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1 Holomorphic functions
We will here review some of the classical results of complex function theory of one variable, namely
the following four topics:

• Analytic functions; Cauchy-Riemann equations, harmonic functions.
• Complex integration; Zeroes of analytic functions, winding numbers, Cauchy’s formula and

theorem, Liouville’s theorem, Morera’s theorem, open-mapping theorem, Schwarz’s lemma.
• Singularities; Classification, Laurent series, Casorati-Weierstrass theorem, residues and ap-

plications, meromorphic maps, Rouché’s theorem.
• Conformal maps; Möbius transformations, normality and compactness, Riemann mapping

theorem.
All this is important as it will build one’s intuition of geometry in complex case, which is something
we don’t learn as early in our studies as, say, real geometry. Of-course this would be of immense
use in complex algebraic geometry, some if which we shall cover in later chapters. Moreover, a
complex manifold by definition locally looks like Cn, hence it is imperative that we understand the
geometry and analysis of complex plane and make it as second nature as the usual geometry over
R2 is to us.

Let Ω ⊆ C denote an open subset of the complex plane C for the rest of this chapter. Consider
a function f : Ω → C. Motivated by the classical case of real differentiability in one variable, we
can define a notion of differentiation for f at a ∈ Ω.

Definition 1.0.1. (C-differentiable/holomorphic functions) A function f : Ω → C is C-
differentiable or holomorphic at a ∈ Ω if the following limit exists:

lim−→
z→0

f(a+ z)− f(a)
z

in which case it’s value is said to be the derivative of f at a and is denoted by df
dz (a) = f ′(a) ∈ C.

Remark 1.0.2. As we shall soon see, this seemingly innocuous definition for some surprising reason
gives the following fantastic results:

1. Theorems 1.1.2 and ?? tells us:

{All C-differentiable maps f : Ω → C}

{All pairs of differentiable maps u, v : Ω → R, related by CR-equations}

∼= .



1.1 Cauchy-Riemann equations 3

2. Corollary 1.2.2 and Theorem ?? tells us:

C-differentiable maps are conformal.

3. Theorem ?? tells us:

C-differentiable functions are harmonic.

Moreover, Theorem ?? tells us that if Ω is simply connected, then

{Harmonic functions Ω ⊆ R2 ∼= C}

{C-differentiable functions on Ω ⊆ C}

∼= .

4. Theorem ?? tells us:

Contour integral of a C-differentiable map around a loop is 0 .

5. Theorem ?? tells us:
A C-differentiable function inside a disc is determined by its values on the disc’s bound-
ary.

6. Corollary 2.3.5 tells us:

{C-differentiable maps f : Ω → C}

{Analytic maps f : Ω → C}

∼= .

This shows the sheer importance of the notion of C-differentiability, which we will explore later in
a more local setting. Our goal in the rest of this chapter is to provide rather quick proofs to these
results while portraying the main ideas employed in them.

Let us start by analyzing some elementary properties of holomorphic maps.

1.1 Cauchy-Riemann equations

Let f : Ω → C be a holomorphic map on an open subset Ω ⊆ C. Now, there is a homeomor-
phism ϕ : R2 → C given by (x, y) 7→ x + iy. Composing f with this map, we get that f can
equivalently be stated as the data of two real valued maps u : R2 → R and v : R2 → R given by
u(x, y) = ℜf(ϕ(x, y)) and v(x, y) = ℑf(ϕ(x, y)).

Like in the case of R-differentiability, in our case we can also define partial differential operators
of f w.r.t. x, y and z.

Definition 1.1.1. (Partial differential operators on f) Let f : Ω → C be a holomorphic map
on an open subset Ω of C. Then, we define the following quantities in an obvious manner:

1. ∂f
∂x := ∂u

∂x + i ∂v∂x .
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2. ∂f
∂y := ∂u

∂y + i∂v∂y .
3. ∂f

∂z := 1
2

Ä
∂f
∂x − i∂f∂y

ä
.

4. ∂f
∂z̄ := 1

2

Ä
∂f
∂x + i∂f∂y

ä
.

Then the fact that f is holomorphic can be equivalently stated in terms of real differentiability
of the maps u and v as the following theorem states.

Theorem 1.1.2. Suppose f : Ω → C is any C-valued function on an open set Ω of C. Then write
f(x+ iy) = u(x, y) + iv(x, y) where u, v : R2 ⇒ R.

1. f : Ω → C is holomorphic at z0 ∈ Ω if and only if u, v are real differentiable and satisfy any
of the following equivalent PDEs at z0:
(a) ∂u

∂x = ∂v
∂y & ∂u

∂y = − ∂v
∂x .

(b) ∂f
∂x = −i∂f∂y .

(c) ∂f
∂z = ∂f

∂x .
(d) ∂f

∂z̄ = 0.
2. If u, v : Ω → R is a pair of C1-maps satisfying the CR-equations, then f := u + iv is a

holomorphic map.

Proof. Equivalence of the four PDEs is straightforward. Now let f : Ω → C be a holomorphic map.
This means that for any a ∈ Ω, we have

∂f

∂z
(a) = lim−→

z→0

f(a+ z)− f(a)
z

.

The required PDEs for u and v follows by letting z approach 0 first from real axis and then from
imaginary axis and deeming them equal.

Next, we may write R(z) = f(a + z) − f(a) − cz for some c = c1 + ic2 and then R(z) =
Ru(z)+ iRv(z) where Ru(z) = u(a+ z)−u(a)− c1x+ c2y and Rv(z) = v(a+ z)− v(a)− c2x− c1y.
Then, f is holomorphic at a with df

dz (a) = c if and only if lim−→z→0
R(z)
z = 0. But the latter happens

if and only if lim−→z→0
Ru(z)

z = 0 = lim−→z→0
Rv(z)

z . Now Ru(z)
z = 0 if and only if c1 = ∂u

∂x(a) and
c2 = −∂u

∂y (a). Similarly, lim−→z→0
Rv(z)

z = 0 if and only if c2 = ∂v
∂x(a) and c1 =

∂v
∂y (a).

1.2 Conformal maps

We will now show that holomorphic maps "preserves angles". The meaning of angle is not well-
defined a-priori on the complex plane, so we will have to develop that first.

A curve in C is a continuous map γ : I → C. It is said to be differentiable if ℜγ : I → R and
ℑγ : I → R are differentiable R-valued functions. It is said to be regular at t ∈ I if γ′(t) ̸= 0 ∈ C.
Now, let γ1, γ2 : I → C be two curves which intersect at γ1(t1) = γ2(t2) for t1, t2 ∈ I such that γi
is regular at ti, i = 1, 2. Such an intersection is said to be regular. Then, the angle of intersection
of γ1 and γ2 at a regular point is defined to be:

∠γ1(t1), γ2(t2) := arg γ′2(t2)− arg γ′1(t1).
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A function f : Ω → C is conformal at z0 ∈ Ω if f preserves angles of all regular intersections of two
curves at z0.

It is now an easy observation that holomorphic maps will be conformal.

Lemma 1.2.1. Let f : Ω → C be a holomorphic map on an open set Ω of C. If z0 ∈ Ω such that
f ′(z0) ̸= 0, then for any two curves γ1, γ2 such that γ1(t1) = z0 = γ2(t2) and γ1, γ2 are regular at
t1, t2 respectively, then

∠γ1(t1), γ2(t2) = ∠f ◦ γ1(t1), f ◦ γ2(t2).

