
Commutative Algebra

December 28, 2024

Contents

1 Introduction 3

2 General algebra 4
2.1 Nakayama lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Local rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Structure theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 UFDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Gauss’ lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Spectra of polynomial rings over UFDs . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Finite type k-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Primary decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Graded rings & modules 21
3.1 Constructions on graded rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Homogeneous localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Noetherian modules and rings 25
4.1 Dimension 0 noetherian rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Supp (M), Ass (M) and primary decomposition 28

6 Tensor, symmetric & exterior algebras 32
6.1 Results on tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Multilinear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Exterior algebra over characteristic 0 fields . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 Tensor, symmetric & exterior algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.5.1 Symmetric algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5.2 Exterior algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1



2 CONTENTS

7 Field theory 46
7.1 Finite extensions, algebraic extensions & compositum . . . . . . . . . . . . . . . . . 46
7.2 Maps of field extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3 Splitting fields & algebraic closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3.1 Algebraic closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 Separable, normal extensions & perfect fields . . . . . . . . . . . . . . . . . . . . . . 51

7.4.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4.2 Characterization of normality and separability . . . . . . . . . . . . . . . . . 52
7.4.3 Perfect fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.5 Galois extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.5.1 Théorème fondamental de la théorie de Galois . . . . . . . . . . . . . . . . . 56

7.6 Consequences of Galois theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.6.1 Galois group of finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.6.2 Primitive element theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.6.3 Compositum & Galois closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6.4 Norm & trace of a finite separable extension . . . . . . . . . . . . . . . . . . . 60
7.6.5 Norm & trace in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.6.6 Galois groups of ≤ 4 degree polynomials . . . . . . . . . . . . . . . . . . . . . 65
7.6.7 Solvability by radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.6.8 Linearly disjoint extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.7 Cyclotomic extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.8 Inseparable & purely inseparable extensions . . . . . . . . . . . . . . . . . . . . . . . 73

7.8.1 Inseparability index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.9 Transcendence degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8 Integral dependence and normal domains 81
8.1 Definitions and basic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Normalization & normal domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Noether normalization lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 Dimension of integral algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Dimension theory 90
9.1 Dimension, height & coheight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.2 Dimension of finite type k-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.3 Fundamental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10 Completions 93
10.1 Hensel’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11 Valuation rings 94
11.1 Valuations & discrete valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.2 Absolute values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

12 Dedekind domains 97



3

13 Tor and Ext functors 99
13.1 Some computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

14 Projective and injective modules 100
14.1 Projective modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
14.2 Divisible modules and Baer’s criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 104

15 Multiplicities 105
15.1 Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
15.2 Degree of a graded module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

16 Kähler differentials 109

17 Depth, Cohen-Macaulay & regularity 112
17.1 Regular rings, projective & global dimension . . . . . . . . . . . . . . . . . . . . . . 112
17.2 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

18 Filtrations 115

19 Flatness 115

20 Lifting properties : Étale maps 117

21 Lifting properties : Unramified maps 118

22 Lifting properties : Smooth maps 119

23 Simple, semisimple and separable algebras 120
23.1 Semisimple algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
23.2 Separable algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

24 Miscellaneous 122

1 Introduction

In this chapter, we collect topics from contemporary commutative algebra. The most need of all
this material comes from algebraic goemetry. In particular, in the following, we list out the topics
that we would need for our treatment of basic algebraic geometry.

1. Dimension theory : For dimension of schemes, Hauptidealsatz, local complete intersection,
etc.

2. Integral dependence : For proper maps between affine varieties, normalization, finiteness of
integral closure, certain DVRs of dimension 1, etc.

3. Field theory : For birational classification of varieties, primitive element theorem, basic alge-
bra in general, etc.

4. Completions : Local analysis of singularities, formal schemes, complete local rings, Cohen
structure theorem, Krull’s theorem, etc.
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5. Valuation rings : For curves and their non-singular points (DVRs) and various equivalences,
Dedekind domains, etc.

6. Multiplicities : For intersections in projective spaces, intersection multiplicity, Hilbert poly-
nomials, flat families, studying singularities in an algebraic variety etc.

