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1 Introduction
These are some notes on Riemann surfaces. We wish to prove three main results here: monodromy,
Riemann-Hurwitz formula and the infamous Riemann-Roch theorem. We also wish to portray
example uses of them. A philosophical goal in our mind is also to see how analytic world behaves
in comparison to algebraic world. We do this in part so that we can get more insights into the
latter, before going into an involved study of it.

We make references to our notes "Facets of Geometry" by writing Theorem FoG.23.2.1.4.

1.1 Definitions and basic properties

After defining Riemann surfaces and giving basic examples, we will cover some basic lemmas some
of which generalizes results which we have seen in complex analysis of one variable.

Definition 1.1.1 (Riemann surface). A conformal atlas A = ({Ui}i, {zi}i) on a second countable
Hausdorff space X is the data of an open cover {Ui}i∈I of X together with open embeddings
zi : Ui → C such that if Ui ∩ Uj ̸= ∅ then the composite

zj ◦ z−1
i : zi(Ui ∩ Uj) → zj(Ui ∩ Uj)

1
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is a holomorphic map between two open subsets of C. Two conformal atlases A1 and A2 are
equivalent if for any U, z in A1 and any V,w in A2, the transition map

w ◦ z−1 : z(U ∩ V ) → w(U ∩ V )

is a conformal map. A Riemann surface X is a connected Hausdorff space with an equivalence class
of conformal atlas. We usually fix one atlas in a class which is maximal in that it is the union of
all atlases in that class.

Example 1.1.2. Here are few examples of Riemann surfaces.
1. Any open subset U ⊆ C is a Riemann surface. Indeed, consider id : U → U , this defines a

conformal atlas on U . Thus C and the open unit disc D are Riemann surfaces.
2. The Riemann sphere C̄ or usually called complex projective line P1

C (see Proposition 1.3.2) is
a Riemann surface. Topologically, P1

C is S2. We give a conformal structure on S2 as follows.
Consider the open sets U+ = S2 − p and U− = S2 − q where p and q are north and south
poles respectively. Consider

z+ : U+ −→ C

(x1, x2, x3) 7−→
x1 + ix2
1− x3

z− : U− −→ C

(x1, x2, x3) 7−→
x1 − ix2
1 + x3

.

These are obtained by usual stereographic projection from north pole p. One can observe
that

z+(U+) = C
z−(U−) = C− {0}

and are thus homeomorphisms. Furthermore U+ ∩U− = S2 −{p, q}. It follows that z+(U+ ∩
U−) = C× = z−(U+∩U−), the punctured complex plane. The transition map can be checked
to be

z+ ◦ z−1
− : z−(U+ ∩ U−) −→ z+(U+ ∩ U−)

w 7−→ 1
w

which as a map C× → C× is conformal.

Here is how we can define maps of Riemann surfaces.

Definition 1.1.3 (Holomorphic maps of Riemann surfaces). Let X and Y be two Riemann
surfaces with atlases (Ui, zi) and (Vi, wi) on X and Y respectively and f : X → Y be a continuous
map. Then, f is said to be holomorphic if for each x ∈ X and charts Ui ∋ x and Vj ∋ f(x), the
composite

wj ◦ f ◦ z−1
i : zi(Ui) → wj(Vj)

is a holomorphic map between two open sets of C. We denote byO(X) = {f : X → C | f is holomorphic}.
This is a C-algebra under pointwise addition and multiplication.
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Lemma 1.1.4. Let f : X → Y and g : Y → Z be a holomorphic map of Riemann surfaces. Then
g ◦ f : X → Z is a holomorphic map.

Proof. Denote h = g ◦f : X → Z. Pick any x ∈ X and pick any coordinate charts (Ux, ϕx) ∋ x and
(Wh(x), ϕh(x)) ∋ h(x). We wish to show that ϕh(x)◦h◦ϕ−1

x : ϕx(Ux) → ϕh(x)(Wh(x)) is holomorphic.
Pick any chart Vf(x) ∋ f(x). Then we have

ϕh(x) ◦ h ◦ ϕ−1
x = ϕh(x) ◦ g ◦ ϕ−1

f(x) ◦ ϕf(x) ◦ f ◦ ϕ−1
x

where ϕh(x) ◦ g ◦ ϕ−1
f(x) and ϕf(x) ◦ f ◦ ϕ−1

x are holomorphic as f and g are holomorphic. This
completes the proof.

Remark 1.1.5. We get a category of Riemann surfaces, denoted RS.

Definition 1.1.6 (Subsurface). Let X be a Riemann surface and U ⊆ X be an open set. Then
U is also a Riemann surface with the charts obtained by restrictions of that of X.

There is an identity principle for Riemann surfaces, which would be used quite often.

Lemma 1.1.7 (Identity principle). Let X,Y be Riemann surface and X be connected. If f, g :
X → Y are holomorphic and there exists A ⊆ X which has a limit point in X such that f |A = g|A,
then f = g.

Proof. Let a ∈ X be a limit point of A and let (U, z) be a chart of a. Then f |U = g|U by usual
identity principle of C. Now pick any point a ̸= b ∈ X. As X is locally path-connected and
connected, therefore it is path-connected. Let γ : a→ b be a path joining a and b in X. We claim
that f is constant along this path. Indeed, cover Im (γ) by finitely many charts of X denoted Ui
such that Ui ∩ Ui+1 ̸= ∅ with U1 = U . As f and g agree on an open subset of U2, therefore by
identity principle of C, it follows that f |U2

= g|U2
. Continuing this, we conclude that f = g on

Im (γ) and thus f(b) = g(b), as required.

Corollary 1.1.8. Let f : X → C be a non-zero holomorphic where X is a Riemann surface. Then
D(f) := {x ∈ X | f(x) = 0} is a discrete set in X.

Proof. If D(f) is not discrete, then it has a limit point and thus by Lemma 1.1.7, f = 0, a
contradiction.

We can define meromorphic maps between Riemann surfaces as well.

Definition 1.1.9 (Meromorphic maps). Let X be a Riemann surface. A meromorphic map on
X is a holomorphic map f : X → P1

C such that f ̸= c∞, c∞ being the constant infinity map. By
identity principle (Lemma 1.1.7), thus, f−1(∞) has to be a discrete set. We denote the set of all
meromorphic functions on X as M(X). Clearly, M(X) is a C-algebra.

Meromorphic maps form a field!