Proof. The result follows from chain rule and the fact that argwz = argw + arg z.

A map f : Ω → C is called conformal if it preserves angles of all regularly intersecting curves.
Thus,

Corollary 1.2.2. All holomorphic functions are conformal except at those points at which deriva-
tive is zero.

We will now show that even an arbitrary conformal map f : Ω → C is also holomorphic.

Theorem 1.2.3. Let f : Ω → C be a conformal map such that ℜf and ℑf are of class C1. Then,
1. f is holomorphic.
2. f ′(z) ̸= 0 for all z ∈ Ω.

Proof. Simple thus omitted.

1.3 Harmonic maps

A function f : Ω → C is said to be harmonic if ∂2f
∂x2 + ∂2f

∂y2
= 0. Below are some straightforward

implications of Cauchy-Riemann equations.

Lemma 1.3.1. Let f = u+ iv : Ω → C be a function where u, v : Ω ⇒ R. Then, f is harmonic if
and only if u and v are harmonic (in R-sense).

Lemma 1.3.2. All holomorphic maps are harmonic.

Lemma 1.3.3. All conformal maps are harmonic.

1.4 Linear fractional transformations

A linear fractional transformation is a map

ϕ : C −→ C

z 7−→ az + b

cz + d

where a, b, c, d ∈ C. These are important as they provide a class of workable examples of rational
functions, which are pretty much the bread and butter of algebraic geometry. Moreover, these maps
arrange themselves in a group and it then follows that it contains as a subgroup the biholomorphic
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automorphism group of lots of geometric objects of interest (see Lemmas 1.4.2, 1.4.3). However,
these maps makes the most sense on the complex projective line, CP 1, the quotient of C2 by all
lines passing through origin, which is the usual Riemann sphere C̄.

Let us work out this connection in detail. We have the following maps:

α : C2 CP 1 C̄

(w, z) [w, z] w
z

∼=

Notice that Lf (C̄), the collection of all linear fractional transforms on C̄ forms a group where
the identity is given when a = 0 = c. The multiplication of two fractional transforms is again a
fractional transform, as can be checked easily. Hence, it follows that Lf (C̄) is a subgroup of all
biholomorphic maps of C̄, the Aut

(
C̄
)
. Hence we have a hold on one type of global biholomorphic

maps of the Riemann sphere(!)

We then have the following result.

Lemma 1.4.1. Let C̄ denote the Riemann sphere. Then,

Lf (C̄) ∼= GL2(C)
/
C×I2

Proof. There’s a natural map

κ : GL2(C) −→ Lf (C̄)ï
a b
c d

ò
7−→ az + b

cz + d
.

This is a group homomorphism, as can be checked easily. The kernel of this homomorphism consists
of matrices

M =
ï
a b
c d

ò
such that az+b

cz+d = z. Unravelling, we get c = 0 = b and a = d ̸= 0.

This group is also known by projective general linear group, PGL2(C) := Lf (C̄). The group
Lf (C̄) also has some special subgroups. For example, it consists of all biholomorphic maps of
D◦ := {z ∈ C | |z| < 1}.

Lemma 1.4.2. For the open unit ball D◦, we have

Aut (D◦) ∼=
ß
t(z − a)
1− āz

| |t| = 1 & a ∈ D◦
™
.

Similarly, it also contains an isomorphic copy of all biholomorphic maps of upper half plane H.

Lemma 1.4.3. For the upper half plane H ⊂ C, we have

Aut (H) ∼= SL2(R) ⊂ GL2(C).
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1.4.1 Properties

Let us now state some basic properties of fractional transforms.

Lemma 1.4.4. If ϕ : C̄ → C̄ is a non-identity fractional transform, then either it has one or two
fixed points, but not zero.

Proof. A non-identity fractional transform ϕ(z) = az+b
cz+d follows that either b, d ̸= 0 or a ̸= c.

Suppose the former is not the case. Now if ϕ(z) = z, then it follows that cz2 + (d − a)z − b = 0
where b = d = 0. Thus we obtain z(cz − a) = 0, which gives atleast one and atmost two solutions.
Similarly, if a = c, then b, d ̸= 0. It then follows that the above quadratic has either one or two
solutions.

Another property of fractional transforms is that they are uniquely determined by how they
map on three points.

Lemma 1.4.5. If z1, z2, z3 and w1, w2, w3 are two pair of distinct points in C̄, then there exists a
unique fractional transform ϕ ∈ Lf (C̄) such that

f(zi) = wi ∀i = 1, 2, 3.

Proof. Uniqueness follows from the fact that if ϕ,ϖ : C̄ ⇒ C̄ are two fractional transforms taking
zi 7→ wi, then the fractional transform ϕ ◦ ϖ−1 has 3 fixed points. It follows from Lemma 1.4.4
that ϕ ◦ϖ−1 = id.

To show existence, take any arbitrary triple v1, v2, v3 ∈ C̄. We will show that one can construct
a fractional transform depending on vi mapping as zi 7→ vi. Denote then the map ϕ, zi 7→ vi and
ϖ, wi 7→ vi. Then ϖ−1 ◦ ϕ would be the required map. Since vi can be arbitrary, therefore we
choose it as per our convenience. It is perhaps easier to write it for ∞, 0, 1.

One last basic property that may be observed for fractional transforms is that they are confor-
mal.

Lemma 1.4.6. All fractional transforms ϕ : C̄ → C̄ are conformal.

Proof. Since fractional transforms are holomorphic, therefore by Corollary 1.2.2, we reduce to
showing that ϕ′(z) ̸= 0 for all z ∈ C̄. Indeed, we have

φ′(z) = ad− bc

(cz + d)2 ,

where since ad− bc ̸= 0 by definition, therefore φ′(z) ̸= 0.

1.4.2 Example : The Cayley transform

We will discuss here the properties of the following fractional transform, known by Cayley’s name:

ϕ : C̄ −→ C̄

z 7−→ z + i

z − i
.
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2 La théorie des cartes holomorphes

The theory of holomorphic maps. We now begin another part of complex function theory which is
at the heart of a lot of sources of interest in it. We first consider the line integrals.

2.1 Line integrals

Let γ : [a, b] → C be a continuous function. Suppose G ⊆ C is an open subset containing γ and it’s
interior and let f ∈ Chol(G) be a holomorphic map f : G → C. Then, the line integral of f along
γ is defined as ∫

γ
f(z)dz :=

∫ b

a
f(γ(t))γ′(t)dt

where definite integral of a complex valued function g : [a, b] → C where g = u+ iv is given simply
as the Riemann integral on each of the real and imaginary parts:∫ b

a
g(t)dt =

∫ b

a
u(t)dt+ i

∫ b

a
v(t)dt.

A continuous map γ : [a, b] → C is called piecewise C1 if γ is C1 at all but finitely many points and
where it isn’t differentiable, one sided derivative exists.

Few properties of line integrals are in order.

Theorem 2.1.1. Let γ : [a, b] → C be a curve in C and let G ⊆ C be an open subset containing γ.
Let f ∈ Chol(G) be a holomorphic map over G. Then,

1. (FTOC) If γ is piecewise C1, then∫ b

a
γ′(t)dt = γ(b)− γ(a).

