety, respectively.

Let X be a quasi-affine or projective variety. From our knowledge of geometry, we know that in
a real Cα-manifold M , the right type of functions are those which are defined on open subsets of
M as Cα-maps to R, where the latter is treated as a Cα-manifold. Consequently, we are interested
in the same type of maps to the affine line A1

k.

Definition 5.2.2. (Regular maps) This notion is defined differently for quasi-affine and quasi-
projective varieties.

1. Let X be a quasi-affine variety. A function

ϕ : X → A1
k

is said to be a regular function if for all P ∈ X, there exists an open subset U ⊆ X such that
ϕ|U = g/h where g, h ∈ k[x1, . . . , xn] and h(P ) ̸= 0 ∀P ∈ U .

2. Let X be a quasi-projective variety. A function

ϕ : X → A1
k

is said to be a regular function if for all P ∈ X, there exists an open subset U ⊆ X such
that ϕ|U = g/h where g, h ∈ k[x0, . . . , xn] are homogeneous polynomials of same degree and
h(P ) ̸= 0 ∀P ∈ U . Note that this defines a valid function to the affine line.

Indeed, regular maps are continuous.

Lemma 5.2.3. Let X be a quasi-affine or quasi-projective variety and ϕ : X → A1
k be a regular

function. Then ϕ is continuous.
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Proof. The Zariski topology on A1
k is the cofinite topology, hence any closed set in A1

k is a finite
union of points of k. It thus suffices to show that for any a ∈ k, Y := ϕ−1(a) ⊆ X is closed.
Since checking a set is closed is local in X, that is, Y ⊆ X is closed if and only if there exists
an open covering of X, say {Uα} such that Uα ∩ Y is closed in Uα. We may thus replace X
by an open subset of X where ϕ is represented as g/h for g, h ∈ k[y1, . . . , yn] (in k[x0, . . . , xn],
homogeneous and of same degree in the projective case). Consequently, ϕ−1(a) ⊆ X is given by
{P ∈ X | (g − ah)(P ) = 0} which in other words is Z(g − ah) (g − ah is homogeneous in the
projective case). Thus ϕ−1(a) is closed, as required.

A simple corollary of above is the first striking result one learns in complex analysis for holo-
morphic maps (see Proposition ??).

Lemma 5.2.4. (Identity principle) Let ϕ, ξ : X → A1
k be two regular maps over a quasi-affine or

quasi-projective variety X. Then, ϕ = ξ if and only if there exists an open set U ⊆ X such that
ϕ = ξ over U .

Proof. L ⇒ R is easy. For R ⇒ L, observe that for φ := ϕ − ξ is continuous by Lemma 5.2.3.
Further, the set φ−1(0) ⊆ X is closed and contains U . Since φ−1(0) ⊇ U and U is an open set of
an irreducible space, therefore U is dense in X. Consequently, φ−1(0) is a closed and dense in X,
hence is equal to X.

We now define varieties in general.

Definition 5.2.5. (Varieties) Let k be an algebraically closed field. A variety over k is defined
to be a quasi-affine or a quasi-projective variety in Ank or Pnk , respectively.

The notion of morphism of varieties is then given by functions which pulls regular functions
back by pre-composition.

Definition 5.2.6. (Map of varieties) Let k be an algebraically closed field and let X,Y be two
varieties over k. A map of varieties is a continuous function f : X → Y such that for any open set
V ⊆ Y and any regular function ϕ : Y → A1

k, the function

ϕ ◦ f : ϕ−1(V )→ A1
k

is a regular function on the open set ϕ−1(V ) of X. We may also call a map of varieties a morphism
of varieties.

We therefore obtain the category of varieties over k, whose objects are varieties over k and
arrows are maps of varieties. We will denote this category by

Vark.

Just like in topological spaces, it is not true in general that a bijective continuous map is a homeo-
morphism, similarly it is not true in general that a bijective map of varieties is an isomorphism of
varieties, as the following example shows.
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Example 5.2.7. Consider the affine line A1
k and consider the affine variety X := Z(y2−x3) ⊆ A2

k.
The function

f : A1
k −→ X

t 7−→ (t2, t3)

is a map of varieties as for any open set U ⊆ X and regular map ϕ : X → A1
k, the composite

ϕ ◦ f : ϕ−1(U)→ A1
k is given by t 7→ ϕ(t2, t3) and then the regularity of this composite can be seen

to be a result of regularity of ϕ. Further note that f induces an inverse continuous function

f−1 : X −→ A1
k

(a, b) 7−→ ba−1.

Thus, A1
k and X are homeomorphic as topological spaces. However, as varieties, they can not be

isomorphic. Indeed, we shall soon see that coordinate rings are invariant of affine varieties and in
our case A1

k has k[x] as its coordinate ring whereas X has k[x, y]/⟨y2 − x3⟩ as its coordinate ring.
These are not isomorphic as one is PID and the other is not.

We now construct some more algebraic gadgets on top of varieties and will prove how they will
turn out to be invariants of the varieties under question. We have already seen one, the coordinate
ring. We will now see the construction of others and we shall do it in a manner so that it is
amenable to generalization to schemes, as is studied elsewhere in this chapter.

5.3 Varieties as locally ringed spaces

See Chapter ??, Foundational Geometry, for background on locally ringed spaces and basic global
algebra. In this section, we would like to interpret varieties as locally ringed spaces, so that we can
understand later that how a variety can be interpreted as a scheme. Clearly, for a variety X, we
already have an underlying topological space X itself. To give X the structure of a locally ringed
space, we need to consider a sheaf over X. We shall use regular functions over open sets of X for
that.

Definition 5.3.1. (Structure sheaf of a variety) Let k be an algebraically closed field and X
be a variety over k. For each open set U ⊆ X, consider the following set

OX(U) := {f : U → A1
k | f is regular}.

Further, for open V ⊆ U in X, consider the function

ρU,V : OX(U) −→ OX(V )
f 7−→ f |V .

This defines a sheaf of sets, as the following lemma shows.

Lemma 5.3.2. The assignment OX on open sets of a k-variety X as defined in Definition 5.3.1
defines a sheaf of sets over X.



44 5 VARIETIES

Proof. The locality axiom is straightforward as OX(U) is a collection of functions, which thus can
be checked locally for equality. It thus suffices to show that OX satisfies the gluing axiom. Pick
any open set U , an open covering {Ui}i∈I of U and a matching family fi ∈ OX(Ui) for each i ∈ I,
that is ρUi,Ui∩Uj (fi) = ρUj ,Ui∩Uj (fj) for each i, j ∈ I. Consequently, we define f : U → A1

k given
by x 7→ fi(x) if x ∈ Ui. This is a well-defined function by the matching condition and further f is
a regular function as for each point x ∈ U , f can be written as a rational function in some open
neighborhood around x (essentially by regularity of fis). Consequently, OX is a sheaf.

Further, OX is a sheaf of k-algebras if X is a k-variety.

Lemma 5.3.3. Let k be an algebraically closed field and consider a k-variety X. The structure
sheaf OX of X is a sheaf of k-algebras.

Proof. Indeed, OX is a ring by point-wise addition and multiplication. Further, its a k-algebra via
the injective ring homomorphism

k ↪→ OX(U)
c 7→ c : U → A1

k

where c is treated as the constant rational map.

Hence, (X,OX) is a k-ringed space. We now show that it is locally k-ringed.

Lemma 5.3.4. Let k be an algebraically closed field and let X be a k-variety. Then, for all points
x ∈ X, the stalk OX,x is a local ring.

Proof. We wish to show that OX,x has a unique maximal ideal mx ≤ OX,x. Consider the set

mx := {(U, f) ∈ OX,x | f(x) = 0}.

It then easily follows that mx an ideal and consequently is a maximal ideal because OX,x \ mx is
jut the set of all units of OX,x.

Remark 5.3.5. We have thus established that for any k-variety X we obtain a locally k-ringed
space (X,OX). We now observe how the data of a morphism of varieties can be represented as
data of a morphism of underlying locally ringed spaces.

The notion of morphism of locally ringed spaces is elucidated in Definition ??.

Lemma 5.3.6. Let k be an algebraically closed field and X,Y be two k-varieties. Then, there is
an injective inclusion

HomVark (X,Y ) ↪→ HomLRSpace (X,Y ).

Proof. Indeed, consider the map

θ : HomVark (X,Y ) ↪→ HomLRSpace (X,Y )
f : X → Y 7−→ (f, f ♭) : (X,OX)→ (Y,OY )
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where θ(f) has the underlying continuous map same as f but the map on sheaves, f ♭ : OY → f∗OX ,
is given on sections as follows: let V ⊆ Y be an open set, then the map on sections over V is

f ♭V : OY (V ) −→ OX(f−1(V ))
(V, ϕ) 7−→ (f−1(V ), ϕ ◦ f).

The fact that f ♭ as defined above is indeed a sheaf morphism is straightforward. We thus need
only show that the adjoint map f ♯ of the above defines a map on stalks which is local. For this,
we need only observe how the comorphism, f ♯x : OY,f(x) → OX,x, as defined in Definition ??, in this
case turns out to be the following mapping

(V, ϕ)x 7−→ (f−1(V ), ϕ ◦ f)x.

Now if (V, ϕ)x ∈ mY,f(x), then ϕ(f(x)) = 0 by definition. Thus (f−1(V ), ϕ ◦ f) ∈ mX,x. With this,
the fact that θ is injective is straightforward.

Remark 5.3.7. We therefore have an inclusion

Vark ↪→ LRSpace.

Indeed, we now show that the notion of isomorphisms coincide here.

We will now define various algebraic gadgets out of the structure sheaf OX of a variety X.
Indeed, to some extent, that’s the goal of algebraic geometry in general.

We now define an important field corresponding to each variety X, called its function field.

Definition 5.3.8. (Function field of a variety) Let k be an algebraically closed field and X
be a k-variety. The function field of X, denoted K(X), is obtained as the quotient of the set
∪U⊇X, open ∪(U,ϕ)∈OX(U) (U, f) by the following relation

(U,ϕ) ∼ (V, φ) ⇐⇒ ∃ open W ⊆ U ∩ V s.t. ρU,W (ϕ) = ρV,W (φ).

Indeed, this has an addition and a multiplication given by restriction to the open sets where they
agree. This is further a field as any non-zero element [(U, f)] can be inverted in a small enough
open set W ⊆ U (which will be non-empty as X is irreducible) where f is non-zero (otherwise the
class [(U, f)] is identically zero).

Remark 5.3.9. Note that we have the following ring homomorphisms for any k-variety X and
x ∈ X

Γ(OX , X) −→ OX,x −→ K(X)
(X,ϕ) 7−→ (X,ϕ)x 7−→ [(X,ϕ)].

In-fact, both these are injective by a simple use of the identity principle (Lemma 5.2.4). In this
way, algebraic gadgets start taking a hold onto the geometry of varieties, which we will see further
in this chapter.
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We now give two results; one for affine and one for projective; which shows how the three
algebraic gadgets introduced in Remark 5.3.9 can be realized more algebraically.

Proposition 5.3.10. Let k be an algebraically closed field and let X be an affine k-variety. Let
mp = {f ∈ k[X] | f(p) = 0 as a regular function}. Then,

1. mp is a maximal ideal of k[X] for every point p ∈ X,
2. mSpec (k[X]) ∼= X as sets,
3. k[X]mp

∼= OX,p,
4. k[X]⟨0⟩ ∼= K(X),
5. Γ(OX , X) ∼= k[X],
6. dimX = trdeg K(X)/k20,
7. dimX = dimOX,p for all p ∈ X21.

Proof. We give the main ideas of each. The main idea in the latter parts is to embed all the relevant
rings inside the function field and do the relevant algebra there.

1. Since there is a correspondence between radical ideals of k[X] and algebraic sets of X and
since the correspondence is antitone, therefore minimal algebraic sets (point p ∈ X) of X
correspond to maximal ideals of k[X] vanishing at p. The result then follows.

2. This follows from 1. Explicitly, one considers the mapping p ∈ X 7→ mp.
3. Consider the canonical mapping

k[X]mp −→ OX,p

f

g
7−→ (X \ Z(g), f/g)p

where g(p) ̸= 0 (so g /∈ mp). This is a homomorphism by the fact that Z(f) ∪ Z(g) = Z(fg).
This is injective because if f/g = 0, then f = 0 on some open subset W ⊆ X \ Z(g). By
an application of identity principle (Lemma 5.2.4), the injectivity follows. For surjectivity,
observe that for any (U, f)p ∈ OX,p, we can represent it by the rational function that f
looks like around p, so (U, f)p = (W, g/h)p where g/h is a rational function. Consequently,
g/h 7→ (X \ Z(h), g/h)p = (W, g/h)p. The result follows.

4. Observe first that if R is a domain and p ≤ R is an prime ideal of R, then (R/p)⟨0⟩ is
isomorphic to R⟨0⟩. Now, by 3, we obtain that k[X]⟨0⟩ ∼= (k[X]mp)⟨0⟩ ∼= (OX,p)⟨0⟩. The map

(OX,p)⟨0⟩ −→ K(X)
(U, f/g)p
(V, h/l)p

7−→ [(U ∩ V, fl/gh)]

can be seen to be a well-defined (use Lemma 5.2.4) isomorphism.
5. By Lemma ??, we have that

⋂
m<k[X] k[X]m ∼= k[X]. By Remark 5.3.9, we have Γ(OX , X) ↪→

OX,p (in K(X)). We further have k[X] ↪→ Γ(OX , X). Consequently, we obtain via 3. the
following

k[X] ↪→ Γ(OX , X) ↪→
⋂
p∈X

OX,p ∼=
⋂
p∈X

k[X]mp ↪→
⋂

m<k[X]
k[X]m ∼= k[X].

20Thus the function field K(X)/k holds important global information about the algebra and geometry of X.
21Thus the notion of dimension of varieties is detectable at the level of stalks. This is because, as the proof and

the statement 3 shows, the local ring OX,p holds almost all relevant information about the coordinate ring.
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The result then follows.
6. We have dimX = dim k[X] as any irreducible closed subset of X corresponds in a contravari-

ant manner to a prime ideal of k[X]. By Theorem ??, we have dim k[X] = trdeg K(X)/k.
7. By 3, dimOX,p = ht mp. By Theorem ??, we have ht mp+dim k[X]/mp = dim k[X]. But since
k[X]/mp

∼= k by Nullstellensatz, therefore the above equation reduces to ht mp = dim k[X]
and the right side is just dimX.

We next do the projective case. See Chapter ??, Section ?? for homogeneous localization of
graded rings.

Lemma 5.3.11. Let k be an algebraically closed field and X be a projective k-variety in Pnk . Let
Ui = Pnk \ Z(xi) and Xi := X ∩ Ui. Then

ϕi : k[Xi]a ∼= k[X]h(xi)

where k[Xi]a denotes the affine coordinate ring of Xi ⊆ Ank and k[X]h denotes the homogeneous
coordinate ring of X ⊆ Pnk . Further the localization above is homogeneous.

Proof. Consider the map k[y1, . . . , yn]→ k[x0, . . . , xn]mapping as f(y1, . . . , yn) 7→ f
Ä
x0
xi
, . . . , x̂ixi , . . . ,

xn
xi

ä
.

This can easily be seen to be a well-defined ring isomorphism mapping the ideal I(Xi) 7→ I(Xi)h =
I(X)h(xi). The result follows by quotienting.

Proposition 5.3.12. Let k be an algebraically closed field and X be a projective k-variety. Let
mp = ⟨{f ∈ k[X] | f is homogeneous & f(p) = 0}⟩ for any p ∈ X and k[X] be the homogeneous
coordinate ring of X. Then,

1. mp is a maximal ideal of k[X] for every element p ∈ X,
2. k[X](mp)

∼= OX,p,
3. k[X](⟨0⟩) ∼= K(X),
4. Γ(OX , X) ∼= k.

Proof. Denote by k[X]h the homogeneous coordinate ring and Xi := X ∩Ui where Ui = Pnk \Z(xi).
By Lemma ??, Ui ∼= Ank as varieties, therefore denote Xa

i to be the affine variety corresponding to
Xi ⊆ Ui. We thus denote k[Xi]h for the homogeneous coordinate ring when Xi ⊆ Ui and k[Xi]a to
be the affine coordinate ring when Xi ⊆ Ank . Let R := k[X]h. The main idea of the last part is to
use the theory of integral dependence together with algebraic closure of k.

1. Let P ∈ X, so P ∈ Xi for some i = 0, . . . , n. Thus, let P a ∈ Xa
i and by Lemma 5.3.11

and Proposition 5.3.10, we obtain that mPa is a maximal ideal of k[Xi]a. Thus, ϕi(mPa) =
mPk[X]hxi is a maximal ideal of k[X]hxi .

2. We simply have the following for any p ∈ X by irreducibility of X, by Lemma 5.3.11 and by
Proposition 5.3.10:

OX,p ∼= OXi,p
∼= OXa

i
,pa
∼= k[Xi]ampa

∼=
Ä
k[X]hxi

ä
mpa

∼= k[X]hmpa
.

3. By irreducibility of X, by Lemma 5.3.11 and by Proposition 5.3.10, we have the following
identifications

K(X) ∼= K(Xi) ∼= K(Xa
i ) ∼= k[Xi]a⟨0⟩ ∼=

Ä
k[X]hxi

ä
⟨0⟩
∼= k[X]h⟨0⟩.
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4. First note that k ↪→ Γ(OX , X). It would thus suffice to show that Γ(OX , X) ↪→ k. Pick any
f ∈ Γ(OX , X). We wish to show that f ∈ k. Let R = k[X]h. Note that we can embed
Γ(X,OX) inside the (non-homogeneous) fraction field L = k[X]h⟨0⟩. Consequently, by alge-
braic closure of k, it would suffice to show that f ∈ L satisfies a polynomial with coefficients
in k. Since f is a regular function on each of the Xi, therefore f ∈ k[Xi]a ∼= k[X]hxi . Conse-
quently, f = gi/x

ni
i in L where deg gi = ni and thus xni

i f ∈ Rni for each i = 0, . . . , n. It thus
follows that deg f = 0 in L. Consequently, it would suffice to show that f ∈ L is integral
over R (as we can then obtain a polynomial in k[x] whose zero is f by restricting to 0 degree
coefficients). By Corollary ??, it would thus suffice to show that R[f ] is a finitely generated
R-module.

It would thus suffice if we show that ∃M ∈ N such that ∀N ≥M , RNfm ⊆ RN for all m ≥ 0.
Indeed, for M =

∑
i ni, we see that RNf ⊆ RN as for any g ∈ RN , we have that each term

of g will have to have one xi whose power is ≥ ni. Repeatedly applying RNf ⊆ RN yields
RNf

m ⊆ RN for all m ≥ 0, as needed.

Remark 5.3.13. Note that in Proposition 5.3.12, 1, the maximal ideal mP does not contain all of
non-constant polynomials in k[X] because mp is generated by homogeneous polynomials vanishing
at p ∈ X and a polynomial with non-zero constant terms cannot be in such an ideal, thus such an mp

will exactly be the ideal of all non-constant polynomials in k[X], but then p ∈
⋂
f∈k[X],f(0)=0 Z(f) =

∅.

We now show that affine varieties are completely determined by their coordinate rings in the
following sense

Theorem 5.3.14. Let k be a algebraically closed field. Then the following

k[−] : AfVaropk −→ FGIAlgk
X 7−→ k[X]

X
ϕ→ Y 7−→ k[Y ] k[ϕ]→ k[X]

is a functor22 which induces an equivalence between the opposite category of affine varieties over k
and finitely generated integral domains over k.

Proof. TODO.

We now show some examples of the machinery developed so far. We first show that any affine
plane conic is isomorphic as a variety to either the parabola y−x2 or the hyperbola xy−1. Indeed,
we use here the familiar high-school topic that one classifies conics on the basis of discriminant(!)
This will further show that the usual substitutions that we so used to do in school days to reduce an
algebraic equation into a simpler form can equivalently be stated in algebraic language as finding
a correct automorphism of the corresponding ring in question.Type up the solu-

tions from notebook,
Chapter ??. 5.3.1 Subvarieties

22Note that by Proposition 5.3.10, this is just the global sections functor.
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5.4 Varieties as schemes

In this section we show how to realize a k-variety (see Definition 5.2.5) as a scheme. This will be
essential as it fulfill all the reasons to work with schemes as they generalize the concept of varieties
to just the right level where all algebro-geometric questions can be asked and be attempted to be
solved.

We first show a fully-faithful functor which embeds the category of k-varieties into the category
of k-schemes (that is, schemes over k). This will hence show how to obtain a scheme from a variety
because, as the following construction of the relevant functor will show, it is not straightforward
how should one begin defining it23.

Definition 5.4.1. (Spectral space of X) For every topological space X, we can associate a
topological space

t(X) := {All non-empty closed irreducible subsets of X}

where any closed set is given by t(Y ) ⊆ t(X) for a closed set Y ⊆ X. The following lemma shows
that this indeed defines a topology on t(X). We will call t(X) the spectral space of X.

Lemma 5.4.2. Let X be a space and Y,Z, Yi ⊆ X be closed subsets of X. Then,
1. t(Y ) ⊆ t(X),
2. t(Y ∪ Z) = t(Y ) ∪ t(Z),
3. t (

⋂
i Yi) =

⋂
i t(Yi).

Proof. 1. Any closed irreducible subset of Y , where Y is closed in X, will again be closed and
irreducible in X.
2. Any irreducible subset of Y ∪ Z cannot have non-empty intersection with both of them.
3. Follows from 1.

Indeed, our main idea is to show that for a variety V , the space t(V ) will eventually become a
scheme. We have few observations about spectral spaces, before we realize that idea.

Lemma 5.4.3. Let X,X1, X2 be spaces and f : X1 → X2 be a continuous map. Then,
1. there is a one-to-one correspondence between closed subsets of X and closed subsets of t(X),
2. the following is a continuous map

t(f) : t(X1) −→ t(X2)
Y1 7−→ f(Y1),

3. the following is a functor

t : Top −→ Top
X 7−→ t(X),

4. the following is a continuous map

α : X −→ t(X)
x 7−→ {x}.

23However, one may take a hint (albeit quite vague) from Lemma 3.0.2 in the following construction.
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Proof. 1. Follows from the definition of topology on the spectral space.
2. Let Y2 ⊆ X2 be closed so that t(Y2) ⊆ t(X2) is closed. We wish to show that (t(f))−1(t(Y2)) ⊆
t(X1) is closed. This follows from the observation that for Y1 ∈ t(X1), we have f(Y1) ∈ t(Y2) ⇐⇒
Y1 ∈ t(f−1(Y2)).
3. Follows from 2.
4. Pick any closed Y ⊆ X to thus obtain a closed t(Y ) ⊆ t(X). Then α−1(t(Y )) = {x ∈ X | {x} ∈
t(Y )} = {x ∈ X | x ∈ Y } = Y .

We now give scheme structure to the space t(X). But first, we need a small lemma.

Lemma 5.4.4. Let A = k[V ] be the coordinate ring of an affine k-variety V over an algebraically
closed field k. Then, for any open set U ⊆ Spec (A), the set of all closed points of U are dense in
U .

Proof. Since all closed points of Spec (A) are its maximal ideals by Nullstellensatz, thus, any closed
point of U is a maximal ideal of A as well. Consequently, we may assume U = D(f) is a basic
open set for f ∈ A. But since D(f) ∼= Spec (Af ) and closed points of any affine scheme are always
dense, the result follows.

Theorem 5.4.5. Let k be an algebraically closed field and (V,OV ) be a k-variety. Let α : V → t(V )
be the continuous map as defined in Lemma 5.4.3, 4. Then, (t(V ), α∗OV ) is a scheme over k which
admits an affine open cover by Spec (A) for A = k[W ] where W is an affine open subvariety of V .

Proof. For better clarity of this important proof, we break it in multiple acts.

Act 1 : We may assume V is an affine k-variety.

Since we wish to show that t(V ) is a scheme, hence we need to produce an open cover of t(V ) by
affine schemes. Since V is covered by open affine k-varieties, thus if we can show that for an affine
k-variety W , the space t(W ) is a scheme, then we would be done. Hence we may assume V is affine
with coordinate ring k[V ] =: A.

Act 2 : t(V ) ∼= Spec (A) as topological spaces.

Consider the usual maps that we know from our study of varieties:

t(V ) Spec (A)
I(−)

Z(−)

These are easily seen to be continuous inverses of each other by the correspondence between closed
irreducible subsets of an affine variety and prime ideals of its coordinate ring (Lemma 2.1.1).

Act 3 : The closed points of Spec (A) are points of V .

We first construct the following map

ϕ : V −→ Spec (A)
p 7−→ mp
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where mp is defined together with some properties in Proposition 5.3.10. This is continuous by a
small check on closed sets. Moreover, this is injective. Now, we claim that ϕ(V ) ⊆ Spec (A) are
all closed points of Spec (A). Indeed, this follows from the correspondence between closed points
of Spec (A) and maximal prime ideals of A (Lemma 2.1.3). We will thus denote ϕ(V ) as the set of
closed points of Spec (A).

Act 4 : It is enough to show that ϕ∗OV ∼= OSpec(A).

Since we have the following commutative triangle

V

Spec (A) t(V )

ϕ α

Z(−)

I(−)
∼=

,

thus α∗OV ∼= (Z ◦ ϕ)∗OV = Z∗ϕ∗OV . Since Z is an isomorphism, thus the reduction is justified.

Act 5 : ϕ∗OV ∼= OSpec(A).

Let U ⊆ Spec (A) be an open set. We will construct an isomorphism between OSpec(A)(U) and
OV (ϕ−1(U)). Consider the map

ηU : OSpec(A)(U) −→ OV (ϕ−1(U))
s : U → ⨿p∈UAp 7−→ ηU (s) : ϕ−1(U)→ k

where for any q ∈ ϕ−1(U), we define ηU (s)(q) = s(mq)(q). It clearly is a ring homomorphism which
commutes with appropriate restriction maps. Thus, we need to show the following three statements
in order to conclude.

1. ηU (s) is regular,
2. ηU has zero kernel,
3. ηU is surjective.

In-fact, the above three statements are at the technical heart of the proof. The main driving force
behind this is the density of closed points of open sets in Spec (A) (Lemma 5.4.4) and the identity
principle of regular maps on a variety (Lemma 5.2.4).

Statement 1. is immediate as s is regular. For statement 2., suppose that ηU (s) = 0 over
ϕ−1(U). Thus s(mq)(q) = fq(q)/gq(q) = 0 for all q ∈ ϕ−1(U). Thus, ηU (s) around q is represented
by rational function fq/gq. By Lemma 5.2.4 on ηU (s), we obtain that fq = 0 for all q ∈ ϕ−1(U).
Thus s is zero at all closed points of U , which are exactly ϕ(ϕ−1(U)). But since closed points of U
are dense by Lemma 5.4.4 and s is a locally constant function, hence s = 0.
Finally, to see statement 3., pick any f ∈ OV (ϕ−1(U)) and notice that W := ϕ(ϕ−1(U)) is a dense
subset of U (set of all closed points, Lemma 5.4.4). Thus, it is enough to define a locally constant
function s over W whose extension s̃ over U is such that ηU (s̃) = f . Indeed, consider

s :W −→
∐
p∈U

Ap

mq 7−→ gq/hq
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where gq/hq is the rational function representing f at the point q ∈ V . Clearly, the extension s̃ is
in OSpec(A)(U) and it is mapped by ηU to f .

Act 6 : (t(V ), α∗OV ) is a scheme over k.

Now let V be a k-variety. We wish to show that t(V ) is a scheme over Spec (k). Thus we need to
produce a map t(V )→ Spec (k), which is equivalent to a map k → Γ(α∗OV , t(V )) via the Theorem
3.0.5. Since Γ(α∗OV , t(V )) = Γ(OV , V ) = A via Proposition 5.3.10, 5, the result follows.

This completes the proof.

Remark 5.4.6. Theorem 5.4.5 yields that the functor t restricts to the following

t : Vark −→ Schk
(V,OV ) 7−→ (t(V ), α∗OV ).

We will now show that this is a fully-faithful embedding. In other words, any map of t(V1)→ t(V2)
as of schemes over k is equivalent to a map V1 → V2 of k-varieties.

Let us begin with some elementary properties of the residue fields of the k-scheme t(V ) attached
to a k-variety V .

Lemma 5.4.7. Let k be an algebraically closed field and let V be a k-variety. A point p ∈ t(V ) is
closed if and only if κ(p) = k.

Proof. (L⇒ R) Since p ∈ t(V ) is closed and closed points of t(V ) are exactly points of V , therefore
p ∈ V ⊆ t(V ). Consequently, for an affine k-variety X ⊆ V containing p, we obtain the following
by Proposition 5.3.10, 3 and Nullstellensatz:

κ(p) = Ot(V ),p/mt(V ),p ∼= OV,p/mV,p
∼= OX,p/mX,p

∼= k[X]mp/mpk[X]mp
∼= (k[X]/mpk[X])0 ∼= k.

(R ⇒ L) By Theorem 5.4.5, we have that for some open affine k-variety X ⊆ V , p ∈ Spec (k)[X].
Consequently, κ(p) = (k[X]/pk[X])0 = k where p is treated as a prime ideal of k[X]. Consequently,
we have that the domain k[X]/pk[X] = k as we have inclusions k ↪→ k[X]/pk[X] ↪→ (k[X]/pk[X])0.
Thus p ⪇ k[X] is maximal.

Proposition 5.4.8. Let k be an algebraically closed field. Then there is a natural bijection

HomVark (V1, V2) ∼= HomSchk
(t(V1), t(V2)).

That is, the functor t is a fully-faithful embedding of k-varieties into schemes over k.

Proof. Exercise 2.15 of Hartshorne Chapter 2.Complete the proof
of embedding vari-
eties into schemes,
Chapter ??.

Let us now spell out all the properties that the scheme t(V ) satisfies for a k-variety V .

Proposition 5.4.9. Let k be an algebraically closed field and V be a k-variety. Then, the scheme
t(V ) over k is (for ∗ properties, see Section 12)

1. integral,
2. noetherian,
3. finite type over k,
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4. quasi-projective∗,
5. separated∗.

Proof. 1. to 3. are immediate from the open covering by Spec (k[W ]) of t(V ) where W ⊆ V is an
open affine subvariety (Theorem 5.4.5). Consequently t(V ) is covered by spectrum of finite type
k-algebras.
4. is also immediate as any k-variety is an open subset of an affine or a projective k-variety by
definition. Since any affine k-variety can be seen as a projective k-variety, consequently, we have
an open immersion of V into a closed subvariety of some projective space over k. This extends to
an open immersion of t(V ) into a closed subscheme of Pnk .
5. Follows from 4. and Theorem 12.8.2.

We now state an important rectification result which precisely shows what type of schemes are
those which are in the image of functor t as in Remark 5.4.6.

Corollary 5.4.10. Let k be an algebraically closed field. Then, the functor of Remark 5.4.6

t : Vark −→ QPISchk

establishes an equivalence between varieties over k and quasi-projective integral schemes over k.
Further, the image of projective varieties under this functor is exactly the projective integral schemes
over k.

Proof. By Proposition 5.4.8, we reduce to showing that t lands into quasi-projective schemes and is
essentially surjective. Indeed, for a k-variety V , the scheme t(V ) is quasi-projective by Proposition
5.4.9, 4. Now, to show essential surjection, we first observe that open subschemes of t(V ) is in one-
to-one bijection with open subsets of V . Consequently, it would suffice to show that any projective
integral k-scheme X is in the essential image of t. Indeed, let V denote the closed points of X
as a closed subscheme of some Pnk . Consequently, as closed points of a finite type k-scheme is
dense (Lemma 12.2.6), therefore V is irreducible (note we are using irreducibility of X here), thus
a projective variety in Pnk . Now, t(V ) and X have same underlying space. As a subspace of Pnk ,
t(V ) and X have both have the structure of a reduced scheme over the common underlying space.
By uniqueness of reduced induced closed subscheme structure on a closed subset, we have that
t(V ) ∼= X (see Section 6.3).

We now redefine varieties as schemes and use them as such for the remainder of the sections.

Definition 5.4.11. (Abstract and classical varieties) Let k be an algebraically closed field. An
abstract variety or simply a variety, is a separated, integral finite type k-scheme. Those varieties
which are furthermore quasi-projective are exactly the varieties we defined earlier by Corollary
5.4.10. We will further call the notion of varieties we defined earlier in Definition 5.2.5 by referring
to them as classical varieties.
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6 Fundamental constructions on schemes
In this section, we would like to understand some of the basic constructions which one can perform
with a collection of schemes.