Lemma 1.1.10. Let X be a connected Riemann surface. Then M(X) is a field.
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Proof. Let f : X → P1
C be a non-zero meromorphic map. Then consider g := 1/f on D(f) = {x ∈

X | f(x) ̸= 0} and g := ∞ on X \D(f). Clearly, g is holomorphic on D(f), which is open. Since
D(f) is discrete by Corollary 1.1.8. Thus, g is indeed meromorphic. Observe that f · g = 1 on X
as it is one on D(f) and then we may apply identity principle (Lemma 1.1.7). This completes the
proof.

Remark 1.1.11. As there is a natural inclusion O(X) ↪→ M(X), thus it follows O(X) is a domain.
By universal property of fraction fields, Q(O(X)) ⊆ M(X).

We now see when O(X) itself is a field.

Lemma 1.1.12 (General Liouville). Let X be a compact connected Riemann surface1, then O(X)
is isomorphic to C as the only elements in O(X) are constants.

Proof. Pick any f ∈ O(X). We wish to show that f is a constant. Consider the composite
X → C → R given by |f |. As X is compact, thus |f | achieves maxima, say at x0 ∈ X and
a = |f(x0)|. For a chart (U, z) ∋ x0, we have by maximum-modulus for C that |f | is constant and
thus f is constant ca on U . By identity principle (Lemma 1.1.7), it follows that f is constant ca on
the entire X.

Open mapping theorem is also true for maps of Riemann surfaces.

Lemma 1.1.13 (Open mapping theorem). Let X be a connected Riemann surface and f : X → Y
be a holomorphic map. Then f is an open map.

Proof. Pick any open set U ⊆ X and consider f(U) ⊆ Y . We wish to show that f(U) is open.
Pick any point f(x) ∈ f(U) where x ∈ U . Pick any chart (V, z) ∋ x and (W,w) ∋ f(x) such that
V ⊆ U . Thus the map w ◦ f ◦ z−1 : z(V ) → w(W ) is a holomorphic map. By open mapping
theorem for C, it follows that w ◦ f ◦ z−1 is an open map. Thus, let x ∈ V ′ ⊆ V be an open set.
Then w ◦ f ◦ z−1(z(V ′)) = w(f(V ′)) ⊆ w(W ) is open and thus f(x) ∈ f(V ′) ⊆ W is open, as
required.

There is an intimate connection between covering spaces and Riemann surfaces, whose first
piece we explain as follows. We first need a small lemma.

Lemma 1.1.14. Let pi : Xi → Y for i = 1, 2 be a holomorphic map where Xi, Y are Riemann
surfaces and Xi are connected. If there exists a continuous f : X1 → X2 such that

X2

X1 Y

f

p1

p2

commutes, then f is holomorphic.
1say, for example, P1

C!
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Proof. Pick any point x ∈ X1, charts (U1, z1) ∋ x and (U2, z2) ∋ f(x). We wish to show that
z2 ◦ f ◦ z−1

1 : z1(U1) → z2(U2) is holomorphic. Indeed, we may first assume by continuity of f and
pi that Ui is a sheet of an evenly covered neighborhood V ⊆ Y under pi for i = 1, 2. Now, the
restricted maps pi : Ui → zi(Ui) are biholomorphic maps. Now, zi ◦p−1

i : V → zi(Ui) are two charts
in Y . As transition maps has to be holomorphic, therefore we get

(z2 ◦ p−1
2 ) ◦ (z1 ◦ p−1

1 )−1 = z2 ◦ f ◦ z−1
1

is holomorphic, as required.

Proposition 1.1.15. Let p : X → Y be a covering map where Y is a Riemann surface. Then there
exists a unique conformal structure on X such that p is holomorphic.

Proof. We first do uniqueness, as it is easy by Lemma 1.1.14. Indeed, if there are two non-equivalent
conformal structures on X, then we get two holomorphic covering maps pi : Xi → Y . As underlying
space and maps of each (Xi, p) is same, therefore by lifting criterion for covering maps, we deduce
that there is a continuous map f : X1 → X2 which is furthermore holomorphic by above lemma
and p ◦ f = p. Now, we may similarly get g : X2 → X1 holomorphic such that p ◦ g = p. As these
lifts are based lifts, we get that f ◦ g is unique with respect to the fact that it fixes a point, thus it
is id, similarly for the other side. Hence X1 ∼= X2, that is, they are biholomorphic and thus have
equivalent conformal structure.

We thus need only construct a conformal structure on X via p. Indeed, we may first assume
that Y has an atlas (Vi, zi) fine enough that each Vi ⊆ Y is an evenly covered neighborhood. Hence
for each Vi, the map p : Wi,j → Vi is a homeomorphism where p−1(Vi) =

∐
jWi,j . Define an

open cover of X by (Wi,j , zi ◦ p). We claim that this is an atlas. Indeed, zi ◦ p : Wi,j → zi(Vi)
is a homeomorphism and for any (i, j), (k, l), we have (zi ◦ p) ◦ (zj ◦ p)−1 = zi ◦ z−1

j , which is a
holomorphic map. This completes the proof.

1.2 Structure sheaf and modules

We wish to show that the structure sheaf of a Riemann surface OX is such that the meromorphic
sheaf M is an OX -module. So we first define the structure sheaf.

Remark 1.2.1 (Riemann surface as a locally ringed space). Let X be a Riemann surface with
an atlas (Ui, zi). As discussed in Chapter 8, §8.1.2 on "Sheaves and atlases" in FoG, by Theorem
FoG.8.1.2.4, it follows that we get an atlas sheaf (Definition FoG.8.1.2.1) OX on X w.r.t which
(X,OX) is a locally ringed space which is a complex manifold (Definition FoG.8.1.1.3) of dimension
1. Recall that in particular for an open subset U ⊆ X, OX(U) is defined by

OX(U) = {f : U → C | f ◦ x−1
i : xi(U ∩ Ui) → C is holomorphic},

that is, OX is the sheaf of holomorphic maps on X. The OX is also called the structure sheaf of
X. Thus, giving a conformal structure on X is equivalent to giving an atlas sheaf.

We will be using this sheaf very frequently, as it will be of fundamental importance to us to
translate over working working knowledge of algebraic geometry to this analytic language2.

2Note that explicit charts are rarely used in schemes, whereas in geometry, one uses it quite frequently.
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Remark 1.2.2. There might be apparent addition of complexity to think of a Riemann surface
as a locally ringed space with a sheaf of holomorphic maps without any reference to a chart. But
we wish to portray that one can prove results similar to that in previous section from this point of
view as well, as this allows us to reduce to local affine patch (i.e. local chart) quite immediately.