7. Kähler differentials : For differential forms on schemes, this will be used consistently in further
topics.

8. Depth and Cohen-Macaulay : For local complete intersections, blowing up, etc.
9. Tor and Ext functors : They are tools for other algebraic notions, generizable to global

algebra, tor dimension, etc.
10. Projective modules : For vector bundles, projective dimension and Ext, pd + depth = dim

for regular local rings, etc.
11. Flatness : Family of schemes varying continuously, smooth and étalé maps, etc.
12. Lifting properties - Étale, unramified and smooth morphisms : These are used heavily for the

corresponding scheme maps, and beyond.

Notation 1.0.1. Let R be a ring and f(x) ∈ R[x] be a polynomial. We will denote cn(f) ∈ R
to be the coefficient of xn in f(x). If f(x, y) ∈ R[x, y], then we will denote cn,m(f) ∈ R to be the
coefficient of xnym in f(x, y). We may also write cxn(f) for cn(f) and cxnym(f) for cn,m(f) if it
makes statements more clear.

Remark 1.0.2. We will consistently keep using the geometric viewpoint given by the theory of
schemes (see Chapter ??) in discussing the topics below, as a viewpoint to complement the algebraic
viewpoint. This will also showcase the usefulness of scheme language.

2 General algebra

We discus here general results about prime ideals, modules and algebras.

2.1 Nakayama lemma

Let R be a ring. Denote the set of all units of R as R×. The Jacobson radical is the ideal r of
R formed by the intersection of all maximal ideals of R. A finitely generated R-module M is a
module which has a finite collection of elements {x1, . . . , xn} ⊂M such that for any z ∈M , there
are r1, . . . , rn ∈ R so that z = r1x1 + · · ·+ rnxn. More concisely, if there is a surjection R-module
homomorphism Rn ↠M . Let’s begin with a simple observation.

Lemma 2.1.1. Let R be a ring and M be a simple R-module. Then

M ∼= R/m

where m ≤ R is a maximal ideal.

Proof. As M is simple, therefore for any non-zero f ∈ M , we have Rf = M . It follows that the
map ϕ : R→ M mapping r 7→ rf is surjective. Thus, M ∼= R/Ker (ϕ). If Ker (ϕ) is not maximal,
then R/Ker (ϕ) has a non-trivial submodule, a contradiction to simplicity of M .

We then have the following results about r.
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Proposition 2.1.2. Let R be a ring and let r denotes it Jacobson radical. Then,
1. x ∈ r if and only if 1− xy ∈ R× for any y ∈ R.
2. (Nakayama lemma) Let M be a finitely generated R-module. If q ⊆ r is an ideal of R such

that qM =M , then M = 0.
3. Let M be a finitely generated module and q ⊆ r. Let N ≤M be a submodule of M such that

M = N + qM , then M = N .
4. If R is a local ring and M,N are two finitely generated modules, then

M ⊗R N = 0 ⇐⇒ M = 0 or N = 0.

Proof. 1. (L ⇒ R) Suppose there is y ∈ R such that 1− xy /∈ R×. Since each non-unit element is
contained in a maximal ideal by Zorn’s lemma, therefore 1−xy ∈ m for some maximal ideal. Since
x ∈ r, therefore x ∈ m. Hence xy, 1− xy ∈ m, which means that 1 ∈ m, a contradiction.
(R ⇒ L) Suppose 1 − xy ∈ R× for all y ∈ R and x /∈ r. Then, again by Zorn’s lemma we have
x ∈ R×. Hence let y = x−1 to get that 1− xy = 1− 1 = 0 ∈ R×, a contradiction.

2. Suppose M ̸= 0. Since M is finitely generated, therefore there is a submodule N ⊂M such
that M/N is simple (has no proper non-trivial submodule). By Lemma 2.1.1, M/N ∼= R/m. Then,
mR ̸= R which is same as mM ̸=M . Since q ⊆ r ⊆ m, hence qM ̸=M , a contradiction.

3. Apply 2. on M/N .

4. The only non-trivial part is L ⇒ R. Since (M ⊗R N)/m(M ⊗R N) = M/mM ⊗R/m N/mN ,
therefore we have M/mM ⊗R/m N/mN = 0. Since R/m is a field therefore M/mM = 0 WLOG.
Hence, M = mM and since R is local, therefore r = m. We conclude by Nakayama.