6.1 Points of a scheme

Let X be a scheme. Pick any point x ∈ X. We then have the residue field κ(x) = OX,x/mx. Hence
we have a projection map

OX,x → κ(x).

Consider now an open affine x ∈ Spec (A) ⊆ X. Consequently, we have OX,x ∼= OSpec(A),x ∼= Ax.
Thus, denoting the inclusion jx : Spec (Ax) ↪→ Spec (A), we obtain the following composition:

ix : Spec (κ(x))→ Spec (OX,x) = Spec (Ax)
jx
↪→ Spec (A) ↪→ X.

Remember that Spec (Ax) can be interpreted as the affine subset in Spec (A) which is "very close"
to x ∈ Spec (A). The map jx takes the singleton point in Spec (κ(x)) to x ∈ X. This map is usually
called the canonical map of point x ∈ X. The map on stalks that ix yields is the natural projection
OX,x → κ(x). This map is quite unique as it is universal amongst all those maps Spec (K) → X
which maps to x. Indeed, we have the following.

Lemma 6.1.1. Let X be a scheme and let x ∈ X be a point. If K is a field and f : Spec (K)→ X
is a map, then

1. If f(⋆) = x, then κ(x) ↪→ K.
2. If f(⋆) = x, then f factors via the canonical map ix at point x ∈ X

Spec (κ(x)) X

Spec (K)
f

ix

.

3. HomSch (Spec (K), X) ∼= {x ∈ X | κ(x) ↪→ K}.

Proof. 1. At the stalk, we have a local ring homomorphism ϕ : OX,x → K. Consequently,
Ker (ϕ) = mX,x. It then follows that κ(x) = OX,x/mX,x ↪→ K.
2. Clearly f factors as above as a continuous map. To check the commutativity of sheaf maps, we
need only check at stalks (Theorem ??). This is straightforward, as we get on stalks the following
commutative diagram:

κ(x) OX,x

K
f♯⋆

.

3. It suffices to show that a morphism f : Spec (K) → X is equivalent to the data of a point
x ∈ X such that κ(x) ↪→ K. By 1, one side is immediate. Now consider a point x ∈ X and a
field extension κ(x) ↪→ K. We wish to construct a map f : Spec (K) → X such that the above
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data is obtained via the construction in 1 applied on f . Indeed, the map f on topological spaces
is straightforward, f(⋆) = x. On sheaves, it reduces to define a natural local ring homomorphism
OX,x → K. This is immediate, as we need only define this as OX,x → κ(x) ↪→ K.

The above lemma shows that defining a map Spec (K) → X is equivalent to taking a point
x ∈ X such that K extends κ(x). There is another similar important characterization of maps
from Spec

Ä
k[x]
x2

ä
into X, which characterizes all rational points of X together with "direction" (that

is, together with an element of the tangent space). We first define a rational point of a k-scheme.
Recall that by Corollary 3.0.7, κ(x) is a field extension of k. Further observe the definition of
Zariski tangent space TxX of a scheme as defined in Definition 11.1.10.

Definition 6.1.2. (Rational points) Let X be a k-scheme. Then a point x ∈ X is said to be
rational if κ(x) = k.

Let us denote k[ϵ] = k[x]/x2. The ring k[ϵ] is usually called the ring of dual numbers.

Proposition 6.1.3. 24 Let X be a scheme over a field k. Then, we have a bijection

HomSch/k (Spec (k[ϵ]), X) ∼= {(x, ξ) | x ∈ X is a rational point & ξ ∈ TxX}

Proof. (⇒) Take a scheme homomorphism f : Spec (k[ϵ])→ X. Note that we have a map

k[ϵ]→ k[ϵ]/ϵ ∼= k.

Consequently, we get a map g : Spec (k)→ Spec (k[ϵ]) which by composing by f , we get

Spec (k) g→ Spec (k[ϵ]) f→ X.

Observe that Spec (k[ϵ]) is a one point scheme, therefore f(pt.) = f ◦ g(pt.) =: x. We wish to show
that x is a rational point. By Lemma 6.1.1, 3, we have κ(x) ↪→ k. But since X is a scheme over k,
therefore k ↪→ κ(x). We further deduce from the fact that X is a k-scheme that we have a triangle

κ(x) k

k

∼=
.

This shows that horizontal arrow above is an isomorphism. Thus, κ(x) = k. We now wish to obtain
an element of TxX.

At the point x ∈ X, we have a map f : Spec (k[ϵ])→ X. This yields a map on stalks given by

ϕ : A→ k[ϵ]

where A = OX,x is the local ring at point x ∈ X and ϕ is furthermore a local k-algebra homo-
morphism. Let m be the maximal ideal of the local ring A. Then, A/m = κ(x), which is equal to
k as x is a rational point. Thus, A is a rational local k-algebra (Definition ??). It follows from
Proposition ?? that ϕ is equivalent to an element of the tangent space ξ ∈ TA and by definition,
TA = TxX. This completes the proof.

24Exercise II.2.8 of Hartshorne.
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We now see that closed points of a finite-type k-scheme are those whose residue extension of k
is algebraic.

Proposition 6.1.4. Let X be a finite-type k-scheme. Then the following are equivalent:
1. x ∈ X is a closed point.
2. x ∈ X is such that κ(x)/k is an algebraic (equivalently, finite).

Proof. (1. ⇒ 2.) Clearly, κ(x) is a finitely type field extension of k. By essential Nullstellensatz,
κ(x)/k is algebraic.

(2. ⇒ 1.) Pick an affine open Spec (A) containing x so that p ∈ Spec (A) corresponds to x.
We wish to show that p is maximal. As κ(x) = Q(A/p) and

k ↪→ A↠ A/p ↪→ Q(A/p) = κ(x),

thus, as κ(x)/k is algebra, we deduce that κ(x) is integral over A/p. Let B be a finite type k-domain
such that Q(B) is integral over B. One can check by writing down the relevant polynomials that
this implies for any element b ∈ B, the inverse b−1 ∈ Q(B) is in B by integrality. Using this for
B = A/p, we deduce that A/p is a filed, so p is maximal, as required.

6.2 Gluing schemes & strongly local constructions

We now show how to obtain new schemes from old by the gluing construction. Indeed, the idea is
simple, glue the underlying topological spaces of a certain collection of schemes and identifications
and define a new structure sheaf over the resultant space which canonically makes it into a scheme.
We will further see that there is a universal property that is satisfied by such a glue. We suggest
that the reader make a diagram of blobs and draw the corresponding maps in order to see the
naturality of the following.

Definition 6.2.1. (Gluing datum) A tuple of data (I, {Xi}i∈I , {Uij}i,j∈I , {ϕij}i,j∈I) of an in-
dex set I, schemes Xi for each i ∈ I, open subschemes Uij ⊆ Xi for each i, j ∈ I and scheme
isomorphisms ϕij : Uij → Uji for each i, j ∈ I is a gluing datum if it satisfies the following:

1. Uii = Xi for all i ∈ I,
2. ϕji = ϕ−1ij ,
3. ϕii = idUii = idXi ,
4. the cocycle condition,

ϕjk ◦ ϕij = ϕik on Uij ∩ Uik ∀i, j, k ∈ I.

We then have that there is a unique glue of the above.

Proposition 6.2.2. For a gluing datum (I, {Xi}i∈I , {Uij}i,j∈I , {ϕij}i,j∈I) of schemes, there exists
a unique scheme X with the following properties:

1. there exists an open embedding of schemes

φi : Xi → X for each i ∈ I,

2. φj ◦ ϕij = φi on Uij for all i, j ∈ I,
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3. X =
⋃
i∈I φi(Xi),

4. φi(Xi) ∩ φj(Xj) = φi(Uij) = φj(Uji) for all i, j ∈ I.

Proof. The underlying space of X is obtained by gluing the underlying spaces of Xi in the usual
manner;

X :=
∐
i∈I

Xi/ ∼

where xi ∼ ϕij(xi) for all xi ∈ Uij and i, j ∈ I. Let φi : Xi → X be the canonical inclusion map.
The topology is given on X via the quotient topology; U ⊆ X is open if and only if φ−1i (U) ⊆ Xi

is open for each i ∈ I. Then to define the sheaf OX , pick any open U ⊆ X and define the sections
over it as follows (let us write ϕij : OUij

∼=→ OUji as well):

OX(U) =
{
[(φ−1i (U), si)] | ∀i, si ∈ OXi(φ−1i (U)) s.t. ϕij(ρφ−1

i
(U),φ−1

i
(U)∩Uij

(si)) = ρφ−1
j

(U),φ−1
j

(U)∩Uji
(sj)

}
.

By local nature, this is again a sheaf (also called the glued sheaf). Now, φi is an open embedding
as for any open U ⊆ X, it follows that OX(ϕi(Xi) ∩ U) ∼= OXi(φ−1i (U)). Thus, X is a scheme as
for each x ∈ X, x ∈ φi(Xi) which is a scheme.

A lot of times we have the situation that a certain construction on a ring A leads to a map
ϕ : A→ Ã. Consequently, we obtain maps f : Spec

(
Ã
)
→ Spec (A). If X is a scheme, then for each

open affine Vi = Spec (Ai), we get a map Xi → Vi given by Spec
(
Ãi
)
→ Spec (Ai). Consequently,

we are interested in the conditions that the construction A → Ã must satisfy so that Xi glue
together to give a scheme X̃ which represents the construction globally.

Definition 6.2.3 (Construction on rings). A construction on rings is a collection of maps
{ϕA : A → Ã} one for each ring A such that for any isomorphism ηAB : A

∼=→ B, we have an
isomorphism η̃AB : Ã→ B̃ which is id if η is id, the diagram

A Ã

B B̃

ϕA

ϕB

ηAB ∼= η̃AB ∼=

commutes and if ηBC ◦ ηAB = ηAC , then η̃BC ◦ η̃AB = η̃AC . That is, constructions are functorial on
isomorphisms.

Definition 6.2.4 (Strongly local constructions). A construction on rings {ϕA : A → Ã} is
said to be strongly local if it naturally commutes with localization. That is, for each g ∈ A not in
nilradical, there exists an isomorphism Ãg ∼= Ãg such that

A Ag

Ã Ãg Ãg

(ϕA)gϕA
ϕAg

∼=

commutes where (ϕA)g : Ag → Ãg is the localization of map ϕA : A→ Ã at the element g ∈ A and
the horizontal arrows of the square are localization maps.
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Remark 6.2.5. Let η : Af ∼= Bg be an isomorhism where f ∈ A and g ∈ B. Then we get an
isomorphism η̂ : Ãf ∼= B̃g as in the following commutative diagram:

Ãf B̃g›Af B̃g

Af Bgη

∼=

ϕAf ϕBg

η̃

η̂

∼= ∼=

∼=(ϕA)f (ϕB)g .

Let X be a scheme. Our main goal is to show that strongly local constructions done on each
affine open subset of X can be glued to give a scheme X̃ admitting a map X̃ → X.

We will achieve this in steps. We first translate strongly local property more geometrically.
Lemma 6.2.6. Let {ϕA : A→ Ã} be a strongly local construction on rings. For any ring A denote
φA : Spec

(
Ã
)
→ Spec (A) to be the map corresponding to ϕA. Then, for any f ∈ A, the following

diagram commutes:

Spec (Af ) Spec
(
Ãf
)

Spec
Ä›Afä

φA|Spec(Ãf)

φAf
∼=

.

Proof. This is the translation of Definition 6.2.3 in Spec (−) where localization amounts to restrict-
ing to the corresponding open subscheme.

The following is an important observation which will help in checking the cocycle condition.
Lemma 6.2.7. Let {ϕA : A→ Ã} be a strongly local construction on rings and the following be a
commutative triangle of isomorphisms

Rf Sg

Th

for f ∈ R, g ∈ S and h ∈ T . Then, the following triangle of isomorphisms as constructed in
Remark 6.2.5 also commutes

R̃f S̃g

T̃h

.

Proof. By definition of a construction, we get that the following triangle commutes›Rf S̃g

T̃h

.
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By the construction of isomorphism R̃f → S̃g and others as in Remark 6.2.5, we immediately get
that the required triangle commutes.

Lemma 6.2.8. Let X = Spec (A) and Y = Spec (B) be two affine schemes. Let R be a ring with
isomorphisms Af ∼= R ∼= Bg for some f ∈ A and g ∈ B. Let {ϕS : S → S̃} be a strongly local
construction on rings. Then there are open immersions Spec

(
R̃
)
↪→ Spec

(
Ã
)
and Spec

(
R̃
)
↪→

Spec
(
B̃
)
so that the following commutes

Spec
(
Ã
)

Spec
(
R̃
)

Spec
(
B̃
)

Spec (A) Spec (R) Spec (B)

φA φR φB
.

Proof. This follows from the following diagram

Spec
(
Ã
)

Spec
(
Ãf
) ∼= Spec

Ä›Afä Spec
(
R̃
)

Spec
Ä
B̃g
ä
∼= Spec

(
B̃g
)

Spec
(
B̃
)

Spec (A) Spec (Af ) Spec (R) Spec (Bg) Spec (B)

φA φB

∼=

φR

∼=

∼=

φA|Spec(Ãf) φB |Spec(B̃g)

∼=

the commutativity of which follows from Lemma 6.2.6 and the definition of a construction.

Let X be a scheme and U = Spec (A) and V = Spec (B) be two open affines. We can now glue
Spec

(
Ã
)
and Spec

(
B̃
)
along the intersection U ∩ V as follows.

Proposition 6.2.9. Let X be a scheme and U = Spec (A) and V = Spec (B) be two open affines.
Let {ϕS : S → S̃} be a strongly local construction on rings. Let φA : Ũ = Spec

(
Ã
)
→ Spec (A) and

φB : Ṽ = Spec
(
B̃
)
→ Spec (B) be the maps corresponding to ϕA and ϕB. Then, there exists an

isomorphism of schemes

Θ : φ−1A (U ∩ V )
∼=−→ φ−1B (U ∩ V )

such that the following commutes for any affine open Spec (R) ⊆ U ∩ V which is basic in both U
and V by the isomorphisms Af ∼= R ∼= Bg (see Lemma 4.4.3)

φ−1A (U ∩ V ) φ−1B (U ∩ V )

Spec
(
Ãf
)

Spec
(
B̃g
)

∼=
Θ

Θf

∼=

where Θf is obtained from θ : Af ∼= Bg via˜construction (Remark 6.2.5).

Proof. Cover U ∩ V by open affines which are basic in both U and V (Lemma 4.4.3) and write
U ∩ V =

⋃
i∈I Spec (Afi) =

⋃
i∈I Spec (Bgi) where fi ∈ A and gi ∈ B. Consequently we may write

φ−1A (U ∩ V ) =
⋃
i∈I

φ−1A (Spec (Afi)) =
⋃
i∈I

Spec
(
Ãfi
)
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and thus similarly,

φ−1B (U ∩ V ) =
⋃
i∈I

Spec
(
B̃gi
)
.

For each i ∈ I, Lemma 6.2.8 provides us with an isomorphism

Θi : Spec
(
Ãfi
) ∼=−→ Spec

(
B̃gi
)
↪→ Ṽ .

We claim that Θi can be glued. Indeed, for i ̸= j, we have Spec
(
Ãfi
)
∩ Spec

(
Ãfj
)
= Spec

(
Ãfifj

)
,

therefore we reduce to showing that Θi and Θj are equal when restricted to Spec
(
Ãfifj

)
. Observe

from Lemma 4.4.3 that for each i ∈ I, the isomorphism Afi
∼= Bgi takes fi 7→ gi. The above is

now equivalent to showing that the isomorphisms θi : Ãfi ∼= B̃gi and θj : Ãfj ∼= B̃gj obtained from
Afi
∼= Bgi and Afj ∼= Bgj fit in the following commutative diagram

Ãfifj B̃gifj

Ãfjfi B̃gjfi

id

(θi)fj

(θj)fi

id .

But θi(fj) = gj and θj(fi) = gi, as mentioned above. Therefore B̃gifj = B̃gigj = B̃gjgi = B̃gjfi and
the above square commutes, showing that Θi glues to give a map Θ : φ−1A (U ∩ V ) → φ−1B (U ∩ V ),
which is an isomorphism as locally it is an isomorphism (Proposition 3.1.5).

Using Proposition 6.2.9, we can now globalize a strongly local construction.

Theorem 6.2.10. Let X be a scheme and {ϕS : S → S̃} be a strongly local construction on rings.
Then there exists a scheme α : X̃ → X such that for any affine open Spec (A) ↪→ X, the following
square commutes

Spec
(
Ã
)

X̃

Spec (A) X

αφA
.

Proof. We first construct X̃ by gluing each Spec
(
Ã
)
. Indeed, let {Vi = Spec (Ai)}i∈I be the

collection of affine opens in X and let {X̃i = Spec
(
Ãi
)
} be the collection of corresponding -̃

constructions. Let φi : X̃i → Vi be the maps corresponding to ϕAi .
For each i ̸= j ∈ I we wish to construct open subschemes Uij ⊆ X̃i and isomorphisms ϕij :

Uij → Uji satisfying the gluing conditions of Definition 6.2.1. We let

Uij = φ−1i (Vi ∩ Vj).

Then Proposition 6.2.9 provides us with an isomorphism

ϕij : Uij
∼=−→ Uji.



6.3 Reduced scheme of a scheme 61

It is immediate that Uii = X̃i and ϕii = idUii . Moreover, ϕji = ϕ−1ij by construction. We now check
the cocycle condition. Indeed, pick i, j, k ∈ I and pick an open affine Spec (R) ⊆ Vi ∩ Vj ∩ Vk in X
which is basic open in Vi, Vj and Vk (Lemma 4.4.3 such that we have isomorphisms Ai,fi ∼= Aj,fj

∼=
Ak,fk

∼= R so that the following triangle commutes

Ai,fi Aj,fj

Ak,fk

∼=∼=

∼=

. (∗)

By taking inverse images under φi, it follows that Spec
(
Ãi,fi

)
⊆ Uij ∩ Uik is basic open in both

X̃i and X̃j . We wish to show that ϕik restricted to Spec
(
Ãi,fi

)
is the composition ϕjk ◦ ϕij . By

Proposition 6.2.9, we get that ϕik on this open affine is an isomorphism to Spec
(
Ãk,fk

)
and ϕij

is an isomorphism to Spec
(
Ãj,fj

)
. Consequently, we wish to show that the following triangle of

isomorphisms commute
Spec

(
Ãi,fi

)
Spec

(
Ãj,fj

)
Spec

(
Ãk,fk

)
ϕij

ϕjkϕik
.

But these isomorphisms are obtained by the following isomorphisms on the localizations (Proposi-
tion 6.2.9):

Ãi,fi Ãj,fj

Ãk,fk

∼=∼=

∼=

.

Hence it suffices to show that the above triangle commutes. The Lemma 6.2.7 applied on (∗) yields
the required commutativity.

Definition 6.2.11 (̃-fication). Let {ϕS : S → S̃} be a strongly local construction of rings and let
X be a scheme. The scheme X̃ → X obtained in Theorem 6.2.10 is called the -̃fication of X.

6.3 Reduced scheme of a scheme

For any scheme X, we can obtain a scheme with the same underlying space but with reduced
structure sheaf. This procedure is called reducing a scheme to a reduced scheme.

Construction 6.3.1. Let X be a scheme. Consider the sheaf associated to the presheaf U 7→
OX(U)/nU where nU is the nilradical of OX(U) and denote this sheaf by Ored

X . The pair (X,Ored
X )

will be called the associated reduced scheme of the scheme (X,OX), usually denoted by Xred.
Indeed, (X,Ored

X ) is a scheme as the following result shows.

Remark 6.3.2 (Reducing a ring is a strongly local construction). It is easy to see that A→ A/n for
each ring A defines a strongly local construction on rings as in Definition 6.2.4. Consequently, by
Theorem 6.2.10, we immediately get a scheme X̃ obtained by reducing each open affine by dividing
by nilradical. Indeed, one checks that we get the same scheme as (X,Ored

X ). However, we still give
a proof of (X,Ored

X ) being a scheme without appealing to Theorem 6.2.10.
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Lemma 6.3.3. 25 Let X be a scheme. Then,
1. the pair (X,Ored

X ) is a scheme,
2. there exists a map of schemes ϕ : (X,Ored

X ) → (X,OX) which is a homeomorphism on the
spaces.

Proof. 1. Let (Spec (A),OSpec(A)) be an open affine of X. We shall show that (Spec (A),Ored
Spec(A))

is isomorphic to (Spec (Ared),OSpec(Ared)). First, the isomorphism on spaces is straightforward as
every prime ideal contains nilradical (nilradical is the intersection of all prime ideals, Lemma ??).
We thus need to produce a sheaf morphism Ored

Spec(A) → OSpec(Ared) which is an isomorphism. Let us
denote the presheaf U 7→ OX(U)/nU by F . We first immediately reduce to showing the existence
of a map F → OSpec(Ared) which is an isomorphism on basic open sets, as we then obtain a map
of sheaves Ored

Spec(A) → OSpec(Ared) by the universal property of sheafification (Theorem ??) which is
an isomorphism on stalks (Theorem ??, 4).

Since sheaves and sheaf morphisms are uniquely determined by defining them on a basis, thus
we further reduce to defining a presheaf map F → OSpec(Ared) with above properties on a basis.
Since Spec (A) has a canonical basis, namely, B = {Spec (A)f}f∈A, consequently one sees that
isomorphism Af/nf ∼= (A/n)f can be naturally extended to a presheaf map F → OSpec(Ared), which
is an isomorphism on the basis B.

2. Consider the map f : (X,Ored
X ) → (X,OX) which is given by idX on spaces but by the

following quotient map OX(U)→ OX(U)/nU → Ored
X (U).

There is a universal property of reduced schemes which says that a map out of a reduced scheme
necessarily has to factor through the reduction of the codomain.

Proposition 6.3.4. 26 Let f : X → Y be a map of schemes with X being a reduced scheme. Then
there exists a unique map of schemes g : X → Yred such that the triangle commutes:

Y Yred

X

g
f

ϕ

.

Proof. The map g on spaces is immediate; it shoould be identical to f as ϕ is identity on spaces.
The map g♭ on the other hand can be constructed as follows. First observe that if A and B are
rings with B being reduced, then any ring map η : A→ B extends to a unique map η̃ : Ared → B
given by a+ n 7→ η(a) which makes the triangle commute:

A B

Ared

η

η̃
.

In our case, we therefore get a unique map f̃ ♭U as below for any U ⊆ Y , which further gives us the
required unique map g♭U : Ored

Y (U)→ OX(f−1(U)) which we need (by universality of sheafification,
25Exercise II.2.3.b of Hartshorne.
26Exercise II.2.3.c of Hartshorne.



6.4 Fiber product of schemes 63

Theorem ??):

OY (U) Ored
Y (U) OX(f−1(U))

OY (U)/nU
f̃♭
U

=:g♭
UϕU

f♭
U

.

One can then easily check that g as given above makes the triangle commute.

For each closed set Z ⊆ X of a scheme, we construct a unique closed reduced subscheme
structure over it.

Construction 6.3.5 (Reduced induced subscheme). Let X be a scheme and Z ⊆ X be a closed
set. We wish to define a natural scheme structure on the subspace Z. Indeed, if X = Spec (A) is
affine and Z ⊆ X is closed, then let a =

⋂
p∈Z p so that Z = V (a). Then we define the reduced

induced subscheme structure on Z as that of Spec (A/a). Observe that (Z,OSpec(A/a)) is a reduced
scheme as a ⊇ n where n ≤ A is the nilradical.

For an arbitrary scheme X and a closed subset Z ⊆ X, we proceed as follows. Let {Ui}i∈I be
the collection of all open affines in X. Consider the intersections Zi = Ui ∩ Z for each i ∈ I. As
Zi ⊆ Ui are closed subsets in an affine scheme Ui, so by definition they carry the reduced induced
subscheme structure on Zi. We claim that the sheaves on each Zi can be glued. Indeed, by usual
argument involving Lemma 4.4.3, we reduce to checking that if U = Spec (A) is an open affine,
V = D(f) ⊆ U a basic open subset, RU and RV denote the sheaves obtained by reduced induced
subscheme structures on Z ∩ U and Z ∩ V respectively, then

(RU )|Z∩V ∼= RV .

Let a =
⋂

p∈Z∩U p which gives the required structure on Z ∩ U . Similarly, we have b =
⋂

p∈Z∩V p.
We claim that b = aAf . This would establish the required isomorphism between A/a and Af/b.
Indeed, by definition, it is clear that b ⊇ aAf . Conversely, pick x/fn ∈ aAf where x ∈ a. We wish
to show that x/fn ∈ b. Pick any prime ideal q ∈ Z ∩V . We wish to show that x/fn ∈ q. As x ∈ a,
therefore x ∈ p for each p ∈ Z ∩ U . Thus, for p ∈ D(f), x ∈ p. As each q ∈ Z ∩ V comes from
p ∈ Z ∩D(f), therefore x/1 ∈ b and thus x/fn ∈ b.

This completes the gluing procedure, to yield a subscheme structure on Z which we call the
reduced induced subscheme structure on Z.

We now show the universal property of the above construction.

Proposition 6.3.6 (Universal property of reduced induced subscheme). TODO.

6.4 Fiber product of schemes

One of the most important tool in scheme theory is that of fiber product of schemes. This is
essential as this is exactly the right notion using which one can define intersection of subschemes,
which is one of the fundamental goals of this book.

Existence of fiber products is equivalent to saying that the category of schemes Sch have all
pullbacks. In particular, it is equivalent to saying that for any two S-schemes X and Y , their
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product in Sch/S exists, called the fiber product denoted X ×S Y .

However, we need to be more explicit than this abstract definition; we have to show that
X×S Y actually exists. Since we know how pushouts are constructed in the category of rings, their
tensor products, therefore we can define it for affine schemes without much effort using the functor
Spec (−) : Ringop → Sch of Theorem 3.0.5.

Definition 6.4.1. (Fiber product of affine schemes) Let the following be a coCartesian27
diagram of rings (or of R-algebras)

A⊗R B B

A R
f

g .

Since the Spec (−) : Ringop → Sch of Theorem 3.0.5 is right adjoint to global sections, therefore
it preserves all limits of Ringop, and thus, takes the above pushout diagram of R-algebras to a
pullback diagram of affine schemes over Spec (R):

Spec (A⊗R B) Spec (B)

Spec (A) Spec (R)
Spec(f)

Spec(g) .

We hence define Spec (A⊗R B) to be the fiber product of affine schemes Spec (A) and Spec (B)
over Spec (R).

Definition 6.4.2 (Fiber product of schemes). Fiber product of S-schemes X andY is an S-
scheme X ×S Y such that for any other S-scheme Z with map f : Z → X and g : Z → Y over S,
there exists a unique map u : Z → X ×S Y such that the diagram commutes

Z

X ×S Y Y

X S

f

g
u

.

The most important part in this construction is the description of the structure sheaf of X×SY .
We now show how to construct fiber products of arbitrary S-schemes. In the process, we give a
rather explicit description of fiber products and its structure sheaf, which we may think of as an
explicit definition of fiber product. We begin with the affine case. Recall the notion of compositum
of fields in Definition ??.

27another name for pushout diagrams.
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Proposition 6.4.3. Let A,B be two R-algebras and let X = Spec (A), Y = Spec (B) and S =
Spec (R). Then, as a set, we have the following bijection

X ×S Y ∼=


Tuples (pA, pB, L, α, β) where pA ∈ X, pB ∈ Y
such that both have same inverse image pR in S
and (L,α, β) is the compositum of fields κ(pA)
and κ(pB) over κ(pR).


Proof. Pick any prime ideal p ∈ X ×S Y = Spec (A⊗R B). We wish to construct the datum
(pA, pB, L, α, β). TODO.

We now construct the fiber product of two schemes. This is more of an exercise in gluing
techniques rather than anything else, so is ommited.

Theorem 6.4.4. Let X,Y be two S-schemes. The fiber product X ×S Y exists.

Remark 6.4.5. While working with fiber products, one of the most important tool is its universal
property. Most of the results about fiber products rarely uses the point-set construction as laid out
above, just like the construction of tensor product is rarely used. Consequently, one should/must
prove results about fiber products only using universal properties.

We now portray some easy applications of the universal property of fiber products.

Lemma 6.4.6. Let f : X → Y and g : Z → Y be scheme morphisms and U ⊆ X be an open
subscheme. If p : X ×Y Z → X is the scheme over X obtained by base change under f , then
p−1(U) ∼= U ×Y Z.

Proof. We claim that the open subscheme p−1(U) of X ×Y Z is isomorphic to U ×Y Z by showing
that it satisfies the same universal property. Indeed, suppose we have the following diagram

T

p−1(U) Z

U Y

g

f

p

q

h

k

where f ◦ h = g ◦ k. By the universal property of fiber product X ×Y Z, we get a unique map
ϕ : T → X ×Y Z such that p ◦ ϕ = h and q ◦ ϕ = k. As Im (h) ⊆ U , therefore Im (p ◦ ϕ) ⊆ U .
Consequently, we have Im (ϕ) ⊆ p−1(U), hence we may write ϕ : T → p−1(U), where p−1(U) is an
open subscheme of X ×Y Z. Thus, we get a unique map ϕ : T → p−1(U) which makes the above
diagram a fiber product diagram, thus completing the proof.

The following is an important technical result.

Lemma 6.4.7. Let X =
⋃
α Uα be an open cover of the scheme X. Let f : X → Y and g : Z → Y

be scheme morphisms. Then,

X ×Y Z ∼=
⋃
α

Uα ×Y Z.
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Proof. Let p : X ×Y Z → X be the fiber product scheme over X obtained by base change along f .
Then,

p−1
Ç⋃

α

Uα

å
=

⋃
α

p−1(Uα).

By Lemma 6.4.6, we see that p−1(Uα) ∼= Uα ×Y Z. It follows that

X ×Y Z = p−1(X) =
⋃
α

p−1(Uα) ∼=
⋃
α

Uα ×Y Z,

as needed.

Lemma 6.4.8. Let f : X → Y and g : Z → Y be scheme morphisms and U ⊆ X be an open
subscheme such that f(U) ⊆ V for some open subscheme V ⊆ Y and let W = g−1(V ) be an open
subscheme in Z. If p : X ×Y Z → X is the fiber product over X obtained by base change along f ,
then p−1(U) ∼= U ×Y Z ∼= U ×V W .

Proof. The first isomorphism is the content of Lemma 6.4.6. The second isomorphism follows from
the simple observation that U ×Y Z satisfies the same universal property as that of U ×V W .

We portray some pathologies of fiber product in the following examples.

Example 6.4.9. We show that fiber product of one point schemes may have more than one point(!)
Indeed, consider the schemes X = Y = Spec (C) over Spec (R). Observe that X ×Spec(R) Y ∼=
Spec (C⊗R C). But since we have

C⊗R C ∼=
R[x]
x2 + 1 ⊗R C

∼=
C[x]
x2 + 1

∼= C× C

by Chinese remainder theorem. Consequently, Spec (C× C) ∼= Spec (C) ⨿ Spec (C) which has 2
points.

6.5 Applications of fiber product

We would now like to portray some of the applications of fiber products, especially in endowing
the fibers of a morphism with a scheme structure.

6.5.1 Inverse image of a closed subscheme

TODO.
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6.5.2 Fibers of a map

Keep in mind the Lemma ?? and the surrounding remarks about stalks of sheaves for the remainder
of this discussion. Let f : X → Y be a map and y ∈ Y be a point. We endow f−1(y) ↪→ X with a
scheme structure. Define the fiber of f at y to be the following fiber product:

Xy := X ×Y Spec (κ(y)).

We at times denote it by X ×Y y. Note that by natural map onto second factor, Xy is a scheme
over κ(y).

We now show that fiber of a scheme morphism as defined above matches with the usual notion
of fiber in the sense that both spaces are homeomorphic. We first do this for affine schemes.

Proposition 6.5.1. Let X = Spec (S), Y = Spec (R) and f : X → Y be the map associated to a
ring homomorphism ϕ : R→ S. Let y = p ∈ Y be a prime ideal of R. Then, Xy is homeomorphic
to the subspace f−1(y) of Y .

Proof. We have that Xy = Spec (S ⊗R κ(p)), that is, the fiber of ϕ at prime ideal p (Definition ??).
We now calculate S ⊗R κ(p). Indeed, we have

S ⊗R κ(p) = S ⊗R F (R/p) ∼= S ⊗R (R/p⊗R Rp)
∼= S/pS ⊗R Rp

∼= (S/pS)ϕ(R\p) .