2. If f ∈ Chol(G) where G contains γ, then∫
γ
f ′(z)dz = f(γ(b))− f(γ(a)).

So if γ is a closed loop, then integral of f ′ along it is 0.
3. If f ∈ Chol(G) and γ̃ is a reparametrization of γ, then

∫
γ f(z)dz =

∫
γ̃ f(z)dz.

4. (Estimate) If f ∈ Chol(G) and M = supt∈[a,b] |f(γ(t))|, then∣∣∣∣∫
γ
f(z)dz

∣∣∣∣ ≤ML(γ)

where L(γ) =
∫ b
a |γ′(t)| dt is the arc-length.

Proof. Assuming 1 by FTOC on each piece, all results follows from basic analysis.
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2.2 Cauchy’s theorem - I

We will now state the Cauchy’s theorems on holomorphic maps and integrals. This will be a special
case of the general version, which we shall do later, for we will find almost all of the traditional
applications without needing that generality. We will begin with it’s infantile version, which is
quite simple to state now with line integrals in our pouch.

Theorem 2.2.1. (Cauchy’s theorem) Let γ : [a, b] → C be a closed piecewise C1 loop in C and let
G ⊆ C be a convex open set containing γ and it’s interior Int(γ). If f ∈ Chol(G), then∫

γ
f(z)dz = 0.

Then there is the Cauchy integral formula.

Theorem 2.2.2. (Cauchy’s integral formula) Let C be a circle oriented in the counterclockwise
manner and let G ⊆ C be an open set containing C and its interior Int(C). Then,

f(z) = 1
2πi

∫
C

f(w)
w − z

dw

for all z ∈ Int(C).

Remark 2.2.3. Let f ∈ Chol(G) be a holomorphic map on open G ⊆ C. The integral formula tells
us that the value of f at z ∈ G can be given in terms of line integral of f around a small enough
circle C in the CCW orientation centered at z so that C ⊆ G. Hence the integral formula tells
us that holomorphic maps are pretty much completely determined by taking their line integrals
around circles.

We will provide some results which can be derived from them. In particular, using these, we
would be able to show that a holomorphic map is analytic (Corollary 2.3.5).

2.2.1 Proof of Cauchy’s theorem : Holomorphic maps have primitives

A primitive of a holomorphic map f is a holomorphic map g such that g′ = f . We first state the
following theorem without proof using which we will prove the Cauchy’s theorem.

Theorem 2.2.4. (Cauchy’s triangle theorem) Let T be a triangle in C and G ⊆ C be an open set
containing T and Int(T ). If f ∈ Chol(G), then∫

T
f(z)dz = 0.

Proof. [??] [Sarason].

Now, we will prove the following lemma using the above triangle theorem.

Lemma 2.2.5. Let G ⊆ C be a convex open set and f ∈ Chol(G). Then there exists a map
g ∈ Chol(G) such that g′ = f .
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Proof. For a fixed z0 ∈ G, define

g : G −→ C

z 7−→
∫
[z0,z]

f(z)dz

where [z0, z] denotes the path formed by line joining z0 and z in G. We claim that for all z ∈ G,
g′(z) = f(z). Indeed, pick any z1 ∈ G to form triangle T = (z0, z1, z) inside G (G is convex). Then,
by Theorem 2.2.4, we get the following

0 =
∫
T
f(w)dw

=
∫
[z0,z1]

f(w)dw +
∫
[z1,z]

f(w)dw +
∫
[z,z0]

f(w)dw

g(z)− g(z1) =
∫
[z1,z]

f(w)dw.

We wish to estimate ∣∣∣∣g(z)− g(z1)
z − z1

− f(z1)
∣∣∣∣ = ∣∣∣∣ 1

z − z1

∫
[z1,z]

f(w)dw − f(z1)
∣∣∣∣

=
∣∣∣∣ 1
z − z1

∫
[z1,z]

(f(w)− f(z1))dw
∣∣∣∣

≤ 1
|z − z1|

∫
[z1,z]

|f(w)− f(z1)| dw.

Since f is continuous, therefore for any ϵ > 0, there is a δ > 0 such that |w − z1| < δ implies
|f(w)− f(z1)| < ϵ. Hence, for |w − z1| < δ, we get

≤ 1
|z − z1|

∫
[z1,z]

ϵdw

= ϵ.

Hence as z → z1, the above difference → 0.

Proof of Theorem 2.2.1. Since f ∈ Chol(G), therefore by Lemma 2.2.5, there exists g ∈ Chol(G)
such that g′ = f . Hence the result follows by Theorem 2.1.1, 2.

2.2.2 Proof of Cauchy’s integral formula : Cauchy integrals

We would like to present the proof of Cauchy integral formula as it portrays how to use the fact
that integral of holomorphic maps around closed loops are zero (Theorem 2.2.1).

Proof of Theorem 2.2.2. Pick any z0 ∈ Int(C). We shall show the result for this chosen z0. We shall
use the Cauchy’s theorem 2.2.1 in an essential manner. Indeed, consider the following figure on the
complex plane inside G: Integrating the holomorphic map f(w)

w−z0
over the each of the four regions

will give zero by Theorem 2.2.1. However, summing them up, one can see that we get the difference∫
C

f(w)
w−z0

dw −
∫
Cϵ

f(w)
w−z0

dw, which should thus be zero, yielding us
∫
C

f(w)
w−z0

dw =
∫
Cϵ

f(w)
w−z0

dw. Note
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z0
Cϵ

C

Figure 1: Contour over which to integrate f(w)
w−z0

.

this is true for all ϵ < d(z0, C).

Now recall that
∫
C

1
zdz = 2πi. Hence, we get the following estimate for any chosen ϵ < d(z0, C)∣∣∣∣ 1

2πi

∫
C

f(w)
w − z0

dw − f(z0)
∣∣∣∣ = ∣∣∣∣ 1

2πi

∫
Cϵ

f(w)
w − z0

dw − f(z0)
∣∣∣∣

=
∣∣∣∣ 1
2πi

∫
Cϵ

f(w)− f(z0)
w − z0

dw

∣∣∣∣
Now, by Theorem 2.1.1, 4, let Mϵ = supw∈Cϵ

∣∣∣f(w)−f(z0)
w−z0

∣∣∣ to obtain the following inequality

≤ Mϵ

2π L(Cϵ)

= Mϵ

2π 2πϵ

= ϵMϵ.

Since f is holomorphic, therefore lim−→ϵ→0Mϵ = |f ′(z0)|. Hence, lim−→ϵ→0 ϵMϵ = 0, which gives the
desired result.

2.3 Theory of holomorphic maps

We now present applications of the two highly useful results of Cauchy (Theorems 2.2.1, 2.2.2).
The results covered here are as follows:

• Mean value property.
• Power series representation of Cauchy integrals.
• Morera’s theorem.
• Derivatives.
• Liouville’s theorem.
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• Identity theorem.
• Maximum modulus theorem.
• Schwarz’s lemma.
• Classification of bijective holomorphic maps of open unit ball.
• Open mapping theorem.
• Fundamental theorem of algebra.
• Inverse function theorem.
• Local mth power property.
• Harmonic conjugates.

These results lie at the heart of complex analysis.