For example, general Liouville (Lemma 1.1.12) can also be seen by the following argument.
Considering that |f | : X → R achieves maximum at x0 ∈ X, for an affine open set containing x0
say U , the restriction f |U : U → R can be thought of as a map on an open subset of C which
achieves maximum on interior, so f |U is constant. Thus by identity priniciple, we are done.

An important and crucial observation from complex analysis of one variable is the following:

Proposition 1.2.3. Let (X,OX) be a Riemann surface. Then for any x ∈ X, the stalk is isomor-
phic to power series ring over C:

OX,x ∼= C[[z]].

Proof. Let U ∋ x be an affine open subset of x. Then, OX,x = OU,x. Let ϕ : U → C be a chart. As
it is an open embedding, therefore, OU,x ∼= OC,ϕ(x), where OC is the sheaf of holomorphic maps on
C. As any homolomorphic map has a power series representation at each point, thus, power series
forms a cofinal system in the representation of a holomorphic map in the stalk. The result now
follows.

Remark 1.2.4. This proposition immediately tells us what type of information is stored in the
stalk. That is, it tells you how a function locally around a point looks like.

We next see that meromorphic maps form a sheaf as well.

Definition 1.2.5. Let (X,OX) be a Riemann surface. The assignment for each open U ⊆ X

MX(U) = {f : U → P1
C | f ̸= c∞ holomorphic}

forms a presheaf under restrictions. This is called the sheaf of meromorphic maps on X.

We first see that MX is a constant sheaf!

Proposition 1.2.6. Let X be a Riemann surface and let K = MX(X) the field of global mero-
morphic maps. Then

MX
∼= K,

where the latter is the constant sheaf on field K.

We’ll see its proof later. An important property is that the stalks of MX are again quite simple.

Proposition 1.2.7. Let (X,OX) be a Riemann surface with meromorphic sheaf MX . Then for
any x ∈ X,

MX,x
∼= C((z)).

Proof. Same as Proposition 1.2.3 except that in the end we use the fact that any meromorphic
function locally has a Laurent series expansion at each point.

We now study some important class of Riemann surfaces, those coming from non-singular
projective plane curves.
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1.3 Smooth algebraic plane curves

We wish to study a class of examples of Riemann surfaces coming from algebra. This will give us
a tight intuition about algebraic curves which will guide further development.

We begin by giving an alternate construction of Riemann surface.

Example 1.3.1 (Complex projective line P1
C). Topologically, we first define P1

C = C2/ ∼ where
(z0, z1) ∼ (λz0, λz1) for all λ ∈ C. Denote any point in P1

C by [z0 : z1] where zi ∈ C. We now give
a conformal structure on P1

C. Consider U0 = {[1 : z] | z ∈ C} and U1 = {[z : 1] | z ∈ C}. These are
open subspaces of P1

C since under the quotient map π : C2 ↠ P1
C, π−1(U0) = {(z0, z1) ∈ C2 | z0 ̸=

0} = D(z0), the plane minus the z1-axis, which is open. Similarly for U1.
Now consider the maps which we will show makes (Ui, ϕi) into an affine chart

ϕ0 : U0 −→ C

[z0 : z1] 7−→
z1
z0

ϕ1 : U1 −→ C

[z0 : z1] 7−→
z0
z1
.

Note that these are homeomorphisms as the image the whole complex plane which is open and ϕi
are homeomorphisms onto it. Indeed, ϕi can be seen to be bijective to C quite easily and an inverse
of ϕ0, say, can be constructed by defining ψ0 : C → U0 given by z 7→ [1 : z]. This is continuous and
an inverse of ϕ0.

Now observe that U0 ∩ U1 = {[z0 : z1] | z0, z1 ̸= 0} = U . Observe that ϕi(U) = C×. The
transition maps then are

ϕ1 ◦ ϕ−1
0 : ϕ0(U) −→ ϕ1(U)

z 7−→ 1
z
,

which is a holomorphic map C× → C×. Thus, we have obtained a Riemann surface P1
C with

structure sheaf OP1
C
whose sections on an open subset U ⊆ P1

C are those functions f : U → C which
are holomorphic with respect to the chart (Ui, ϕi)i=1,2. The Riemann surface (P1

C,OP1
C
) is called

the projective line over C.

Proposition 1.3.2. Let C be the Riemann sphere. Then C is biholomorphic to P1
C

Proof. Indeed, consider the map

f : C −→ P1
C

z 7−→
®
[1 : z] if z ̸= ∞
[0 : 1] if z = ∞.

Indeed, this is continuous since on any neighborhood of 0, this is the inverse of the chart map ϕ0
and on any neighborhood of ∞ it is the inverse of the chart ϕ1. As C̄ is compact and P1

C Hausdorff,
it follows that f is a homeomorphism.

Using charts of Example 1.1.2, it is immediate to see that this is holomorphic. The inverse of
this map is [z0 : z1] 7→ z1

z0
. Again this is continuous and holomorphic by same reasons.
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We now introduce a space where most of our geometry will take place.

Construction 1.3.3 (CP2, the projective plane3). Topologically, CP2 is C3/ ∼ where (z0, z1, z2) ∼
(λz0, λz1, λz2). This can be given the structure of a complex 2-manifold by giving an atlas consisting
of three charts (Ui, ϕi)i=0,1,2 where Ui = {[z0 : z1 : z2] | zi ̸= 0}. The maps are given by

ϕ0 : U0 −→ C2

[z0 : z1 : z2] 7−→
Å
z1
z0
,
z2
z0

ã
ϕ1 : U1 −→ C2

[z0 : z1 : z2] 7−→
Å
z0
z1
,
z2
z1

ã
ϕ2 : U2 −→ C2

[z0 : z1 : z2] 7−→
Å
z0
z2
,
z1
z2

ã
.

One can check that this makes CP2 a complex 2-manifold by showing all transitions are holomorphic
maps from open subsets of C2 to C2 (which would require a knowledge of several complex variables,
but we skip over that as really don’t require that here).

We would like to know a class of closed (thus compact) subsets of CP2 formed by polynomials
in two variables. These will motivate algebraic counterparts of the analytic geometry that we are
consider currently.

Definition 1.3.4 (Projective algebraic plane curves). Let p̄(z1, z2) ∈ C[z1, z2] be a polynomial
and let p(z1, z2, z3) ∈ C[z1, z2, z3] be its homogenization so that p is homogeneous of degree d ≥ 1.
Consider the set

V (p) = {[z0 : z1 : z2] ∈ CP2 | p(z1, z2, z3) = 0}.