Note that if a is an ideal, then 1 + a is a multiplicative set. In-fact this is quite a special
multiplicative set because of the following.

Lemma 2.1.3. Let R be a ring and a ≤ R. For the multiplicative set S = 1 + a, S−1a is in
Jacobson radical of S−1R.

Proof. Pick x/s ∈ S−1A and a/t ∈ S−1a. It is equivalent to show that 1− xa
st is a unit in S−1A by

Proposition 2.1.2, 1. Indeed, st = 1 + a′ for some a′ ∈ a. Thus 1− xa
st = 1+a′−ax

st where numerator
is in S, hence a unit as required.

Using this observation, we can find a single annihilator for certain modules.

Lemma 2.1.4. Let a ≤ R be an ideal such that aM =M for some finitely generated R-module M .
Then, there exists x ∈ R such that xM = 0.

Proof. Let S = 1 + a, N = S−1M , B = S−1A and b = S−1a. Then N = bN and hence by
Nakayama, we get N = 0. As N is finitely generated, therefore there exists an element x ∈ S such
that xM = 0, as required.

Here’s a simple, but important example.
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Lemma 2.1.5. Let M,N be A-modules and N be finitely generated. Let a ≤ A be in Jacobson
radical and ϕ : M → N be an A-linear map. If ϕ̄ : M/aM → N/aN is surjective, then ϕ is
surjective.

Proof. We wish to show that N = ϕ(M). By Nakayama, it is sufficient to show that N = ϕ(M) +
aN . Pick any n ∈ N . By hypothesis, there exists m ∈ M such that ϕ(m) − n = ∑

i aini ∈ aN .
The result follows.

Corollary 2.1.6. Let (R,m, κ) be a local ring and ϕ : M → N be an R-module homomorphism
and N be finitely generated. If ϕ⊗ id :M ⊗ κ→ N ⊗ κ is surjective, then ϕ is surjective.

Here’s another application which is quite interesting arithmetically.

Proposition 2.1.7. Let R be a ring whose underlying abelian group is free of finite rank, A be a
ring whose underlying abelian group is finitely generated and ϕ : R→ A be a ring homomorphism.
Then the following are equivalent:

1. ϕ is an isomorphism.
2. For each p ∈ Spec (Z), the homomorphism

ϕp : R⊗Z κ(p)→ A⊗Z κ(p)

is an isomorphism.

Proof. By functoriality of tensor products, it is immediate that (1. ⇒ 2.). For the converse, we
proceed as follows. We first show that ϕ is surjective. Let M = CoKer (ϕ). We have the short
exact sequence of finitely generated Z-modules

R A M 0ϕ
.

Suppose ϕ is not surjective. Then M ̸= 0. Consequently, there exists a prime p ∈ Spec (Z) such
that Mp ̸= 0. Localizing the above sequence at this prime, we obtain by exactness the following
sequence of Zp-modules:

Rp Ap Mp 0ϕp
.

By Corollary 2.1.6 applied on the local ring Zp, it follows that ϕp as above is surjective. It follows
by exactness of the sequence above that Mp = 0, a contradiction.

To see injectivity of ϕ, observe that Ker (ϕ) is a submodule of R. Since R is free of finite
rank, therefore by Proposition 24.0.8, it follows that K := Ker (ϕ) is a free module of finite rank.
Consequently, the following exact sequence is of free Z-modules:

0 K R A 0ι ϕ

As Z0 = Q = κ(0), thus by exactness of localization, we get the following exact sequence

0 K ⊗Q R⊗Q A⊗Q 0ι⊗id ϕ⊗id
.

By hypothesis, ϕ ⊗ id is an isomorphism. Conseqeuntly, rankK + rankA = rankR, but the iso-
morphism implies that rankR = rankA. It follows at once that rankK = 0 and since K is free,
therefore K = 0, as required.
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As another simple application, here’s a lemma which is a good exercise as well.

Lemma 2.1.8. Let (R,m) be a local domain and k = R/m and K = Q(R). Denote Q(M) to be
the fraction module of M ; Q(M) =M ⊗R R0. If M is a finitely generated R-module such that

dimkM/mM = dimK Q(M) = n,

then M ∼= Rn.