It follows from Lemma ?? that Spec (S ⊗R κ(p)) is exactly the subspace of X consisting of those
primes q such that q ⊇ ϕ(p) and does not intersects ϕ(R \ p). This is equivalent to saying that
ϕ−1(q) ⊇ p and ϕ−1(q) ⊆ p, that is, ϕ−1(q) = p, as needed.

We now do the general case. The main idea is just to reduce to the affine case as above.

Lemma 6.5.2. Let f : X → Y be a scheme morphism and y ∈ Y . Then, f−1(y) as a subspace of
X is homeomorphic to Xy.

Proof. Let V = Spec (B) be an open affine of Y containing y. Then, by definition of fiber products,
we immediately see that f−1(V ) ∼= X ×Y V . Clearly, f−1(y) ⊆ f−1(V ). Cover f−1(V ) by open
affines {Uα = Spec (Rα)}. By Proposition 6.5.1, we see that f−1(y) ∩ Uα ∼= Spec (Rα ⊗B κ(y)) =
Uα ×V Spec (κ(y)). Since

Xy = X ×Y Spec (κ(y)) ∼= f−1(V )×V Spec (κ(y))

=
Ç⋃

α

Uα

å
×V Spec (κ(y))

∼=
⋃
α

(Uα ×V Spec (κ(y)))

∼=
⋃
α

f−1(y) ∩ Uα

= f−1(y),

as needed.

Example 6.5.3. We calculate explicit fibers of a map at every point of a familiar map. Write
solution of Exercise 3.10 of Hartshorne Chapter 2, written in notebook.
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6.5.3 The fibers of Spec (Z[x])→ Spec (Z)

We know that Spec (Z) is the final object in the category of schemes Sch. We also know that there
is the canonical inclusion Z ↪→ Z[x]. This induces a map

ϕ : Spec (Z[x]) −→ Spec (Z).

Understanding the fibers of this map will allow us to understand the affine arithmetic surface
Spec (Z) (as Z[x] is a 2-dimensional ring). Note that we can already understand Spec (Z[x]) by the
results surrounding Gauss’ lemma as done in Theorem ??, but the following is a more geometric
way of understadning this.

Proposition 6.5.4. The prime ideals of Z[x] can be categorized into following three types.
1. ⟨p⟩ where p ∈ Z is a prime,
2. ⟨f(x)⟩ where f(x) ∈ Z[x] is an irreducible polynomial,
3. ⟨p, f(x)⟩ where p ∈ Z is a prime and f(x) ∈ Z[x] irreducible in Z[x] which remains irreducible

in Z/pZ,

Proof. We will prove this by analyzing the fibers of f : Spec (Z[x])→ Spec (Z). Pick a prime p ∈ Z
and denote X = Spec (Z[x]). The fiber Xp = Spec (Z[x])×Spec(Z) Spec (κ(p)). As κ(p) = Fp, finite
field with p elements, therefore we have that Xp = Spec (Z[x]⊗Z Fp) = Spec (Fp[x]). Note that for
same reasons we have X0 = Spec (Q[x]).

As fibers of f covers the whole scheme, it follows that any point in Z[x] looks like one of the
following:

1. a prime ideal in Q[x],
2. a prime ideal in Fp[x].

Moreover, we have the following diagrams

Spec (Fp[x]) Spec (Z[x]) Fp[x] Z[x]

Spec (Fp) Spec (Z) Fp Z

Spec (Q[x]) Spec (Z[x]) Q[x] Z[x]

Spec (Q) Spec (Z) Q Z

⌟ ⌜

⌟ ⌜

.

Observe that Z[x]→ Fp[x] is the mod-p map. Since every prime ideal of Z[x] now is a inverse image
of a prime ideal by Z[x]→ Fp[x] and Z[x]→ Q[x], we get the desired result.

6.5.4 Geometric properties

Cover geometric reducibility and etc etc from Hartshorne exercises.
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6.6 Normal schemes and normalization

Do mainly Exercise 3.7, 3.8 of Chapter 2 of Hartshorne. Also do Exercise 3.17, 3.18 of Chapter 1
of Hartshorne.
We now study a class of schemes which globalizes the notion of integral closure from algebra
(Definition ??). These will find its main use in arithmetic where normal domains fundamental.

Definition 6.6.1 (Normal schemes). A scheme X is said to be normal if for all x ∈ X, the local
ring OX,x is a normal domain.

The following is immediate from local nature of normal domains (Proposition ??).

Lemma 6.6.2. Let X be an integral scheme. Then the following are equivalent:
1. X is a normal scheme.
2. For all open affine Spec (A) ⊆ X, the ring A is a normal domain.

Proof. As X is integral, therefore for every open affine Spec (A) of X, A is a domain by Lemma
4.2.2. As X is normal iff OX,x is a normal domain for all x ∈ X, the result follows from Proposition
??.

The main result in normal schemes is that any integral scheme induces a unique normal scheme
obtained by normalizing each open affine.

Theorem 6.6.3. 28 Let X be an integral scheme. Then there exists a scheme X̃ → X over X
where X̃ is a normal integral scheme such that for any normal integral scheme Z and a dominant
map f : Z → X, there exists a unique map f̃ : Z → X̃ such that the following commutes

X̃ Z

X
f

f̃

.

The scheme X̃ → X is called the normalization of X and is unique upto isomorphism.

We first see this for affine domains.

Lemma 6.6.4. Let X = Spec (A) be an integral affine scheme and Z = Spec (B) be a normal
integral affine scheme. Let X̃ = Spec

(
Ã
)
be the normalization of X and denote the natural map

π : X̃ → X. If f : Z → X is any dominant map, then there exists a map f̃ : Z → X̃ such that
π ◦ f̃ = f .

Spec
(
Ã
)

Spec (B)

Spec (A)

π
f

f̃

.

Proof. Indeed, by Proposition ??, this follows immediately.
28Exercise II.3.8 of Hartshorne.
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Remark 6.6.5. By Remark ??, it follows that normalization is a strongly local property. Thus
Theorem 6.6.3 holds.

Proof of Theorem 6.6.3. By Remark ??, it follows that normalization is a strongly local construc-
tion for domains. Let A ↪→ Ã be the normalization map for any domain A. Therefore by Theorem
6.2.10, we have a scheme α : X̃ → X such that for any open affine Spec (A) ↪→ X, the following
diagram commutes

Spec
(
Ã
)

X̃

Spec (A) X

α

where the left vertical map is the map corresponding to normalization A ↪→ Ã. This shows the
construction of α : X̃ → X.

Now let Z be an arbitrary normal integral scheme and f : Z → X be a dominant map. Pick any
open affine Spec (A) ⊆ X and consider the non-empty (f is dominant) open subset f−1(Spec (A)).
Write

f−1(Spec (A)) =
⋃
i∈I

Spec (Bi)

where Spec (Bi) ⊆ Z are open affine. As Z is normal integral, therefore Bi are normal domains
from Lemma 6.6.2. By restriction we thus have the map

f |Spec(Bi) : Spec (Bi)→ Spec (A)

for each i ∈ I. Observe that α−1(Spec (A)) ⊇ Spec
(
Ã
)
. By Lemma 6.6.4, it follows that we have

a unique map f̃i : Spec (Bi)→ Spec
(
Ã
)
such that the following commutes

Spec
(
Ã
)

Spec (Bi)

Spec (A)

α|Spec(Ã)
f |Spec(Bi)

f̃i

.

It thus follows that for every open affine Spec (Bij) ⊆ Spec (Bi), we have a map f̃i : Spec (Bi) →
Spec

(
Ã
)
by restriction. Hence by Lemma 6.6.4, we have that this is unique. As Spec (A) ⊆ X is

arbitrary open affine, therefore we have an open affine covering {Spec (Ai)}i∈I ofX which by inverse
image gives an open affine covering {Spec (Bij)} of Z and a collection of open affines {Spec

(
Ãi
)
}

of X̃ such that for each i, we have a unique map f̃ij : Spec (Bij)→ X̃ such that

X̃ Spec
(
Ãi
)

Spec (Bij)

X Spec (Ai)

α
f

f̃ij

α

commutes. We claim that f̃ij can be glued to a unique map f̃ : Z → X̃, which would complete the
proof. First, for a fixed i, we glue f̃ij and f̃il. Indeed, covering the intersection Spec (Bij)∩Spec (B)il
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by open affines Spec (Cp), we immediately by restriction get maps f̃ij : Spec (Cp)→ Spec
(
Ãi
)
and

f̃il : Spec (Cp)→ Spec
(
Ãi
)
which are thus equal by uniqueness. Hence, for each i, we may glue the

maps {f̃ij}j to obtain a unique map f̃i : Zi = f−1(Spec (Ai))→ Spec
(
Ãi
)
as in

Spec
(
Ãi
)

Zi

Spec (Ai)
f

α

f̃i

.

We now wish to glue these f̃i. To this end, pick an affine open Spec (C) ⊆ Zi∩Zk = f−1(Spec (Ai)∩
Spec (Ak)) and observe α−1(Spec (Ai) ∩ Spec (Ak)) ⊇ Spec

(
Ãi
)
∩ Spec

(
Ãk
)
. We thus have the

following diagram

Spec
(
Ãi
)

Spec (C) Spec
(
Ãk
)

Spec (Ai) Spec (Ai) ∩ Spec (Ak) Spec (Ak)

α α

f̃i f̃k

f .

By Lemma 6.6.4, it then suffices to show that f̃i(Spec (C)), f̃k(Spec (C)) ⊆ Spec
(
Ãi
)
∩ Spec

(
Ãk
)
,

as then uniqueness would imply f̃i and f̃k are equal over Spec (C). By symmetry, it suffices
to show this for f̃i. Since α ◦ f̃i(Spec (C)) ⊆ Spec (Ai) ∩ Spec (Ak), therefore f̃i(Spec (C)) ⊆
α−1(Spec (Ai)∩Spec (Ak))∩Spec

(
Ãi
)
⊆ Spec

(
Ãi
)
∩Spec

(
Ãk
)
, as required. Hence f̃i can be glued

to a unique map f̃ : Z → X̃, thus completing the proof.

The following is the globalization of the fact that normalization of a finite type algebra is again
a finite type algebra, over a field (Noether’s Theorem ??).

Corollary 6.6.6. If X is a finite type integral scheme, then the the normalization X̃ → X is a
finite map.

Proof. TODO.
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7 Dimension & components of a scheme

Do from Vakil, Hartshorne Exercise 3.20, 3.21, 3.22 of Chapter 2.
The notion of dimension of a geometric object serves as an essential tool for any attempt at its
understanding. Schemes are no different and we have a notion of dimension for them. However, we
also have a notion of dimension of rings. This section explores how these two interrelates and thus
facilitate understanding of geometry of schemes.

7.1 General properties

Before moving to schemes that we will encounter the most, let us first give a general review of
the notion of dimension of topological spaces and some general properties of dimension of schemes.
Recall that the dimension of a topological space is the supremum of the length of the strictly
decreasing chains of finite length of closed irreducible subsets of the space. Further for a space X
and a closed irreducible subset Z ⊆ X, the codimension of Z in X is defined to be the supremum
of the length of strictly increasing chains of closed irreducible subsets starting from Z. For an
arbitrary closed subset Y ⊆ X, we define codim (Y,X) = infZ⊆Y codim (Z,X) where Z varies over
all closed irreducible subsets of Y . For any closed set Y ⊆ X, if dimX < ∞, we always have
codim (Y,X) ≤ dimX.

Proposition 7.1.1. Let X be a topological space. Then,
1. If Y ⊆ X is a subspace, then dimY ≤ dimX.
2. If {Ui}i∈I is an open covering of X, then dimX = supi dimUi.
3. Let Y ⊆ X be a closed subspace and X be of finite dimension. If X is irreducible and

dimY = dimX, then Y = X.

Proof. The main tool in all of them is just a clear understanding of the definition of dimension
and of closed irreducible sets. We establish some terminologies to work with in this proof. For
any space X a strictly decreasing chain of finite length of closed irreducible subsets will be called
a finite chain of X and set of all finite chains will be denoted by FC(X). We denote a chain by
Z• ∈ FC(X) and its length by l(Z•). Consequently, dimX = supZ•∈FC(X) l(Z•).

1. First observe that if Y is closed then the result is immediate as any finite chain of Y will be a
finite chain of X. Consequently, we reduce to showing that dimY ≤ dim Ȳ . In particular, we
reduce to showing that if Y is dense in X, then dimY ≤ dimX. It further suffices to show
existence of a length preserving map FC(Y ) → FC(X). Indeed, for any Z• ∈ FC(Y ), one
observes that ClX(Zi) is a closed subset of X which is further irreducible in X. Consequently,
Cl(Z•) is a finite chain of X of same length as of Z•29.

2. By 1. we already have supi dimUi ≤ dimX so we need only show that dimX ≤ supi dimUi.
It suffices to show that for each Z• ∈ FC(X), there exists i ∈ I and W• ∈ FC(Ui) such that
l(Z•) ≤ l(W•). Let r = l(Z•) and i ∈ I be such that Ui ∩ Zr ̸= ∅. Then, W• = Ui ∩ Z• forms
a finite chain of Ui of same length as Z•. To see this, observe that if Ui ∩Za = Ui ∩Zb where
we may assume Za ⊋ Zb, then the open set Ui ∩ Za of Za is contained in the closed set Zb
of Za, hence the closure of Ui ∩ Za in Za is inside Zb. But since Za is irreducible so Ui ∩ Za
must be dense in Za, a contradiction.

29Actually we didn’t needed the reduction to Y being dense in X.
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3. Let r = dimX = dimY . Suppose Y ⊊ X. Let Z0 ⊋ Z1 ⊋ · · · ⊋ Zr be a maximal finite chain
of Y . Then the chain X ⊋ Z0 ⊋ Z1 ⊋ · · · ⊋ Zr is a finite chain in X as Y is closed. Thus
dimX ≥ 1 + r, therefore r = dimY ≥ r + 1, a contradiction.

The following technical lemma was employed in proving the statement 2 of above, but is good
to keep in handy.

Lemma 7.1.2. Let X be a topological space and Z• ∈ FC(X) a finite chain (in the terminology of
Proposition 7.1.1) of length l(Z•) = r. If U ⊆ X is an open set such that U ∩ Zr ̸= ∅, then U ∩ Z•
is a finite chain of length r in U .

The following result gives a connection between all closed irreducible containing a given point
and prime ideals of the local ring at that point.

Proposition 7.1.3. Let X be a scheme and x ∈ X be a point. We obtain an order reversing
bijection

{Closed irreducibles Y of X containing x} ∼= Spec (OX,x).

Proof. Denote the collection of all closed irreducibles of X containing x as I. Let U = Spec (A) be
an affine open containing x ∈ X so that OX,x ∼= Ax. Consequently, we wish to show a bijection
I ∼= Spec (Ax), which is further equivalent to showing that I is bijective to all prime ideals of A
contained in x. As all prime ideals of A contained in x is further bijective to all closed irreducible
of U containing x by Lemma 2.1.1, we thus reduce to showing existence of a bijection between I
and closed irreducibles of U containing x, denoted J .

Consider the following function

ϕ : I −→ J

Y 7−→ Y ∩ U.

Indeed, this map is well-defined as for any Y ∈ I, ϕ(Y ) = Y ∩ U is first irreducible as any open
subset of an irreducible set is irreducible. Further, it is closed in U as Y is closed. In order to
show injectivity, we need only recall that any open subset of an irreducible set is dense. Finally, for
surjectivity, take any Z ∈ J so that Z is a closed irreducible in U containing x. Now let Y to be the
closure of Z in X. We thus need only show that Y is irreducible in X. That follows immediately
from the fact that closure of irreducible is again an irreducible, which in turn follows immediately
from a simple observation on open subsets of the closure.

One then observes the following general result which will be used heavily in the future.

Lemma 7.1.4. Let X be a scheme and Y be an irreducible closed subscheme of X with η ∈ Y
being its generic point. Then,

codim (Y,X) = dimOX,η.

Proof. This is immediate from Proposition 7.1.3 as Y is the smallest closed irreducible containing
η.
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7.2 Dimension of finite type k-schemes

In this section, we prove various results surrounding the relationship between dimension of a given
integral finite type k-scheme as a topological space and Krull dimension of various local rings.

Theorem 7.2.1. 30 Let k be a field and X be a finite type integral k-scheme.
1. If U, V ⊆ X are two open affines which are spectra of finite type k-domains, then dimU =

dimV .
2. If {Ui}ni=1 is any finite open affine covering by spectra of finite type k-domains, then dimUi =

dimX for all i = 1, . . . , n.
3. If p ∈ X is a closed point, then dimX = dimOX,p.
4. Let K(X) be the function field of X. Then dimX = trdeg K(X)/k.
5. If Y is a closed subset of X, then codim (Y,X) = infp∈Y dimOX,p.
6. If Y is a closed subset of X, then dimY + codim (Y,X) = dimX.

Proof. The main tools are the Theorems ?? and ??.
1. Observe that since X is irreducible, therefore U and V are dense open subsets of X, so
U ∩V ̸= ∅. Consequently, it will suffice to show that any dense affine open subset W ⊆ U has
same dimension as U . Indeed, U is spectra of finite type k-domain, so it is a separated finite
type integral affine scheme, that is, an abstract affine variety. Consequently, by Proposition
I.1.10 of cite[Hartshorne], dimW = dimW = dimU .

2. Follows from Proposition 7.1.1, 2 and statement 1.
3. As X is finite type, it admits a finite open affine covering by spectra of finite type k-domains.

Let U = Spec (A) be one such open affine such that p ∈ U . Consequently, p = m ∈ Spec (A)
represents a maximal ideal of R (Lemma 2.1.3). Thus, OX,p ∼= Am and so dimOX,p = dimAm.
Note that A is a finite type k-algebra which is an integral domain. It thus follows by Theorem
?? that we have ht m + dimA/m = dimA and since dimA/m = 0, therefore ht m = dimA.
Further, since dimAm = ht m, therefore we have dimOX,p = dimAm = dimA = dimU . By
statement 2, dimU = dimX and the result follows.

4. Function field is defined to be the local ring at the generic point of X, say η ∈ X (Remark
4.2.5). Let η ∈ Spec (A) where Spec (A) is a member of an open affine cover of X by spectra of
finite type k-domains. Observe that Spec (A) has η as its generic point as well. Consequently,
dim Spec (A) = dimA = trdeg K(A)/k and since K(A) = OSpec(A),η ∼= OX,η = K(X),
therefore dim Spec (A) = trdeg K(X)/k. By statement 2, dim Spec (A) = dimX and the
result follows.

5. First observe that for any closed irreducible Z ⊆ X, we have codim (Z,X) ≤ dimX. By
statement 3, therefore, we have infp∈Y dimOX,p = infp∈Y non-closedOX,p. We will now show
that for any closed irreducible subset Z ⊆ X with η ∈ Z its generic paint (schemes are
sober31), we have dimOX,η = codim (Z,X). By taking infimum, the result would then
follow, so it would suffice to show the above claim.
Let {Spec (Aα)} be a finite open affine cover of X where Aα is a finite type k-domain. Observe
that if Z ∩ Spec (Aα) ̸= ∅, then η ∈ Spec (Aα). Now, η ∈ Spec (Aα) is a point whose closure
in Spec (Aα) is Z ∩ Spec (Aα) so Z ∩ Spec (Aα) is a closed irreducible subspace of Spec (Aα)
whose generic point is η and thus Z ∩ Spec (Aα) ∼= Spec (Aα/η), where we treat η ⪇ Aα as a

30Exercise II.3.20 of Hartshorne.
31a space where all closed irreducibles have a unique generic point.



7.2 Dimension of finite type k-schemes 75

prime ideal of Aα. Consequently, dimOX,η = dimOSpec(Aα),η = dim(Aα)η = ht η. Since Aα is
a finite type k-domain, therefore by Theorem ??, we obtain that ht η + dimAα/η = dimAα,
which thus yields ht η = dimX − dimAα/η by statement 2. It thus suffices to show that for
some index α we get dimAα/η = dimZ as then we would obtain dimOX,η = dimX−dimZ =
codim (Z,X).
Indeed, since {Spec (Aα/η)} forms a finite open affine cover of Z, therefore by Proposition
7.1.1, 2 we get such an index α.

6. Observe that since codim (Y,X) < ∞, therefore there exists a maximal closed irreducible
Z ⊆ Y such that codim (Y,X) = codim (Z,X). Consequently, we have a finite chain of X,
say Z•, ending at Z such that l(Z•) = codim (Y,X).
Let U = Spec (A) be an open affine where A is a finite type k-domain such that U ∩ Z ̸= ∅.
Further, dimU ∩ Y = dim Y . Consequently, by Lemma 7.1.2, we have codim (Y,X) =
codim (Z ∩ U,U). Since U ∩ Y is a closed subscheme of U , therefore we may write U ∩ Y =
Spec (A/I) for an ideal I ≤ A. Consequently, codim (Y,X) = codim (Spec (A/I), Spec (A)).
It is immediate from first definitions that

codim (Spec (A/I),Spec (A)) = inf
p⊇I

codim (Spec (A/p), Spec (A))

= inf
p⊇I

ht p.

Now by Theorem ?? and above, we further obtain that

codim (Spec (A/I),Spec (A)) = inf
p⊇I

(dimA− dimA/p)

= dimA− sup
p⊇I

dimA/p

= dimX − dimU ∩ Y
= dimX − dimY

where dimA = dimX because of statement 2.

Corollary 7.2.2. Let X be a variety over a field k. Then dimX <∞.

Proof. As X is a finite type integral k-scheme, therefore by Theorem 7.2.1, 3, dimX = dimOX,p
for any closed point p ∈ X. Fixing a closed point p ∈ X in an open affine Spec (A) of X, we first
deduce that A is a finite type k-domain. Let p be the maximal ideal m ≤ A. Hence, OX,p ∼= Am.
Hence dimOX,p = ht m in ring A. By Theorem ??, ht m = dimA− dimA/m = dimA as A/m is a
field. As A is a finite type k-domain, therefore its dimension is finite, as required.

Corollary 7.2.3. Let k be a field Ank be the affine n-space over k. Let H be a hyperplane in Ank ,
that is H = V (f) where f ∈ k[x1, . . . , xn] is a linear polynomial. Then dimH = n− 1.

Proof. As H = Spec (A/⟨f⟩), and ⟨f⟩ is a prime ideal as any linear polynomial is irreducible in
k[x1, . . . , xn] and since the latter is a UFD, therefore f prime as well. By Theorem ??, we have
dimH = dim k[x1, . . . , xn]− ht ⟨f⟩ = n− 1, as required.

An important observation about varieties is as follows.
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Remark 7.2.4 (Dimension of scheme theoretic image). Let f : X → Y be a dominant morphism
of varieties. Consequently, there is an induced map on function fields as generic point maps to
generic point by dominance. Let f ♭ : K(Y ) → K(X) be this map. As f ♭ is an injection, we thus
have the inequality

trdeg K(Y )/k ≤ trdeg K(X)/k.

Consequently, we deduce that

dimY ≤ dimX.

7.3 Dimension of fibers

In this section, we discuss the question of how the dimension of fibers of a morphism varies. We’ll
see that certain nice geometric situations are encoded in the maps for which the dimension of fibers
is not too erratic.

7.4 Irreducible components

In this short section, we describe the decomposition of a closed subscheme of a locally noetherian
scheme into finitely many irreducible components. Let us begin by the following basic observation.

Remark 7.4.1 (Integral closed subschemes by points). Let X be a scheme and x ∈ X be a point
and Z = {x} to be the closed irreducible subspace of X. Giving Z the reduced induced subscheme
structure on Z, thus making Z ↪→ X an integral closed subscheme of X.

The following proposition shows that a minimal prime in an affine open subset gives an irre-
ducible component of the whole scheme!

Proposition 7.4.2. Let X be a scheme, U = Spec (A) ⊆ X an open affine and p ∈ U . Denote
Y = {p} to be the closed irreducible subspace of X. Then the following are equivalent:

1. p is a minimal prime of A.
2. Y is an irreducible component of X.

Proof. (L ⇒ R) Suppose Y ⊊ Z is a closed irreducible set of X properly containing Y . Denote
η ∈ Z to be its unique generic point. As U ∩ Z is a non-empty open subset of Z, therefore it is
dense in Z. Consequently, η = q ∈ U . If Y ∩U ⊊ Z ∩U , then Z ∩U = V (q) ⊆ U properly contains
Y ∩U = V (p). By Lemma 2.0.1, we get √q ⊊

√
p, so that q ⊊ p, contradicting the minimality of p.

(R ⇒ L) Let Y be a maximal closed irreducible set. If q ⊊ p, then V (q) ⊇ V (p) in U . De-
note Z = {q}. If V (p) = V (q), then Z ∩ U = Y ∩ U and hence Y = Z. Hence we may assume
Y ∩U ⊊ Z ∩U . As p ∈ Y ∩U ⊆ Z ∩U , therefore {p} = Y ⊆ Z. But since Y ∩U ̸= Z ∩U , therefore
Y ⊊ Z, a contradiction to maximality of Y .

Construction 7.4.3 (Irreducible & embedded components of a subscheme). Let X be a locally
noetherian scheme and Y ↪→ X be a closed subscheme. Cover X by open affines {Uα}α∈I where
Uα = Spec (Aα), Aα is a noetherian ring. Fixing α ∈ I, we see that Y ∩ Uα ⊆ Uα is a closed
subscheme. It follows that Y ∩ Uα = Spec (Aα/aα) = V (aα) for some ideal aα ≤ Aα.
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By primary decomposition theorem (Theorem ?? or Corollary ??), it follows that there are
distinct primes pα,i, i = 1, . . . , Nα of Aα such that

aα =
⋂

i=1,...,Nα

qα,i.

where qα,i is a pα,i-primary ideal. Moreover, by Theorem ??, 2, we also get

V (aα) =
⋃

i=1,...,Nα

V (qα,i) =
⋃

i=1,...,Nα

V (pα,i).

We thus get points S = {pα,i}α,i of X which we relabel by S = {pβ}β∈J and remove repeated points.
By above remark, we thus get closed integral subschemes {Yβ}β∈J of X, which we call components.
Moreover, as each pβ ∈ Y and Y is closed, therefore each Yβ is a closed integral subscheme of
Y itself. The minimal/isolated primes amongst S correspond to irreducible components of Y via
Proposition 7.4.2. The others correspond to embedded components of Y .

IfX is moreover noetherian, then indexing set I is finite and thus Y has finitely many irreducible
and embedded components.
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8 Projective schemes
The most important type of examples that we will encounter in our study of algebraic geometry are
subvarieties of projective space Pnk . Indeed, this is a construction which is fundamental because of
the many nice properties enjoyed by realizing familiar constructions in it. One of them being this
classical observation that any two straight lines are bound to intersect at atleast one point in the
projective space. We shall see more equally nice results, not to mention the quadrics with which
we wish to spend some considerable time as the main motivating example for us (Example 5.1.3)
is itself realized as a quadric in projective space.

We recall that the notion of projective varieties, whose generalization we shall embark now on,
has been covered in Section 5.

We first begin by defining the space Proj(S) of a graded ring S =
⊕

d≥0 Sd.

Definition 8.0.1. (Projective spectrum of a graded ring) Let S =
⊕

d≥0 Sd be a graded ring
and let S+ =

⊕
d>0 Sd be the ideal generated by non-zero degree elements. Denote

Proj(S) := {p ⪇ S | p is homogeneous prime ideal & p ̸⊇ S+}.

The set Proj(S) is called the projective spectrum of the graded ring S.

Note that the latter condition is motivated by Remark 5.3.13. This is also used in a technical
manner to show existence of a nice basis over Proj(S) in Lemma 8.1.3 and in other proofs as well.
We now show that there is a natural topology over Proj(S), akin to the affine case.

Lemma 8.0.2. Let S be a graded ring and denote for a homogeneous ideal a ≤ S, the following
subset of Proj(S):

V (a) = {p ∈ Proj(S) | p ⊇ a}.

Then, for any homogeneous ideals a, b, ai of S, we obtain
1. V (a) ∪ V (b) = V (ab),
2.

⋂
i V (ai) = V (

∑
i ai).

Proof. Same as Lemma 2.0.1.

We thus obtain a topological space Proj(S) where a set is closed if and only if it is of the form
V (a) for a homogeneous ideal a ≤ S. This is called the Zariski topology over the Proj(S).

We now give some more topological properties of Proj(S).

8.1 Topological properties of Proj(S)
The first obvious question is how does the inclusion Proj(S) ↪→ Spec (S) looks topologically?

Lemma 8.1.1. Let S be a graded ring. The topology of Proj(S) is obtained by subspace topology
of Spec (S). Thus, there is a continuous inclusion

Proj(S) ↪→ Spec (S).
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Proof. Immediate from definitions.

We further note that for a graded ring S, the degree zero elements S0 form a subring of S by
the virtue of the fact that Sd ·Se ⊆ Sd+e. Thus, we obtain a continuous map as the following shows.

Lemma 8.1.2. Let S be a graded ring. Then the following is a continuous map

ϕ : Proj(S) −→ Spec (S0)
p 7−→ p ∩ S0.

Proof. Pick any ideal a ≤ S0 and notice that it is already homogeneous in S. Consequently,
ϕ−1(V (a)a) = V (a)h where V (a)a ⊆ Spec (S0) and V (a)h ⊆ Proj(S).

We now find a collection of open sets which forms a basis for Proj(S). This is akin to Lemma
2.1.4.

Lemma 8.1.3. Let S be a graded ring and f, g ∈ Sd for some d > 0 be homogeneous elements.
Denote

D+(f) := {p ∈ Proj(S) | f /∈ p}.

Then,
1. D+(f) is an open subset of Proj(S),
2. D+(f) ∩D+(g) = D+(fg),
3. {D+(f)}f∈Sd,d>0 forms a basis of Proj(S).

Proof. 1. Since D+(f) = Proj(S) \ V (f), thus D+(f) is open.
2. Straightforward.
3. Since for any p ∈ Proj(S), there exists f ∈ Sd for some d > 0 such that f /∈ p as p does not
contain all of S+, thus

⋃
f∈Sd,d>0D+(f) = Proj(S). The rest follows by 2.

Remark 8.1.4. As tempting as it might be to think, but not all projective schemes are quasi-
compact. An example is given by the graded ring S = Z[x1, x2, . . . ], the polynomial ring over Z
with countably infinitely many indeterminates. Then one observes that Proj(S) =

⋃∞
n=1D+(xn).

Moreover, as for any p ∈ Proj(S) can not contain S+, therefore p necessarily has to not contain
some xi, otherwise it contains S+. Consequently, we cannot form a finite subcover of the above
cover, showing that Proj(S) is not quasi-compact.

However, the following lemma might be helpful in checking when a projective scheme has a
finite cover by basic open sets.

Lemma 8.1.5. Let S be a graded ring and consider X = Proj(S). Let f = f0 + · · · + fn be a
decomposition of f ∈ S into homogeneous elements fd ∈ Sd. Then,

D(f) ∩X = (D(f0) ∩X) ∪
n⋃
d=1

D+(fd)

where we view X ⊆ Spec (S) and D(f), D(f0) ⊆ Spec (S).
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Proof. This is a rather straightforward proof. To show (⊆), consider a point p ∈ D(f) ∩ X so
that f /∈ p. It follows from f = f0 + · · · + fn that for some d = 0, . . . , n, fd /∈ p, which is in turn
equivalent to stating that p ∈ D+(fi) if i ≥ 1 or p ∈ D(f0) ∩X if d = 0.

Conversely, pick p ∈ (D(f0)∩X)∪
⋃n
d=1D+(fd). We obtain that for some d = 0, . . . , n, fd /∈ p.

It follows from p =
⊕

i≥0 p ∩ Si that if f ∈ p, then we get by uniqueness of representatives of the
direct sum that fd ∈ p, a contradiction.

8.2 The structure sheaf OProj(S) and projective schemes

We have studied some basic properties of the topological space Proj(S) so far, we now construct a
structure sheaf over it and make it, first, into a locally ringed space and, second, into a scheme. We
first define the structure sheaf of projective spectrum, in which there is nothing new in comparison
to projective varieties (see Definition 5.3.1).

Definition 8.2.1. (The structure sheaf OProj(S)) Let S be a graded ring. Let U ⊆ Proj(S) be
an open set of the projective spectrum of S. Define the following set

OProj(S)(U):=
¶
s:U→

∐
p∈U

S(p) | ∀p∈U,s(p)∈S(p) & ∃ open p∈V⊆U & f,g∈Sd, d≥0 s.t. ∀q∈V, g/∈q & s(q)=f/g
©
.