This defines a closed subset of CP2 since it is CP2\V (p) is the image of C3\V (p̄) under the quotient
map π : C3 → CP2. We call V (p) ⊆ CP2 a projective algebraic plane curve.

We see that a projective algebraic plane curve Z is formed by three pieces of affine algebraic
plane curves.

Lemma 1.3.5. Let p̄ ∈ C[z0, z1], p ∈ C[z0, z1, z2] be its homogenization and Z = V (p) be the
projective algebraic curve. Let (Ui, ϕi)i=0,1,2 be the standard chart of P2

C (see Construction 1.3.3).
Then the image of Z ∩ Ui under ϕi in C is V (p̄i) where p̄0 = p(1, z1, z2), p̄1 = p(z0, 1, z2) and
p̄2 = p(z0, z1, 1).

Proof. Indeed, since, say Z ∩ U0 = {[1 : z1 : z2] | p(1, z1, z2) = 0}, therefore

ϕ0(Z ∩ U0) = {(z1, z2) | p(1, z1, z2) = 0} = V (p̄0).

The other cases are same.
3We would freely interchange between CP2 and P2

C, depending on the temperature outside.



9

We now show that a certain type of algebraic plane curves define Riemann surfaces.

Definition 1.3.6 (Smooth algebraic plane curves). Let f ∈ C[z1, z2, z3] be a homogeneous
polynomial. Then, the polynomial f is called non-singular or smooth if for all points p ∈ V (f) ⊆
CP2, we have that ∂f

∂zi

∣∣∣
p
̸= 0 for atleast one i from 0, 1, 2. In this case, the projective plane curve

V (f) that it defines is called the smooth projective algebraic plane curve. A similar definition gives
smooth affine algebraic plane curves in C2.

We now show that every smooth projective plane curve defined by an irreducible smooth ho-
mogeneous polynomial in three variables gives a Riemann surface. For that we need following two
preliminary results.

Theorem 1.3.7. Let p ∈ C[z0, z1, z2] be a homogeneous polynomial.
1. If p is non-singular, then V (p) ⊆ P2

C is irreducible.
2. If p is irreducible, then V (p) ⊆ P2

C is connected.

We now state the main theorem. Its proof can be seen by implicit function theorem for C, but
we omit all such checks.

Theorem 1.3.8. Let p ∈ C[z0, z1, z2] be a non-singular homogeneous polynomial. Then, V (p) ⊆ P2
C

is a compact connected Riemann surface.

2 Holomorphic & meromorphic forms
Having differentials on a given geometric object gives us a sense of direction of each point. Exploiting
this, one can define very many types of forms (differentiable, holomorphic, meromorphic...) and
their interrelations which allows us to study the object in question more deeply.

2.1 Differentials

We will We first construct the sheaf of differentiable maps on a Riemann surface.

Definition 2.1.1 (Sheaf of differentiable maps). Let X be a Riemann surface. Consider the
assignment for each open U ⊆ X

EX(U) := {f : U → C | ∀ charts (Ui, zi), f ◦ z−1
i : zi(U ∩ Ui) → C is differentiable.}

This assignments with restrictions naturally forms a sheaf, called the sheaf of differentiable maps on
X. This is a sheaf of C-algebras. Moreover, this is an OX -algebra as well since pointwise product
of holomorphic and differentiable map is again differentiable.

We will use the sheaf EX to build many other sheaves which will be of prime importance to us.
Let us first introduce few operators on the seaf EX .

Construction 2.1.2 (Operators on EX). Define ∂
∂x ,

∂
∂y as two operators on EX as follows. For

any open U ⊆ X, define
∂

∂x
: EX(U) −→ EX(U)

f : U → C 7−→ ∂f

∂x
: U → C
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where ∂f
∂x : U → C is defined as follows. Let (Ui, zi) be a chart. As f is differentiable, therefore

f ◦ z−1
i : zi(U ∩ Ui) → C is differentiable. Define

∂f

∂x
◦ z−1

i = ∂

∂x

(
f ◦ z−1

i

)
for each chart (Ui, zi). Similarly, one defines ∂

∂y . Note that these maps commutes with restrictions.
Hence we get sheaf maps ∂

∂x ,
∂
∂y : EX → EX . Note that both of these are C-linear.

Consider the two operators

∂

∂z
:= 1

2

Å
∂

∂x
− i

∂

∂y

ã
∂

∂z̄
:= 1

2

Å
∂

∂x
+ i

∂

∂y

ã
.

These two also define C-linear operators on EX .

We observe some of the immediate consequences.

Lemma 2.1.3. Let (X,OX) be a Riemann surface. Then,

0 −→ OX −→ EX
∂
∂z̄−→ EX

is exact.

Proof. Note that the map OX → E is obtained by thinking of a holomorphic map as a real dif-
ferentiable map. By Cauchy-Riemann, f : V ⊆ C → C is holomorphic if and only if ∂f

∂z̄ = 0. It
follows that on an open U ⊆ X, we have Ker

(
∂
∂z̄

)
= {f ∈ OX(U) | f is holomorphic} = OX(U), as

required.

Remark 2.1.4 (EX is locally ringed). Consider the sheaf of differentiable maps EX on a Riemann
surface X. We observe that for any point x ∈ X, the stalk EX,x is a local ring where the maximal
ideal mx consists of those germs which vanishes at point x. Thus, EX is a locally ringed OX -algebra.

Definition 2.1.5 (Cotangent space at a point). Let (X,OX) be a Riemann surface and OX be
the OX -algebra of differentiable maps. Then, the cotangent space at point x ∈ X is the C-vector
space given by

T
(1)
x = mx

m2
x

where (EX,x,mx) is the local ring at point x of sheaf EX . A point in T (1)
x is referred to as a cotangent

vector at x ∈ X.

Remark 2.1.6 (Cotangent vectors and "direction"). For a point a ∈ X, pick a covector (U, f)a ∈
T
(1)
x . As (U, f)a ∈ T

(1)
x and (Ui, zi) is a chart containing a ∈ X, therefore f ◦ z−1

i : zi(U ∩ Ui) → C
is differentiable. We may write the Taylor expansion of f ◦ z−1

i at the point zi(a) = (a1, a2) to get
that

f ◦ z−1
i (x, y) = f(a) + ∂f

∂x
(a)(x− a1) +

∂f

∂y
(a)(y − a2) + terms of degree ≥ 2.
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As m2
x consists of products of those germs vanishing at a and "terms of degree ≥ 2" vanishes at a,

therefore, we get that

(U, f)a =
∂f

∂x
(a)(x− a1) +

∂f

∂y
(a)(y − a2) +m2

a.