2.2 Localization

We next consider localization of rings and R-modules. Take any multiplicative set S ⊂ R which
contains 1. Then, localizing an R-module M on S is defined as

S−1M := {m/s | m ∈M, s ∈ S}.

where m/s = n/t if and only if ∃u ∈ S such that u(mt − ns) = 0. We have that S−1M is an
R-module where addition m/s + n/t = (mt + ns)/st. In the case when M = R, we get a ring
structure on S−1R as well where multiplication is given by m/s · n/t := mn/st. There is a natural
map M → S−1M which maps m 7→ m/1 and it may not be an injection if ∃m ∈M and s ∈ S such
that s ·M = 0.

Lemma 2.2.1. Let S ⊂ R be a multiplicative set in a ring R and M be an R-module. Then,

S−1M ∼= S−1R⊗R M.

Proof. One can do this by directly checking the universal property of tensor product of S−1R and
M over R for S−1M . We have the map ϕ : S−1R ×M → S−1M given by (r/s,m) 7→ rm/s.
Now for any bilinear map f : S−1R ×M → N , we can define the map f̃ : S−1M → N given by
f̃(m/s) := f(1/s,m). Clearly, f̃ is well-defined and f̃ϕ = f . Moreover, if g : S−1M → N is such
that gϕ = f , then g(m/s) = f(1/s,m) = f̃(m/s). Hence f̃ is unique with this property.

Lemma 2.2.2. Localization w.r.t a multiplicative set S ⊂ R is an exact functor on Mod(R).

Proof. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of R-modules. Then we have the
localized sequence S−1M ′ → S−1M → S−1M ′′. Since S−10 = 0, therefore this is left exact.
Exactness at middle follows from exactness at middle of the first sequence. The right exactness can
be seen by right exactness of tensor product functor S−1R⊗R − and by Lemma 2.2.1.

Lemma 2.2.3. Let R be a ring and S ⊂ R be a multiplicative set. Then

{prime ideals of R not intersecting S}
∼=−→ {prime ideals of S−1R}

p 7−→ S−1p

Proof. Trivial.

Next we see an important property of modules, that is their "local characteristic". This means
that one can check whether an element of a module is in a submodule by checking it locally at each
prime, as the following lemma suggests. This has geometric significance in algebraic geometry (M
induces and is induced by a quasi-coherent sheaf over Spec (R), see ??).
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Lemma 2.2.4. Let M be an R-module. Then,
1. M ̸= 0 if and only if there exists a point p ∈ Spec (R) such that Mp ̸= 0.
2. If N ⊂ M is a submodule and 0 ̸= x ∈ M , then x ∈ N if and only if x ∈ Np ⊆ Mp for each

point p ∈ Spec (R).

Proof. 1. (L ⇒ R) Since ∃x ∈ M which is non-zero, therefore consider the annihilator ideal
Ann(x) = {r ∈ R | rx = 0} of R. Then, this ideal is contained in a maximal ideal m of R by Zorn’s
lemma. Hence consider Mm, which contains x/1. Now if there exists r ∈ R \ m such that rx = 0,
then r ∈ Ann(x), but since m ⊇ Ann(x), hence we have a contradiction.
(R⇒ L) Let p ∈ Spec (R) be such that x/r ∈Mp and x/r ̸= 0. Since Mp is an R-module, therefore
r · (x/r) is well-defined in Mp. Hence (rx)/r = x/1 ∈ Mp. If x/1 = 0 in Mp, therefore ϕp(x) = 0
and hence x = 0 as ϕp is injective. Thus, x/r = 0 in Mp, a contradiction. Therefore x/1 ̸= 0 and
hence x ̸= 0 in M .

2. This follows from using 1. on the module (N+Rx)/N . We do this by observing the following
chain of equivalences, whose key steps are explained below:

x ∈ N ⇐⇒ N +Rx = N ⇐⇒ (N +Rx)/N = 0 ⇐⇒ ((N +Rx)/N)p ∀p ∈ Spec (R) ⇐⇒
(N +Rx)p/Np = 0∀p ∈ Spec (R) ⇐⇒ (N +Rx)p = Np∀p ∈ Spec (R) ⇐⇒
Np + (Rx)p = Np∀p ∈ Spec (R) ⇐⇒ (Rx)p ⊆ Np∀p ∈ Spec (R) ⇐⇒ ϕp(x) = x/1 ∈ Np∀p ∈ Spec (R).