From the fact that its elements are functions locally defined, one immediately obtains that OProj(S)
is a sheaf with obvious restriction maps. By appropriate restrictions on the domain, one further
sees that under pointwise addition and multiplication, OX(U) forms a commutative ring with 1.

Let us now show that Proj(S) is a scheme over Spec (S0) in a natural manner.

Lemma 8.2.2. Let S be a graded ring. Then Proj(S) is a scheme over Spec (S0).

Proof. We need only define a map Proj(S)→ Spec (S0). By Theorem 3.0.5, we need only construct
a homomorphism S0 → Γ(Proj(S),OProj(S)). This is straightforward, as we can interpret each
a ∈ S0 as a homogeneous regular function s : Proj(S)→ ⨿p∈Proj(S)S(p) mapping as p 7→ a/1.

Thus, (Proj(S),OProj(S)) is a ringed space. We now see that the stalk of this sheaf is isomorphic
to the homogeneous localization. This will thus show that (Proj(S),OProj(S)) is a locally ringed
space (Lemma ??).

Lemma 8.2.3. Let S be a graded ring and consider the ringed space (Proj(S),OProj(S)). For each
p ∈ Proj(S), we have

OProj(S),p ∼= S(p).

Proof. Consider the following map

ϕ : OProj(S),p −→ S(p)

(U, s)p 7−→ s(p).

It is straightforward to see that ϕ is a well-defined ring homomorphism. To see injectivity, suppose
(U, s)p 7→ 0. Thus s(p) = 0. Consequently, for some open V ⊆ U containing p where s is given
by f/g for f, g ∈ Sd, d ≥ 0, we obtain s(q) = f/g = 0 for all q ∈ V . Thus s = 0 on V and hence
(U, s)p = (V, ρU,V (s))p = 0. To see surjectivity, pick any f/g ∈ S(p). Observe that g /∈ p. Thus
consider (D+(g), f/g)p ∈ OProj(S),p.
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We now show that the locally ringed space (Proj(S),OProj(S)) is a scheme. For this purpose we
would need to show that Proj(S) is covered by affine opens. Indeed, we have the following lemma.

Lemma 8.2.4. Let S be a graded ring and consider the locally ringed space (Proj(S),OProj(S)).
For each f ∈ Sd, d > 0, we have the following isomorphism of locally ringed spaces(

D+(f),OProj(S)|D+(f)
) ∼= (Spec (S(f)),OSpec(S(f))

)
.

Proof. Consider the map

ϕ : D+(f) −→ Spec
(
S(f)

)
p 7−→ (p · Sf )0.

By Lemma ??, it follows that ϕ is a bijection. To show that ϕ is an isomorphism it is sufficient to
show that ϕ is a closed map. This is immediate as p ⊇ a in D+(f) if and only if (p ·Sf )0 ⊇ (a ·Sf )0
in Spec

(
S(f)

)
.

We now wish to show isomorphism of corresponding sheaves. For this, we construct a map

ϕ♭ : OSpec(S(f)) −→ ϕ∗OD+(f)

and show that this is an isomorphism. Indeed, we first observe a canonical isomorphism on stalks

OD+(f),p ∼= S(p)
ηp−→ (S(f))(p·Sf )0

∼= OSpec(S(f)),ϕ(p).

Then one can construct the above isomorphism ϕ♭ by observing the following square for sections
of the relevant sheaves over open U ⊆ Spec

(
S(f)

)
and the corresponding ϕ−1(U) ⊆ D+(f):

U ϕ−1(U)

∐
p∈ϕ−1(U)((S(f))ϕ(p))

∐
p∈ϕ−1(U) Sp

s t

∼=
⨿pηp

ϕ
∼=

,

where s ∈ OSpec(S(f))(U) and t ∈ OD+(f)(ϕ−1(U)) its image under ϕ♭ (which is defined by the above
square). One can indeed check that ϕ♭ as defined is natural w.r.t restrictions.

Remark 8.2.5. Thus, for a graded ring S, we obtain a scheme (Proj(S),OProj(S)), which is called
the projective scheme associated to a graded ring S.

We now give some more properties of Proj(S).

Proposition 8.2.6. 32 Let S be a graded ring. Then,
1. Proj(S) = ∅ if and only if ∀s ∈ S+, s is a nilpotent element of S.

32Exercise II.2.14 of Hartshorne.



82 8 PROJECTIVE SCHEMES

2. Let ϕ : S → T be a graded map of graded rings. Then U = {q ∈ Proj(T ) | q ̸⊇ ϕ(S+)} is an
open set and the natural map

f : U −→ Proj(S)
q 7−→ ϕ−1(q)

defines a map of schemes.
3. Let ϕ : S → T be a graded map of graded rings for which there exists d0 ∈ N such that ϕd :

Sd → Td is an isomorphism for all d ≥ d0. Then, U = Proj(T ) and f : Proj(T )→ Proj(S) is
an isomorphism.

Proof. 1. The R =⇒ L is immediate. Otherwise take an element s ∈ Sd. By Lemmas 8.1.3, 3
and 8.2.4, we obtain that Spec

(
S(s)

)
= ∅. Consequently, any prime ideal of Spec (Ss) has no zero

degree terms, which can be seen to be not true. Consequently, D(s) = Spec (Ss) = ∅. It follows
from Lemma 2.2.7 that s is nilpotent.

2. The fact that U is open depends on ϕ being graded, i.e. ϕ(Sd) ⊆ Td for all d ≥ 0. The
continuity of f follows from the same observation. The map on sheaves is given by extending the
natural map on stalks ϕ(q) : S(ϕ−1(q)) → T(q), whose well-definedness, again, uses the fact that ϕ is
graded.

3. The main trick here is to observe that if s ∈ Sd for d < d0, then raising some high enough power
of s will make sn ∈ Se where deg sn ≥ d0. For showing isomorphism on stalks ϕ(q) : S(ϕ−1(q)) → T(q),
it comes down to observing the following: let s/t ∈ S(ϕ−1(q)), then s/t = stn/tn+1 for any n ∈ N.
Then use the trick above.

Remark 8.2.7. The above Proposition 8.2.6 shows that the mapping S 7→ Proj(S) is NOT func-
torial! However the statement 3. might give some hint how to fix this.

Next, we understand all closed subschemes of Proj(S) in the following two results (Corollary
8.2.10)

Proposition 8.2.8. Let S, T be a graded rings.
1. If ϕ : S → T is a surjective graded map, then the open set U = Proj(T ) and f : Proj(T ) →

Proj(S) is a closed immersion (see Proposition 8.2.6, 2).
2. Let I ≤ S be a homogeneous ideal and consider the ideal I ′ =

⊕
d≥d0 Id. Then, I, I ′ defines

the same closed subscheme of Proj(S).
3. Let I ≤ S be a homogeneous ideal and let π : S → S/I be the natural projection. Then the

closed subscheme f : Proj(S/I)→ Proj(S) (as in 1.) has the ideal sheaf given by Ĩ ≤ OProj(S).

Proof. 1. U = Proj(T ) because ϕ(S+) = T+. The fact that f is a topological immersion follows
from the observations that f(Proj(T )) = V (Ker (ϕ)) where Ker (ϕ) is homogeneous and that for
any ideal q ≤ T , it follows from surjectivity that ϕ(ϕ−1(q)) = q. To show surjectivity of sheaves,
it reduces to showing surjectivity of localization maps Sϕ−1(q)

ϕ(q)−→ T(q), which is immediate from
surjectivity of ϕ.
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2. We wish to show an isomorphism as in the following commutative diagram:

Proj(S/I) Proj(S/I ′)

Proj(S)

∼=

.

Now since (S/I)d = Sd/Id for all d ≥ 0, therefore we have an isomorphism ϕ : (S/I)d → (S/I ′)d
given by sd + Id 7→ sd + I ′d. The result follows from Proposition 8.2.6, 3.
3. We wish to show that Ker

Ä
f ♭ : OProj(S) → f∗OProj(S/I)

ä
is given by Ĩ. It suffices to check this

on basic open sets D+(g), g ∈ Sd, d > 0, by uniqueness of the sheaf defined on a basis. Indeed
it follows that f ♭ on D+(g) is given by the localisation map S(g) → S(g)/I(g), whose kernel is
I(g) = Ĩ(D+(g)).

Proposition 8.2.9. Let S = A[x0, . . . , xr] for a ring A and let X = Proj(S).
1. Let I ≤ S be a homogeneous ideal and denote Ī = {s ∈ S | ∀i = 0, . . . , r, ∃ni s.t. xni

i s ∈ I}
to be the saturation of I. Then, Ī is homogeneous.

2. Let I, J ≤ S be two homogeneous ideals. Then Proj(S/I) ∼= Proj(S/J) if and only if Ī = J̄ .
3. Let Y ↪→ Proj(S) be a closed subscheme. Then, Γ∗(IY ) is a saturated ideal of S.

Proof. 1. This follows from a simple consideration of the uniqueness of homogeneous decomposition
of each element in a graded ring.
2. We may reduce to showing that I and Ī defines the same closed subscheme. We already have
I ↪→ Ī which translates to V (Ī) ↪→ V (I). Conversely, pick p ∈ V (I) ⊆ Proj(S). We wish to show
p ⊇ Ī. Pick any s ∈ Ī. Assume that s /∈ p. It then follows that p = ⟨x0, . . . , xr⟩ which is a prime
ideal which contains S+, thus p /∈ Proj(S), a contradiction.
We then wish to show isomorphism of sheaves. Going to basic opens, this reduces to showing
surjection is an injection:

(S/I)(f) −→ (S/Ī)(f)
s+ I

fn
7−→ s+ Ī

fn
.

This follows from the fact that Ī is saturated33.
3. Pick a homogeneous element s ∈ Sd such that for each i = 0, . . . , r, there exists ni ∈ N such that
xni
i s ∈ Γ(IY (d+ ni), X). We wish to show that s ∈ Γ∗(IY ). Note that s ∈ Γ(OX(d), X). Cover X

by D+(xi) and consider the restrictions xni
i s ∈ IY (d + ni)(D+(xi)). Multiplying (tensoring) xni

i s
with x−ni

i ∈ OX(−ni)(D+(xi)) yields s ∈ IY (d + ni) ⊗OX
OX(−ni) ∼= IY (d) over D+(xi). Thus,

gluing these sections up from each D+(xi), we get s ∈ Γ(IY (d), X) ⊆ Γ∗(IY ), as required.

Using the above result, it is possible to find a characterization of closed subschemes of Proj(S)
in terms of algebraic data.

Corollary 8.2.10. Let S = A[x0, . . . , xr] be a graded ring for a ring A. Then there is a correspon-
dence:

{All closed subschemes of Proj(S)} {All saturated ideals of S}∼= .

33In-fact, this step shows exactly why the definition of saturation would’ve been made!
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Proof. Follows from Proposition 8.2.9.

Next, let us show how projective n-spaces over a ring changes with extension of scalars.

Definition 8.2.11. (Projective n-space over a ring) Let A be a ring. The projective n-space
over A is defined to be PnA := Proj(A[x0, . . . , n]). By Lemma 8.2.2, PnA is a scheme over Spec (A).

We now see how PnA behaves under extension of scalars.

Lemma 8.2.12. Let A→ B be a map of rings and Spec (B)→ Spec (A) be the corresponding map
of affine schemes. Then,

PnB ∼= PnA ×Spec(A) Spec (B).

Proof. Observe that D+(xi) ⊆ PnA for i = 0, . . . , n covers PnA as A[x0, . . . , xn] is finitely generated
by xi as an A-algebra. By Lemma 6.4.7 together with Lemma 8.2.4 we obtain the following:

PnA ×Spec(A) Spec (B) =
Ç

n⋃
i=0

D+(xi)
å
×Spec(A) Spec (B)

∼=
n⋃
i=0

D+(xi)×Spec(A) Spec (B)

∼=
n⋃
i=0

Spec
(
A[x0, . . . , xn](xi) ⊗A B

)
∼=

n⋃
i=0

Spec
(
A[x0/i, . . . ,’xi/xi, . . . , xn/xi]⊗A B)

∼=
n⋃
i=0

Spec
(
B[x0, . . . , xn](xi)

)
∼= PnB.

Remark 8.2.13. Since any ring A is a Z-algebra and PnA is naturally a Z-scheme, therefore PnA ∼=
PnZ ×Spec(Z) Spec (A), where the projection map PnA → Spec (A) is the usual structure map. This
further motivates the construction of a projective space over any scheme.

Definition 8.2.14. (Projective n-space over a scheme) Let X be a scheme. The projective
n-space over X is defined to be

PnX := PnZ ×Spec(Z) X.

The natural projection map thus makes PnX a scheme over X.

8.3 Blowups

Do from Chapter 3 of Mumford and Hartshorne.
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9 OX-modules
We will now cover certain types of important OX -modules that we will need in our study. Note
that we defined OX -modules and various other algebraic constructions on them in Chapter ??,
thus we assume the basic notion of OX -modules and its global algebra being known and we will
thus specialize to the case of X being a scheme. The main goal is to define and study coherent
and quasi-coherent modules over a scheme X. Its importance will manifest later in our study of
projective schemes and their cohomology, the latter of which is an extremely powerful and versatile
tool for doing geometry over schemes.

9.1 Coherent and quasi-coherent modules on schemes

Quasi-coherent sheaves form an integral part of the backbone of an attempt at doing geometry on
schemes. Even though the definitions here makes sense in the setting of locally ringed spaces, but
this theory is much more better behaved in the setting of schemes; for schemes, such sheaves have
nice description on affine opens. This is the reason it is not included in Foundational Geometry,
Chapter ??.

We first define the notion of quasicoherent modules on schemes.

Definition 9.1.1. (Quasicoherent and coherent OX-modules) Let X be a scheme. Then an
OX -module F is called quasicoherent if there exists an affine open cover {Ui := Spec (Ri)}i∈I of X
and {Mi}i∈I where Mi is an Ri-module such that F|Ui

∼=›Mi for all i ∈ I. Further, F is said to be
a coherent module if each Mi is a finitely generated Ri-module for each i ∈ I.

Remark 9.1.2. There are five basic properties of quasi-coherent sheaves on a scheme, which we
point out now.

1. Quasicoherence of a module can be checked locally.
2. The global sections functor of a quasicoherent module over an affine scheme is exact34.
3. The image of the functor (̃−) : Mod(R)→Mod(OSpec(R)) (see Definition 2.3.1 and remarks

surrounding it) is precisely all quasicoherent modules over Spec (R).
4. Quasicoherence is preserved under inverse image. It is further preserved under direct image

if domain is a Noetherian scheme or if the map is quasi-compact and separated.
5. The category of all quasicoherent modules

QCoh(OX)

is a Grothendieck-abelian category.

We will come to these results one by one. We first discuss some basic properties and examples.

9.1.1 Examples of quasicoherent modules

Lemma 9.1.3. Let X = Spec (A) be an affine scheme and a ≤ A be an ideal. Consider the
corresponding closed immersion

i : Spec (A/a) = Y ↪→ Spec (A) = X.

34This in cohomological language means that the first cohomology group H1(X,F) = 0, as we shall see after few
sections.
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Then,
1. i∗OY is a coherent OX-module,
2. i∗OY ∼=fiA/a.

Proof. 1. Consider the following

ϕ : OX × i∗OY −→ i∗OY

which on a basic open D(f) ⊆ X for f ∈ A is given by

ϕD(f) : Af × (A/a)f̄ → (A/a)f̄

as the usual Af -module structure over (A/a)f̄ . Indeed, as the above maps are natural w.r.t.
restrictions, this suffices by Theorem ??. Thus, i∗OY is an OX -module. Further, i∗OY is a co-
herent OX -module as the open cover {D(f)}f∈A of X is such that i∗OY (D(f)) ∼= (A/a)f̄ is an
OX(D(f)) ∼= Af -module generated by 1̄ (in the case when f ∈ A, we have i∗OY (D(f)) = 0 and so
trivially a finitely generated Af -module).

2. Again, by the use of above mentioned lemma, we may reduce to working over a basis ofX. Choos-
ing {D(f)}f∈A to be such a basis, we see that i∗OY (D(f)) ∼= (A/a)f and fiA/a(D(f)) ∼= (A/a)f .
Hence, we may define a map i∗OY → fiA/a which on basic opens is identity. Consequently, this
map on stalks is identity. This by above used lemma again yields a unique sheaf morphism
ϕ : i∗OY →fiA/a which is an isomorphism as at stalks it is an isomorphism.

Example 9.1.4. Let X be an integral noetherian scheme and let K be its function field. Let K
be the constant sheaf of field K over X. Then K is a quasi-coherent OX -module.

As X is noetherian, therefore let X =
⋃n
i=1 Spec (Ai) where Ai are noetherian rings. As X

is integral, therefore by Lemma 4.2.2, each Ai is a noetherian domain. Thus we deduce that
K ∼= Q(Ai) for each i, where Q(Ai) is the fraction field of Ai. This is because Spec (Ai) are open
and X irreducible. We now show that K is an OX -module.

Pick any open U ⊆ X. Recall from Chapter ?? that a section of K(U) is a continuous map
U → K with K in discrete topology. For any point p ∈ Spec (Ai), as Ai is a domain, we see that
(Ai)p ↪→ Q(Ai) ∼= K for each i. We thus deduce that K is an OX,x-algebra for each x ∈ X in a
natural way and OX,x ⊆ K. So we may now define

OX(U)×K(U)→ K(U)
(c, s) 7→ c · s

where c · s : U → K is defined by c(x)s(x) ∈ K, c(x) ∈ OX,x ⊆ K. This is continuous as each
c ∈ OX(U) is seen to be a continuous map c : U →

∐
x∈U OX,x ⊆ K as it is locally constant

(Remark ?? and that locally around each point we have an affine open inside every open). This is
automatically compatible with restrictions. Consequently, K is an OX -module.

Next, to see this is quasi-coherent, we claim that the affine open cover {Ui = Spec (Ai)}i=1,...,n
is such that K|Ui

is isomorphic to ‹K. Consequently, we reduce to proving the following claim :
Let X = Spec (A) be an affine scheme where A is a noetherian domain and let K = Q(A) be its
fraction field. Then, the constant sheaf K associated to K is isomorphic to the OX -module ‹K.
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It suffices to construct a map ϕ : K → ‹K defined only on a basis such that on basics it is
an isomorphism. For this, we notice that since localization of a domain at an element is again a
domain, therefore for each g ∈ R, the open D(g) ⊆ X is connected. Hence, K(D(g)) = K and‹K(D(g)) ∼= Kg = K. Thus, we may define ϕD(g) : K → K to be identity which is then easily seen
to be a sheaf morphism. Hence, these sheaves are isomorphic as OX -modules.

Example 9.1.5. We now discuss a specific example of quasi-coherent modules over Spec (Z), which
brings to light the constraints put on by quasi-coherence on an OX -module. We ask the following
question : What are all quasicoherent skyscraper OZ-modules over Spec (Z) supported at non-zero
prime p ∈ Z? We claim that these are in bijection with all p∞-torsion Z-modules, that is, every
element of the module is annihilated by some power of p:ß

Quasicoherent OZ−modules F

skyscraper at p ∈ Z

™
∼=
{Abelian groups M which are p∞-
torsion.

}
Indeed, let F be a quasicoherent skyscraper module at prime p ∈ Z. Let us invoke the Corollary
9.1.12, to conclude that F = M̃ for some Z-module M . As it is skyscraper, therefore for any open
U ∋ p in Spec (Z), we have F(U) = G where G is a fixed abelian group and F(U) = 0 if p /∈ U .
Consequently, we have that Fx = 0 if x ̸= p and Fp = G. As F = M̃ , therefore we have

Γ(F, X) = G ∼=M.

Further, for any basic open D(f) ⊆ Spec (Z) containing prime p, we deduce that F(D(f)) ∼=Mf
∼=

G ∼=M . This, when unravelled, yields that for any integer f ∈ Z such that f /∈ ⟨p⟩ ⇐⇒ p ̸ |f , we
have Mf

∼= M . Further, if ⟨p⟩ /∈ D(f) ⇐⇒ p|f , then Mf = 0. Now fix any m ∈ M . We claim
that some power of p annihilates m. Indeed, consider D(p) which does not contain ⟨p⟩ as p ∈ ⟨p⟩.
Thus, by above, we have that m

1 = 0 in Mp. Consequently, for some k ∈ N, we have pkm = 0, as
required. Hence, Tp∞(M) =M .

Conversely, consider a p∞-torsion abelian group M . We wish to show that the quasicoherent
module associated to M , M̃ , is skyscraper at p ∈ Z. Let D(f) ⊆ Spec (Z) be a basic open not
containing ⟨p⟩, equivalently, p|f . Then, we see that M̃(D(f)) ∼= Mf . Now pick any m

fk
∈ Mf . Let

pnm = 0. Thus, fnm = 0 as p|f . Consequently, we may write m
fk

= 1
fk

m
1 = 1

fk
fnm
fn = 1

fk
0
fn = 0.

Thus, Mf = 0.
Let D(f) now be a basic open set which contains ⟨p⟩, equivalently, p ̸ |f . Then, M̃(D(f)) ∼=Mf

and we wish to show that Mf
∼= M . Indeed, observe that since p ̸ |f , therefore gcd(pk, f l) = 1 for

all k, l ≥ 1. It follows that there exists ak, bl ∈ Z such that

akp
k + blf

l = 1.

Thus, for any m
fn ∈Mf , where pkm = 0, we obtain ak, bn ∈ Z such that akpk+bnfn = 1. Using this

on module M , we yield akpkm+ bnf
nm = m, that is, bnfnm = m. Consequently, we may write
m

fn
= bnf

nm

fn
= bnm

1
in Mf . It follows that the localization map ϕ :M →Mf is surjective. We thus need only establish
the injectivity of ϕ. Indeed, if ϕ(m) = m

1 = 0 in Mf , then fnm = 0 for some n ∈ N. By above,
we have bn ∈ Z such that bnfnm = m. Consequently, m = bnf

nm = 0, that is, Ker (ϕ) = 0, as
required. Thus, ϕ :M →Mf is the required isomorphism. This completes the proof.



88 9 OX -MODULES

9.1.2 Locality of quasicoherence

We now discuss some more results which would culminate in the proofs of statement 1 in Remark
9.1.2.

Lemma 9.1.6. Let F be a quasicoherent module over an affine scheme X = Spec (R). Then X

admits a finite open affine cover {D(gi)}ni=1 such that F|D(gi)
∼=›Mi where Mi is an Rgi-module.

Proof. Since F is quasicoherent, therefore there exists an open affine cover {Ui = Spec (Si)}i of
X such that F|Ui

∼= ›Mi where Mi is an Si-module. Since subsets of the form D(g) forms a
basis of X therefore for D(g) ⊆ Ui we obtain via Lemma 2.3.4, 2, that F|D(g) ∼= ‰�Rg ⊗Si Mi as
D(g) ∼= Spec (Rg). Since Ni := Rg ⊗Si Mi is an Rg-module, so we have a cover of X by finitely
many D(gi) by Lemma 2.1.6 such that F|D(gi)

∼= Ñi where Ni is an Rgi-module.

Using the above, we first show a technical lemma, which will be generalized later on, which will
be used to show locality of quasi-coherent modules35.

Lemma 9.1.7. Let X = Spec (A) be an affine scheme and F ∈ QCoh(X) be a quasi-coherent
module. Let D(f) ⊆ X be a basic open set for some f ∈ A.

1. If s ∈ Γ(F, X) is a global section of the module F such that s restricted on D(f) is 0, then
there exists n > 0 such that fns = 0 over X.

2. If t ∈ F(D(f)), then there exists n > 0 such that fnt ∈ F(D(f)) extends to a global section
of the module F.

Proof. 1. By Lemma 9.1.6, there exists a finite open cover D(gi) of X such that F|D(gi)
∼= ›Mi.

Denoting the restriction of s to D(gi) as si ∈Mi, we see that the image of si is zero in (Mi)f when
restricted to D(fgi) = D(f)∩D(gi). Consequently, for some ni > 0, we have fnisi = 0 over D(gi).
As gi are finitely many, taking large enough n, we obtain fnsi = 0 over each D(gi). It follows that
the global section fns of the module F is such that it’s restriction to each open set of an open cover
of X is 0. By sheaf axioms, it follows that fns = 0 over X.

2. Fix the finite open affine cover {D(gi)}ni=1 of X coming from Lemma 9.1.6. Consider all the
finitely many intersections D(g) ∩D(gi) = D(fgi). Restricting t from D(f) to D(fgi), we obtain
ti ∈ (Mi)f for each i. Hence, for each i, there is some ni > 0 such that fniti ∈Mi = F(D(gi)). By
multiplying by large fk to each fniti which are finitely many, we may arrange that fnti ∈ F(D(gi)).

We now form a matching family for the module F over the open cover {D(gi)} which would
glue up to give the required global section. Indeed, fix two D(gi) and D(gj). Restrict fnti and
fntj to D(gi) ∩ D(gj) = D(gigj). Observe that over the even smaller open D(fgigj), the section
fnti − fntj is zero as ti = tj = t over D(fgigj) ⊆ D(f). Hence by item 1 applied over D(gigj),
there exists mij > 0 such that fmij (fnti− fntj) = 0, hence fn+mij (ti− tj) = 0 over D(fgigj). As i
and j are finitely many, so taking m large enough, we obtain fn+mti = fn+mtj over F(D(gigj)) for
each i and j. Thus, the family {fn+mti} is a matching family which glues up to give s ∈ Γ(F, X)
such that its restriction over D(f) is fn+mt36.

35The result is similar in flavour to Proposition 3.1.4.
36Note that we have implicitly used the fact the restriction maps of F preserves the respective module structures

(see remarks surrounding Definition ??)
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Remark 9.1.8. Let X = Spec (R) be an affine scheme and F be a quasicoherent OX -module over
X. Then, we obtain a map

α :‚�Γ(F, X) −→ F

which on a basic open set D(f) ⊆ X, f ∈ R is given by Γ(F, X)f → F(D(f)) mapping as
m/fn 7→ ρX,D(f)(m)/fn. Indeed, this is a OX -linear homomorphism which on stalks yields the
Rp-linear map

Γ(F, X)p −→ Fp

which is given by

Γ(F, X)⊗R Rp
∼= Γ(F, X)⊗R lim−→

f /∈p
Rf ∼= lim−→

f /∈p
Γ(F, X)⊗R Rf = lim−→

D(f)∋p

‚�Γ(F, X)(D(f))→ lim−→
D(f)∋p

F(D(f)).

We will see that this map α would become an isomorphism, especially due to the fact that quasi-
coherent modules behave very nicely on open affines of the form D(f), as the Lemma 9.1.6 shows.

Corollary 9.1.9. Let F be a quasicoherent sheaf over an affine scheme X = Spec (A). Then, there
is a natural isomorphism of Af -modules for each f ∈ A

Γ(F, X)f
∼=−→ F(D(f))

given by m/fn 7→ ρ(m)/fn where ρ is the restriction map of F from X to D(f)

Proof. Follows from Lemma 9.1.7.

Using the above, one proves the local nature of quasicoherence.

Proposition 9.1.10. Let F be an OX-module over a scheme X. Then the following are equivalent:
1. F is quasicoherent.
2. For all open affine U = Spec (A) ⊆ X we have F|U ∼= M̃ where M is an A-module.

Proof. We need to only show 2⇒ 1. Let F be quasicoherent and U = Spec (A) open affine. We may
assume X = Spec (A). Thus we need to show F ∼= M̃ for an A-module M . By Lemma 9.1.6, we
obtain an open affine coverD(gi) ofX where F|D(gi)

∼=›Mi for an Agi-moduleMi. LetM = Γ(F, X),
which is an A-module. By Corollary 9.1.9, we obtain a natural isomorphism Mi

∼= Mgi . Thus we
have the required result.

A similar result is true for coherent modules.

Proposition 9.1.11. Let F be an OX-module over a Noetherian scheme X. Then the following
are equivalent:

1. F is coherent.
2. For all open affine U = Spec (A) ⊆ X we have F|U ∼= M̃ where M is a finitely generated

A-module.

Proof. See Proposition 5.4, Chapter 2 [Hartshorne].

Corollary 9.1.12. The image of the functor (̃−) of Definition 2.3.1 is exactly all quasicoherent
modules over Spec (R). In other words, Mod(R) ≡flMod(OSpec(R)) = QCoh(OSpec(R)). Further,
if R is noetherian, then this restricts to Mod(R)f.g. ≡ Coh(OSpec(R)).
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9.1.3 Quasicoherence and exactness of global sections

We next see the exactness of global sections functor.

Proposition 9.1.13. Let X be an affine scheme and 0→ F′ → F → F′′ → 0 be an exact sequence
of OX-modules. If F′ is quasicoherent, then

0→ Γ(X,F′)→ Γ(X,F)→ Γ(X,F′′)→ 0

is exact.

Proof. Proposition 5.6, Chapter 2 [Hartshorne].

9.1.4 The category QCoh(X)

The category of quasicoherent modules is further a Grothendieck-abelian category.

Theorem 9.1.14. Let X be a scheme. The category QCoh(OX) is a Grothendieck-abelian cate-
gory. Consequently, it is an abelian category which has all coproducts.

Proof. Tag 077P, [Stacksproject].

Apart from QCoh(OX) being abelian in its own right, it is also an exact category, where the
underlying abelian category is Mod(OX).

Proposition 9.1.15. Let X be a scheme. If 0 → F → G → H → 0 is an exact sequence of OX-
modules where F and H are quasicoherent, then so is G. Consequently, quasicoherence is preserved
under extensions of modules.

9.1.5 Quasicoherence, direct and inverse images

We now see behavior of quasicoherence and coherence under inverse and direct images.

Lemma 9.1.16. Let f : X → Y be a morphism of schemes and let G be a quasicoherent OY -module.
Then f∗G is a quasicoherent OX-module. If X,Y are noetherian schemes and G is coherent, then
f∗G is coherent.

Proof. The first question is local in both X and Y by Proposition 9.1.10. Indeed, pick x ∈ X and
an open affine V ∋ f(x) in Y . Then by continuity there is an open affine U ∋ x in X such that
f(U) ⊂ V . This shows that we may assume X and Y to be affine. The result is now immediate by
Corollary 9.1.12 and Lemma 2.3.4, 2. The same technique works for coherent case.

For stability under direct image, we need some conditions on the map if noetherian conditions
need to be dropped.

Lemma 9.1.17. Let f : X → Y be a morphism of schemes and F be a quasicoherent OX-module.
Then f∗F is a quasicoherent OY -module if any of the following holds:

1. X is noetherian,
2. f is quasi-compact and separated.
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Proof. By Proposition 9.1.10, we may assume that Y is affine. First, if X is noetherian, then
X =

⋃n
i=1 Ui, Ui = Spec (Ai) and Ai noetherian. By Proposition 4.1.8, Ui ∩ Uj is quasi-compact

and thus can be covered by finitely many open affines, say Uijk. On the other hand if f is q.c.s.
then again X =

⋃n
i=1 Ui and by separatedness Ui ∩Uj is affine, in which case we let Uijk = Ui ∩Uj .

By sheaf axioms of f∗F, we have an exact sequence as in

0 f∗F
⊕

i f∗
(
F|Ui

) ⊕
i,j,k f∗

Ä
F|Uijk

ä
where all maps are induced by restrictions. As F ∈ QCoh(OX), thus by local criterion of Proposi-
tion 9.1.10, we get that F|Ui

=›Mi for some Ai-module Mi. By Lemma 2.3.4, 1, f∗F|Ui
and f∗F|Uijk

are quasicoherent. By Theorem 9.1.14, the middle and the right term in the above exact sequence
are quasicoherent. By the same theorem again, the left term, f∗F is quasicoherent, as required.

9.1.6 More properties

As promised earlier, we state a general result about invertible modules and quasicoherent modules
over schemes. This is a fundamental result and will be used to portray the simplicity of the
techniques developed so far. Moreover, its proof showcases the simplicity of the sheaf language and
is thus a good exercise.

Lemma 9.1.18. Let X be a scheme, L ∈ Pic(X), F ∈ QCoh(X), f ∈ Γ(L, X) and s ∈ Γ(X,F).
Denote by Xf ⊆ X the open subset Xf := {x ∈ X | fx /∈ mxLx}.

1. If X is quasicompact and s is such that s|Xf
= 0, then there exists n ∈ N such that fns = 0

in Γ(L⊗n ⊗ F, X).
2. If X admits a finite affine open cover {Ui} where L|Ui

is free (of rank 1) and Ui ∩ Uj is
quasicompact, then for any t ∈ F(Xf ), there exists n ∈ N such that fnt ∈ (L⊗n ⊗ F)(Xf )
extends to a global section s ∈ Γ(L⊗n ⊗ F, X).