The above motivates the following definition.

Definition 2.1.7 (Differential of a map). Let X be a Riemann surface and f ∈ OX(U) be a
differentiable map on open U ⊆ X. Let a ∈ U . Define the following C-linear transformation

da : EX,a −→ T
(1)
a

(U, f)a 7−→ (f − f(a)) +m2
a.

As is evident from Remark 2.1.6, the differentials of maps x, y : U → C which on a chart (Ui, zi)
is defined by x◦z−1

i : zi(U ∩U)i→ C mapping (x, y) 7→ x and similarly for y, holds special position
amongst all differentials.

Proposition 2.1.8. Let X be a Riemann surface and a ∈ X contained in open U . Then,
1. T (1)

a has {dax, day} as basis.
2. T (1)

a has {daz, daz̄} as a basis.
3. For any f ∈ EX(U),

daf = ∂f

∂x
(a)dax+ ∂f

∂y
(a)day

= ∂f

∂z
(a)daz +

∂f

∂z̄
(a)daz̄.

Proof. A simple exercise in reduction to affine charts and using properties of it (in this case, Taylor
series).

Notation 2.1.9 (Decomposition of cotangent space). By Proposition 2.1.8, it follows that we can
write

T
(1)
a = Cdaz ⊕ Cdaz̄

=: T 1,0
a ⊕ T 0,1

a .

Elements of T 1,0
a are called covectors of type (1,0), same for the other case. For any f ∈ EX(U),

we further denote

daf = d′af + d′′af

for unique d′af ∈ T 1,0
a and d′′af ∈ T 0,1

a , where

d′af = ∂f

∂z
(a)daz,

d′′af = ∂f

∂z̄
(a)daz̄.
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Taking exterior powers of T (1)
a gives us other vector spaces which we will use to define differential

k-forms.

Definition 2.1.10 (Differential k-forms). Let X be a Riemann surface and U ⊆ X be an
open subset. Let T (k)

a = ∧kT (1)
a be the kth-exterior power of T (1)

a . Note that dimC ∧kT (1)
a =. A

differential k-form is a section

ω : U →
∐
a∈U

T
(k)
a

where ω(a) ∈ T
(k)
a (that is, a differential k-form is a section of kth-exterior power of the cotangent

bundle). A differential 1-form ω over U is of type (1,0) if for all a ∈ U , ω(a) ∈ T 1,0
a . Similarly for

differential 1-form of type (0, 1).

Using differential forms, we can define differentiable, holomorphic and meromorphic 1-forms.
Before that we quickly define Laurent expansion and residuce of holomorphic maps.

Remark 2.1.11 (Laurent expansion & residue). Let X be a Riemann surface and a, b ∈ X. Let
(U, z) be a chart containing a, where we may assume z(a) = 0. Let f ∈ OX(U \ {a}). Then
f ◦ z−1 : z(U) \ {0} → C is holomorphic. Thus, around point 0 ∈ z(U), there is a Laurent series
representation of f ◦ z−1:

(f ◦ z−1)(x) =
∞∑

n=−∞
cnx

n,

which we may then write in terms of coordinates z as

f(z) =
∞∑

n=−∞
cnz

n.

Thus, f has a removable singularity or pole of order k at a if and only if so does f ◦z−1 at z(a) = 0.
Let ω = fdz ∈ Ω1

X(U \ {a}) be a holomorphic 1-form. Then f =
∑
n anz

n, we define residue of
f at a as resaf = c−1.

Definition 2.1.12 (Differentiable, holomorphic and meromorphic 1-forms). Let X be a
Riemann surface and and U ⊆ X open. Let (Ui, zi) be any chart. A differential 1-form ω is said to
be:

1. differentiable if on U ∩ Ui we have

ω = fdz + gdz̄

where f, g ∈ EX(U∩Ui), denote ω ∈ E
(1)
X (U). If ω = fdz, then we say that ω is a differentiable

1-form of type (1,0), denoted ω ∈ E1,0
X (U). Similarly, if ω = gdz̄, then ω is a differentiable

1-form of type (0,1), denoted ω ∈ E0,1
X (U);

2. holomorphic if on U ∩ Ui we have

ω = fdz

where f ∈ OX(U ∩ Ui), denote ω ∈ Ω(1)
X (U),
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3. meromorphic if there exists an open subseteq V ⊆ U such that ω on V is a holomorphic
1-form, U \ V contains isolated points and ω has a pole at each point in U \ V . Denote
ω ∈ M

(1)
X (U).

One can also define a differential 2-form ω to be differentiable if ω = fdz∧dz̄ where f ∈ E(U ∩Ui).
Differentiable 2-forms on U ⊆ X are denoted E

(2)
X (U). Note in all of the above, say in differentiable

2-forms, when we wrote ω = fdz ∧ dz̄, we meant that for any a ∈ U , we have

ω(a) = f(a)daz ∧ daz̄ ∈ T
(2)
a = T

(1)
a ∧ T (1)

a .

Finally, all E(1)
X , E(2)

X , Ω(1)
X and M

(1)
X are sheaves of C-vector spaces. One also calls M(1)

X sheaf of
abelian differentials.

Construction 2.1.13 (Exterior derivative). We now construct the following two maps:

EX
d−→ E

(1)
X

d−→ E
(2)
X .

Indeed, on an open set U ⊆ X, define

d : EX(U) −→ E
(1)
X (U)

f 7−→ df

where df : U →
∐
a∈U T

(1)
a is given by a 7→ daf . Next, define for

d : E(1)
X (U) −→ E

(2)
X (U)

ω 7−→ dω

where if ω =
∑
k fkdgk for fk, gk ∈ EX(U ∩ Ui) for some chart (Ui, zi), then dω is defined as

dω =
∑
k

dfk ∧ dgk.

Definining for any f ∈ EX(U) elements d′f ∈ E1,0
X (U) given by a 7→ d′af and d′′f ∈ E0,1

X (U) given
by a 7→ d′′af and similarly the maps d′, d′′ : E(1)

X → E
(2)
X , we thus have the following two chains as

well:

EX
d′−→ E

(1)
X

d′−→ E
(2)
X

and

EX
d′′−→ E

(1)
X

d′′−→ E
(2)
X .