Let us begin by understanding the behavior of a holomorphic map around a circle centered at
a point.

2.3.1 Mean value property of holomorphic maps

Proposition 2.3.1. Let G ⊆ C be an open set and f ∈ Chol(G). Then, for all z0 ∈ G and Cr a
circle of radius r centered at z0 contained inside G together with its interior Int(C), we have

f(z0) =
1
2π

∫ 2π

0
f(z0 + reit)dt.

Proof. Using the integral formula (Theorem 2.2.2) and using γ(t) = z0+ reit as a parameterization
of Cr, the result follows.

2.3.2 Power series representation of Cauchy integrals

We will in this section show that functions defined by Cauchy integrals are analytic. Since holomor-
phic maps are given by Cauchy integrals, thus we would be able to show that holomorphic maps
are analytic.

Definition 2.3.2. (Maps given by Cauchy integral) Let γ : [a, b] → C be a piecewise C1 curve
in C and f ∈ Chol(G) be a holomorphic map on an open subset G ⊆ C where G contains Im (γ).
Define the following map

f̃ : C \ Im (γ) −→ C

z 7−→
∫
γ

f(w)
w − z

dw.

Then f̃ is called the Cauchy integral associated to f ∈ Chol(G) and γ : [a, b] → G.

We first show that holomorphic maps are given by Cauchy integrals.

Lemma 2.3.3. Let f ∈ Chol(G) be a holomorphic map on an open set G ⊆ C. Then f is locally
given by a Cauchy integral.
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Proof. Indeed, by Theorem 2.2.2, we see that for all z ∈ G, choosing a small circle Cz around z
and such that Cz and Int(Cz) are inside G, we can write

f(z) = 1
2πi

∫
Cz

f(w)
w − z

dw.

Hence locally f looks like a Cauchy integral.

We now show that Cauchy integrals are analytic, making holomorphic maps analytic by above
lemma.

Proposition 2.3.4. Maps defined by Cauchy integrals are analytic.

Proof. Let f ∈ Chol(G) where G is open and let γ : [a, b] → G be a piecewise C1 curve. We wish to
show that f̃ defined on C \ Im (γ) is given locally by power series. Indeed, pick any z ∈ C \ Im (γ).
Since Im (γ) is closed, therefore there exists a ball of radius r, Br, such that Br ⊆ C \ Im (γ). In
order to expand f̃(z) =

∫
γ

f(w)
w−z dw as a power series, we first focus on 1

w−z , where w ∈ Im (γ) and
z is as above. Indeed, for any z0 ∈ Br, we have |z − z0| < r and |w − z0| > r, thus yielding that∣∣∣ z−z0
w−z0

∣∣∣ < 1 and hence we can write

1
w − z

= 1
(w − z0)− (z − z0)

= 1
(w − z0)(1− z−z0

w−z0
)

= 1
w − z0

∞∑
n=0

Å
z − z0
w − z0

ãn
=

∞∑
n=0

(z − z0)n

(w − z0)n+1 .

Moreover the convergence is uniform as we are within the radius of convergence. Now, f(w) ≤ M
for all w ∈ Im (γ) as Im (γ) is compact and f is continuous over it. Hence we get that that following
holds for all w ∈ Im (γ)

f(w)
w − z

=
∞∑
n=0

f(w)(z − z0)n

(w − z0)n+1 .

Taking integral both sides, it thus follows from uniform convergence of above series that

f̃(z) =
∫
γ

f(w)
w − z

dw =
∫
γ

∞∑
n=0

f(w)(z − z0)n

(w − z0)n+1 dw

=
∞∑
n=0

∫
γ

f(w)(z − z0)n

(w − z0)n+1 dw

=
∞∑
n=0

Å∫
γ

f(w)
(w − z0)n+1dw

ã
(z − z0)n.

Hence locally f̃ looks like a power series, i.e. it is analytic.

Corollary 2.3.5. Holomorphic maps are analytic.

Proof. By Lemma 2.3.3, holomorphic maps are given by Cauchy integrals. By Proposition 2.3.4,
maps given by Cauchy integrals are analytic.
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2.3.3 Morera’s theorem : Converse of Cauchy’s triangle theorem

Proposition 2.3.6. If f : G → C is a continuous map on an open set G ⊆ C such that for all
triangles T ⊆ G where Int(T ) ⊆ G as well we get∫

T
f(z)dz = 0,

then f is holomorphic.

Proof.

2.3.4 Derivatives of a holomorphic map

Proposition 2.3.7. Let f ∈ Chol(G) be a holomorphic map on an open set G ⊆ C. Then, f is
differentiable to all orders and

f (n)(z) = n!
2πi

∫
Cr

f(w)
(w − z)n+1dw

where Cr is a circle in CCW orientation of radius r such that Cr ⊆ G and Int(Cr) ⊆ G. Moreover,
for all z ∈ Int(Cr) with z0 as center, we have that

f(z) =
∞∑
n=0

f (n)(z0)(z − z0)n

n!

=
∞∑
n=0

1
2πi

Å∫
Cr

f(w)
(w − z)n+1dw

ã
(z − z0)n

2.3.5 Liouville’s theorem

A holomorphic map f on the entire complex plane, that is f ∈ Chol(C), is said to be entire.

Proposition 2.3.8. Any entire bounded function f : C → C is constant.

2.3.6 Zeroes of holomorphic maps

Proposition 2.3.9. Let G ⊆ C be an open connected subset of C. If f ∈ Chol(G) is a holomorphic
map on G, then the zero set V (f) = {z ∈ G | f(z) = 0} has no limit point in G i.e. either
V (f) = G or V (f) is discrete.

2.3.7 Identity theorem

Proposition 2.3.10. Let f, g ∈ Chol(G) be two holomorphic maps defined on an open connected
set G ⊆ C. Then f = g on G if and only if there exists a set A ⊆ G which has a limit point in G
such that f |A = g|A.

Corollary 2.3.11. Let f, g be two holomorphic maps on open connected subset G ⊆ C such that
there exists an open set U ⊊ G contained inside of G such that ∂U ̸= ∅ and Ū ⊆ G and f |U = g|U .
Then f = g on G.
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Proof. Indeed, since any element in ∂U is a limit point of U in G and f |U = g|U , then the result
follows by Proposition 2.3.10.

Corollary 2.3.12. Let f, g be two holomorphic maps on open connected subset G ⊆ C such that
there exists a closed ball B ⊂ G on which f |B = g|B, then f = g on G.

Proof. A closed ball has non-empty interior. The result follows by Corollary 2.3.11.

2.3.8 Maximum modulus principle

Proposition 2.3.13. Let G ⊆ C be an open connected set and f ∈ Chol(G) be a holomorphic map
on G. Then |f | doesn’t achieves local maxima in G.

2.3.9 Schwarz’s lemma

Lemma 2.3.14. Let D = {z ∈ C | |z| < 1} be the open unit disc. If f ∈ Chol(D) is a holomorphic
map f : D → D such that f(0) = 0, then

1. |f(z)| ≤ |z| for all z ∈ D.
2. |f ′(0)| ≤ 1.
3. If f is not of the form λz for λ ∈ S1, then the inequality in 1. & 2. is strict at all points

z ∈ D \{0}. In particular, if there exists z0 ∈ D \{0} such that |f(z0)| = |z0|, then f(z) = λz
for |λ| = 1 and λ = f ′(0).