Proof. 1. Cover X by finitely many affine open sets U = Spec (A) which satisfies ϕ : L|U ∼= OX|U ∼=
OSpec(A). Further, denote F|U = M̃ where M is an A-module (Corollary 9.1.12). By restricting f
to U , we may write g = ϕU (f) ∈ A and by restricting s to U , we may write s ∈M . Since s|Xf

= 0
and Xf ∩ U = D(g), therefore s/1 = 0 in Mg. Consequently, there exists n ∈ N such that gns = 0
in M = Γ(U,F|U ). We then observe the following isomorphisms (see Lemma ??):

(L⊗n ⊗ F)|U ∼= O⊗n
X|U ⊗ F|U ∼= O⊗nSpec(A) ⊗ M̃ ∼= M̃.

Consequently, we get isomorphisms in sections over U which yields that f⊗n⊗ s 7→ gns = 0. hence
f⊗n ⊗ s = 0 in L⊗n ⊗F over U . Since this happens for all finitely many Us, therefore taking large
enough n, we observe that f⊗n ⊗ s = 0 in L⊗n ⊗ F over X.

2. Pick t ∈ F(Xf ). For each of the finitely many i, let Ui = Spec (Ai). As L|Ui
∼= OX|Ui

, therefore
Xf ∩ Ui = {p ∈ Spec (Ai) | fp /∈ pAp} = D(f) where we interpret f ∈ L(Ui) by restricting the
global section f . By locality of quasicoherence (Proposition 9.1.10), we have an Ai-moduleMi such
that F|Ui

∼=›Mi. As t ∈ F(Xf ), therefore by restriction, we have ti ∈ F(Ui ∩Xf ) = F(D(f)) ∼=Mf

(Proposition 2.3.3). It follows that for some ni, we have fnit ∈ Mi = F(Ui). Since Ui are atmost
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finite, so we may take a large enough n so that fnt ∈Mi = F(Ui).
Observe that

(L⊗n ⊗ F)|Ui
∼= O⊗nSpec(Ai) ⊗ F|Ui

∼= F|Ui
∼=›Mi

where fnt ∈ F(Ui) corresponds to f⊗n ⊗ t ∈ L⊗n ⊗ F(Ui). As ti = t = tj ∈ F(Ui ∩ Uj ∩ Xf ),
therefore fn(ti − tj) = 0 in F(Ui ∩ Uj ∩Xf ). Our hypothesis that Ui ∩ Uj is quasicompact ensures
by item 1 that there exists k > 0 such that fn+k(ti − tj) = 0 in F(Ui ∩ Uj), for all i, j. It
follows that fn+kti ∈ F(Ui) = L⊗n+k ⊗ F(Ui) is a matching family. It follows that there exists
s ∈ Γ(L⊗n+k ⊗ F, X) which on Xf is fn+kt, as required.

These were some of the basic results on quasicoherent modules. We now do perhaps the most
important application of OX -modules, that when X is a projective scheme.
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9.2 Modules over projective schemes

Let S be a graded ring and M a graded S-module. We attach a sheaf M̃ to M over ProjS.

Definition 9.2.1. (M̃) Let S be a graded ring and M be a graded S-module. Then we define a
sheaf M̃ over Proj(S) given on an open set U ⊆ Proj(S) by

M̃(U):=
¶
s:U→

∐
p∈U

M(p) | ∀p∈U, s(p)∈M(p)&∃ open p∈V⊆U & m∈Md,f∈Sd s.t. f /∈q & s(q)=m/f∀q∈V
©
.

The restrictions are the obvious ones. It is clear that if we treat S as a graded S-module, then
S̃ ∼= OProj(S) where we treat OProj(S) as an OProj(S)-module.

Remark 9.2.2. Over a projective scheme X = Proj(S), the theory of quasi-coherent modules is
the most useful. In particular, we will have the following observations to make about them:

1. Any graded S-module gives an OX -module M̃ which is furthermore quasicoherent.
2. Any OX -module F gives a graded S-module Γ∗(F).
3. For X being the projective n-space over a ring A, we have Γ∗(OX) ∼= A[x0, . . . , xn].
4. Assume S is furthermore finitely generated by degree 1 elements. If F is a quasicoherent

OX -module, then flΓ∗(F) ∼= F.
5. All projective schemes over Spec (A) is of the form Proj(S) where S0 = A and S is finitely

generated as by S1 as an S0-algebra.
These are the main takeaways from the general theory of quasicoherent OProj(S)-modules.

We now attend to these results one-by-one. We first have analogous results to the affine case
on the behaviour of M̃ on basis, on stalks and its quasicoherence.

Proposition 9.2.3. Let S be a graded ring, M be a graded S-module, X = Proj(S) be the projective
scheme over S and M̃ to be the associated sheaf of M over X. Then,

1. for any p ∈ X,

(M̃)p ∼=M(p),

2. for any f ∈ Sd, d > 0 and basic open D+(f),

M̃|D+(f) ∼= fiM(f),

3. the sheaf M̃ is an OX-module which is furthermore quasicoherent,
4. if S is a noetherian ring and M is finitely generated, then M̃ is coherent.

Proof. 1. and 2. follows from repeating Lemma 8.2.4. Statement 3. follows from local property of
quasicoherence (Proposition 9.1.10), the fact that sets of the form D+(f) for f ∈ Sd, d > 0 forms
a basis of X (Lemma 8.1.3) and statement 2 above. Statement 4 follows from coherence being a
local property for Noetherian schemes (Proposition 9.1.11) and statement 2 above.

Remark 9.2.4. The theory of OProj(S)-modules is rich because of various constructions which
interrelates the category grMod(S) of graded S-modules and graded maps and the category
Mod(OProj(S)). Indeed, these constructions is what we will study now, and these will be abso-
lutely indispensable to do geometry in projective spaces Proj(k[x0, . . . , xn]/f) for a homogeneous
polynomial f .
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Remark 9.2.5. The construction of OX -modules is functorial (X = Proj(S)):

(̃−) : grMod(S) −→ QCoh(OX)
M 7−→ M̃

M
ϕ→ N 7−→ M̃

η→ ‹N
where η on a basic open D+(f) is given by the localization maps ηD+(f) :M(f) → N(f).

We first begin by twisting each OProj(S)-module.

9.2.1 Twists and Serre twists

Definition 9.2.6. (Twists) Let S be a graded ring and X = Proj(S). For each n ∈ Z, we define
the nth-Serre twist to be OX(n) which is defined to be fiS(n), the sheaf associated to the n-th twisted
graded S-module S(n) (Definition ??). For each OX -module F, we then define the nth-twist of F
to be F(n) = F ⊗OX

OX(n).

Some obvious questions are: what happens to nth-twist of M̃ for a graded S-module M , what
is so special about OX(n) in relation to OX? We answer these in the following result.

Proposition 9.2.7. Let S be a graded ring generated by S1 as an S0-algebra and X = Proj(S).
Then,

1. OX(n) is an invertible module for all n ∈ Z,
2. for any graded S-modules M,N and n ∈ Z,

(a) ‚�M ⊗S N ∼= M̃ ⊗OX
‹N ,

(b) M̃(n) ∼= flM(n).
3. Let T be a graded ring generated by T1 as a T0-algebra. Let M be a graded S-module and N a

graded T -module. Let ϕ : S → T be a graded map and f : U → Proj(S) be the corresponding
map (Proposition 8.2.6). Then,
(a) f∗(‹N|U ) ∼= S̃N ,
(b) f∗(M̃) ∼=‰�(M ⊗S T )|U ,
(c) f∗(OProj(T )|U ) ∼= T̃ , where T is treated to be an S-module via ϕ.

4. Let ϕ and f as in 3 and let Y = Proj(T ). Then,
(a) f∗(OY (n)|U ) ∼= f∗(OY |U )(n),
(b) f∗(OX(n)) ∼= OY (n)|U .

5. For all n,m ∈ Z,

OX(n)⊗OX
OX(m) ∼= OX(n+m).

Proof. 1. Cover X by basic open sets of the form D+(f) for f ∈ S1. One then easily reduces to
showing that S(n)(f) is a free S(f)-module of rank 1. Indeed, one shows that the following map is an
S(f)-linear map which is an isomorphism as S(f)-modules: S(f) → S(n)(f) given by s/fk 7→ sfn/fk.
One really needs f to be of degree 1 to be able to show that this is an isomorphism.
2. This reduces to finding natural isomorphism M(f) ⊗S(f) N(f) ∼= (M ⊗S N)(f) which one can do
constructing two sided inverses. One of these maps well-definedness will use the fact that degree of
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f is 1.
3. See Lemma 2.3.4 for a) and b) and observe that f−1(D+(g)) = D+(ϕ(g)) for g ∈ S homogeneous
by a simple unravelling of definition of U ⊆ Proj(T ). The statement c) is immediate by looking
the respective sections on a basic open set D+(g).
4. Statement a) follows from 3.a) and 3.c) is immediate from 3.b).
5. Follows from 2.a).

Remark 9.2.8. The twisting functor given by

Mod(OX) −→Mod(OX)

F
f→ G 7−→ F(n) f⊗id→ G(n)

is exact. This is immediate as F(n) = F ⊗OX
OX(n) and thus localizing at a point x, we get

Fx ⊗OX,x
OX(n)x ∼= Fx ⊗OX,x

OX,x where the latter isomorphism follows from Proposition 9.2.7, 1.
In general this tells us also that the stalks of all twisted sheaves F(n) is identical to that of F.

Remark 9.2.9. Let S be a graded ring and X = Proj(S) be the corresponding projective scheme
with F ∈ QCoh(X). Our goal in the next few pages is to understand how we can recover F by the
global sections of all the twisted sheaves F(n). This is recorded in Propositions 9.2.12 and 9.2.13.

9.2.2 Associated graded S-module

We now associate to each OX -module F a graded S-module, where X = Proj(S).

Definition 9.2.10. (Associated graded S-module) Let S be a graded ring, X = Proj(S) and
F an OX -module. Define the associated graded S-module to be

Γ∗(F) :=
⊕
n∈Z

Γ(F(n), X)

where the S-module structure is given as follows: we need only define the scalar multiplication for
homogeneous elements, so let sd ∈ Sd and tn ∈ Γ(F(n), X). Then define sd · tn to be the image of
sd⊗tn ∈ Γ(OX(d)⊗OX

F(n), X) under the isomorphism OX(d)⊗OX
F(n) ∼= F(n+d) via Proposition

9.2.7, 5, in order to obtain an element of Γ(F(n+ d), X), as needed.

Remark 9.2.11. There are two main results about associated graded S-modules.
1. Let S = A[x0, . . . , xr] for a ring A and r ≥ 1. Then Γ∗(OX) ∼= S for X = Proj(S). The

relevance of this result is as follows. We know that the global sections of the structure
sheaf over a projective scheme doesn’t recover the homogeneous coordinate ring back. This
result tells us that looking only at global sections of structure sheaf won’t suffice (hopefully
obvious by now), we need to instead look at global sections of all twists of the structure
sheaf in order to recover the coordinate ring. For example, consider the quadric xy − wz
in P5

k. The corresponding coordinate ring is S = k[w, x, y, z, a, b]/xy − wz ∼= k[w,x,y,z]
xy−wz [a, b]

and the corresponding scheme is X = Proj (S). Consequently, we can write S = A[a, b] for
A = k[w,x,y,z]

xy−wz and thus this result would yield that S is isomorphic to Γ∗(OX). Note that to
use this result, we have to force ourselves to go 2 dimensions up.



96 9 OX -MODULES

2. Let S be a graded ring which is finitely generated by S1 as an S0-algebra and let X = Proj(S).
Then, for any quasicoherent OX -module F, we obtain a natural isomorphism flΓ∗(F) ∼= F. This
result therefore tells us that the functor M 7→ M̃ of Remark 9.2.5 from graded S-modules to
quasicoherent OX -modules is essentially surjective.

We’ll later see that these results will allow us to obtain an equivalent criterion of when is a scheme
over an affine scheme projective.

We now state these results and sketch their proofs.

Proposition 9.2.12. Let S = A[x0, . . . , xr] for a ring A and r ≥ 1 and denote X = Proj(S). Then
Γ∗(OX) ∼= S.

Proof. The main idea is to keep reducing the problem to a problem about graded ring S. Since
S is generated by xis as an A-algebra, therefore D+(xi) for i = 0, . . . , r covers X. An element in
Γ∗(OX) is given by a sum of elements tn ∈ Γ(OX(n), X). Let tn ∈ Γ(OX(n), X). The data of tn
is equivalently represented by the (tn,0, . . . , tn,r) where tn,i ∈ OX(n)(D+(xi)) = S(n)(xi) are the
corresponding restrictions. Thus, tn,i ∈ Sxi is a homogeneous element of degree n. Thus, t =

∑
n tn

is equivalently represented by the tuple (t0, . . . , tr) where ti =
∑
n tn,i such that the image of ti

under Sxi → Sxi,xj is same as the image of tj under Sxj → Sxj ,xi for all i, j = 0, . . . , r. Note each of
these Sxi,xj for varying i, j are contained in R = Sx0,...,xr . Now, we have injective maps S → Sxi →
Sxi,xj → R and thus t = (t0, . . . , tr) as above is contained in

⋂r
i=0 Sxi ↪→ R. In fact, any element

of this intersection also corresponds to an element of Γ∗(OX). Consequently, Γ∗(OX) =
⋂r
i=0 Sxi .

It is straightforward to see that this intersection is exactly S by writing a general homogeneous
element of R and observing what it needs to satisfy to be in the intersection.

We now show the essential surjectivity of (̃−). The proof of this result nicely shows the elegance
of the techniques developed so far.

Proposition 9.2.13. Let S be a graded ring which is finitely generated by S1 as an S0-algebra and
X = ProjS.

1. For each OX-module F, there is a natural map

β : flΓ∗(F) −→ F.

2. For each quasicoherent OX-module F, the above map β is an isomorphism, that is,

β : flΓ∗(F) ∼=−→ F.

Proof. 1. Since D+(f) for f ∈ S1 covers X, we may define β naturally only on D+(f). This is
done as follows:

Γ∗(F)(f) F(D+(f))

Γ(F(d)|D+(f) ⊗OX(−d), X)

∼=

βD+(f)

ϕ

where the diagonal map is given by
m

fd
7→ m⊗ 1

fd
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and the isomorphism ϕ is given by restrictions.
2. In the above, we need to show that the diagonal map is an isomorphism. Suppose for some
m/fd ∈ Γ∗(F)(f), we have that m⊗ 1/fd = 0 in Γ(F(d)|D+(f) ⊗ OX(−d), X). Denote G = F(d)⊗
OX(−d), which is quasicoherent. Note that m⊗1/fd = 0 as an element in G(D+(f)) and also note
that D+(f) = Xf . Consequently from Lemma 9.1.18, 1, there exists n ∈ N such that fn⊗m⊗1/fd
is zero as a global section of OX(1)⊗n⊗G ∼= F(n). Hence, fn−dm = 0 in Γ(F(n), X) and thus m

fd
=

fn−dm
fn is zero in Γ∗(F)(f). This shows injectivity. We now show surjectivity. Pick t ∈ F(D+(f)).

By Lemma 9.1.18, 2, (which applies here as D+(f)s are affine and finitely many whose intersection
is again affine), we obtain a section fnt of OX(1)⊗n ⊗ F ∼= OX(n) ⊗ F ∼= F(n) over D+(f) which
extends to a global section of F(n), say s. Consider s/fn in Γ∗(F)(f), which maps to s⊗ 1/fn = t
in F(D+(f)), as needed.

9.2.3 Closed subschemes of PnA
We can use these results to obtain a nice characterization of closed subschemes of projective schemes
and an equivalent characterization of projective schemes over affine schemes. Denote by PrA =
Proj(A[x0, . . . , xr]) for a ring A.

Proposition 9.2.14. Let Y ↪→ PrA be a closed subscheme with ideal sheaf IY of the projective
r-space over a ring A. Then I = Γ∗(IY ) is a homogeneous ideal of A[x0, . . . , xr] and we have

Y ∼= Proj (A[x0, . . . , xr]/I) .

Proof. Let S = A[x0, . . . , xr]. The fact that I is a homogeneous ideal of S follows from exactness
twisting functor (Remark 9.2.8), left exactness of global sections and Γ∗(OX) = S of Proposition
9.2.12. In order to show that Y ∼= Proj(S/I), it is enough to show that they both define isomorphic
ideal sheaves (Proposition 4.4.13, 3). The ideal sheaf of Proj(S/I) is Ĩ by Proposition 8.2.8, 3 and
the ideal sheaf of Y is IY . Since I = Γ∗(IY ), therefore the result follows from Proposition 9.2.13,
2.

Proposition 9.2.15. Let A be a ring. A scheme Y → Spec (A) is projective if and only if Y ∼=
Proj(S) for a graded ring S with S0 = A and which is finitely generated by S1 as an S0-algebra.

Proof. (L ⇒ R) We have a closed immersion Y → PrA. From Proposition 9.2.14, it follows that
Y ∼= Proj(S) where S = A[x0, . . . , xr]/I, but S0 might not be A. By Proposition 8.2.8, 2, we
may assume I to not have any degree 0 component. Thus, S as defined will satisfy the necessary
criterion.
(R ⇒ L) We have S ∼= A[x0, . . . , xr]/I, so by Proposition 8.2.8, 1, we have a closed immersion
Proj(S)→ PrA.

9.2.4 Very ample invertible modules

We now study modules which determine when a scheme is projective.

Definition 9.2.16 (Twisting modules). Let X be a scheme and consider PnX → X to be the
projective n-scheme over X. Consider the projection p : PnX → PnZ. The kth-Serre twist sheaf over
PnX are defined to be p∗(O(k)) where O(k) is the kth-Serre twist sheaf over the projective scheme
PnZ.
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What we have defined above is indeed a generalization of usual twisted sheaves available on
projective schemes, as the following lemma shows.

Lemma 9.2.17. Let X = Spec (A). Denote p : PnX → PnZ the projection map. Then,
1. PnX ∼= PnA,
2. The twisting module p∗(O(k)) ∼= OPn

A
(k) under the above isomorphism.

Proof. Item 1 follows from Lemma 8.2.12. For item 2, observe that the map p is obtained by
composing with the isomorphism PnX ∼= PnA the canonical map q : PnA → PnZ, which is induced from
the canonical map ϕ : Z[x0, . . . , xn]→ A[x0, . . . , xn] (see Proposition 8.2.6). Thus we wish to show
that q∗(O(k)) ∼= OPn

A
(k). Denote S = Z[x0, . . . , xn] so that O(k) = fiS(k). Hence, by Proposition

9.2.7, 4, we have

q∗(O(k)) ∼= OPn
A
(k),

as needed.

Definition 9.2.18 (Very ample invertible module). Let X → Y be a scheme over Y . An
invertible module L over X is said to be very ample over Y if there is an immersion (Definition
4.4.9) i : X → PnY such that i∗(O(1)) ∼= L.

Proposition 9.2.19. Let Y be a Noetherian scheme. Then the following are equivalent:
1. Scheme f : X → Y is projective.
2. Scheme f : X → Y is proper and there exists a very ample invertible sheaf over X relative to

Y .
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10 Divisors
The notion of divisors is one of the central tools for understanding the geometrical properties of
a given scheme. Indeed, in the special case of curves in projective plane, a (Weil) divisor is just
a formal linear combination of points of the curve. From this data, one can in-fact recover the
embedding of the curve in the projective plane. Hence the data that divisors of a scheme stores is
rich in geometric information.

We will first define the notion of Weil divisors in those schemes in which the points lying on
codimension 1 subset of the scheme are regular (see Lemma 7.1.4 for a motivation behind the
definition).

Definition 10.0.1. (Regular in codimension 1) A schemeX is said to be regular in codimension
1 if the local rings OX,p which are of dimension 1 are regular.

Remark 10.0.2. All non-singular abstract varieties are regular in codimension 1 as all local rings
are regular. In this section, we will be working with schemes which are noetherian integral separated
and regular in codimension 1. We call them Weil schemes. All non-singular abstract varieties are
Weil schemes.

10.1 Weil divisors & Weil divisor class group

We will define the notion of Weil divisors and divisor class group on Weil schemes.

Definition 10.1.1. (Weil divisors) Let X be a Weil scheme. A prime divisor is an integral closed
subscheme of codimension 1. A Weil divisor is an element of the free abelian group generated by
the set of all prime divisors, denoted Div (X). A Weil divisor is denoted

∑k
i=1 niYi ∈ Div X. A

Weil divisor
∑
i niYi is effective if ni ≥ 0 for all i.

Example 10.1.2 (Prime divisors of Spec (Z)). ConsiderX = Spec (Z). One can check immediately
that a prime divisor Y ↪→ X is equivalent to the data of a non-zero prime p, where Y = V (⟨p⟩).
Indeed, as X is of dimension 1, therefore any codimension 1 integral closed subscheme is just the
closure of a non-generic point, which are all of the closed points of X.

We now look at a foundational result which will guide the further development. Its proof is
important as it combines a lot of our previous knowledge.

Proposition 10.1.3. Let X be a Weil scheme and Y ⊆ X be a prime divisor with η ∈ Y be its
generic point. Then there is an injective map

PDiv(X)→ DVal(K(X))

where PDiv is the set of all prime divisors of X, K(X) is the function field of X and DVal(K(X))
is the set of all discrete valuations over K(X).

Proof. Note that if Y is a prime divisor, then there is a generic point η ∈ Y . Since codim (Y,X) =
dimOX,η by Lemma 7.1.4, therefore we obtain that OX,η is a regular local ring of dimension 1.
Now there is a special result for such rings, which in particular establishes equivalences of such
rings with a lot of other type of rings. Indeed, by Theorem ?? we obtain that in our case OX,η is a
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DVR. As the fraction field of OX,η (it is a domain as X is integral) is K(X), the function field of
X (Lemma 3.1.2), therefore we have a valuation v : K(X) → Z whose valuation ring is OX,η. By
Lemma 12.4.8 (which holds for Y as Y is separated by Corollary 12.4.5, 2), the valuation v uniquely
determines the point η ∈ X as v has center η because the valuation ring OX,η of v dominates the
local ring OX,η. As the information of point η ∈ X yields the closed set Y ⊆ X, therefore the
valuation v : K(X)→ Z uniquely determines the prime divisor Y .

Remark 10.1.4. As a consequence, we can study a prime divisor via the valuation that comes
through the Proposition 10.1.3. Indeed, for a prime divisor Y ⊆ X and the associated discrete
valuation vY : K(X)→ Z, we can think of the value vY (f) for some f/g ∈ K(X)\{0} to be telling
us the number of poles that f/g has along Y . We can justify this via the proof of Proposition
10.1.3 as follows. For a prime divisor Y ⊆ X with generic point η ∈ Y , the corresponding valuation
is obtained by the fact that OX,η is a DVR in our case. For a DVR R with fraction field K, the
corresponding discrete valuation v : K → Z can be thought of as an abstraction of the idea that we
want to know how many poles a fraction f/g ∈ K has and v provides that data to us. In particular,
we think that if v(f/g) is positive, then that tells us f/g has that many zeros in Y and if v(f/g)
is negative then that many poles in Y . We mostly have only this idea in mind when dealing with
valuations.

Our next goal is to assign a divisor to any regular function in the function field of a Weil scheme
X. To this end, the following proposition is essential for its well-definedness. We begin with the
following observation.

Lemma 10.1.5. Let X be a noetherian integral scheme. If Z ⊊ X is a proper closed subset, then
there are finitely many prime divisors of X in Z.

Proof. Let Y ⊆ Z be a prime divisor of X. As Z ⊊ X, therefore codim Z ≥ 1. Thus 1 =
codim Y ≥ codim Z ≥ 1, from which it follows that codim Y = codim Z = 1. Thus by Proposition
7.1.1, Y = Zα where Zα is an irreducible component of Z. As X is noetherian, then so is Z. It
follows that Z has finitely many irreducible components and hence prime divisors in Z are also
finite, as required.

The following shows that a regular function can only have zeroes at finitely many prime divisors
on an affine Weil scheme.

Lemma 10.1.6. Let X = Spec (A) be an affine Weil scheme. If f ∈ A is a regular function on X,
then vY (f) ̸= 0 only for finitely many prime divisors Y ⊆ X.

Proof. Let K = Q(A) be the fraction field of A. Pick a prime divisor Y = V (p) ⊆ X with generic
point p ∈ X and vY : K → Z be the corresponding discrete valuation. As f ∈ A, therefore
vY (f) ≥ 0. Note from definition of valuation ring that vY (f) > 0 if and only if f/1 ∈ pAp. The
latter condition is equivalent to f ∈ p. Hence, vY (f) > 0 if and only if V (f) ⊇ V (p). By Lemma
10.1.5, it follows that V (f) contains only finitely many prime divisors. Consequently, vY (f) > 0
only for finitely many primes Y , as required.

Proposition 10.1.7. Let X be a Weil scheme. Denote by vY : K(X)→ Z the associated discrete
valuation corresponding to a prime divisor Y ⊆ X. Then for each f ∈ K(X)×, the integer vY (f)
is non-zero only for finitely many prime divisors Y ⊆ X.
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Proof. Pick f ∈ K(X)× to be a rational function. Let η ∈ X be the generic point and U = Spec (A)
be an open affine of X, which will thus contain η. As K(X) ∼= K(U), therefore f = g

h in K(U).
Consider D(h) ⊆ U , where h doesn’t vanish. We deduce that f ∈ OX(D(h)) = Ah is a regular
function, that is, f is regular over an affine open D(h) ⊆ X. Replace U by D(h) to assume that f
is regular over U .

Next, consider a prime divisor Y ↪→ X. It suffices to show there are finitely many prime divisors
contained in X − U and finitely prime divisors intersecting U . The former follows from Lemma
10.1.5. For the latter, first observe that prime divisors of X intersecting U corresponds to η ∈ U
which are non-closed points whose local rings are regular in codimension 1. Thus, they correspond
to prime divisors of U , and since f is a regular function on U , it follows by Lemma 10.1.6 that
there are finitely many prime divisors of U , as required.

Having deduced the above results, we can now define a fundamental equivalence relation on
Div (X).

Definition 10.1.8 (Principal divisors, linear equivalence & class group). Let X be a Weil
scheme and f ∈ K(X)× be a non-zero rational function. Define the following effective divisor on
X which is well-defined by Proposition 10.1.7:

⟨f⟩ :=
∑

Y ∈PDiv(X)
vY (f) · Y.

We call ⟨f⟩ the principal divisor generated by f . This defines a group homomorphism

r1 : K(X)× −→ Div (X)
f 7−→ ⟨f⟩.

Indeed, ⟨fg⟩ = ⟨f⟩ + ⟨g⟩ follows from definition of valuations. Any principal divisor is said to be
linearly equivalent to 0. We then define class group of X to be the cokernel of r1 : K(X)× →
Div (X):

Cl(X) := Div (X)/Im
(
r1
)
.

The abelian group Cl(X) is also called Weil divisor class group.

10.2 Weil divisors on affine schemes

We will study Weil divisors over affine Weil schemes (see Remark 10.0.2), to portray the type of
information that they contain. However, we will introduce something more general (Krull domains)
but will show later that with noetherian hypothesis, we have done no extra work (see Corollary
10.2.5).

Definition 10.2.1 (Weil & Krull domains). Let R be a domain. We call R to be a Weil domain
if Rp is a DVR (equivalently regular, or Dedekind by Theorem ??) for all p ∈ Spec (R) such that
ht (p) = 1 (equivalently, dimRp = 1 by Lemma ??). A Weil domain is a Krull domain if moreover
R =

⋂
ht (p)=1Rp = 1 in F = Q(R) and every non-zero r ∈ R is in only finitely many prime ideals

of height 1. Hence any Krull domain is in particular a Weil domain.

The first observation is that noetherian normal domains are Krull domains.
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Proposition 10.2.2. Let R be a ring.
1. If R is a noetherian normal domain, then R is a Weil domain.
2. If R is a noetherian Weil domain, then R is a Krull domain.

Proof. 1. Let p ∈ Spec (R) be a height 1 prime ideal. As localization of normal domains is normal
(Proposition ??), therefore Rp is a noetherian local domain of dimension 1 which is normal. By
Theorem ??, we deduce that Rp is a DVR, as required.

2. We first wish to show that R =
⋂

ht (p)=1Rp. We need only show (⊇). Indeed, let r
s ∈ Rp

for all p of height 1. It follows that s /∈ p for all height 1 prime ideals. We claim that any non-zero
element of R is contained in a height 1 prime ideal. Indeed, this is the content of Krull’s principal
ideal theorem (Theorem ??). Thus s ∈ R is a unit, hence r

s = rs−1 ∈ R.
Finally, we wish to show that any non-zero element r ∈ R is in only finitely many height 1

primes. By going modulo rR and recalling that R is a domain, we need only show that there are
finitely many height 0 primes in S = R/rR. As S is noetherian and minimal primes are equivalent
to height 0 primes, so we reduce to showing that a noetherian ring has finitely many minimal
primes. Indeed, this is the content of Lemma 2.1.8.

Example 10.2.3. A Dedekind domain is therefore a Krull domain of dimension 1.

Any Krull domain is normal.

Lemma 10.2.4. If R is a Krull domain, then R is a normal domain.

Proof. As R =
⋂

ht (p)=1Rp where each Rp is a normal domain in particular, therefore the integral
closure of R in F = Q(R) is contained in each Rp, thus is contained in

⋂
ht (p)=1Rp which is R, as

required.

In summary, we have now shown the following important equivalences.

Corollary 10.2.5. Let R be a ring. Then the following are equivalent:
1. R is a noetherian normal domain.
2. R is a noetherian Weil domain.
3. R is a noetherian Krull domain.

Proof. Follows from Proposition 10.2.2 and Lemma 10.2.4

Remark 10.2.6. Consequently, a Krull domain can be thought of as an abstraction of all the nice
"divisorial properties" that we expect from noetherian normal domains, so that we can talk about
it in non-noetherian settings.

The following is what we expect and the following is indeed true.

Proposition 10.2.7. Let X = Spec (R) be an affine scheme. Then the following are equivalent:
1. X is an affine Weil scheme.
2. R is a noetherian Weil domain.
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Proof. Suppose X is an affine Weil scheme. Then X is in particular noetherian and integral. By
Lemmas 4.1.3 and 4.2.2, we deduce that R is a noetherian domain. As X is regular in codimension
1, Rp is regular if ht (p) = 1. Consequently, Rp is a noetherian local domain of dimension 1. Hence
by Theorem ?? we deduce that Rp is a DVR, as required.

Now if R is a noetherian Weil domain, then X is a noetherian integral scheme regular in
codimension 1. As affine schemes are separated, so we conclude the proof.

As for most purposes we do enforce noetherian hypothesis, thus by above result it is noetherian
normal domains, i.e. noetherian Weil domains, which are most important for us. We now define
Weil divisors on Weil domains just as we did in Definition 10.1.1.

Definition 10.2.8 (Weil divisors on Weil domains). Let R be a Weil domain. A prime divisor
is a height 1 prime ideal. A Weil divisor is an element of the free abelian group generated by all
prime divisors. A Weil divisor is denoted by D =

∑
i ni[pi]. The group of all Weil divisors over R

is denoted by Div (R). An effective Weil divisor is D =
∑
i ni[pi] where ni ≥ 0 for all i. We denote

by PDiv(R) the set of prime divisors, that is, the generating set of Div (R).

Every Weil domain comes equipped with a discrete valuation at height 1 prime.

Definition 10.2.9 (p-adic valuation). Let R be a Weil domain and p be any height 1 prime ideal
of R. Then Rp is a DVR and thus has a function

νp : Cart(R) −→ Z
I 7−→ νp(I)

where since Rp is a PID in particular (Proposition ??), so we can write the invertible ideal Ip as
Ip = pνp(I)Rp. We call νp as the p-adic valuation of R for height 1 prime ideal p.

Remark 10.2.10. Indeed, the name is justified by the simple observation that if we consider the
usual valuation ν : Q(Rp) → Z given by f 7→ ν(f) such that utν(f) = f where t ∈ Rp is the local
parameter of the DVR, then νp is the function Cart(R)→ Cart(Rp) = Q(Rp)×

ν→ Z which is given
by I 7→ Ip = fRp 7→ ν(f).