2.2 Dolbeault’s lemma

Theorem 2.2.1 (Dolbeault’s lemma for C). Let X = {z ∈ C | |z| < R} for 0 < R ≤ ∞. If
f : X → C is differentiable, then there exists g : X → C differentiable such that

∂g

∂z̄
= f.
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Theorem 2.2.2 (Dolbeault’s lemma for Riemann surfaces). Let X be a Riemann surface and
U ⊆ X be an open set. Then for any f ∈ EX(U), there exists g ∈ EX(U) such that

∂g

∂z̄
= f.

Proof. Let f be as above. Pick any chart (Ui, zi) of X. Then fi := f ◦ z−1
i : zi(U ∩ Ui) → C is a

differentiable map where we may assume zi(U∩Ui) to be an open disc by considering finer charts. By
Dolbeault’s lemma for C (Theorem 2.2.1), we get that there exists differentiable gi : zi(U ∩Ui) → C
such that ∂gi

∂z̄ = fi. Thus, we get a differentiable g : U → C which on chart (Ui, zi) is given by
g ◦ z−1

i = gi so that ∂g
∂z̄ ◦ z

−1
i = ∂

∂z̄ (g ◦ z
−1
i ) = ∂gi

∂z̄ = fi. Thus, ∂g∂z̄ agrees with f on each chart, hence
∂g
∂z̄ = f .

3 Riemann-Roch theorem
Our goal is to prove and showcase the uses of the following theorem.

Theorem 3.0.1 (Riemann-Roch theorem). Let X be a compact Riemann surface of genus g and
let D be a divisor on X. Then:

1. The cohomology groups H0(X,O(D)) and H1(X,O(D)) are finite-dimensional C-vector spaces.
2. The dimensions of the 0th and 1st cohomology groups satisfy

dimCH
0(X,O(D))− dimCH

1(X,O(D)) = 1− g + degD.

Remark 3.0.2. Note that H0(X,O(D)) = Γ(X,O(D)), so one can interpret dimCH
1(X,O(D))

as the correction term to the inequality dimC Γ(X,O(D)) ≥ 1 − g + degD so that it becomes an
equality.

In the process of proving the above statement, we have to understand the following notions on
a Riemann surface : cohomology of sheaves, divisors and genus. We undertake the last two, as we
have covered cohomology of sheaves in detail in Chapter FoG.27. However, as we need some results
on cohomology of sheaves of differentials and some important long exact sequences, we spend a
section setting up the results which we will use.

3.1 Cohomology

Recall from §FoG.27.7 that for a given space X and a sheaf F on X, we can define its Čech-
cohomology groups H i(X,F). For us the most important is the first cohomology, as is evident in
Theorem 3.0.1.

Remark 3.1.1. We first recollect the sheaves that we have so far constructed on any Riemann
surface X.

1. OX of holomorphic maps on X.
2. MX of meromorphic maps on X.
3. EX of differentiable maps on X.
4. E(k)

X of differentiable k-forms on X, k = 1, 2.
5. E1,0

X and E0,1
X of differentiable 1-forms of type (1,0) and (0,1), repsectively.
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6. Ω(1)
X of holomorphic 1-forms on X.

7. M(1)
X of meromorphic 1-forms on X.

Every sheaf from 2-7 is an OX -module. Using these seven sheaves, we can extract quite a bit of
geometric information about Riemann surfaces.

We first explore the many maps that one has amongst the above seven sheaves.

Example 3.1.2. Let (X,OX) be a Riemann surface. Here are some maps between above sheaves.
1. [Exterior derivative] We have maps

EX
d−→ E

(1)
X

d−→ E
(2)
X ,

EX
d′−→ E

(1)
X

d′−→ E
(2)
X

and

EX
d′′−→ E

(1)
X

d′′−→ E
(2)
X .

as constructed in Construction 2.1.13.
2. [Natural inclusions] We have following inclusions:

OX ↪→ EX

Ω(1)
X ↪→ E1,0

X

3. [Exponential map] Let O×
X be a sheaf of abelian groups obtained as follows. For each open

U ⊆ X, define

O×
X(U) := {f ∈ OX(U) | f : U → C×}.

That is, O×
X is the multiplicative abelian group of units of sheaf of C-algebra OX . We then

define the following map

exp : OX −→ O×
X

which on an open U ⊆ X is

expU : OX(U) −→ O×
X(U)

f 7−→ e2πif .

This is clearly a map of sheaves. This is called the exponential map and it plays an important
role in geometry.

We have an example of a situation where the image presheaf is not a sheaf (hence justifies why
we need to sheafify to get the image preseheaf).

Example 3.1.3 (Image presheaf may not be a sheaf). For X = C, consider the open cover U =
C\(−∞, 0] and V = C\[0,∞). Consider the image presheaf of the exponential map exp : OX → O×

X ,
denoted F . Let id ∈ O×

X(U) and id ∈ O×
X(V ). Observe that they agree on intersection U ∩ V .

Observe further that U and V are simply connected, therefore they have an analytic branch of log,
that is, id ∈ Im (expU ), Im (expV ). We claim that there is no section in F (U ∪V ) whose restriction
to U and V are id. Indeed, since U ∪ V = C×, therefore if the above two sections glue, then we
will have an analytic branch of log on C×, not possible.
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3.1.1 The cohomology long exact sequence

We now state the main theorem, after proving two lemmas which are nice exercises in general sheaf
theory.

Recall that a sheaf map is injective, surjective, if it is so at the level of stalks.

Lemma 3.1.4. 4 Let ϕ : F → G be an injective map of sheaves of abelian groups. Then ϕU :
F(U) → G(U) is injective.

Proof. Indeed, if ϕU (f) = 0 for some f ∈ F(U), then at stalks at each point x ∈ U , we get
ϕx((U, f)x) = (U,ϕU (f))x = 0. Thus, by injectivity, (U, f)x = 0 in Fx for all x ∈ U . Consequently,
f is locally zero at each point of U , thus it is zero at each point of U .

Lemma 3.1.5. 5 Let X be a space and 0 → F
ϕ→ G

ψ→ H be an exact sequence of sheaves of abelian
groups on X. If U ⊆ X is any open, then

0 → F(U) ϕU→ G(U) ψU→ H(U)

is exact.