Proof. Consider the map defined by

g : D −→ C

z 7−→
®f(z)

z if z ∈ D \ {0}
f ′(0) if z = 0.

Clearly g is holomorphic. Now, for any r ∈ (0, 1), for Cr ⊂ D, by maximum modulus, Proposition
2.3.13, we have

|g(z)| < 1
r

for all z ∈ Int(Cr). Taking limit as r → 1, we obtain |g(z)| ≤ 1 for all z ∈ D. Now, if ∃w ∈ D such
that |f(w)| = |w|, then |g(w)| = 1. Since |g(z)| < 1 for all z ∈ D as shown above, therefore by
another use of maximum modulus, Proposition 2.3.13, it follows that g(z) = λ is a constant where
|λ| = 1. Thus f(z) = λz.

Corollary 2.3.15. (Pick’s lemma) Let f : D → D be a holomorphic map where D = {z ∈ C | |z| <
1}. Then, for any two points z, w ∈ D∣∣∣∣∣ f(z)− f(w)

1− f(z)f(w)

∣∣∣∣∣ ≤
∣∣∣∣ z − w

1− zw̄

∣∣∣∣
except if f is a linear fractional transform mapping disc onto itself.
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Proof. Define for each w ∈ D the following fractional transform

gw : D −→ D

z 7−→ z − w

1− zw̄
.

Then apply Schwarz’s lemma (Lemma 2.3.14) on gf(w) ◦ f ◦ g−1
w : D → D as fractional transforms

are biholomorphic.

2.3.10 Classification of bijective holomorphic maps of open unit ball

We shall classify all bijective holomorphic maps f : D → D for D := {z ∈ C | |z| < 1} and see that
in the process that they are biholomorphic as well. For this, we first define the following important
map which we encountered in Pick’s lemma (Corollary 2.3.15). Define the following map for each
α ∈ D:

ϕα : D̄ −→ D̄

z 7−→ z − α

1− ᾱz
.

This is indeed a holomorphic map over D̄. We now see that this is biholomorphic.

Theorem 2.3.16. For any α ∈ D, the map ϕα : D̄ → D̄ is such that
1. ϕα takes D to D,
2. ϕα takes ∂D to ∂D,
3. ϕα is injective,
4. ϕα is surjective,
5. ϕα has a holomorphic inverse given by ϕ−α.

Proof. Fix an α ∈ D. We first show 2. For any z ∈ ∂D, we can write z = eit for t ∈ R. Thus we
have ∣∣∣ϕα(eit)

∣∣∣ = ∣∣∣∣ eit − α

1− ᾱeit

∣∣∣∣
=

∣∣∣∣ eit − α

1− ¯̄αēit

∣∣∣∣
=

∣∣∣∣ eit − α

1− αe−it

∣∣∣∣
=

∣∣∣∣eit − α

eit − α

∣∣∣∣
= 1.

Thus, ϕα(eit) ∈ ∂D. This shows 2. Now we show 1. For this, by maximum modulus (Proposition
2.3.13), we have that |ϕα| achieves maxima on ∂D, and by 1., that maxima is 1, hence at every
point of ∂D does |ϕα| achieves maxima. Hence ϕα(D) ⊆ D. This shows 1. Next, it is a matter of
simple calculation to see that ϕα ◦ ϕ−α = idD̄ and thus by symmetry idD̄ = ϕ−α ◦ ϕα. Hence, ϕα

is a biholomorphic map taking D onto D and ∂D onto ∂D.
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We would now like to see that all biholomorphic maps of open unit ball are given by some
unit modulus scalar multiples of ϕα. However, we need an idea to do so, which is provided by the
following result.

Proposition 2.3.17. (Extremality) For fixed α, β ∈ D, denote Cα,β to be the class of holomorphic
maps into the unit disc f : D → D such that f(α) = β. Then,

1. we have

sup
f∈Cα,β

∣∣f ′(α)∣∣ = 1− |β|2

1− |α|2
.

2. The map f ∈ Cα,β achieving the suprema is given by the following rational map

f = ϕ−β ◦ λ ◦ ϕα

where λ ∈ ∂D is a scalar.

Proof. 1. We need only show that for each f ∈ Cα,β, we get

∣∣f ′(α)∣∣ ≤ 1− |β|2

1− |α|2
.

Indeed, this simply follows from a similar idea as used in the proof Pick’s lemma (Corollary 2.3.15)
above; consider the map g = ϕβ ◦ f ◦ ϕ−α and use Schwarz’s lemma (Lemma 2.3.14) on it to
get the bound |g′(0)| ≤ 1. Now use chain rule while keeping in mind that ϕ′(0) = 1 − |α|2 and
ϕ′
α(α) = 1

1−|α|2 .

2. From proof of 1, it follows that the equality is achieved if and only if |g′(0)| = 1. By Schwarz’s
lemma (Lemma 2.3.14) this happens only if g(z) = λz for λ ∈ ∂D. Rest follows by composing with
inverses of ϕβ and ϕ−α which we know from Theorem 2.3.16, 5.

We now come to the real deal. The following shows that all bijective holomorphic maps D → D
are biholomorphic and are given by unit modulus scalar multiples of ϕα for some α ∈ D. However
we shall need a topic which we will cover in the next few sections, namely the inverse function
theorem for one complex variable (see Section ??, Theorem ??). Moreover we shall also need
another result which we do only in a further section called Rouché’s theorem (Section ??, Theorem
??).

Theorem 2.3.18. (Bijective holomorphic maps D → D) Let f : D → D be a bijective holomorphic
map. Denote α ∈ D to be the unique element such that f(α) = 0. Then, there exists λ ∈ ∂D such
that

f = λϕα.

Proof. Consider the set-theoretic inverse of f , denoted g : D → D. By Rouché’s theorem (Theorem
??) and by inverse function theorem (Theorem ??), we obtain that g ∈ Chol(D). Now by chain rule
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we obtain g′(f(α))f ′(α) = 1, that is, g′(0) = 1/f ′(α). Now by Proposition 2.3.17, we obtain the
following inequality for f and g where f(α) = 0 and g(0) = α:

|f(z)| ≤ 1
1− |α|2

|g(z)| ≤ 1− |α|2 .

In particular, we obtain that 1− |α|2 ≥ g′(0) = 1/f ′(α) ≥ 1− |α|2, thus g′(0) = 1− |α|2. Similarly,
|f ′(α)| = 1

1−|α|2 . Hence f achieves the suprema of Proposition 2.3.17, 1. By Proposition 2.3.17, the
result follows.

Corollary 2.3.19. There is a bijectionß
Bijective holomorphic maps f : D → D

™
ß
Rational functions of the form λ z−α

1−ᾱz , α ∈ D, λ ∈ ∂D

™
.

∼=

Using this and Schwarz’s lemma, we can show that a holomorphic map f : D → D can have
atmost one fixed point.

Corollary 2.3.20. Let f : D → D be a holomorphic map. Then f has atmost one fixed point.

Proof. The idea is quite simple and we have used it already in the proof of Pick’s lemma (Corollary
2.3.15). Indeed, we will construct ϕα : D → D in such a manner that Schwarz’s lemma can be
applied to ϕ ◦ f ◦ ϕ−1 and will use the results about the function ϕα (Theorem 2.3.16).