Construction 10.2.11 (The Cart-Div homomorphism). Let R be a Krull domain. We define a
group homomorphism

ν : Cart(R) −→ Div (R)
I 7−→

∑
ht (p)=1

νp(I)[p]

which is well defined as νp(I) ̸= 0 only for finitely many p of height 1 by the third axiom of
Krull domains37. This is a group homomorphism as ν(IJ) =

∑
νp(IJ)[p] =

∑
(νp(I) + νp(J))[p] =

ν(I)+ν(J). We call this the Cart-Div homomorphism. We also call the divisor ν(I) corresponding
to an invertible ideal to be the associated divisor of I.

37One may see this as follows. As I ⊆ a
b
R, a ̸= b, therefore for any height 1 prime p, we get Ip = t

νp
p Rp ⊆ a

b
Rp where

tp ∈ Rp is the local parameter of the DVR. Consequently, a
b
t
µp
p = t

νp
p . Note that νp = 0 if and only if a

b
· Rp = Rp

which in turn happens if and only if a /∈ p and b /∈ p, i.e. if and only if a
b
is a unit of Rp. Hence, νp ̸= 0 if and only

if a
b
or b

a
is a non-unit of Rp. As a

b
is a non-unit of Rp if and only if a /∈ p and there are only finitely many height 1

primes containing a, thus there are only finitely many height 1 primes p such that a
b ∈ Rp is non-unit. Similarly for

b
a . This shows that only for finitely many height 1 primes do we have that νp(I) ̸= 0.
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Definition 10.2.12 (Principal divisors). Let R be a Krull domain. For any invertible ideal
I ∈ Cart(R), the divisor ν(I) =

∑
νp(I)[p] is called the principal divisor of I. Any divisor in the

image of ν will be called a principal divisor.

An immediate question will be to see what do effective principal divisors correspond to. Indeed,
they exactly correspond to ideals of R.

Lemma 10.2.13. Let R be a Krull domain. Then there is a bijection

{Effective principal divisors on R}↭ {Ideals of R}.

Proof. Indeed, if D = ν(I) is an effective principal divisor, then νp(I) ≥ 0 for each p of height 1.
Consequently, Ip is an ideal of Rp for each p of height 1. Thus, I ⊆

⋂
ht (p)=1 Ip ⊆

⋂
ht (p)=1Rp = R,

as required. For the converse, repeat the same in reverse.

Lemma 10.2.14. Let R be a Krull domain. Then the Cart-Div homomorphism

ν : Cart(R)→ Div (R)

is injective.

Proof. Indeed, if ν(I) = 0, then Ip = Rp for all height 1 primes p. As there is an invertible ideal
J such that IJ = R, therefore ν(I) + ν(J) = 0, from which it follows that ν(J) = 0 as well. As
I ⊆

⋂
ht (p)=1 Ip =

⋂
ht (p)=1Rp = R and similarly for J , thus, I, J are ideals of R such that IJ = R.

Consequently, as R = IJ ⊆ I ∩ J ⊆ I, J , thus we get that I = J = R, as required.

We now define the divisor class group of a Krull domain.

Definition 10.2.15 (Divisor class group & Pic-Cl map). Let R be a Krull domain. The Weil
divisor class group Cl(R) of R is defined to be the cokernel of the composite

F×
div−→ Cart(R) ν−→ Div (R).

That is,

Cl(R) = Div (R)
Im (ν ◦ div) .

We write ν ◦ div : F× → Div (R) as div as well.
As Pic(R) = CoKer (div : F× → Cart(R)), Cl(R) = CoKer (div : F× → Div (R)) and we have

a map ν : Cart(R)→ Div (R), thus by universal property of cokernels, we get a map

ν̃ : Pic(R) −→ Cl(R)

which we call the Pic-Cl map.

Remark 10.2.16 (Div-Cl sequence). We summarize the whole discussion by observing the follow-
ing exact sequence:

1→ R× → F×
div→ Div (R)→ Cl(R)→ 0.

The exactness at F× follows from the second axiom of Krull domains.
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Its an easy observation by 4-lemma that the Pic-Cl map is injective as well.

Lemma 10.2.17 (Cart-Pic to Div-Cl). Let R be a Krull domain. Then the Pic-Cl map ν̃ :
Pic(R)→ Cl(R) is injective. Moreover, the following is commutative:

1 R× F× Cart(R) Pic(R) 0

1 R× F× Div (R) Cl(R) 0

id

div

id ν ν̃

div

.

Proof. Commutativity is clear. Injectivity of ν̃ is from 4-lemma.

A simple corollary yields when Picard group and Weil divisor class groups are same.

Corollary 10.2.18. Let R be a Krull domain. Then the following are equivalent:
1. ν : Cart(R)→ Div (R) is an isomorphism.
2. ν̃ : Pic(R)→ Cl(R) is an isomorphism.

Proof. Both sides are immediate from 5-lemma.

10.2.1 Relative Weil divisors

As in homology, it is necessary at times to study relative invariants. Indeed, same is true for Weil
divisors, as some results mentioned later will show.

Definition 10.2.19 (Relative Weil divisors). Let R be a Krull domain and S ⊆ R be a
multiplicative set. Define Div (R,S−1R) to be the free abelian group generated by height 1 primes
p such that p ∩ S ̸= ∅. We call Div (R,S−1R) Weil divisors on R relative to S.

Remark 10.2.20. It is immediate that

Div (R) = Div (S−1R)⊕Div (R,S−1R).

Furthermore, we may define the map div as usual (F = Q(R)):

div : F× −→ Div (R,S−1R)
f 7−→

∑
ht p=1,p∩S ̸=∅

νp(fR)[p].

The main result here is the following relative version of Div-Cl exact sequence.

Proposition 10.2.21. Let R be a Krull domain and S ⊆ R be a multiplicative set. Then, the
following sequence is exact:

1→ R× → (S−1R)× div→ Div (R,S−1R)→ Cl(R)→ Cl(S−1R)→ 0.

Proof. To check exactness at (S−1R)×, we see that if div(f) = 0 for some f ∈ S−1R, then νp(fR) =
0 for all p of height 1 and p ∩ S ̸= ∅. Thus, fRp = Rp for all such primes. As f ∈ (S−1R)×,
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consequently if f = a
b , then a, b ∈ S. Hence if p ∩ S = ∅, then S ⊆ R \ p and thus a, b ∈ R \ p so

that f ∈ Rp is a unit. It follows that

fR =
⋂

ht (p)=1
fRp =

⋂
ht (p)=1,p∩S=∅

fRp ∩
⋂

ht (p)=1,p∩S ̸=∅
fRp.

By above,
⋂

ht (p)=1,p∩S=∅ fRp =
⋂

ht (p)=1,p∩S=∅Rp and since f ∈ (S−1R)×, so
⋂

ht (p)=1,p∩S ̸=∅ fRp =⋂
ht (p)=1,p∩S ̸=∅Rp. Finally, we get fR =

⋂
ht (p)=1Rp = R, so that f ∈ R×, as required. Conversely,

if u ∈ R×, then div(u) = 0.
To see exactness at Div (R,S−1R), observe that if DS ∈ Div (R,S−1R) is a relative divisor such

that [DS ] = 0 in Cl(R), then DS = ν(fR) for some f ∈ F×, i.e. DS is a principal divisor. Then,
since DS = ν(fR) ∈ Div (R,S−1R) and is a principal divisor as a divisor on R, thus we deduce
that νp(fR) = 0 for all p of height 1 such that p ∩ S = ∅, that is, f ∈ Rp is a unit for all such
primes. Consequently, fRp = Rp for all p∩S = ∅ of height 1. Now, as S−1R is a Krull domain, we
get

f · (S−1R) = f ·
⋂

ht (p)=1,p∩S=∅
S−1Rp =

⋂
ht (p)=1,p∩S=∅

S−1fRp =
⋂

ht (p)=1,p∩S=∅
S−1Rp = S−1R,

as required. Conversely, if f ∈ (S−1R)×, then div(f) is by construction a principal divisor on R,
so that its image in Cl(R) will be 0.

Exactness at Cl(R) is clear as if [D] is 0 in Cl(S−1R), then D can be written as a sum of two
divisors, one on S−1R, say D1, and other a relative on R, say D2, where D1 is principal. Hence,
[D] = [D2] and since D2 is a relative divisor on R, thus its in image of Div (R,S−1R)→ Cl(R).

Finally, exactness at Cl(S−1R) is clear as any [DS ] ∈ Cl(S−1R) such thatDS =
∑

ht (p)=1,p∩S ̸=∅ np[p]
is also a divisor on R, so that DS ∈ Div (R) and thus defines the class [DS ] ∈ Cl(R), whose image
in Cl(S−1R) is [DS ]. This completes the proof.

We can now prove an important result.

Proposition 10.2.22. Let R be a Krull domain and f ∈ R be a prime element (that is, fR is a
prime ideal). Then

Cl(R) ∼= Cl(Rf ).

Proof. By relative Weil divisors exact sequence of Propsosition 10.2.21, we get that the map

Div (R,Rf )→ Cl(R)→ Cl(Rf )→ 0

is exact. We need only show that the image of Div (R,Rf ) in Cl(R) is 0. Indeed, letD ∈ Div (R,Rf )
be a relative divisor. Thus

D =
∑

ht (p)=1,p∋f
np[p].

Now fR ⊆ p and fR is prime by hypothesis. As ht (p) = 1 and R is a domain, thus fR = p.
Hence, only height 1 prime containing f is fR. Hence Div (R,Rf ) = Z([fR]) ∼= Z. As fR is a
principal ideal, thus it can be shown that its image in Cl(R) is 0 as [fR] = ν(fR) (fR is prime),
and thus the image of Div (R,Rf )→ Cl(R) is 0, as required.
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10.3 Cartier divisors & Cartier divisor class group

Definition 10.3.1 (Cartier divisor and CaCl(X)). Let X be a scheme. By K, denote the sheaf
associated to the presheaf

K : U 7→ Q(OX(U))

where Q(A) for a ring A is the total quotient ring, obtained by localizing A at the multiplicative
set S of all non zero-divisors of A. Note that the resulting map A → S−1A is injective. If A is a
domain then it is the usual quotient field. We call K the total quotient sheaf. Note that the map
O×X → K× induced by localization as above is injective. Thus we have the short exact sequence

0→ O×X → K× → K×/O×X → 0.

Applying global sections, we get a map

π : Γ(K×)→ Γ(K×/O×X).

A Cartier divisor on X is a global section of K×/O×X . The group of Cartier divisors of X, denoted
Cart(X), is defined to be Γ(K×/O×X). A Cartier divisor is principal if it is in the image of π. The
cokernel of the map π is defined to be the Cartier class group

CaCl(X) := CoKer (π) =
Γ(K×/O×X)

Im (π) .

Here are some first observations.

Lemma 10.3.2. If X is integral, then the total quotient sheaf K is isomorphic to the constant
sheaf K(X).

Proof. As the total quotient presheaf is given by K : U 7→ Q(OX(U)) since each OX(U) is a domain
(Lemma 4.2.2), therefore there is a map of presheaves ϕ : K → K(X) as there is an isomorphism
of K(U) ∼= K(X) for any open affine. Consequently, ϕ is an isomorphism on stalks. By universal
property, there is a map ϕ̃ : K → K(X) which is isomorphism on stalks. It follows that ϕ̃ is an
isomorphism, as required.

Lemma 10.3.3. Let X be a scheme. Then the following are equivalent:
1. D is a Cartier divisor on X.
2. There is an open cover {Ui} of X and non-zero rational functions fi ∈ K×(Ui) such that on

Ui ∩ Uj, there exists cij ∈ O×X(Ui ∩ Uj) and

fi = cijfj in K×(Ui ∩ Uj).

Proof. We have a short exact sequence of sheaves

0→ O×X → K× → K×/O×X → 0.

Hence by definition of surjectivity of the map π : K× → K×/O×X , we get that a Cartier divisor D
is gives an open cover {Ui} together with fi ∈ K×(Ui) such that πUi(fi) = D|Ui

. It follows that
on Ui ∩ Uj , we have πUi∩Uj (fi) = πUi∩Uj (fj) and thus fif−1j ∈ Ker (πUi) = Ker (π)(Ui) = O×X(Ui),
as required. Conversely, such a data gives rise to a matching family for the sheaf K×/O×X , as
required.
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10.4 Cartier divisors on affine schemes

We discuss Cartier divisors first on affine schemes. Here, we will see that a Cartier divisor is nothing
but an invertible ideal.

Definition 10.4.1 (Fractional & invertible ideals). Let R be a domain and F = Q(R). A
fractional ideal is a non-zero R-module I ⊆ F such that there exists f ∈ F for which I ⊆ f · R in
F . That is, I consists of some R-multiples of a fraction f ∈ F . Note that if I and J are fractional,
then so is IJ . A fractional ideal I is said to be invertible, if there exists a fractional ideal J such
that IJ = R. The set of all fractional ideals form an abelian group with identity being R which we
denote by Cart(R) defined to be the abelian group of Cartier divisors on Spec (R) (or just R).

Remark 10.4.2. An invertible ideal over domain R can equivalently be defined to be an R-module
I ⊆ F such that there exists b ∈ R for which bI ≤ ⟨a⟩ for some a ∈ R. That is, bI is an ideal of R
which is contained in some principal ideal.

Example 10.4.3. Let R be a domain and n ∈ Z \ {0} with char(R) ̸= n. Denote ( 1n) =
1
nR ⊆ F

and (n) = nR ⊆ F be two fractional ideals (where n = 1+ · · ·+ 1, n-times). Clearly ( 1n) · (n) = R.
Thus, ( 1n) is a Cartier divisor on R.

Remark 10.4.4 (Divisor map). For any domain R with fraction field F , we have a group homo-
morphism

div : F× −→ Cart(R)
f 7−→ fR.

It is interesting to note when is this an isomorphism. An immediate calculation shows that it is so
when R is a PID. Thus, Cart(R) has information about factorization in R.

By analyzing kernel and cokernel of the divisor map, we get a useful exact sequence.

Theorem 10.4.5 (Cart-Pic sequence). Let R be a domain.
1. The map

Cart(R) −→ Pic(R)
I 7−→ [I]

is a group homomorphism. That is, I ⊗R J ∼= IJ , for any two I, J ∈ Cart(R). This is also
true for any two line bundles I, J ∈ Pic(R) such that I, J ⊆ F .

2. We have Ker (div : F× → Cart(R)) = R×.
3. The following is an exact sequence

1→ R× → F×
div→ Cart(R)→ Pic(R)→ 0.

Proof. 1. We first show well-definedness of Cart(R)→ Pic(R). To this end, we need to show that
any invertible ideal is a rank 1 projective module. Indeed, as there is an invertible ideal J such that
IJ = R, thus there exists {xi} ⊆ I and {yi} ⊆ I finitely many such that 1 = x1y1 + · · · + xnyn.
Using this, we immediately get maps I → Rn → I whose composite is identity. Consequently, we
get that I is a direct summand of Rn, as required.
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As R is a domain, so Spec (R) is in particular connected. Consequently, we need only find
dimF (I ⊗R F ). As I ⊗R F = I ⊗RR0 = I0 = F , thus, rank0(F ) = 1 and by connectedness, rank(I)
is a constant map to 1. This shows that I is a line bundle, hence [I] ∈ Pic(R).

Next, we wish to show that for any I, J ∈ Cart(R), we get I ⊗R J ∼= IJ . This will show that
the above map is a group homomorphism, as required. To this end, observe that we have a map

ϕ : I ⊗R J −→ IJ

x⊗ y 7−→ xy.

We claim that ϕ is an isomorphism. Indeed, as I is a line bundle, therefore I is a projective
R-module. Consequently it is flat and thus I ⊗R − is exact. As J ↪→ F is the inclusion map,
therefore I ⊗R J ↪→ I ⊗R F ∼= F is also an inclusion. Note that I ⊗R F ∼= F is the map given by
x⊗ y 7→ xy. Hence, we have shown that ϕ is injective. Surjectivity of ϕ is immediate, so that ϕ is
an isomorphism.

2. Let f ∈ F× be such that div(f) = fR = R, then f is a unit of R, as required.

3. We need only show exactness at Cart(R) and surjectivity of Cart(R) → Pic(R). We first
show the former. An invertible ideal I ∈ Cart(R) is in the kernel iff I ∼= R as an R-module. If
ϕ : R→ I is the isomorphism, then I ∼= fR where f = ϕ(1), as required.

Next we show surjectivity of Cart(R) → Pic(R). To this end, we have to show that any line
bundle L over R is isomorphic to an invertible module I on R. Indeed, as L is rank 1, therefore
L⊗RF ∼= F . As R ↪→ F and L is projective hence flat, thus L ∼= L⊗RR→ L⊗RF ∼= F is injective.
Let the image of L in F be I. We claim that I ⊆ F is an invertible module. Indeed, as I is finitely
generated, therefore I = f1R + · · · + fnR for ai

bi
= fi ∈ F , which we may write as I ⊆ 1

b1...bn
R,

so I is fractional. To see that I is invertible, let J ⊆ F be the fractional ideal corresponding to
Ľ. As L ⊗R Ľ ∼= R in Pic(R), it follows that L ⊗R Ľ ∼= I ⊗R J ∼= IJ where the last isomorphism
is obtained from item 1. Hence IJ ∼= R, where I, J ⊆ F so that IJ ⊆ F . Consequently, IJ is a
free R-module of rank 1 in F . It follows that IJ = uR for some u ∈ R×, so that I(u−1J) = R, as
required.

To end this section, we show that the two notions of Cartier divisors and Cartier class group of
a scheme specializes to the notions introduced in this section.

Theorem 10.4.6. Let A be a domain. Then the Cartier divisor group as defined in Definitions
10.4.1 and 10.3.1 are isomorphic.

10.5 Divisors and invertible modules

10.6 Divisors on curves
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11 Smoothness & differential forms
In this section, we would like to understand the notion of smoothness in algebraic geometry. We
will first begin by defining a non-singular point of a variety over an algebraically closed field, which
would be an extrinsic definition. However, by a fundamental observation of Zariski, we can have
an intrinsic definition of non-singular points, which would be in terms of regular local rings. The
main thrust behind this latter definition will be the expectation that over non-signular points, the
dimension of the tangent space is equal to the dimension of the variety (which is true in the case
of, say manifolds). We would further see that for a variety over an algebraically closed field, the
set of singular points is closed and proper.

We would then introduce the important notion of sheaf of differentials over a scheme. This will
again allow us to characterize non-singular points of a variety, and much more.

11.1 Non-singular varieties

To start investigating the notion of non-singularity, we first investigate it in the setting of classical
affine varieties (Definition 5.4.11). We will then proceed to abstract varieties.

Definition 11.1.1. (Non-singular points of a classical affine variety) Let k be an alge-
braically closed field and X be a classical affine k-variety with I(X) = ⟨f1, . . . , fm⟩ ⪇ k[x1, . . . , xn].
A point p ∈ X is said to be non-singular if the n×m Jacobian matrix

[Jp]n×m =
Å
∂fi
∂xj

(p)
ã
ij

is of rank n− dimX.

The first obvious question is whether the above definition is independent of the choice of the
generators of prime ideal I(X). The following lemma says yes.

Lemma 11.1.2. Let k be an algebraically closed field and X be a classical affine k-variety. The
definition of a non-singular point p ∈ X is independent of the choice of the generating set of I(X).

Proof. Let I(X) = ⟨f1, . . . , fm⟩ = ⟨g1, . . . , gl⟩. We wish to show that

rank
ï
∂fi
∂xj

(p)
ò
ij

= rank
ï
∂gi
∂xj

(p)
ò
ij

.

This follows immediately after writing fi =
∑l
a=1 ciaga, cia ∈ k[x1, . . . , xn], differentiating it and

observing that ga(p) = 0 for all a = 1, . . . , l.

Remark 11.1.3. In geometry, one notes that at a smooth point, the dimension of tangent space
equals the dimension of the manifold itself. We would like to do a similar construction here. Indeed,
if f : Rn → R is a smooth map and 0 is regular for f , then we know by implicit function theorem
thatM = Z(f) ⊆ Rn is a smooth manifold with normal vector field (∇f) : Rn → Rn. Consequently,
one can define the tangent space TxM for x ∈M to be the set of all those vectors which are normal
to (∇f)x. We mimic this definition for classical affine varieties.
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Definition 11.1.4. (Tangent space of a classical affine variety) Let k be an algebraically
closed field and let X be a classical affine k-variety in Ank with I(X) = ⟨f1, . . . , fm⟩. Denote for
each f ∈ k[x1, . . . , xn] and p ∈ Ank the following linear functional

(df)p : kn −→ k

v 7−→
n∑
i=1

∂f

∂xi
(p)vi.

For a point p ∈ X, we define the tangent space TpX as the following k-vector space

TpX := {v ∈ kn | (dfi)p(v) = 0 i = 1, . . . ,m}
= {v ∈ kn | (df)p(v) = 0 ∀f ∈ I(X)}.

We now show that this definition of tangent space is intrinsic. Indeed, we will show that the
TpX = TOX,p := Homk

(
m/m2, k

)
, where (OX,p,m) is the local ring at p ∈ X and κ(p) = k in this

case (see Definition ??). Let us begin with a series of observations.

Lemma 11.1.5. Let k be an algebraically closed field and p ∈ Ank . Then the k-linear map

θp : k[x1, . . . , xn] −→ kn

f 7−→
Å
∂f

∂x1
(p), . . . , ∂f

∂xn
(p)
ã

induces a k-linear isomorphism

mp/m
2
p
∼= kn

where mp = ⟨x1 − p1, . . . , xn − pn⟩ is the maximal ideal of k[x1, . . . , xn] corresponding to the point
p.

Proof. Let p = (p1, . . . , pn). Observe that {θp(xi − pi)}i=1,...,n forms a basis of kn. Consequently,
θp restricts to a surjective k-linear map θ̂p : mp → kn. Now one observes that f ∈ Ker (θ)p if and
only if f ∈ m2

p. Thus we have by first isomorphism theorem that mp/m
2
p
∼= kn.

Lemma 11.1.6. Let k be an algebraically closed field and X be a classical affine k-variety in Ank
with p ∈ X. Let (OX,p,m) denote the local ring of X at p and I ≤ k[x1, . . . , xn] be the ideal of X.
Then,

m/m2 ∼= mp/(m2
p + I).

Proof. Let A = k[x1, . . . , xn]. By Proposition 5.3.10, 3, we have m = (mp)mp/Imp and m2 =(
(m2

p)mp + Imp

)
/Imp . By quotienting, we obtain

m/m2 ∼=
(mp)mp

(m2
p + I)mp

∼=
Ç

mp

m2
p + I

å
mp/(m2

p+I)

∼=
mp

m2
p + I

.
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Recall the notion of regular local ring from Definition ??. We now see that non-singular points
are classified by the local ring being regular.

Theorem 11.1.7. Let k be an algebraically closed field and X be a classical affine k-variety and
let p ∈ X. The following are equivalent:

1. The point p ∈ X is non-singular.
2. The local ring OX,p is regular.

Proof. Let m be the maximal ideal of the local ring OX,p. By definition, we have OX,p is regular if
and only if dimk m/m

2 = dimOX,p. By Proposition 5.3.10, 7, we further have that OX,p is regular
if and only if dimk m/m

2 = dimX. Whereas by Lemmas 11.1.6 and 11.1.5, we observe

dimk m/m
2 = dimk

mp

m2
p + I

= dimk

Ö
mp

m2
p

m2
p+I
m2

p

è
= dimk

mp

m2
p

− dimk

m2
p + I

m2
p

= n− dimk

m2
p + I

m2
p

.

With these two observations, we thus reduce to proving that

dimk

m2
p + I

m2
p

= rank Jp

where Jp =
î
∂fi
∂xj

ó
for I = ⟨f1, . . . , fm⟩. This now follows by the following two rather straightforward

observations; in the notations of Lemma 11.1.5 and its proof, one observes
1. θ̂−1p (θp(I)) is isomorphic as k-vector space to I +m2

p,
2. dimk θp(I) = rank Jp.

The result now follows.

With the above result, we formulate the following definition of non-singular abstract varieties.

Definition 11.1.8. (Non-singular abstract variety) Let k be an algebraically closed field. A
variety X over k is said to be non-singular if for all x ∈ X, the local ring OX,x is a regular local
ring.

Remark 11.1.9. Note that in the definition of non-singular varieties, it is sufficient to demand
that OX,x is a regular local ring for all closed points x ∈ X only. Indeed, by Lemma 3.1.1, local
ring at a non-closed point is obtained by localizing the local ring at a closed point at a prime ideal.
As the localization of a regular local ring at a prime ideal is again a regular local ring by Theorem
??, the result follows.

We now define the Zariski (co)tangent space of a scheme at a point.
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Definition 11.1.10. (Zariski (co)tangent space) Let X be a scheme and x ∈ X be a point and
let κ be the residue field at point x. Then

1. the Zariski cotangent space at x is defined to be the κ-vector space

T ∗xX := mX,x/m
2
X,x,

2. the Zariski tangent space at x is defined to be the κ-vector space

TxX := Homκ

Ä
mX,x/m

2
X,x, κ

ä
.

These are the analogues to the case in algebra (see Definition ??).
TODO : State how this is related to usual definition of tangent spaces

11.2 Regular schemes

".... Of what use is it to know the definition of a scheme if one does not realize that a ring of
integers in an algebraic number field, an algebraic curve, and a compact Riemann surface are all
examples of a ’regular scheme of dimension 1’?"- Hartshorne.
Definition 11.2.1 (Regular schemes). A locally noetherian scheme X is said to be regular if
the local rings OX,x for all x ∈ X is a regular local ring.

Observe that any smooth affine curve over a field is spectrum of a Dedekind domain, so is in
particular a regular scheme (as local rings of Dedekind domains are regular, as noted in Theorem
??).
Proposition 11.2.2. Let C be a smooth affine plane curve over a field k. Then the coordinate
ring of C is a Dedekind domain.
Proof. Let C = Spec (R). As C is a curve, therefore C is an integral finite type scheme of dimension
1 over k. We thus deduce that R is a finite type k-domain of dimension 1. By Hilbert basis theorem
(Theorem ??), we deduce that R is noetherian. Smoothness of C yields that Rp is a regular local
ring for all p ∈ C. As dimR = 1, we deduce that Rp is a noetherian local domain of dimension 1
which is also regular. By Theorem ??, we deduce that Rp is normal for all p ∈ C. By local criterion
of normal domains (Proposition ??), we deduce that R is normal. Hence R is noetherian normal
domain of dimension 1, as required.

11.3 Cotangent bundle on affine schemes

We next study the analogues of tangent and cotangent bundles on affine schemes, before moving
to general schemes. We begin by contemplating the following two constructions.
Construction 11.3.1 (Algebraic differential of a map). Let f : B → C be a map of A-algebras so
that we have a map ψ : Spec (C) → Spec (B). Let ΩB/A and ΩC/A be the module of differentials
over B and C relative to A, respectively. We wish to construct a map ϕ : Spec

(
SymC ΩC/A

)
→

Spec
(
SymB ΩB/A

)
, which we will later show is equivalent to the derivative of the map ψ;

Spec
(
SymC ΩC/A

)
Spec

(
SymB ΩB/A

)
Spec (C) Spec (B)

ϕ

ψ
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where the vertical maps are induced from inclusions into degree 0-term of the respective symmetric
algebras.

Indeed, we need only define a map of A-algebras SymB ΩB/A → SymC ΩC/A. To this end, by
the cotangent sequence (Proposition ??), we have a map of C-modules induced by f given

ΩB/A ⊗B C → ΩC/A.

By composing with B-linear map ΩB/A → ΩB/A ⊗B C, we get the A-linear map

g : ΩB/A → ΩC/A.

This gives the required map Sym g : SymB ΩB/A → SymC ΩC/A. Applying Spec (−) gives the
required map ϕ in the diagram above. We call the map ϕ the algebraic differential of the map ψ.

On the other hand, we have the following construction.

Construction 11.3.2 (Geometric differential at a point). Let f : B → C be a map of A-algebras
so that we have a map ψ : Spec (C)→ Spec (B). Assume that A = k is a field and B,C are rational
k-algebras38. Let p ∈ Spec (C) be a fixed point, q = ψ(p) and mp ≤ Cp, mq ≤ Bq be the maximal
ideals of the corresponding local rings. Note that by Proposition ??, we have

ΩC/A ⊗C C/mp
∼= mp/m

2
p

ΩB/A ⊗B B/mq
∼= mq/m

2
q

That is, the fiber of Spec
(
SymC ΩC/A

)
→ Spec (C) at p is the cotangent space T ∗p Spec (C), similarly

for B at q. Using ψ we now wish to construct a map dψp : T ∗q Spec (B) → T ∗p Spec (C) as follows.
We have the canonical localization map

ψ♯p : OSpec(B),q = Bq → Cp = OSpec(C),p

induced by ψ which is local homomorphism. As B and C are rational local, therefore Bq = k⊕mq

and Cp = k ⊕mp (Lemma ??). As the map is k-linear, so going modulo k, we get a map

ψ♯p : mq → mp.

By standard algebra, this descends to a map

dψp := ψ̄♯p : T ∗q Spec (B)→ T ∗p Spec (C)

38that is, every local ring of B and C have residue field k again (see Definition ??).
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12 Morphism of schemes
The main use of schemes to answer geometric questions begin with defining various types of situ-
ations that one usually finds himself/herself in algebraic geometry. We discuss them here one by
one by giving examples.

We begin by elucidating some basic facts about the maps induced on local rings. First, the
behaviour of maps with respect to schemes over k and residue fields.

Lemma 12.0.1. Let f : X → Y be a map of schemes over k. If p ∈ X is such that κ(p) = k, then
κ(f(p)) = k.

Proof. By the map induced on stalks, if we mod out the maximal ideal (using the fact that the
map is local) we get the following diagram

κ(f(p)) k

k

∼=
.

The result then follows.

The following in particular says that a map of varieties induces a finite extension of function
fields.

Proposition 12.0.2. Let k be a field and f : X → Y be a dominant map of integral finite type
k-schemes where dimX = dimY . Then the induced map on function fields f ♭ : K(Y )→ K(X) is
a finite extension.

Proof. Note that as X and Y are finite type k-schemes, therefore K(X) and K(Y ) are fraction
fields of finite type k-algebras so they are finitely generated field extensions of k. As dimX =
trdeg K(X)/k = trdeg K(Y )/k = dimY , therefore by Lemma ??, we deduce that

trdeg K(X)/K(Y ) = 0.

It follows that K(X)/K(Y ) is an algebraic extension. As K(X) and K(Y ) are finitely generated ex-
tensions of k, therefore by tower law, K(X)/K(Y ) is a finitely generated extension. By algebraicity
of K(X)/K(Y ), we deduce that K(X)/K(Y ) is finite, as required.

12.1 Elementary types of morphism

We first cover some basic type of maps between schemes.

Definition 12.1.1. (Quasi-compact & maps) A map f : X → Y of schemes is said to be
quasi-compact if there exists an affine open cover {Vi} of Y such that the space f−1(Vi) ⊆ X is
quasi-compact for each i.

Remark 12.1.2. Observe that a schemeX over k has a quasi-compact structure mapX → Spec (k)
if and only if X is quasi-compact.

We now see that quasi-compact maps are local on target.
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Proposition 12.1.3. 39 A map f : X → Y is quasi-compact if and only if for each open affine
V ⊆ Y , the space f−1(V ) ⊆ X is quasi-compact.

Proof. The (⇐) is immediate. For (⇒), pick any open affine V ⊆ Y . We wish to show that f−1(V )
is quasi-compact. Let Vi = Spec (Bi) be the collection of open affines covering Y such that f−1(Vi)
is quasi-compact. We now obtain a finite covering of V by affine opens which are affine open in Vi
for some i as well. Indeed, by Lemma 4.4.3, we may cover V ∩ Vi by open affines which are basic
open in both V and Vi. Doing this for each i, we obtain a cover of V by basic opens. As V is affine,
so by Lemma 2.1.6 we obtain a finite collection of basic opens {D(gi)}ni=1 where gi ∈ Bi such that
D(gi) is a basic open in V as well.

We now have that f−1(V ) =
⋃n
i=1 f

−1(D(gi)). Hence it suffices to show that f−1(D(gi))
is a quasi-compact subspace. To this end, we first immediately reduce to assuming that X is
quasicompact (by replacing X by f−1(Vi)) and Y = Spec (B) is affine (by replacing Y by Vi). We
now wish to prove that for any g ∈ B, f−1(D(g)) is quasi-compact.