Proof. By Lemma 3.1.4, ϕU is injective. We first show that Ker (ψU ) ⊇ Im (ϕU ). Pick any f ∈
F(U). Need only show that ψU (ϕU (f)) = 0. Indeed, it suffices to show that (U,ψU (ϕU (f)))x = 0
in Hx for all x ∈ U . Pick any x ∈ U . Observe that (U,ψU (ϕU (f)))x = ψx ◦ φx((U, f)x). The latter
is zero by exactness, as needed.

Next, we wish to show that Ker (ψU ) ⊆ Im (ϕU ). Indeed, pick g ∈ Ker (ψU ) and consider the
germ (U, g)x ∈ Gx for any x ∈ U . Observe that (U, g)x ∈ Ker (ψx) = Im (ϕx). Thus, there exists
(Vx, fx)x ∈ Fx such that

ϕx ((Vx, fx)x) = (Vx, ϕVx(fx))x = (U, g)x.

By definition of germs, we may assume that ϕVx(fx) = g on Vx ⊆ U for all x ∈ U . Hence we have
an open covering {Vx}x∈U of U and ϕVx(fx) = g on G(Vx). We claim that {fx}x∈U can be glued.
To this end, we wish to show that on Vx ∩ Vy, we have an equality fx = fy in F(Vx ∩ Vy). By
Lemma 3.1.4, it suffices to show that ϕVx∩Vy(fx) = ϕVx∩Vy(fy) in G(Vx ∩ Vy). Observe that the
element ϕVx∩Vy(fx) = g|Vx∩Vy = ϕVx∩Vy(fy) in G(Vx ∩ Vy). Thus, we have the required equality.

It follows that {fx}x∈U can be glued to f ∈ F(U) such that ϕU (f) in G(U) is such that its
restriction to each Vx is g, thus by sheaf axioms, ϕU (f) = g, that is, g ∈ Im (ϕU ), as needed.

Remark 3.1.6 (Surjective maps of sheaves). Recall that if ϕ : F → G is surjective on sections,
then it is a surjective map, but the converse is not true. Indeed for X = C, the map of sheaves
exp : OX → O×

X is surjective as any germ in the latter locally has a logarithm, but expC× is not
surjective on sections as the constant map id ∈ O×

X(C
×) does not have a logarithm.

However, we do have the following "local surjectivity": ϕ is surjective if and only if for any
open U ⊆ X and any s ∈ G(U), there exists an open cover {Ui}i∈I of U and ti ∈ F(Ui) such that
ϕUi(ti) = s|Ui

.
4To remove before addition to FoG and add relevant reference.
5To remove before addition to FoG and add relevant reference.
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Moreover, some of the above sheaves are obtained by kernels and gives us several short exact
sequences, which will be used later.
Example 3.1.7. [Important short exact sequences] Let (X,OX) be a Riemann surface. Some of
the sheaves in Remark 3.1.1 are kernels of some other map of sheaves and they give rise to some
important short exact sequences.

1. The sheaf of holomorphic maps OX is obtained as the kernel

OX = Ker
Ä
d′′ : EX → E0,1

X

ä
.

Thus, we have a s.e.s.

0 −→ OX −→ EX
d′′−→ E0,1

X −→ 0

where d′′ is surjective by Dolbeault’s lemma (Theorem 2.2.2).
2. The sheaf of holomorphic 1-forms Ω(1)

X is obtained from the kernel

Ω(1)
X = Ker

Ä
d : E1,0

X → E
(2)
X

ä
.

Thus we have a s.e.s.

0 −→ Ω(1)
X −→ E1,0

X
d−→ E

(2)
X −→ 0

where d is surjective as follows. For any ω = fdz ∧ dz̄ in E
(2)
X (U ∩Ui) for (Ui, zi) a chart and

f ∈ EX(U∩Ui), we get by Dolbeault’s lemma (Theorem 2.2.2) that there exists g ∈ EX(U∩Ui)
such that ∂g

∂z̄ = f . Thus, d(−gdz) = −
Ä
∂g
∂zdz +

∂g
∂z̄dz̄
ä
∧ dz = −∂g

∂z̄dz̄ ∧ dz = fdz ∧ dz̄. This
shows that d is surjective on sections, as required.

3. Let LX = Ker
Ä
d : E(1)

X → E
(2)
X

ä
be the sheaf of closed 1-forms. Then we claim that the

following is a s.e.s.

0 −→ C −→ EX
d−→ LX −→ 0.

Indeed, Ker (d : EX → LX) is given on an open-connected U ⊆ X by those differentiable
maps f : U → C such that df = d′fdz + d′′fdz̄ = 0, that is, ∂f/∂z = 0 and ∂f/∂z̄ = 0 on U .
It follows that f is holomorphic with zero derivative, that is, f is constant (U is connected).
Hence, we get the inclusion C ↪→ EX whose image is Ker (d).
Now, d is surjective as locally any closed form is exact by local existence of primitives from
one variable complex analysis.

4. For the exponential map, observe that we have a map Z → OX which on an open-connected
U ⊆ X is given by

Z = Z(U) −→ OX(U)
cn 7−→ cn.

For some arbitrary open set U ⊆ X, Z(U) is given by functions which are constant on
each open connected component (any Riemann surface is locally connected), so they are in
particular also holomorphic. We thus get a s.e.s.

0 −→ Z −→ OX
exp−→ O×

X → 0

where exp is surjective as locally any non-zero holomorphic map has an analytic branch of
log.
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We will now discuss the map in cohomology induced by a map of sheaves and how the connecting
homomorphism works.

Construction 3.1.8 (Map in cohomology). 6 Any map of abelian sheaves over X yields a map in
the cohomology as well. Indeed, let ϕ : F → G be a map of sheaves. Then we get a map

ϕq : Cq(U ,F) −→ Cq(U ,G)
s = (s(α0, . . . , αq)) 7−→ ϕq(s) =

(
ϕα0...αq(s(α0, . . . , αq))

)
where ϕα0...αq = ϕUα0∩···∩Uαq

.
It then follows quite immediately from the fact that each ϕα0...αq is a group homomorphism

that dϕq = ϕq+1d. It follows that we get a map of chain complexes

ϕ• : C•(U ,F) −→ C•(U ,G).

Hence, we get a map in cohomology

ϕq : Hq(U ,F) −→ Hq(U ,G).

Finally, this gives by universal property of direct limits a unique map

ϕq : Ȟq(X,F) −→ Ȟq(X,G)

such that for every open cover U , the following diagram commutes:

Ȟq(X,F) Ȟq(X,G)

Hq(U ,F) Hq(U ,G)

ϕq

ϕq

where vertical maps are the maps into direct limits.