Suppose z1 ̸= z2 ∈ D are two fixed points of f . Consider the map ϕz1(z) := z−z1
1−z̄1z

. This is a
biholomorphic mapping ϕ−z1 : D → D. Consider

h = ϕz1 ◦ f ◦ ϕ−z1 .

Then h : D → D is a holomorphic map and h(0) = 0. Applying Schwarz’s lemma (Lemma 2.3.14),
we obtain that |h(z)| ≤ |z|. But notice that h(ϕz1(z2)) = ϕz1(z2). Thus ϕz1(z2) is a fixed point
of h. Moreover, ϕz1(z2) ̸= 0 as other wise z2 = z1, a contradiction. Thus, there exists w ∈ D
such that |h(w)| = |w| (in particular, for w = ϕz1(z2)). Hence by contrapositive of Lemma 2.3.14,
3, we obtain that h(z) = λz. Since h(w) = w = λw, we obtain that λ = 1. Hence h = id, thus
f = id.

2.3.11 Open mapping theorem

This theorem is quite an important result in the theory of holomorphic maps. It says a very simple
thing, all holomorphic maps on open connected sets are open maps(!)

Theorem 2.3.21. Let G ⊆ C be an open connected subset and let f ∈ Chol(G) be a non-constant
holomorphic map f : G→ C. Then f is an open map.
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2.3.12 Fundamental theorem of algebra

Proposition 2.3.22. Every non-constant polynomial f(x) ∈ C[x] can be factored into linear fac-
tors.

Proof. Suppose f(x) ∈ C[x] is a non-constant polynomial given by

f(x) = anx
n + · · ·+ a1x+ a0.

Suppose to the contrary that f has no zeros in C. Then g(x) = 1
f(x) : C → C is an entire map.

We wish to use Liouville’s theorem (Proposition 2.3.8) on g(x) in order to obtain a contradiction.
Indeed, to get an upper bound for |g(x)|, we need a lower bound for |f(x)|. To this end we have

|f(x)| ≥ |anxn + · · ·+ a1x+ a0|

≥ |anxn|
∣∣∣∣Å1 + an−1

anx
+ · · ·+ a1

anxn−1 + a0
anxn

ã∣∣∣∣
≥ |anxn|

Å
1−

∣∣∣∣an−1
anx

∣∣∣∣− · · · −
∣∣∣∣ a1
anxn−1

∣∣∣∣− ∣∣∣∣ a0
anxn

∣∣∣∣ã
where the last inequality comes from triangle inequality. Now write h(x) = 1 −

∣∣∣an−1
anx

∣∣∣ − · · · −∣∣∣ a1
anxn−1

∣∣∣− ∣∣∣ a0
anxn

∣∣∣. In order to get a further lower bound for |f(x)|, we need to get an upper bound
for h(x). Since h(x) → 0 as x→ ∞, therefore for some R > 0, we shall have h(x) ≤ 1

3 for |x| > R.
Thus, we get

|f(x)| ≥ |anRn| 23

for |x| > R. Now on |x| ≤ R, by continuity of |f | on a compact domain, we get that it achieves a
minima, and hence |f | is a lower bounded map and hence g(x) is an upper bounded map.

2.3.13 Inverse function theorem

Remember that for a differentiable map f : Rn → Rn, if x0 ∈ Rn is a point such that Dfx0 is
invertible, the inverse function theorem tells us that f is a diffeomorphism in some neighborhood
around x0. A similar statement is true for holomorphic maps f : G ⊆ C → C.

Theorem 2.3.23. (Inverse function theorem) Let G ⊆ C be an open connected set and ϕ ∈ Chol(G)
be a holomorphic map on G. If for z0 ∈ G we have that f ′(z0) ̸= 0, then there exists a neighborhood
z0 ∈ V ⊆ G such that

1. ϕ|V : V → ϕ(V ) is bijective,
2. ϕ(V ) ⊆ G is open,
3. the map ψ : ϕ(V ) → V given by ϕ(z) 7→ z is in Chol(ϕ(V )),
4. the map ϕ|V : V → ϕ(V ) is biholomorphic.

We will now prove it. Let us begin with the following simple lemma.
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Lemma 2.3.24. Let G ⊆ C be an open connected set. If f : G → C is a holomorphic map, then
the map defined by

g : G×G −→ C

(z, w) 7−→
®f(z)−f(w)

z−w if z ̸= w,

f ′(z) if z = w

is continuous.

Proof. Clearly g is continuous for all (z, w) with z ̸= w. Pick any a ∈ G. We will show that g is
continuous at (a, a). For that, we wish to estimate |g(z, w)− g(a, a)|. For this, note that we can
write g(z, w) as follows where γ is the straight path γ(t) = (1− t)z + tw:

g(z, w) = f(z)− f(w)
z − w

= f(γ(0))− f(γ(1))
γ(0)− γ(1)

= 1
w − z

∫
γ
f ′(z)dz

=
∫ 1

0
f ′(γ(t))dt

where the third equality follows from Theorem 2.1.1, 2. Thus we can write

|g(z, w)− g(a, a)| =
∣∣∣∣∫ 1

0
f ′(γ(t))dt− f ′(a)

∣∣∣∣
=

∣∣∣∣∫ 1

0
f ′(γ(t))− f ′(a)dt

∣∣∣∣
≤

∫ 1

0

∣∣f ′(γ(t))− f ′(a)
∣∣ dt.

Now by continuity of f ′, the estimate follows.

We can now prove the inverse function theorem.

Proof of Theorem 2.3.23. 1. The surjectivity is clear. For injectivity, we will show that for two
z1 ̸= z2 ∈ V , |ϕ(z1)− ϕ(z2)| ≥ M for some M > 0 using the lemma just proved. Indeed, using
Lemma 2.3.24 and triangle inequality, we obtain for ϵ = 1

2 |ϕ
′(z0)| an open set Ṽ containing (z0, z0)

such that for all (z1, z2) ∈ Ṽ with z1 ̸= z2 we get the following∣∣∣∣∣∣∣∣ϕ(z1)− ϕ(z2)
z1 − z2

∣∣∣∣− ∣∣ϕ′(z0)
∣∣∣∣∣∣ ≤ ∣∣∣∣ϕ(z1)− ϕ(z2)

z1 − z2
− ϕ′(z0)

∣∣∣∣ < ϵ = 1
2
∣∣ϕ′(z0)

∣∣ .
Using this, we obtain that

|ϕ(z1)− ϕ(z2)| ≥
1
2
∣∣ϕ′(z0)

∣∣ |z1 − z2| .
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Thus for z1, z2 ∈ V ⊆ G where V is obtained by projecting a small open set inside Ṽ back to G,
we see that on that V ϕ is injective.

2. This is just open mapping theorem, Theorem 2.3.21.

3. Shrink V enough so that ϕ′(z) ̸= 0 for all z ∈ V . Then everything is straightforward using

|ϕ(z1)− ϕ(z2)| ≥
1
2
∣∣ϕ′(z0)

∣∣ |z1 − z2|

which we obtained in 1.

2.3.14 Local mth power property

Any holomorphic map around a point can be represented by the mth power of some other special
holomorphic map. Indeed, this is what the following theorem tells us.