As X is quasi-compact, therefore there exists a finite affine open cover of X by Spec (Ai).
It suffices to show that Spec (Ai) ∩ f−1(D(g)) is a quasicompact space. Observe that f |Spec(Ai) :
Spec (Ai)→ Spec (B) is a morphism of affine schemes. It follows from Corollary 3.0.6 that f |Spec(Ai)
is induced from a ring map ϕi : B → Ai. As Spec (Ai) ∩ f−1(D(g)) = (f |Spec(Ai))

−1(D(g)) =
D(ϕi(g)), which is an affine open, therefore by Lemma 2.1.6, we deduce that Spec (Ai)∩f−1(D(g))
is quasi-compact, as required.

Example 12.1.4 (A non quasi-compact scheme). Let A = k[x1, x2, . . . ] and X = Spec (A) be
the infinite affine space over k. Consider the open subscheme obtained by removing the origin;
U = X − 0 where 0 is the maximal ideal m0 = xi | i ≥ 1. We claim that this is not quasi-compact.
Indeed, each of the opens D(xi) is in U . Moreover, they cover whole of U as any prime of A not
equal to m0 will necessarily not contain some xi, hence is in D(xi). Moreovoer, no finite subcover
of {D(xi)}i covers U .

Definition 12.1.5. (Quasi-finite maps) A map f : X → Y of schemes is quasi-finite if for each
y ∈ Y , the fiber Xy is a finite set.

Example 12.1.6. Let k be an algebraically closed field. Consider the map

f : X = Spec
Å
k[x, y]
y2 − x3

ã
−→ A1

k

obtained by the map k[x] → k[x,y]
y2−x3 given by x 7→ x + ⟨y2 − x3⟩. Take any point p = ⟨p(x)⟩ ∈ A1

k.
Hence the fiber is

Xp = Spec
Å
k[x, y]
y2 − x3

⊗k κ(p)
ã

= Spec
Å
k[x, y]
y2 − x3

⊗k
k[x]p
pk[x]p

ã
∼= Spec

Ç
k[x, y]
y2 − x3

⊗k
Å
k[x]
p

ã
p

å
.

39Exercise II.3.2 of Hartshorne.
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Let p ̸= 0. As k[x] is a PID, therefore p is a maximal ideal. Consequently, we have κ(p) = k[x]/p.
Hence,

Xp
∼= Spec

Å
k[x, y]
y2 − x3

⊗k
k[x]
p(x)

ã
∼= Spec

Å
k[x, y]

y2 − x3, p(x)

ã
.

As k is algebraically closed, therefore by weak Nullstellensatz, we obtain that p(x) = x−a for some
a ∈ k. Consequently, if we have a ̸= 0 then

Xp
∼= Spec

Å
k[x, y]

y2 − x3, x− a

ã
∼= Spec

Å
k[y]

y2 − a3

ã
∼= Spec

Å
k[y]

(y + a3/2)(y − a3/2)

ã
∼= Spec (k × k)
∼= Spec (k)⨿ Spec (k).

If a = 0, then

Xp
∼= Spec

Å
k[y]
y2

ã
and we know that k[y]/y2 has only one prime ideal, the one generated by y+ ⟨y2⟩ ∈ k[y]/y2. Hence
Xp consists of two points at all non-zero closed points and of a single point at the origin, showing
that f has finite fibers at all closed points. However, at the generic point p = 0, we have a more
complicated story:

X0
∼= Spec

Å
k[x, y]
y2 − x3

⊗k k(x)
ã

∼= Spec
Å
k(x)[x, y]
y2 − x3

ã
∼= Spec

Å
k(x)[y]
y2 − x3

ã
.

As k(x)[y] is a PID, therefore points of X0 are thus in bijective correspondence with prime ideals of
k(x)[y] containing y2−x3, which in turn is in bijection with the set of irreducible factors of y2−x3
in k(x)[y]. As k(x)[y] is a UFD, therefore there can atmost be finitely many such irreducible factors.
Hence, X0 is finite.

Hence all fibers are finite, making f quasi-finite.

12.2 Finite type

We already considered one example of such maps in the case of schemes over a field in Section 4.3
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Definition 12.2.1. (Locally finite type) Let f : X → Y be a map of schemes. Then f is said
to be locally of finite type if there is an affine open cover Vi = Spec (Bi), i ∈ I of Y such that for
each i ∈ I, f−1(Vi) has an open affine cover Uij = Spec (Aij), j ∈ J such that for each j, the ring
Aij is finite type40 Bi-algebra.

Definition 12.2.2. (Finite type) Let f : X → Y be a map of schemes. Then f is said to be
of finite type if there is an open affine cover Vi = Spec (Bi), i ∈ I of Y such that for each i ∈ I,
f−1(Vi) has a finite open affine cover Uij = Spec (Aij), j = 1, . . . , n such that for each j, Aij is a
finite type Bi-algebra.

It is an important observation that both the above definitions are local on target.

Proposition 12.2.3. 41 A map f : X → Y is locally of finite type if and only if for all open affine
V = Spec (B) in Y , there is an open affine cover Ui = Spec (Ai) of f−1(V ) in X such that each Ai
is a finite type B-algebra.

Proof. The R ⇒ L follows immediately. Let Vi = Spec (Bi) be an open affine cover of Y such
that f−1(Vi) is covered by open affines Uij = Spec (Aij) where each Aij is a finite type Bi-algebra.
Pick any affine open V = Spec (B) in Y and a point x ∈ f−1(V ). We wish to find an open affine
x ∈ U = Spec (A) inside f−1(V ) such that A is a finite type B-algebra.

Consider f(x) ∈ V and let f(x) ∈ V ∩ Vi. Consequently, x ∈ f−1(V ) will be contained in
some Uij , so x ∈ f−1(V ) ∩ Uij . By continuity of f , there exists a basic open D(g) ⊆ V ∩ Vi
for some g ∈ Bi which contains f(x) such that f−1(D(g)) ⊆ f−1(V ) ∩ Uij is open. Restricting
f to Uij , we have f : Uij → Vi which induces a map ϕ : Bi → Aij which is of finite type.
Denote U = f−1(D(g)) = D(ϕ(g)) = Spec

(
(Aij)ϕ(g)

)
⊆ f−1(V ) ∩ Uij . We therefore get that the

restriction of f on U , which is given by f : U → D(g), induces the localization map on algebras
ϕg : (Bi)g → (Aij)ϕ(g). As localization of algebras are finite type, therefore ϕg makes (Aij)ϕ(g) a
finite type (Bi)g-algebra.

By Lemma 4.4.3, we have an isomorphism Bh → (Bi)g. Thus, we have

B → Bh
∼=→ (Bi)g → (Aij)ϕ(g)

where each map is of finite type. Since composite of finite type maps is of finite type, therefore
(Aij)ϕ(g) is a finite type B-algebra, as required.

We next see that finite type maps are also local on target and a nice property that they satisfy
which says that finite type property descends to every open affine inside the inverse image of an
open affine.

Theorem 12.2.4. 42 Let f : X → Y be a map of schemes. Then,
1. f is of finite type if and only if f is locally of finite type and quasi-compact,
2. f is of finite type if and only if for every open affine V = Spec (B), the space f−1(V ) can be

covered by finitely many open affines Ui = Spec (Ai) where each Ai is a finite type B-algebra,
40finite type algebra := finitely generated as an algebra.
41Exercise II.3.1 of Hartshorne.
42Exercise II.3.3 of Hartshorne.
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Figure 2: Sketch of the proof of Proposition 12.2.3

3. if f is of finite type, then for any open affine V = Spec (B) ⊆ Y and any open affine
U = Spec (A) ⊆ f−1(V ), A is a finite type B-algebra.

Proof. 1. (L⇒ R) As f is of finite type, therefore there exists an open affine cover {Vi = Spec (Bi)}
of Y such that f−1(V ) can be covered by finitely many Uij = Spec (Aij) where Aij is a finite type
Bi-algebra. Consequently, f is locally finite type. As each affine scheme is quasi-compact (Lemma
2.1.6) and finite union of quasi-compact spaces is quasi-compact, therefore we deduce that f−1(V )
is quasi-compact.

(R⇒ L) As f is locally of finite type, therefore there exists an open affine cover {Vi = Spec (Bi)}
of Y such that f−1(Vi) is covered by open affines Uij = Spec (Aij) where each Aij is a finite type
Bi-algebra. As f is quasicompact, therefore we have a finite sub-cover Ui1, . . . , Uin covering f−1(V ),
as required.

2. (R ⇒ L) Immediate from definition.
(L ⇒ R) Pick an open affine V = Spec (B) in Y . We wish to show that f−1(V ) is covered by

finitely many open affines each of which is spectrum of a finite type B-algebra. Indeed, as f is
quasi-compact by statement 1 above, therefore by Proposition 12.1.3, we see that f−1(V ) is quasi-
compact. Also by statement 1, f is of locally finite type. Hence by Proposition 12.2.3, f−1(V ) is
covered by spectra of finite type B-algebras. As f−1(V ) is quasi-compact, we get a finite subcover,
as required.

3. Pick any open affine V = Spec (B) in Y and an open affine U = Spec (A) ⊆ f−1(V ). As
f is of finite type, therefore by statement 2 above, we obtain a finite collection Ui = Spec (Ai) of
open affines covering f−1(V ). Observe that U ∩Ui is an open set of Ui. By virtue of Lemma 4.4.3,
we may cover U ∩ Ui by basic open sets of Ui which are basic open in U as well. Doing this for
each i furnishes us with an open cover of U . As U is quasi-compact as it is affine (Lemma 2.1.6),
consequently we get a finitely many elements h1, . . . , hn ∈ A such that D(hi) ⊆ U covers U and
furthermore for each i = 1, . . . , n, D(hi) ∼= D(gi) where D(gi) ⊆ Ui and gi ∈ Ai. In particular, we
have Ahi ∼= (Ai)gi . Now for each i = 1, . . . , n, we have

B → Ai → (Ai)gi ∼= Ahi
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Figure 3: Sketch of the proof of Theorem 12.2.4, 3.

where each of the arrows makes the codomain a finite type algebra over the domain. Hence, Ahi
is a finite type B-algebra. Consequently, we have h1, . . . , hn ∈ A such that ∪ni=1D(hi) = U (which
is equivalent to saying that his generate the unit ideal of A by Lemma 2.1.5, 2) and Ahi is a finite
type B-algebra. It follows from Lemma ?? that A is a finite type B-algebra. This completes the
proof.

We now list out some properties of finite type maps as we shall encounter them quite frequently.

Proposition 12.2.5. 43 Properties of finite type maps.
1. A closed immersion X → Y is of finite type.
2. A quasicompact open immersion X → Y is of finite type.
3. Composition of finite type maps X → Y → Z is of finite type.
4. Product of finite type schemes X → S and Y → S in Sch/S denoted X×S Y → S is of finite

type.
5. Maps of finite type are stable under base extensions.
6. If X → Y is quasicompact and the composite X → Y → Z is of finite type, then X → Y is

of finite type.
7. If X → Y is of finite type and Y is noetherian, then X is noetherian.

Proof. TODO!

The following is something we all expect, which indeed holds true for finite type schemes.

Lemma 12.2.6. Let k be a field and X be a finite type k-scheme. The set of all closed points of
X is dense in X.

Proof. TODO.

Example 12.2.7. We give a number of examples of finite type maps.
1. Let k be a field. Consider the projection map π : A2

k → A1
k defined by the k-algebra map

k[x] → k[x, y] mapping as x 7→ x. Note that π is a finite type map of schemes as the open
covering of A1

k as itself yields that π−1(A1
k) = A2

k and A2
k is spectra of k[x, y] which is a finite

type k[x] algebra via the above map. Indeed, k[x, y] is generated by {y} as a k[x]-algebra.
We deduce that projection maps Ank → A1

k are finite type maps for any n ∈ N.
43Exercise II.3.13 of Hartshorne.
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2. We next consider a family of curves parameterized by a parameter t. Consider the map
C[t] −→ C[t][x, y]⟨y2 − x3 − t⟩.

This yields the following map at the level of schemes

X := Spec
Å

C[t][x, y]
⟨y2 − x3 − t⟩

ã
→ Spec (C[t]).

Pick the closed point corresponding to a ∈ C in Spec (C[t]). As C[t][x, y]/⟨y2 − x3 − t⟩ is a
finite type C[t]-algebra, therefore the above map of schemes is of finite type.
Observe that the fiber of X at a ∈ Spec (C[t]) (by abuse of notation) is given by

Xa = X ×Spec(C[t]) Spec (κ(a)).
As κ(a) is the fraction field of C[t]/⟨t− a⟩, which is C[a] = C, therefore we get the following

Xa = Spec
Å

C[t][x, y]
⟨y2 − x3 − t⟩

⊗C[t] C[a]
ã

∼= Spec
Å

C[x, y]
⟨y2 − x3 − a⟩

ã
.

Hence, we get the curve y2 − x3 − a back as the fiber at the point a ∈ Spec (C[t]).
3. Consider the map

k[t] −→ k[t][w, x, y, z]
⟨(w − y)2 + (x− z)2 − t2⟩

which yields the map on geometric level as

X := Spec
Å

k[t][w, x, y, z]
⟨(w − y)2 + (x− z)2 − t2⟩

ã
−→ Spec (k[t]).

Again, this is a finite type map and for a closed point a ∈ k corresponding to the ideal
⟨t− a⟩ ⪇ k[t], the fiber is

Xa
∼= Spec

Å
k[t][w, x, y, z]

⟨(w − y)2 + (x− z)2 − t2⟩ ⊗k[t] k[a]
ã

∼= Spec
Å

k[w, x, y, z]
⟨(w − y)2 + (x− z)2 − a2⟩

ã
on A2

R).
4. Any projective variety X → Pnk will by definition be finite type over k (Theorem 12.8.2,

1). For example, the projective parabola X = Proj
Ä
k[x,y,z]
y2−xz

ä
is a finite type scheme over

k. Indeed, by Proposition 8.2.8, 1, we get that the natural map X → Proj(k[x, y, z]) = P3
k

coming from the quotient k[x, y, z] ↠ k[x,y,z]
y2−xz (which is a graded map) is a closed immersion.

Hence, it defines a closed subscheme of projective 3-space P3
k over k.

Over non-noetherian rings, we rather use finite "presentation" rather than finite type.
Definition 12.2.8 (Finite presentation). A map of schemes f : X → Y is of locally finite
presentation if there exists an open affine cover Vα = Spec (A) of Y such that f−1(Vα) is covered
by open affine Uβ = Spec (Bβ) where each Bβ is finitely presented A-algebra via f . If f is quasi-
compact, quasi-separated and locally finitely presented, then we say f is of finite presentation.

Clearly, over noetherian schemes, finite presentation and finite type are same.
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12.3 Finite

This is a more stronger version of finite type maps discussed in previous section.

Definition 12.3.1. (Finite) Let f : X → Y be a map of schemes. Then f is said to be finite if
there is an open affine covering Vi = Spec (Bi), i ∈ I of Y such that f−1(Vi) is equal to an open
affine Spec (Ai) where Ai is a finite Bi-algebra44.

We see that finite maps are local on target.

Proposition 12.3.2. A map f : X → Y of schemes is finite if and only if for each open affine
V = Spec (B), we have f−1(V ) is an open affine Spec (A) in X such that B → A makes A a finite
B-algebra.

Proof. (R ⇒ L) is immediate from definitions.
(L⇒ R) Pick any open affine V = Spec (B) in Y . We first wish to show that U = f−1(V ) is an

affine scheme. We may employ criterion for affineness, Proposition 3.1.6, for this purpose. Hence
for showing that U is affine, we reduce to finding g1, . . . , gn ∈ Γ(OX|U , U) = OX(U) such that Ugi
is affine and ⟨g1, . . . , gn⟩ = OX(U).

As f is finite, therefore there exists an open affine covering Vi = Spec (Bi) of Y such that
f−1(Vi) = Spec (Ai) = Ui is affine and Ai is a finite Bi-algebra. Observe that V ∩Vi forms an open
covering of V . As V is affine, so it is quasi-compact (Lemma 2.1.6). Consequeently, we obtain a
finite cover of V by Vis. Now cover each V ∩ Vi by basic opens which are basic in both V and Vi
(Lemma 4.4.3). Doing this for each of the finitely many i, we obtain a cover of V by basic open
sets. As V is quasi-compact (Lemma 2.1.6), therefore we have obtained a cover of V by finitely
many basics D(ki) for ki ∈ B such that D(ki) ∼= D(li) where D(li) ⊆ Vi and li ∈ Bi for i = 1, . . . , n.
Consequently by Lemma 2.1.5, the ideal generated by k1, . . . , kn in B is the unit ideal.

As we have

U = f−1(V ) = f−1
Ç

n⋃
i=1

D(ki)
å

=
n⋃
i=1

f−1(D(ki)),

therefore by Lemma 3.1.3, we may write

U =
n⋃
i=1

Uϕ(ki)

where ϕ : B → OX(U) is the map induced by the restricted map f : U → V on the global sections.
Furthermore, as

∑n
i=1 kiB = B, therefore

∑n
i=1 ϕ(ki)OX(U) = OX(U). Hence, it now suffices to

show that each Uϕ(ki) is affine.
We have Uϕ(ki) = f−1(D(ki)) ∼= f−1(D(li)) = D(ϕi(li)) where ϕi : Bi → Ai is the map on

global sections obtained by the restriction f : Ui → Vi. As D(ϕi(li)) is affine, thus, so is Uϕ(ki).
This shows that indeed, f−1(V ) is an open affine.

We may now write U = Spec (A). We reduce now to showing that A is a finite B-algebra. For
this observe that in the above, we obtained a finite open cover of U given by Uϕ(ki) ∼= D(ϕi(li))
where D(ϕi(li)) ⊆ Ui. As U = Spec (A), therefore OX(U) = A, so we may let ϕ(ki) = gi for

44finite algebra := finitely generated as a module.
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i = 1, . . . , n. Now, since Uϕ(ki) = Ugi = D(gi) ∼= D(ϕi(li)), therefore we have Agi ∼= (Ai)ϕi(li). As
Ai is a finite Bi-algebra, therefore by Lemma ??, (Ai)ϕi(li) is a finite (Bi)li-algebra. Further, as we
saw in the beginning that D(ki) ∼= D(li), hence we get Bki ∼= Bli . We thus obtain a map Bki → Agi
as in

(Ai)ϕi(li) (Bi)li

Agi Bki

∼= ∼=

(ϕi)li

which thus makes Agi a finite Bki-algebra, in particular, a finitely generated Bki-module. This is
for each of the i = 1, . . . , n, and since we have that k1, . . . , kn generates the unit ideal in B, hence
by another application of Lemma ??, we deduce that A is a finite B-algebra, as required.

Base change preserves finiteness.

Proposition 12.3.3. Let f : X → S be a finite map of schemes. If g : S′ → S is any map, then
the map f ′ : X ′ → S′ as in the base change

X ′ X

S′ S

f ′
⌟

f

g

is finite.

One important property of finite maps is that their fibers are finite.

Proposition 12.3.4. 45 Let f : X → Y be a finite morphism. Then f is quasi-finite.

Proof. Pick any point y ∈ Y and an affine open V = Spec (B) ∋ y in Y . As f is finite, therefore by
restriction we have map f : f−1(V )→ V where f−1(V ) = U = Spec (A) and A is a finite B-algebra.
Thus f−1(y) ⊆ U and hence we reduce to the affine case X = Spec (A) and Y = Spec (B).

Fix q ∈ Y . As the fiberXq is the base change of f : X → Y under the inclusion Spec (κ(q)) ↪→ Y ,
thus by Proposition 12.3.3 we deduce that Xq = Spec (A⊗B κ(q)) is finite over Spec (κ(q)). In
particular, C = A ⊗B κ(q) is a finite κ(q)-algebra. By cite[AMD], Exercise 8.3, C is an Artinian
ring, as required.

Another nice property enjoyed by finite maps is that they are closed.

Proposition 12.3.5. 46 Let f : X → Y be a finite morphism. Then f is a closed map.

Proof. Our goal is to reduce to the affine case as much as possible, where we have many algebraic
results to use. Let Z ⊆ X be a closed subset of X. We wish to show that f(Z) is closed in Y .
It first suffices to show that for every open affine V ⊆ Y , V ∩ f(Z) is closed in V . By definition,
U = f−1(V ) is an open affine. Consider then the restricted map

f : U ∩ Z −→ V ∩ f(Z).
45Exercise II.3.5, a) of Hartshorne.
46Exercise II.3.5, b) of Hartshorne.
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As U ∩ Z is closed in U and f(U ∩ Z) = V ∩ f(Z), we hence reduce to the assumption that
X = Spec (A) and Y = Spec (B) are affine. Let Z ⊆ X be a closed subscheme. Then Z = V (a)
for some ideal a ≤ A. Considering the restriction f : V (I) ∼= Spec (A/I) → Y and the fact that
A↠ A/I is a finite map, we immediate reduce to the further assumption that Z = X.

Consider X = Spec (A) and Y = Spec (B) and f : X → Y a finite map corresponding to
ϕ : B → A. As required, we claim that f has a closed image. Indeed, consider I = AnnB(A) to be
the annihilator ideal of B-module A. We claim that Im (f) = V (I). For (⊆), pick any p ∈ Spec (A).
We wish to show that ϕ−1p ⊇ I. It suffices to show that p ⊇ ϕ(I). Indeed, for any b ∈ I, we
must show ϕ(b) ∈ p. As ϕ(b) · A = 0, therefore ϕ(b) · ϕ(b) = 0 ∈ p and thus ϕ(b) ∈ p, as required.
Conversely for (⊇), fix a prime q ∈ V (I). We wish to find p ∈ X such that q = ϕ−1p. Indeed,
consider the map

B
ϕ
↠ Im (ϕ) =: B′ ⊆ A.

Note that as ϕ is finite, therefore ϕ is integral (Proposition ??). Note that B′ ∼= B/Ker (ϕ), induced
by B ↠ B/Ker (ϕ). Observe that as Ker (ϕ) ⊆ I, therefore q̄ ≤ B′ is a prime containing Ī ≤ B′.
It follows by Cohen-Seidenberg theorems (Theorem ??) that there exists p ∈ Spec (A) such that
p ∩B′ = q̄. Hence it follows at once that ϕ−1(p) = q, as required.

Remark 12.3.6. 47 As tempting it might be to say that, but it is not true that a surjective, finite
type, quasi-finite map is finite.

Indeed, let k be an algebraically closed field. Consider the map

f : Spec
Å
k[x, y]
xy − 1

ã
⨿ Spec (k) −→ A1

k

induced by k[x]→ k[x,y]
xy−1 × k given by x 7→ (x+ ⟨xy− 1⟩, 0). As a nice exercise, one checks that (we

write a ∈ A1
k to mean ⟨x− a⟩ ∈ A1

k)
1. f−1(0) is a singleton (Spec (k)),
2. f−1(a) is a singleton, given by point (a, a−1) (in particular, the point ⟨x− a, xy − 1⟩),
3. the generic fiber f−1(0) is isomorphic to Spec (k(x)) in Spec

Ä
k[x,y]
xy−1

ä
, hence a singleton.

Consequently, f is surjective, quasi-finite and furthermore of finite type. But still, k[x,y]xy−1 × k is not
a finite k[x]-algebra.

Remark 12.3.7. Let k be a field. Observe that A1
k ×k A

1
k
∼= A2

k. However, the underlying set in
A2
k is not the product of underlying set of A1

k with itself. Indeed, this is essentially due to the fact
that every prime ideal of k[x, y] is not of form p1 × p2 where p1 ∈ k[x] and p2 ∈ k[y], as the prime
ideal xy − 1 in k[x, y] shows.

Example 12.3.8. Consider the canonical map k[t] → k[t,x]
xn−t and the corresponding map X =

Spec
Ä
k[t,x]
xn−t

ä
→ Spec (k[t]) = A1

k. As k[t,x]
xn−t is a finite k[t]-algebra of rank n, therefore X → A1

k is a
finite map. Note that for each closed point a ∈ A1

k, the fiber Xa
∼= Spec

Ä
k[x]
xn−a

ä
, which has n closed

points if k is algebraically closed and a ̸= 0.

Any closed immersion is a finite map.
47Exercise II.3.5, c) of Hartshorne.
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Proposition 12.3.9. Let i : Z ↪→ X be a closed immersion. Then i is a finite map.

Proof. By Proposition 4.4.11, we have an open affine cover {Vk} of X such that i : i−1(Vk)→ Vk is
a closed immersion. Write Vk = Spec (Ak). Since i−1(Vk) = Z∩Vk and Z∩Vk is a closed subscheme
of Vk, therefore Z ∩ Vk = Spec (Ak/Ik) and the map Spec (Ak/Ik)→ Spec (Ak) is induced from the
quotient map π : Ak ↠ Ak/Ik, which is finite. Hence i is a finite map, as required.

12.3.1 Generic finiteness

Definition 12.3.10 (Generically finite map). Let f : X → Y be a map of schemes such that
Y is irreducible. The map f is said to be generically finite if f−1(η) for η ∈ Y the generic point is
a finite set.

The following is an important result in this regard, which says, like many statements about
generic points, that a generically finite dominant map is almost like a finite map.

Theorem 12.3.11. 48 Let X,Y be integral schemes and f : X → Y be a dominant, generically
finite and finite type map. Then there exists a dense open V ⊆ Y such that f |f−1(V ) : f−1(V )→ V
is a finite map.

Proof. We first prove this for X and Y affine integral schemes. We will later reduce to this case.
Let X = Spec (A) and Y = Spec (B) be affine schemes where A,B are domains. Let f : Spec (A)→
Spec (B) be a finite type, dominant, generically finite map so that A is a finite type B-algebra. Let
this be induced by a finite type ring homomotphism ϕ : B → A. Our first goal is to show that the
generic point of X is mapped to generic point of Y and that the induced map of function fields
K(Y ) ↪→ K(X) is a finite extension.

Indeed, let ξ ∈ X and η ∈ Y be the generic point of X and Y respectively. By continuity of
f , we have f(ξ̄) ⊆ f(ξ). As ξ̄ = X, we have f(X) ⊆ f(ξ). As f(X) is dense in Y by dominance
of f , we deduce that Y ⊆ f(ξ), that is, f(ξ) is a generic point of Y . As schemes are sober and
in our case Y is irreducible, therefore Y has a unique generic point which is η. It follows that
f(ξ) = η. Dominance of f further shows that ϕ is injective since ξ = 0 ∈ f−1(η) = f−1(0). As
f−1(0) = {p ∈ Spec (A) | ϕ−1(p) = 0} therefore if 0 ∈ f−1(0), then it follows that Ker (ϕ) = 0, that
is, ϕ is injective.

Thus, by considering the comorphism at stalks, we get a map

ϕ0 = f ♯ξ : OY,f(ξ) = K(Y ) = Q(B) −→ OX,η = K(X) = Q(A).

Note that this map is the field homomorphism induced by ϕ : B ↪→ A on the fraction fields. As
this is a map of fields, therefore ϕ : K(Y ) → K(X) is injective. By replacing K(Y ) by the image
of ϕ, we may assume ϕ is an inclusion. We wish to show that K(X)/K(Y ) is a finite extension.

To this end, we first observe the following by generic finiteness. Let A = B[α1, . . . , αn]. The
fiber at η is

f−1(η) = Spec (A⊗B κ(η))
= Spec (A⊗B Q(B))
= Spec (B[α1, . . . , αn]⊗B Q(B))
= Spec (Q(B)[α1, . . . , αn])

48Exercise II.3.7 of Hartshorne.
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Thus by generic finiteness, Spec (Q(B)[α1, . . . , αn]) is a finite set. We wish to show that it is
discrete so that f−1(η) is a finite discrete affine scheme, that is, Q(B)[α1, . . . , αn] is an artinian
ring. It would thus follow that Q(B)[α1, . . . , αn] is an artinian finite type Q(B)-algebra and is
thus a finite Q(B)-algebra. Now, finiteness is preserved under going to fraction fields (Lemma ??)
thus Q(Q(B)[α1, . . . , αn]) is a finite extension of Q(B). But Q(Q(B)[α1, . . . , αn]) = Q(A). Hence,
Q(A) is a finite extension of Q(B), as required. We thus reduce to proving that the finite spectrum
Spec (Q(B)[α1, . . . , αn]) is discrete. We wish to show that all finitely many points of it are open.
To this end it suffices to show that all finitely many primes of Q(B)[α1, . . . , αn] are incomparable.
TODO.

Thus we have shown that K(X)/K(Y ) is a finite extension. Using this, we now find the
required open subset V ⊆ Y . Indeed, we find a basic open V = D(b) ⊆ Y where b ∈ B ⊆ A and
f−1(D(b)) = D(b) ⊆ X is such that f : f−1(D(b))→ D(b) is a finite map. That is, we wish to show
that there exists b ∈ B such that ϕb : Bb ↪→ Ab is a finite map, using the fact that Q(B) ↪→ Q(A)
is a finite extension. Indeed, let a1

a′1
, . . . , an

a′n
be a Q(B)-basis of Q(A). Observe that we have

Q(A) = Q(B)a1
a′1

+ · · ·+Q(B)an
a′n
.

Thus, multiplying both sides by a′i, we get that there exists a1, . . . , aN ∈ A such that Q(A) is
a Q(B)-span of a1, . . . , aN . Denote A = B[α1, . . . , αn]. Observe that for any αi ∈ A, the set
{1, αi, . . . , αN−1i , αNi } is linearly dependent as its size is greater than the degree N = [Q(A) : Q(B)].
Consequently, we see that every αki for k ≥ N is a linear combination of {1, αi, . . . , αN−1i }. Now
consider any 0 ≤ i1, . . . , in and the term αi11 . . . α

in
n . Then this can be written as linear combination

of various αj11 . . . αjnn where 0 ≤ j1, . . . , jn ≤ N .
Thus we have a finite collection of terms {αi11 . . . αinn }0≤i1,...,in≤N−1 in A. In Q(A), we thus get

the following expression for each of them:

αi11 . . . α
in
n =

N∑
k=1

bi1...iN ,k
b′i1...iN ,k

ak

where bi1...iN ,k, b′i1...iN ,k ∈ B. Collect all the finitely many denominators {b′i1...iN ,k}i1,...,iN ,k and
consider their product b ∈ B. We claim that the induced map ϕb : Bb ↪→ Ab is a finite map.

Indeed, pick any a
bp ∈ Ab. Then, a =

∑
ci1...inα

i1
1 . . . α

in
n for ci1...in ∈ B. Consequently, we have

a =
∑

i1,...,in

ci1...inα
i1
1 . . . α

in
n

=
∑

i1,...,in

ci1...in

(
N∑
k=1

bi1...iN ,k
b′i1...iN ,k

ak

)

=
N∑
k=1

( ∑
i1,...,in

ci1...in
bi1...iN ,k
b′i1...iN ,k

)
︸ ︷︷ ︸

dk

ak

=
N∑
k=1

dkak
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where dk ∈ Q(B). Observe that denominator of dk is some product of elements of {b′i1...iN ,k}i1,...,iN ,k.
Consequently, we get that in Ab, we will have

a

bp
=

N∑
k=1

dk
bp
ak

where dk/bp is an element of Bb since dk ∈ Bb. Hence, we have shown that there exists elements
a1, . . . , aN ∈ A such that Ab is finite over Bb. This completes the proof for affine case.

TODO : General case.
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12.4 Separated

This notion corresponds to the Hausdorff property for topological spaces. Recall that a space X is
Hausdorff if and only if the diagonal ∆ : X → X×X is closed. We shall mimic this in the category
of schemes.

Definition 12.4.1. (Separated) A map f : X → Y of schemes is said to be separated if the
diagonal ∆ : X → X ×Y X is a closed immersion. A scheme X is said to be separated if X →
Spec (Z) is separated.

It follows that any map of affine schemes is separated.

Lemma 12.4.2. Let f : Spec (A)→ Spec (B) be a map of affine schemes. Then f is separated.

Proof. By Corollary 3.0.6, f corresponds to a map of rings ϕ : B → A. Similarly, the diagonal
map ∆ : Spec (A) → Spec (A) ×Spec(B) Spec (A) corresponds to the B-algebra structure map over
A, given by m : A⊗B A→ A, which is surjective. Consequently, by Corollary 4.4.14, ∆ is a closed
immersion.

Since any scheme locally is affine, we get a nice consequence of the above lemma.

Lemma 12.4.3. Let f : X → Y be a map of schemes. Then the following are equivalent.
1. f is separated.
2. The diagonal ∆ : X → X ×Y X has closed image.