Construction 3.1.9 (Connecting homomorphism). 7 Let X be a topological space and

0 F G H 0ϕ ψ

be an exact sequence of sheaves on X. We define the connecting homomorphism

H0(X,H) H1(X,F)δ

as follows. First, pick any h ∈ H0(X,H) = Γ(X,H). As ψ is surjective therefore there exists an
open covering U = {Ui}i∈I of X and gi ∈ G(Ui) such that ψUi(gi) = h|Ui

. Using (gi) and (Ui) we
construct a 1-cocycle for F as follows. Observe that for each i, j ∈ I, we have ψUi∩Uj (gi − gj) = 0
in H(Ui ∩ Uj). Thus, gi − gj ∈ Ker

(
ψUi∩Uj

)
. By exactness guaranteed by Lemma 3.1.5, it follows

6To remove before addition to FoG and add relevant reference.
7To remove before addition to FoG and add relevant reference.
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that there exists fα0α1 ∈ F(Uα0 ∩ Uα1) such that ϕUα0∩Uα0
(fα0α1) = gα0 − gα1 , for each α0, α1 ∈ I.

We claim that the element

f := (fα0α1)α0,α1 ∈
∏

(α0,α1)∈I2
F(Uα0 ∩ Uα1) = C1(U ,F)

is a 1-cocycle. Indeed, we need only check that df = 0 in C2(U ,F). Pick any (α0, α1α2) ∈ I3. We
wish to show that df(α0, α1α2) = 0. Indeed,

df(α0, α1α2) =
2∑
j=0

(−1)jρj
(
fα0α̂jα2

)
= fα1α2 − fα0α2 + fα0α1

in F(Uα0∩Uα1∩Uα2). We claim the above is zero. Indeed, By Lemma 3.1.5 on V := Uα0∩Uα1∩Uα2

we get that ϕV is injective. But since

ϕV (fα1α2 − fα0α2 + fα0α1) = ϕV (fα1α2)− ϕV (fα0α2) + ϕV (fα0α1)
= gα1 − gα2 − (gα0 − gα2) + gα0 − gα1

= 0,

hence it follows that df(α0, α1α2) = 0, as required. Hence f ∈ C1(U ,F) is a 1-cocycle. Thus we get
an element [f ] ∈ H1(U ,F). This defines a group homomorphism H0(X,H) → H1(U ,F). Further
by passing to direct limit, we get an element [f ] ∈ H1(X,F). We thus define

δ(f) := [f ] ∈ H1(X,F).

This defines the required group homomorphism δ.

Theorem 3.1.10 (Long exact cohomology sequence). 8 Let X be a topological space and

0 F G H 0ϕ ψ

be an exact sequence of sheaves on X. Then there exists a long exact sequence

0 H0(X,F) H0(X,G) H0(X,H)

H1(X,F) H1(X,G) H1(X,H)

ϕ0 ψ0

δ

ϕ1 ψ1

where δ is as in Construction 3.1.9.

8To remove before addition to FoG and add relevant reference.



20 3 RIEMANN-ROCH THEOREM

3.1.2 Applications

We now state and prove three big results, which follows from cohomology l.e.s. quite naturally.
The first result is an immediate corollary of the cohomology l.e.s. good to get the muscles

moving, which states what happens when the middle sheaf has no first cohomology.

Proposition 3.1.11. Let X be a topological space and

0 F G H 0ϕ ψ

be an exact sequence of sheaves on X. If H1(X,G) = 0, then

H1(X,F) ∼=
Γ(X,H)

ψX(Γ(X,G))

Proof. Write the cohomology l.e.s. (Theorem 3.1.10) and use first isomorphism theorem.

We next give Dolbeault’s theorem which for a Riemann surface calculates first cohomology of
structure sheaf and holomorphic 1-forms purely in terms of differentiable functions and differentiable
1 and 2-forms. This is essentially already clear from the first two s.e.s. in Example 3.1.7 and above
result.

Theorem 3.1.12 (Dolbeault’s theorem). Let X be a Riemann surface.
1. All sheaves EX ,E1,0

X ,E0,1
X , E(1)

X and E
(2)
X have first cohomology group 0.

2. We have isomorphisms

H1(X,OX) ∼=
Γ(X,E0,1

X )
d′′X(Γ(X,EX))

,

H1(X,Ω(1)
X ) ∼=

Γ(X,E(2)
X )

dX(Γ(X,E1,0
X ))

.

Proof. We omit the proof of item 1, for it can be found in Forster, Theorem 12.6 cite[Forster].
By Proposition 3.1.11 and the first two s.e.s. in Example 3.1.7, we need only show that

H1(X,EX) = 0 = H1(X,E1,0
X ), which we know to be true from item 1.

Corollary 3.1.13. Let X = BR(0) ⊆ C be an open ball considered as a Riemann surface. Then
H1(X,OX) = 0.

Proof. Need only show that d′′X : Γ(X,EX) → Γ(X,E0,1
X ) is surjective. That is, for any differentiable

1-form of type (0, 1), i.e. ω = fdz̄ on X, we wish to find a differentiable map g on X such that
d′′g = ∂g

∂z̄dz̄ = fdz̄. Indeed, by Dolbeault’s lemma for C (Theorem 2.2.1), we get such a g.

Remark 3.1.14 (deRham cohomology). Let X be a Riemann surface and denote H1
dR(X) the

deRham cohomology of X, that is,

H1
dR(X) =

Ker
Ä
dX : E(1)

X (X) → E
(2)
X (X)

ä
Im
Ä
dX : EX(X) → E

(1)
X (X)

ä .
We can now easily see by cohomology l.e.s. that H1

dR(X) is same as H1(X,C).
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Theorem 3.1.15 (deRham isomorphism for Riemann surfaces). Let X be a Riemann surface and
C be the constant sheaf associated to field C. Then we have an isomorphism

H1
dR(X) ∼= H1(X,C).

Proof. By Example 3.1.7, 3, we have a s.e.s.

0 −→ C −→ EX
d−→ LX −→ 0.

where H1(X,EX) = 0 by Dolbeault’s theorem (Theorem 3.1.12). By Proposition 3.1.11, it follows
that

H1(X,C) ∼=
Γ(X,LX)
dXΓ(X,EX)

where Γ(X,LX) is the set of all global closed differentiable 1-forms and dXΓ(X,EX) is the image
of all differentiable functions, that is Γ(X,LX)

dXΓ(X,EX) =: H1
dR(X), as required.
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