For two submodules N,K,L ⊂ M where L ⊆ N and p ∈ Spec (R), we get (N/L)p = Np/Lp by
exactness of localization (Lemma 2.2.2) on the exact sequence

0→ L→ N → N/L→ 0.

Finally (N +K)p = Np +Kp in Mp is true by direct checking and where we use the primality of
p.

Remark 2.2.5. (Few life hacks) The above proof tells us few ways how one can approach the
problems in ring theory. Note especially that x ∈ N if and only if N + Rx = N , which quickly
turns a set-theoretic relation into an algebraic one, where we can now use various constructions as
we did, like localization.

The following is the universal property for localization.

Proposition 2.2.6. Let R be a ring and S be a multiplicative set. If ϕ : R → T is a ring
homomorphism such that ϕ(S) ⊆ T× where T× is the unit group of T , then there exists a unique
map ϕ̃ : S−1R→ T such that the following commutes

R T

S−1R

i

ϕ

ϕ̃
.

Proof. Pick any ring map ϕ : R → T . Take any map f : S−1R → T which makes the above
commute. We claim that f(r/s) = ϕ(r)ϕ(s)−1. Indeed, we have that f(r/1) = ϕ(r) for all r ∈ R.
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Further, for any s ∈ S, we have f(1/s) = 1/f(s/1) = 1/ϕ(s) = ϕ(s)−1. Consequently, we get for
any r/s ∈ S−1R the following

f
(r
s

)
= f

Å
r

1 ·
1
s

ã
= f

(r
1

)
· f
Å1
s

ã
= ϕ(r)ϕ(s)−1.

This proves uniqueness. Clearly, this is a ring homomorphism. This completes the proof.

Remark 2.2.7. As Proposition 2.2.6 is the universal property of localization, therefore the con-
struction S−1R is irrelevant; the property above completely characterizes localization upto a unique
isomorphism.

Lemma 2.2.8. Let R be a ring and f ∈ R \ {0}. Then,

Rf
∼=

R[x]
⟨fx− 1⟩ .

In particular, Rf is a finite type R-algebra.

Proof. We shall use Proposition 2.2.6. We need only show that R[x]/⟨fx − 1⟩ satisfies the same
universal property as stated in Proposition 2.2.6. Indeed, we first have the map i : R→ R[x]/⟨fx−
1⟩ given by r 7→ r + ⟨fx − 1⟩. Let ϕ : R → T be any map such that ϕ(f) ∈ T×. We claim that
there exists a unique map ϕ̃ : R[x]/⟨fx − 1⟩ → T such that ϕ̃ ◦ i = ϕ. Indeed, take any map
g : R[x]/⟨fx − 1⟩ → T such that g ◦ i = ϕ. Thus, for all r ∈ R, we have g(r + ⟨fx − 1⟩) = ϕ(r).
As fx + ⟨fx − 1⟩ = 1 + ⟨fx − 1⟩, therefore we obtain that g(f + ⟨fx − 1⟩) · g(x + ⟨fx − 1⟩) =
ϕ(f) · g(x + ⟨fx − 1⟩) = 1. Hence, we see that g(x + ⟨fx − 1⟩) = ϕ(f)−1. Hence for any element
p(x)+ ⟨fx− 1⟩, we see that f(p(x)+ ⟨fx− 1⟩) = p(ϕ(f)−1). This makes g unique well-defined ring
homomiorphism. This completes the proof.

The following is a simple but important application of technique of localization.

Lemma 2.2.9. Let R be a ring. Then the nilradical of R, n, the ideal consisting of nilpotent
elements is equal to the intersection of all prime ideals of R:

n =
⋂

p∈Spec(R)
p.

Proof. Take x ∈ ⋂
p∈Spec(R) p. We then have x ∈ p for each p ∈ Spec (R). Hence if for each

n ∈ N we have that xn ̸= 0, then we get that S = {1, x, x2, . . . } forms a multiplicative system.
Considering the localization S−1R, we see that it is non-zero. Therefore S−1R has a prime ideal,
which corresponds to a prime ideal p of R which does not intersects S, by Lemma 2.2.3. But this
is a contradiction as x is in every prime ideal.
Conversely, take any x ∈ n and any prime ideal p ∈ Spec (R). Since xn = 0 for some n ∈ N,
therefore xn ∈ p for each p ∈ Spec (R). Hence it follows from primality of each p that x ∈ p.