Proof. (1. ⇒ 2.) Immediate.
(2. ⇒ 1.) By the definition of diagonal, it is immediate that ∆ : X → X×Y X is a homeomorphism
onto its image, which is further closed by the given hypothesis. Thus, we need only show that
∆♭ : OX×YX → ∆∗OX is a surjective map. By Theorem ??, 3, this is a local property. Consequently,
we further reduce to showing that for any point x ∈ X there is an open set f(x) ∈ V ⊆ X ×Y X
such that ∆♭

|V : OV,f(x) → (∆∗O∆−1(V ))f(x) is surjective. Now we may choose by continuity of f
a small affine open x ∈ U such that f(U) is contained in an affine open V in Y . Consequently,
U ×V U is an affine open subset of X ×Y X containing f(x). We thus reduce to showing that
OU×V U,f(x) → (∆∗OU )x is surjective, which follows immediately from Lemma 12.4.2.

Next, we state an important characterization of separatedness which allows us to derive some
very important and convenient results about it.

Theorem 12.4.4. (Valuative criterion of separatedness) Let f : X → Y be a map of schemes
where X is noetherian. Then the following are equivalent,

1. f is separated.
2. Pick any field K and any valuation ring R with fraction field K (see Section ??). Let i :

Spec (K) → Spec (R) be the map corresponding to R ↪→ K. For all g : Spec (R) → Y and
h : Spec (K)→ X such that the square commutes, there exists atmost one lift of g along f as
to make the following diagram commute:

Spec (K) X

Spec (R) Y

fi

g

h

.
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Proof. See Theorem 4.3, Chapter 2 of cite[Hartshorne].

The following important corollaries can now easily be derived from this characterization.

Corollary 12.4.5. Let us work in the category of noetherian schemes. Then,
1. separated maps are stable under base extension,
2. open and closed immersions are separated49,
3. composition of separated maps is separated,
4. for a base scheme S, product of any two separated maps is separated in Sch/S,
5. if the composite X → Y → Z is separated, then X → Y is separated,
6. a map f : X → Y is separated if and only if there is an open cover Vi of Y such that the

restricted maps f |f−1(Vi) : f
−1(Vi)→ Vi is separated50.

Proof. TODO: From notebook.

An important result about separate schemes is that the intersection of any two open affines is
again an open affine.

Lemma 12.4.6. 51 Let X be a separated scheme. If U, V ⊆ X are two open affines then U ∩ V is
again an open affine.

Proof. Let U = Spec (A) and V = Spec (B). We may replace X by U ∪ V and X would still be
separated by Corollary 12.4.5, 6. Now let W = U ∩ V . Then again by Corollary 12.4.5, 6, we have
that W is separated. Consequently, we get that ∆ :W →W ×ZW is a closed immersion. We now
claim that W ×Z W ∼= U ×Z V . Indeed, this follows immediately from the universal property of
fiber product. It follows that ∆ : W → Spec (A⊗Z B) is a closed immersion. By Corollary 4.4.14,
W is spectrum of a quotient of A⊗Z B. Consequently, W is affine, as needed.

12.4.1 Separatedness of projective schemes

We next see that any projective scheme is separated.

Lemma 12.4.7. Let S be a graded ring. Then, Proj(S)→ Spec (Z) is separated.

Proof. We need only check that the diagonal ∆ : Proj(S) → Proj(S) ×Spec(Z) Proj(S) has closed
image (Lemma 12.4.3). Since one can check a closed set locally and sets of the form D+(f)×D+(g)
forms an open cover of Proj(S)×Spec(Z) Proj(S) for f, g ∈ S+ homogeneous, therefore we reduce to
checking that for C = ∆−1(D+(f)×D+(g)), the restriction ∆|C : C → D+(f)×D+(g) has closed
image.

Since C = D+(fg) ∼= Spec
(
S(fg)

)
and D+(f) × D+(g) ∼= Spec

(
S(f) ⊗Z S(g)

)
, therefore we

reduce to showing that the induced map S(f) ⊗Z S(g) → S(fg) is surjective. This is clear, as for
any u/fngn ∈ S(fg) where let us denote k = deg f, l = deg g, for any m large enough such that all
exponents in the below are positive, we obtain that

ugmk−n

fml+n
⊗ fml

gmk
7→ u

fngn
.

49in-fact, any topological immersion is separated, as is clear from the proof.
50This doesn’t require the noetherian hypothesis.
51Exercise II.4.3 of Hartshorne.
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Thus, the image of ∆ is closed52.

12.4.2 Uniqueness of centers of valuations for varieties

We show a curious property for abstract varieties that any valuation defined over its function field
has a unique center, if it exists53. See Definition 4.2.9 for definition of center points of a valuation
over function field of an integral scheme.

Lemma 12.4.8. 54 Let X be an integral scheme of finite type over k with function field K. If X
is separated, then any valuation over K has a unique center if it exists.

Proof. We will use the valuative criterion for this. Let v : K → G be a valuation over K with
valuation ring R ⊆ K. Let x, y ∈ X be two centers of v. As K ⊆ K, therefore by Lemma 6.1.1,
3, there exists a unique map Spec (K)→ X mapping ⋆ 7→ η, where η is the generic point of X. It
follows that we have the following commutative square

Spec (K) X

Spec (R) Spec (Z)

. (*)

As R is a local ring, therefore by Lemma 01J6 of StacksProject, we have a bijection between
maps Spec (R)→ X and tuples (z, ϕ) where z ∈ X and ϕ : OX,z → R is a local ring homomorphism.
Consequently, as OX,x and OX,y are dominated by R, we obtain two tuples (x, ιx) and (y, ιy) where
ιx : OX,x ↪→ R and ιy : OX,y ↪→ R are the two domination maps. Note that by the definition
of domination, these two maps are local ring homomorphisms. Consequently, we get two maps
Spec (R) → X which makes the (*) commute. By the valuative crieterion of Theorem 12.4.4, the
two maps Spec (R) → X are same, and thus so are the tuples (x, ιx) and (y, ιy), proving that
x = y.

52in-fact we have also shown in the process that ∆ is a closed immersion, thus we may not use Lemma 12.4.3
53It will always exist (and thus be unique) if the variety is proper, as is shown in the next section.
54Exericse II.4.5 a) of Hartshorne.

https://stacks.math.columbia.edu/tag/01J6
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12.5 Affine morphisms and global Spec

In this section, we cover important global generalization of Spec (−). In particular, let X be a
scheme and F be a quasicoherent OX -algebra, that is, an OX -module which is a sheaf of rings as
well. Then we will construct a scheme Spec(F) over X which will behave as if it is constructed
out of open affine subschemes U of X and the corresponding algebras F(U).

This construction will be used to show how locally free sheaf of constant rank actually corre-
sponds to vector bundles. They are used elsewhere as well.

Definition 12.5.1 (Affine morphism). Amap f : X → Y of schemes is called an affine morphism
if there is an affine open cover {Vα} of Y such that f−1(Vα) is an open affine scheme.

Remark 12.5.2. It follows from definition that any finite morphism is affine.

The first major property of affine maps is that they are local on target.

Proposition 12.5.3. Let f : X → Y be a map. Then the following are equivalent.
1. f is affine.
2. For any open affine V ⊆ Y , f−1(V ) is an open affine in X.

Proof. We need only do 1⇒ 2. This has been done in the proof of Proposition 12.3.2.

Lemma 12.5.4. Let f : X → Y be an affine morphism. Then f is quasicompact and separated.

Proof. The fact that f is quasicompact is immediate by definition. Separatedness follows from
Corollary 12.4.5, 6 and Lemma 12.4.2.

The main theorem for affine maps is that they all come from quasicoherent algebras over the
structure sheaf. Indeed, we have the following construction to obtain a scheme over Y by a quasi-
coherent OY -algebra.

Theorem 12.5.5. 55 Let Y be a scheme and A be a quasicoherent OY -algebra over Y . Then there
exists a scheme

f : Spec(A)→ Y

unique with respect to the property that for any open affine V ⊆ Y , we have f−1(V ) ∼= Spec (A(V ))
and for any inclusion U ↪→ V of open affines, the map f−1(U) → f−1(V ) is induced by the
restriction map ρ : A(V )→ A(U).

Proof. Let V = Spec (B) ⊆ Y be an open affine in Y . Then we have a ring homomorphism
B → A(V ) as A(V ) is a B-algebra. Consequently, we get the map πV : Spec (A(V ))→ Y factoring
through V . Observe that for any open affine U ↪→ V , we have the following commutative triangle

A(V )

B A(U)

ρ .

55Exercise II.5.17, c) of Harthsorne.
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We now wish to glue the affine schemes πi : Spec (A(Vi)) → Y where Vi varies over open affines
of Y . Indeed, let Xi = Spec (A(Vi)) and Uij = π−1i (Vi ∩ Vj) an open subscheme of Xi. We claim
that there is a natural isomorphism ϕij : Uij → Uji which satisfies the cocycle condition, so that
we can glue these schemes together by Proposition 6.2.2 to get the desired scheme unique with the
given properties. Indeed, to find ϕij , we first observe that for πV : Spec (A(V )) → Y , we have
that πV ∗OSpec(A(V )) ∼= A|V . This is where quasicoherence is used and follows from checking on
basis and using globalized restriction of scalars (Lemma 2.3.4). Using this isomorphism, we see
that OXi(π−1i (Vi ∩ Vj)) ∼= A(Vi ∩ Vj) ∼= OXj (π−1j (Vj ∩ Vi)). Consequently, we have a commutative
triangle where Vi = Spec (Bi)

A(Vi)

Bi OXj (π−1j (Vi ∩ Vj))

ρ
.

By Theorem 3.0.5, we get the following commutative triangle

Xi

Vi π−1j (Vi ∩ Vj)

πi
ϕji

By commutativity of this triangle, it follows that the unique morphism ϕji factors through π−1i (Vi∩
Vj). Interchanging i and j we get that ϕji is an isomorphism. By uniqueness of ϕij , we further get
the cocycle condition, as required.

We see from the proof the following.

Corollary 12.5.6. Let Y be a scheme, A a quasicoherent OY -algebra and f : Spec(A) → Y the
global spec. Then, f∗OSpec(A) ∼= A.

Proof. In the proof, we showed that for any open affine V ⊆ Y , we have f∗OSpec(A)|f−1(V )
∼=

πV ∗OSpec(A(V )) ∼= A|V and this isomorphism is compatible with restrictions. Consequently, we have
an isomorphism between f∗OSpec(A) and A over a base, which gives the required isomorphism as
sheaves over Y .

It is immediate to see by above theorem that global spec is always affine over the base.

Corollary 12.5.7. Let Y be a scheme and A a quasicoherent OY -algebra. Then the morphism

f : Spec(A)→ Y

is affine.

We now prove the converse of the above corollary.

Proposition 12.5.8. Let f : X → Y be an affine morphism. Then,
1. f∗OX is a quasicoherent OY -algebra,
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2. there is an isomorphism

X ∼= Spec(f∗OX).

Proof. 1. This is immediate from the fact that the morphism f is quasicompact and separated by
Lemma 12.5.4 (Lemma 9.1.17).

2. Let {Vα} be a basis consisting of open affines of Y . Then, {f−1(Vα)} is an open affine basis of
X by Proposition 12.5.3. Then, we have a canonical isomorphism f−1(Vα) ∼= Spec

(
OX(f−1(Vα))

)
.

Moreover, for Vα ↪→ Vβ, we have f−1(Vα) ↪→ f−1(Vβ) obtained by restriction ρ : OX(f−1(Vβ)) →
OX(f−1(Vα)). Hence by uniqueness of Theorem 12.5.5, we conclude the proof.

We may sum this up in the following bijection.

Corollary 12.5.9. 56 Let Y be a scheme. We have the following bijection¶
Affine morphisms X f→ Y

©
∼=
ß
Quasicoherent OY -
algebras A

™
established by f 7→ f∗OX and Spec(A)←[ A.

We see that any closed immersion is an affine map.

Proposition 12.5.10. Let i : Z → X be a closed immersion. Then i is an affine map.

Proof. By Proposition 4.4.11, there is an open affine cover {Vk} of X such that i : Z ∩ Vk ↪→ Vk
is a closed immersion. Denote Vk = Spec (Ak). Thus, Z ∩ Vk = Spec (Ak/Ik) and hence i−1(Vk) =
Spec (Ak/Ik), as required. Alternatively, it follows from the fact that any closed immersion is a
finite map (Proposition 12.3.9).

Example 12.5.11 (A non-affine map). Consider the map A2 \ {0} ↪→ A2. We claim that this
is not an affine map. Indeed, assuming to the contrary, there is a basic open affine U = D(f)
for f ∈ k[x, y] of A2 containing 0 such that U \ 0 is open affine. But as can be checked, the
coordinate rings of U and U \ 0 are isomorphic. It follows at once that U ∼= Spec (k[x, y]f ) ∼= U \ 0,
a contradiction to the fact that U ̸∼= U \ 0.

Remark 12.5.12. There is a canonical way of constructing quasi-coherent algebras out of quasi-
coherent modules, that is, by using symmetric algebra. Thus for any quasi-coherent OX -module E,
we get an algebra Sym(E). Denote V(E) := Spec(Sym(E)). Thus by Theorem 12.5.5, we have an
affine map

f : V(E)→ X

such that f∗OV(E) = Sym(E), a graded OX -algebra, where the first graded piece is E.

Here is the universal property of Spec.

Theorem 12.5.13. Let X be a scheme and A be a quasi-coherent OX-algebra. For any X-scheme
f : T → X, there is a natural isomorphism:

HomSch/X
(T,Spec(A)) −→ HomQCohAlg(OX) (A, f∗OT ).

56Exercise II.5.17, d) of Hartshorne.
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12.6 Vector bundles

We study vector bundles over schemes.

Definition 12.6.1 (Geometric vector bundles). Let X be a scheme. A geometric vector
bundle of rank n over X is a map p : E → X such that there is a cover Ui of X and isomorphisms
ϕi : p−1(Ui)→ AnZ × Ui such that

p−1(Ui) Ui × AnZ

Ui

ϕi

p
π1

commutes and for any open affine V = Spec (A) ⊆ Ui ∩ Uj , the composite

AnA ∼= V × AnZ p−1(V ) V × AnZ ∼= AnA
ϕi ϕj

is a linear isomorphism of AnA, i.e. ϕj ◦ϕ
−1
i : AnA → AnA is given by θ : A[x1, . . . , xn]→ A[x1, . . . , xn]

which is A-linear and θ(xi) =
∑
j aijxj for some aij ∈ A.

If p : E → X and p′ : E′ → X are two vector bundles of rank n and m over X, then a
map of vector bundles is an X-morphism f : E → E′ such that if ϕ : p−1(U) → U × AnZ and
ψ : p′−1(U ′)→ U ′ × AmZ are local trivializations of E and E′, then the horizontal composite

(U ∩ U ′)× AnZ p−1(U ∩ U ′) p′−1(U ∩ U ′) (U ∩ U ′)× AmZ
ϕ
∼=

f ψ
∼=

is a linear map of affine spaces AnU∩U ′ → AmU∩U ′ . We denote the category of geometric vector
bundles on X by VB(X).

The following is the main theorem. Denote the category of locally free modules of finite rank
on a scheme X by LocFree(X).

Theorem 12.6.2. Let X be a scheme. There is an equivalence of categories

LocFree(X) ≡−→ VB(X).

We construct functors which are essential inverse of each other as follows.

Construction 12.6.3 (Vector bundle from a locally free module). Consider the assignment

V : LocFree(X) −→ VB(X)
E 7−→ Spec(Sym(E)).

If E is locally free of rank n, then we now show that V (E) is a indeed a geometric vector bundle of
rank n. Let U ⊆ X be an open such that E|U is a free OX|U -module of rank n. We wish to show
that V (E) on U is trivial. Indeed,

Construction 12.6.4 (Locally free module from a vector bundle).
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12.7 Proper

This and the next section brings us closer to detecting when a scheme is projective (i.e. is a
subscheme of projective scheme). Proper maps corresponds roughly to the intuition that the scheme
X → Y should not have any missing points.
Definition 12.7.1. (Universally closed and proper maps) A map f : X → Y is said to be
universally closed if f is closed and for any base extension Y ′ → Y , the base extension of X,
denoted f ′ : X ′ → Y ′ is also closed as in the diagram below:

X ′ X

Y ′ Y

ff ′
⌟ .

Consequently, f is said to be proper if it is separated, finite type and is universally closed.
The main result here is again a valuative criterion which allows a lot of properties of such maps

to be derived quite easily.
Theorem 12.7.2. (Valuative criterion of properness) Let f : X → Y be a finite type map of
schemes where X is noetherian. Then the following are equivalent.

1. f is proper.
2. Pick any field K and any valuation ring R with fraction field K (see Section ??). Let i :

Spec (K) → Spec (R) be the map corresponding to R ↪→ K. For all g : Spec (R) → Y and
h : Spec (K) → X such that the square commutes, there exists a unique lift of g along f as
to make the following diagram commute:

Spec (K) X

Spec (R) Y

fi

g

h

! .

Note that whereas in Theorem 12.4.4 we had that there exists atmost one lift, here we have
that there exists unique lift (it exists and there is only one).
Corollary 12.7.3. Let us work in the category of noetherian schemes. Then,

1. if X → Y → Z is proper and Y → Z is separated, then X → Y is proper,
2. closed immersion are proper,
3. proper maps are stable under base extensions,
4. composite of proper maps is proper,
5. for two proper schemes X → S, Y → S in Sch/S, their product X ×S Y → S is proper,
6. a map f : X → Y is proper if and only if there exists an open cover Vi of Y such that the

restriction f |f−1(Vi) : f
−1(Vi)→ Vi is proper.

Proof. TODO : From notebook.

Remark 12.7.4 (Serre’s GAGA-1). Let f : X → Y be a map between C-varieties. Then Serre
proved the following equivalence:

1. f : X → Y is proper,
2. f : X(C)→ Y (C) is a proper map of topological spaces,

where recall that a map of spaces is proper if inverse image of any compact is compact.
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12.8 Projective

We now define maps of schemes which factors through a projective space over the target. This
will be fundamental, as the most natural type of schemes we find in nature are projective varieties
appearing as closed subschemes of the projective space over a field. Though we will work more
generally, but this will pay off in some of the later discussions. See Definition 8.2.14 for projective
spaces over a scheme.

Definition 12.8.1. (Projective and quasi-projective maps) Let f : X → Y be a map of
schemes. We say f is projective if there exists an n ∈ N such that f factors as a closed immersion
X → PnY followed by the struture map PnY → Y as in

X PnY

Y

f

cl. imm.

.

Further, a map f : X → Y is said to be quasi-projective if f factors first into an open immersion
X → X ′ and then a projective map X ′ → Y as in

X ′ PnY

X Y

op. imm.

cl. imm.

f

.

Thus quasi-projective maps corresponds to the usual notion of quasi-projective varieties (open
subsets of projective varieties in a projective n-space).

The important point to keep in mind about projective maps is that they are proper.

Theorem 12.8.2. Let X and Y be noetherian schemes.
1. If f : X → Y is projective, then f is proper.
2. If f : X → Y is quasi-projective, then f is finite type and separated.

Proof. 1. Since closed immersions are proper and proper maps are stable under base change (Corol-
lary 12.7.3), we may reduce to showing that for each n ∈ N, the scheme PnZ → Spec (Z) is proper.
It is clear that PnZ is finite type Z-scheme which is furthermore separated by Corollary 12.4.7.

In order to show that PnZ is proper, we will proceed by induction over n. For n = 0, we have
P0
Z
∼= Spec (Z), which is trivially proper over Spec (Z). Now suppose Pn−1Z is proper over Spec (Z).

We wish to show that PnZ is proper. We will use valuative criterion for this (Theorem 12.7.2).
Consider a valuation ring R with fraction field K such that we have maps g, h making the following
commute:

Spec (K) PnZ

Spec (R) Spec (Z)g

h

.
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Consequently, we wish to define a unique map Spec (R)→ PnZ which makes everything commute.

Denote Spec (K) = {⋆} and ξ = h(⋆) ∈ PnZ. We now observe that if ξ ∈ V (xi0) for any
i0 = 0, . . . , n, then by the natural isomorphism V (xi0) ∼= Pn−1Z and obvious restrictions, we get the
following commutative diagram:

Spec (K) Pn−1Z

Spec (R) Spec (Z)g

h

.

Consequently, by inductive hypothesis, we have a unique lift Spec (R) → Pn−1Z and thus a map
Spec (R) → PnZ making the diagram commutative. This is sufficient by the fact that PnZ is sepa-
rated (Lemma 12.4.7) and by valuative criterion (Theorem 12.4.4).

We next need to cover the case when ξ is not in any hyperplane V (xi), that is, when ξ ∈⋂n
i=0D+(xi). We will construct a map Spec (R) → PnZ which makes everything commute and

we will be done by separatedness of PnZ (Lemma 12.4.7). In this case, we obtain that OPn
Z ,ξ
∼=

Z[x0/xi, . . . ,’xi/xi, . . . , xn/xi] for all i = 0, . . . , n as D+(xi) ∼= Spec
(
Z[x0, . . . , xn](xi)

)
, (Lemma

8.2.4). Consequently, xi/xj ∈ OPn
Z ,ξ

is invertible for all i, j = 0, . . . , n, hence xi/xj /∈ mPn
Z ,ξ

. Denote
further fij ∈ κ(ξ) to be the image of xi/xj under the map OPn

Z ,ξ
→ OPn

Z ,ξ
/mPn

Z ,ξ
= κ(ξ).

The map h : Spec (K)→ PnZ is equivalent to the data of the point ξ ∈ PnZ and κ(ξ) ↪→ K (Lemma
6.1.1). Thus we have fij ∈ K for all i, j = 0, . . . , n. In order to define the map j : Spec (R)→ PnZ in
this case, it is sufficient to obtain a map Z[x0/xi, . . . ,’xi/xi, . . . , xn/xi]→ R such that the following
commutes:

K Z[x0/xi, . . . ,’xi/xi, . . . , xn/xi]
R Z

.

We will now construct such a map. Let v : K → G be the valuation corresponding to the valuation
ring R (so that R is the value ring of v), where G is a totally ordered abelian group. Consider the
collection of elements f10, . . . , fn0 ∈ K and denote gi = v(fi0) ∈ G. Let gm = mini gi. Consequently,
for each i = 0, . . . , n we obtain 0 ≤ gi−gm = v(fi0)−v(fm0) = v(fi0f0m) = v(fim). Thus, fim ∈ R.
Hence, we can construct the following map:

Z[x0/xi, . . . ,’xi/xi, . . . , xn/xi] −→ R
xi
xm
7−→ fim.

It is immediate that the above map makes the above diagram commute.
2. Since open immersions are separated (Corollary 12.4.5) and an open immersion X → X ′ where
X is noetherian is immediately quasicompact, so by Proposition 12.2.5, 2, the result follows.
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12.9 Flat

Look at the following MO post for more clarifications. Flat maps of schemes capture the notion of
a "continuous family of schemes parameterized by points of a base scheme". However, the notion
of flatness is very algebraic, as we shall soon see. We collect the properties of flat modules in the
Special Topics, Chapter ??.

https://mathoverflow.net/questions/6789/why-are-flat-morphisms-flat
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12.10 Rational

We discuss rationality questions for varieties. We fix an algebraically closed field k for this section
and all schemes are over k.

Definition 12.10.1 (Rational & birational maps). Let X, Y be varieties and U, V ⊆ X be
open subsets. Note they are dense and so is U ∩ V . Two maps fU : U → Y and fV : V → Y are
equivalent if fU |W = fV |W for some openW ⊆ U∩V . A rational map f : X 99K Y is an equivalence
class of maps fU : U → Y , denoted ⟨fU , U⟩, as defined above. Composition of two rational maps
f : X 99K Y and g : Y 99K Z is given as follows: one has fU : U → Y and gV : V → Z where
U ⊆ X and V ⊆ Y are open subsets, then gV ◦ fU : U → Z is the required map which gives the
rational composite g ◦ f : X 99K Z. One easily checks that this is well-defined. A rational map
f : X 99K Y is birational if there is an inverse rational map g : Y 99K X, that is, f ◦ g = idY and
g ◦ f = idX as rational maps. We get the category of varieties with rational maps, denoted VarRk .
A rational map f : X 99K Y is dominant if some representative fU : U → Y is dominant, that
is, has dense image. It follows that every representative is dominant and composite of dominant
rational maps is again rational. We denote the category of varieties and dominant rational maps
as VarDR

k . Clearly, there is an inclusion VarDR
k ↪→ VarRk .

Remark 12.10.2 (Faithful embedding of varieties). For any map f : X → Y of varieties, we get
a rational map f : X 99K Y , which is given by the class ⟨f,X⟩. One immediately checks that this
gives a functor

⟨−,−⟩ : Vark −→ VarRk .

We claim that the above functor is faithful. Indeed, if ⟨f,X⟩ = ⟨g,X⟩ for two map of varieties
f, g : X → Y , then f |U = g|U for some open dense U ⊆ X. We wish to show that f = g. This
follows from the following result (Lemma 12.10.3). Hence, varieties embed faithfully into varieties
with rational maps.

Lemma 12.10.3. Let f, g : X → Y be two map of schemes such that there exists a dense open
U ⊆ X on which f |U = g|U . If X is reduced and Y is separated, then f = g.

Proof. Denote C = {x ∈ X | f(x) = g(x)}. Observe that C = h−1(∆(Y )) where h = (f, g) : X →
Y × Y mapping x 7→ (f(x), g(x)) and ∆ : Y → Y × Y is the diagonal map. As Y is separated,
thus ∆(Y ) is closed and hence C ⊆ X is closed and contains U . As Ū = X, therefore C = X
as sets. We wish to show that this equality is of schemes. To this end, we need only show that
the only closed subscheme of a reduced scheme containing a dense open is X itself. Indeed, let
Spec (A) ⊆ X be any affine open. We wish to show that the closed subscheme of Spec (A) given
by C ∩ Spec (A) is Spec (A) itself. Let C ∩ Spec (A) = Spec (A/I). Suffices to show that I = 0. As
Spec (A/I) = Spec (A) since C = X as sets, therefore I ⊆ n, the nilradical of A. As A is reduced,
therefore n = 0 and hene I = 0, as required.

Remark 12.10.4. We really do require reduced domain in the above lemma, as the following
example shows. For the two maps ϕ,ψ : k → k[ϵ] mapping ϕ : c 7→ c and ψ : c 7→ cϵ, we
get two maps f, g : Spec (k[ϵ]) → Spec (k). Both maps are equal on the whole space (both sets
are singleton). Yet the maps are not the same, as they are induced by different functions. The
conclusion is, maps on an unreduced scheme are not determined by their mapping on points.
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To state the main theorem of this section, we have to promote the construction of function
fields to a functor.

Construction 12.10.5. Let f : X 99K Y be a dominant rational map of varieties. Take any
element (V, ϕ) ∈ K(Y ). We define an element of K(X) as follows. By shrinking U = f−1(V ) which
is possible as f is dominant, we may assume that fU : U → Y is a representative of the rational
map f . Then we define the class (U, f ♭V (ϕ)) in K(X). One checks easily that this is a well-defined
homomorphism of fields, denoted

K(f) : K(Y ) −→ K(X).

Hence, K is a contravariant functor from category of varieties and dominant rational maps to
category of fields over k.

The main theorem here is the following.

Theorem 12.10.6. The function field functor is an equivalence between category of varieties over
k with dominant rational map and category of finitely generated field extensions of k:

K : VarDR
k −→ Fldfg

k .

One reason to discuss rational maps is that they give a geometric meaning to function fields of
varieties.

Proposition 12.10.7. Let X be a variety. Then there is a natural isomorphism

K(X) ∼= HomVarDR
k

(
X,P1).

Proof. By Theorem 12.10.6, we have a natural isomorphism

HomVarDR
k

(
X,P1) ∼= HomFldfg

k

(
K(P1),K(X)

)
.

As K(P1) = k(T ) where T is the coordinate of an open affine patch Spec (k[T ]) and since any
k-linear field homomorphism α : k(T ) → K(X) equivalently is determined by any non-constant
function in K(X), hence we have the natural isomorphism

HomFldfg
k

(k(T ),K(X)) ∼= K(X).

This completes the proof.
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12.11 Smooth

12.12 Unramified

12.13 Étale

Étale maps is the place from where one enters the land of algebraic topology via algebraic geometry.
Indeed, the fundamental goal here is to capture the notion of local isomorphism but in an algebraic
context. The simplest place where one can understand them is a restricted version of this called
finite étale maps. This is where we begin from as we shall need this in our discussion of Galois
theory of schemes.

12.13.1 Finite étale

We refer to Algebra, Chapter ?? for background on separable algebras, in particular, to Definition
?? for free separable algebras.

We now define finite étale maps.

Definition 12.13.1. (Finite étale scheme) Let X be a base scheme. An X-scheme p : Y → X
is said to be finite étale if there is an open affine covering of X given by {Spec (Ai)}i∈I such that
p−1(Spec (Ai)) is an open affine subscheme of Y given by Spec (Bi) such that the induced map
Ai → Bi makes Bi a free separable Ai-algebra, for all i ∈ I. In such a situation, one calls Y a finite
étale covering of X. Denote the category Etfin(X) to be the full subcategory of Sch/X consisting
of finite étale coverings of X.

Let us now give an example of finite étale scheme.

Example 12.13.2.
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13 Coherent and quasicoherent sheaf cohomology
All schemes in this section are Noetherian. Cohomology will serve as an important tool to derive
invariants on a given scheme. We would need the cohomology of abelian sheaves over a space
(Chapter ??) and the notion of Noetherian schemes (Section 4) in this section. Apart from Mumford,
you may like to give Hida a visit.

We refer to Topics in Sheaf Theory, Chapter ?? for classical Čech cohomology, derived functor
cohomology and relations between them on topological spaces.

Since we are only dealing with noetherian schemes and the most important such schemes would
be those which are closed subvarieties of projective space, so finite dimensional, therefore the
following theorem of Grothendieck is of particular importance.

Theorem 13.0.1 (Grothendieck). Let X be a noetherian topological space of dimension n and F

be an abelian sheaf over X. Then

H i(X;F) = 0

for all i > n.

We now show some basic theorems in cohomology of sheaves over schemes which allows us to
use Čech-cohomology for calculations instead of derived functor cohomology, because both becomes
isomorphic.

13.1 Quasicoherent sheaf cohomology

Do from Hartshorne and Bruzzo.

As a corollary of Theorem 13.0.1, we have the following.

Corollary 13.1.1. Let X be a noetherian scheme of dimension n. Then for any OX-module M,
H i(X;M) = 0 for i > n.

Theorem 13.1.2 (Serre). Let X be a projective scheme over a noetherian ring A. Then for any
coherent OX-module M, the H i(X;M) is a finitely generated A-module.

Remark 13.1.3 (Euler characteristic). If X is a projective variety over a noetherian ring A and
M is any coherent OX -module M, we have that H i(X;M) are finitely generated A-modules con-
centrated in 0 ≤ i ≤ n. We may thus define the Euler-characteristic of M if A = k as

χ(M) =
∑
i≥0

(−1)i dimkH
i(X;M).

Theorem 13.1.4 (Serre). If X is a noetherian scheme then the following are equivalent:
1. X is affine.
2. H i(X;F) = 0 for all i ≥ 1 and all quasicoherent OX-modules F.
3. H i(X;F) = 0 for all i ≥ 1 and all coherent OX-modules F.

Proposition 13.1.5 (Künneth). Let X be a noetherian separated scheme over k and L/k be an
extension. Then for any coherent sheaf F over X

H i(X ×k L;FL) ∼= H i(X;F)⊗k L.
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Corollary 13.1.6. The arithmetic genus of a curve is invariant under change of base field.

Remark 13.1.7. To see the importance of arithmetic genus, one may look at Falting’s theorem;
any curve of arithmetic genus ga ≥ 2 has finitely many rational points.

13.1.1 GAGA

Serre proved the following famous equivalence in the mid 1950s.

Theorem 13.1.8 (Serre’s GAGA). Let X be a projective scheme over C. Then there is an equiv-
alence of categories

Coh(X) ≡ Coh(X(C)).

13.2 Application : Serre-Grothendieck duality

Do from Hida and Hartshorne.

13.3 Application : Riemann-Roch theorem for curves

Do from Hida and Hartshorne.

We denote by ℓ(D) := dimkH
0(X;L(D)) for a Cartier divisor D on X.

Theorem 13.3.1. Let X be a regular, projective, geometrically integral variety of pure dimension
1. If D be a Cartier divisor on X, then

ℓ(D) + ℓ(K \D) = deg(D) + 1− ga

where K is the canonical divisor and ga = dimkH
1(X;OX) is the arithmetic genus of X.
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