Theorem 2.3.25. Let G ⊆ C be an open-connected subset of C and let f ∈ Chol(G) be a holomor-
phic map on G. Let z0 ∈ G and denote w0 = f(z0). Let m be the order of zero that f − w0 has at
z0. Then, there exists an open set z0 ∈ V ⊆ G and a holomorphic map

ϕ : V → C

in Chol(G) such that
1. f(z) = w0 + (ϕ(z))m for all z ∈ V ,
2. ϕ′ is nowhere vanishing in V , i.e. has no zero in V ,
3. there exists r > 0 such that ϕ is biholomorphic onto Dr(0), the open disc of radius r around

0. Thus, ϕ : V → Dr(0) is bijective.

Proof. The main point of the proof is to try to represent the desired ϕ as exp ??
m . We just need to

fill ?? correctly. Since f −w0 has zero of order m at z0, therefore there exists g ∈ Chol(G) such that

f(z)− w0 = (z − z0)mg(z).

Now, by appropriately shrinking G away from zeros of g, we may assume g ̸= 0∀z ∈ G\{z0}1. Thus
we have that g′

g is holomorphic on G (this is our V ). By Lemma 2.2.5, we get h ∈ Chol(G) such
that h′ = g′

g . We now claim that g = exph. Indeed, it is a simple matter to see that the derivative
of g exp−h is zero. Thus, by using surjectivity of exp, we can absorb the additive constant into h
to obtain the above claim. One then sees that

ϕ(z) = (z − z0) exp
h(z)
m

does the job for 1. The rest is straightforward.
1We are implicitly using the isolated zeros theorem (Theorem ??) which we shall do later.
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2.3.15 Harmonic conjugates

We will now show that any real valued harmonic map u : G ⊆ R2 → R defines a unique (upto some
constant) holomorphic map g : G→ C whose real part is u.

Theorem 2.3.26. Let G ⊆ C be a convex open connected set. Let u : G → R be a harmonic real
valued function. Then, there exists holomorphic map g : G → C unique upto an additive constant
such that

ℜg = u.

Proof. The main idea is to construct a holomorphic map f on G via the data of partial derivatives
of u, and then use the Lemma 2.2.5, to get a primitive g, which will do the job. Indeed, we can
make f via the following observation: u is harmonic real valued function if and only if ∂2

∂z̄∂z = 0.
Using this, just define f = ux − iuy and to show that f is holomorphic, observe that ∂f

∂z̄ = 0.

In combination with Lemma 1.3.2, we get that

Corollary 2.3.27. Let G ⊆ C be open connected. Then,

{g : G→ C is holomorphic} ∼= {u : G→ R is harmonic}

where we identify functions upto additive constant.

3 Singularities

Consider the map f(z) = 1/z on C×. It is holomorphic. However, at z = 0, it is not holomorphic.
Such points are called singularities of f , as we shall define more clearly later. Our goal is to study
this phenomenon more carefully in this section. For this, we first need to develop a tool for local
analysis of such "bad" points (some may also call it "the" points).

3.1 Laurent series

Definition 3.1.1. (Laurent series) A Laurent series centered at z0 ∈ C, denoted by
∑∞

n=−∞ an(z−
z0)n, is a series of functions defined on some annulus Az0(R1, R2) := {z ∈ C | R1 < |z − z0| < R2}
centered at z0 for 0 ≤ R1 < R2 such that the series converges at all points z ∈ Az0(R1, R2). That
is, the sequence of holomorphic maps {

∑n=N
n=−N an(z − z0)n}N on Az0(R1, R2) converges uniformly

and absolutely to a holomorphic function f : Az0(R1, R2) → C (by Weierstrass theorem).

For a Laurent series, we can find the coefficents in terms of Cauchy integral of the function it
represents.

Lemma 3.1.2. Let f(z) =
∑n=∞

n=−∞ an(z − z0)n be a Laurent series around z0 ∈ C in an annulus.
Then for all n ∈ Z

an = 1
2πi

∫
Cr

f(w)
(w − z0)n+1dw

where R1 < r < R2.
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Proof. Use the uniform convergence of the Laurent series on f(z)
(z−z0)n+1 (so to limits out of integrals)

and the fact that
∫
Cr
(z − z0)ndz = 2πi.

By Cauchy-Hadamard theorem for calculation of radius of convergence we also get the param-
eters for the maximum annulus on which a Laurent series can exist.
Lemma 3.1.3. For a Laurent series f(z) =

∑∞
n=−∞ an(z − z0)n, the smallest value of R1 and

largest value of R2 such that f(z) converges on Az0(R1, R2) is given by
1. R1 = lim supn→∞ |a−n|

1
n

2. R2 = 1
lim supn→∞|an|

1
n

Proof. Straightforward use of Cauchy-Hadamard.

The following is the main theorem here.
Theorem 3.1.4. Consider any 0 < R1 < R2 and any z0 ∈ C. If f : Az0(R1, R2) → C is
holomorphic, then it is represented by a Laurent series.

3.2 Isolated singularities : Removable, poles and essential

We now come to the main matter of the present study, the notion of singularities. A holomorphic
function f : G → C is said to have an isolated singularity at z0 /∈ G if there exists a punctured
disc Az0(0, r) ↪→ G. Consequently, by Theorem 3.1.4, we obtain a Laurent series expansion of f in
Az0(0, r). Let us denote it by

f(z) =
n=∞∑
n=−∞

anz
n.

We can then classify the isolated singularity z0 into three types:
1. z0 is a removable singularity if an = 0 for all n < 0,
2. z0 is a pole of order m if min{n < 0 | an ̸= 0} = m,
3. z0 is an essential singularity if min{n < 0 | an ̸= 0} = −∞ or unbounded.

There are three characterizing theorems of each of the three kinds of singularities.
Theorem 3.2.1. (Riemann’s extension theorem) Let f : G→ C be a holomorphic map. Then the
following are equivalent.

1. The point z0 ∈ C \G is a removable singularity of f .
2. There exists a punctured disc Az0(0, r) ↪→ G such that f is bounded on it.

Theorem 3.2.2. (Criterion for a pole) Let f : G→ C be a holomorphic map. Then the following
are equivalent.

1. The point z0 ∈ C \G is a pole of f of some order.
2. We have

lim−→
z→z0

|f(z)| = ∞.

Theorem 3.2.3. (Casorati-Weierstrauss theorem) Let f : G → C be a holomorphic map. If the
point z0 ∈ C \G is an essential singularity of f , then there exists a punctured disc Az0(0, r) ↪→ G
such that f(Az0(0, r)) is dense in C.

The last theorem in particular shows the chaotic behaviour of essential singularities.
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4 Cauchy’s theorem - II

Let γ : I → C be a piecewise closed C1 curve in C and let Ω = C× \ Im (γ). We define the index of
γ to be the following map over Ω:

Indγ(z) : Ω −→ C

z 7−→ 1
2πi

∫
γ

1
w − z

dw.

Lemma 4.0.1. Let γ : I → C be a piecewise closed C1 curve in C and let Ω = C× \ Im (γ). Then
Indγ(z) is a holomorphic map on Ω.

Proof. This follows from Proposition 2.3.4, as Indγ(z) is the Cauchy integral of the constant function
1.

The following is the main theorem that we shall use.

Theorem 4.0.2. Let γ : I → C be a piecewise closed C1 curve in C and let Ω = C× \ Im (γ).
Then,

1. Indγ(z) is an integer valued map,
2. Indγ(z) is constant on each connected component of Ω,
3. Indγ(z) is 0 on unbounded component of Ω.

We now introduce the main Cauchy’s theorem.

4.1 General Cauchy’s theorem

To state the Cauchy’s theorem in full generality, we first need to build the small language of chains,
which is just a slight generalization of curves. Let {γi : Ii → C}ni=1 be a finite collection of piecewise
C1 curves over C. A chain generated by {γi} is a formal sum of the form

Γ = γ1 + · · ·+ γn.

One can be more precise here by treating Γ as an element of the free abelian group of all singular
1-chains, but we don’t need that technology right now. We denote

Im (Γ) :=
n⋃

i=1
Im (γi).

Moreover, for a continuous map f : Im (Γ) → C, we further denote∫
Γ
f(z)dz :=

n∑
i=1

∫
γi
f(z)dz.

We can further define the index of a chain Γ as simply the sum of indices of individual curves:

IndΓ(z) :=
n∑

i=1
Indγi(z)
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for all z ∈ Ω, where Ω = C× \ Im (Γ). Note that the set Ω here will have multiple components if
each element of the cycle is a distinct loop. Indeed, if Γ = γ1 + · · · + γn is a cycle where each γi
is a closed loop, then we call Γ a cycle. The general Cauchy’s theorem is then a statement about
integral over cycles.

Theorem 4.1.1. (Cauchy’s theorem) Let Ω ⊆ C be an open set and Γ ↪→ Ω be a cycle such that

IndΓ(z) = 0 ∀z ∈ C× \ Ω.

Let f : Ω → C be a holomorphic map. Then,
1. (Integral formula)

IndΓ(z)f(z) =
1
2πi

∫
Γ

f(w)
w − z

dw

for all z ∈ Ω \ Im (Γ).
2. (Integral theorem) ∫

Γ
f(z)dz = 0,

3. if Γ0,Γ1 ↪→ Ω are two cycles such that IndΓ0(z) = IndΓ1(z) for all z /∈ Ω, then∫
Γ0
f(z)dz =

∫
Γ1
f(z)dz.

The most important of the above triad of conclusions is the first one, which clearly generalizes
the known integral formula.

4.2 Homotopy & Cauchy’s theorem

Theorem 4.2.1. Let Ω ⊆ C be an open-connected set. If γ0, γ1 ↪→ Ω are two piecewise C1 closed
loops in Ω such that they are homotopic in Ω, then

Indγ0(z) = Indγ1(z) ∀z /∈ Ω.

This has some major corollaries in combination with Theorem 4.1.1.

Corollary 4.2.2. Let Ω ⊆ C be an open-connected set and let f : Ω → C be a holomorphic map.
If γ0, γ1 ↪→ Ω are two piecewise C1 closed loops in Ω such that they are homotopic in Ω, then∫

γ0
f(z)dz =

∫
γ1
f(z)dz.

Corollary 4.2.3. Let Ω ⊆ C be an open-connected set and let f : Ω → C be a holomorphic map.
If γ ↪→ Ω is a piecewise C1 closed loop in Ω and Ω is simply connected, then∫

γ
f(z)dz = 0.
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5 Residues and meromorphic maps

Let Ω ⊆ C be an open-connected set and f : Ω → C be holomorphic. Let z0 /∈ Ω be a point of
isolated singularity of f . The residue of f at z0 is then defined to be the coefficient a−1 of the
Laurent series

∞∑
n=−∞

anz
n

of the map f around z0. We denote residue of f at z0 by resz0(f) := a−1. For example, consider
the following integral where Cr is a circle of radius r centered at z0∫

Cr

∞∑
n=−∞

an(z − z0)n.

Since all terms an(z−z0)n are n ̸= −1 contributes zero integral as the positive parts of holomorphic
in the interior of the loop and the negative parts are derivatives of constant 1, which is zero, therefore
the only non-zero term is contributed by n = −1. Consequently, we have∫

Cr

∞∑
n=−∞

an(z − z0)n = 2πia−1

= 2πiresz0(f)

where f(z) =
∑∞

n=−∞ anz
n.

We now define a class of holomorphic maps which one encounters often in complex analysis.

Definition 5.0.1. (Meromorphic maps) Let Ω ⊆ C be an open-connected set and f : Ω → C
be any function. We say that f is meromorphic if

1. there exists a set A ⊂ Ω which has no limit points in Ω,
2. f : Ω \A→ C is holomorphic,
3. every point of A is a pole of f .

One often calls the set A as the set of poles of f .

There are some observations to be made.

Lemma 5.0.2. Let f : Ω → C be a meromorphic map on an open-connected set Ω. Then, the set
of poles of f is atmost countable.

Proof. Let A ⊂ Ω be the set of poles of f . Covering Ω by countably many compact sets {Ki},
we observe that intersection of each of Ki ∩ A has to be atmost finite, otherwise there exists a
sequence in Ki ∩A, which consequently admits a convergent subsequence, that is, a limit point in
Ω. Consequently, A is a countable union of finite sets.

Remark 5.0.3. For the purposes of residue of f at a ∈ A, one can replace analysis of f with
analysis of f by the analysis of Q =

∑−1
n=−m an(z − a)n, called the principal part of f at a where

m is the order of pole of f at a ∈ A. Clearly, resaQ = resaf . Moreover, one sees that

resa(f)Indγ(a) =
1
2πi

∫
γ
Q(z)dz
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where γ is a piecewise C1-loop centered at a, in Ω \A. This is again a consequence of the fact that
all terms inside the integral are zero except the one corresponding to a−1. Indeed, this hints at a
general phenomenon, which is clarified by the following theorem.

Theorem 5.0.4. (The residue theorem) Let Ω ⊆ C be an open-connected set. If f : Ω → C is a
meromorphic map with A ⊆ Ω its set of poles and Γ a cycle in Ω \A such that

IndΓ(z) = 0 ∀z /∈ Ω,

then

1
2πi

∫
Γ
f(z)dz =

∑
a∈A

resa(f)IndΓ(a).

We now an important result, which gives us information of zeroes of holomorphic maps on
certain subsets.

Theorem 5.0.5. Let γ : I → C be a piecewise closed C1-loop in an open-connected set Ω ⊆ C such
that

1. Indγ(z) = 0 for all z /∈ Ω,
2. Indγ(z) = 0 or 1 for all z ∈ Ω \ Im (γ).

Then we have that for any holomorphic maps f, g : Ω → C, denoting Ω1 := {z ∈ Ω\Im (γ) | Indγ(z) =
1} and Nf = #Z(f) ∩ Ω1, we get that

1. if f has no zeros on Im (γ) ⊆ Ω, then

Nf = 1
2πi

∫
γ

f ′(z)
f(z) dz = Indf◦γ(0).

2. (Rouché’s theorem) if

|f(z)− g(z)| < |g(z)| ∀z ∈ Im (γ),

then Ng = Nf .

5.1 Riemann mapping theorem

The following is a very strong rigidity result for holomorphic maps.

Theorem 5.1.1. Let Ω ⊊ C be a proper simply connected domain. Then Ω is biholomorphic to the
open unit disc.

This is a starting point for the uniformization.
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