We next give two results which are of prominent use in algebraic geometry. The first result says
that finite generation of a module can be checked locally.

Lemma 2.2.10. Let M be an R-module and suppose fi ∈ R are elements such that
∑n

i=1Rfi = R.
Then, the following are equivalent:
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1. M is a finitely generated R-module.
2. Mfi is a finitely generated Rfi-module for all i = 1, . . . , n.

Proof. (1. ⇒ 2.) This is simple, as finite generation is preserved under localization.
(2. ⇒ 1.) Let Mfi be generated by mij/(fi)nij for j = 1, . . . , ni. Let N ≤ M be a submodule
generated by mij for each j = 1, . . . , ni and for each i = 1, . . . , n. Clearly, N is a finitely generated
R-module. Moreover, Nfi for each i = 1, . . . , n is equal to Mfi . We wish to show that (M/N)p = 0.
To this, end, let fi be such that fi /∈ p. As (M/N)p = lim−→f /∈p(M/N)f , so it suffices to show that
there is a cofinal system of f /∈ p such that (M/N)f = 0. Indeed, as (M/N)fi = Mfi/Nfi = 0, so
we need only show that for any basic open D(g) ⊆ D(fi), we have (M/N)g = 0. As by Lemma ??,
2 we have that gn = rfi for some r ∈ R, therefore we deduce that (M/N)g = 0 as (M/N)fi = 0. It
follows that (M/N)p = 0 for all primes p and hence M/N = 0 by Lemma 2.2.4, 1, hence M = N
and M is finitely generated.

The second result gives a partial analogous result as to Lemma 2.2.10 did, but for algebras.
This is again an important technical tool used often in algebraic geometry.
Lemma 2.2.11. Let A be a ring and B be an A-algebra. Suppose f1, . . . , fn ∈ B are such that∑n

i=1Bfi = B. If for all i = 1, . . . , n, Bfi is a finitely generated A-algebra, then B is a finitely
generated A-algebra.

Proof. Let Bfi be generated by ®
bij

f
nj

i

´
j=1,...,Mi

as anA-algebra, for each i = 1, . . . , n. Further, we have c1, . . . , cn ∈ B such that c1f1+· · ·+cnfn = 1.
We claim that S = {bij , fi, ci}i,j is a finite generating set for B.

Let C be the sub-algebra of B generated by S. Pick any b ∈ B. We wish to show that b ∈ C.
Fix an i = 1, . . . , n. Observe that the image of b in the localized ring Bfi is generated by some
polynomial with coefficients in A and indeterminates replaced by®

bij

f
nj

i

´
j=1,...,Mi

.

We may multiply b by fNi
i for Ni large enough so that fNi

i b is then represented by a polynomial
with coefficients in A evaluated in fi and bij for j = 1, . . . ,Mi. Consequently, fNi

i b ∈ C, for each
i = 1, . . . , n. Observe that f1, . . . , fn in C generates the unit ideal in C. By Lemma 24.0.2, 2, we
see that fN1

1 , . . . , fNn
n also generates the unit ideal in C. Hence, we have d1, . . . , dn ∈ C such that

1 = d1f
N1
1 + · · ·+ dnf

Nn
n . Multiplying by b, we obtain b = d1f

N1
1 b+ · · ·+ dnf

Nn
n where by above,

we now know that each term is in C. This completes the proof.

An observation which is of importance in the study of varieties is the following.
Lemma 2.2.12. Let R be an integral domain. Then⋂

m<R

Rm = R

where the intersection runs over all maximal ideals m of R and the intersection is carried out in
the fraction field R⟨0⟩.
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Proof. We already have that

R ↪→ Rm

for any maximal ideal m < R. Thus,

R ↪→
⋂

m<R

Rm.

Thus it would suffice to show that ⋂
m<RRm ↪→ R. Indeed, consider the following map

⋂
m<R

Rm −→ R

[fm/gm] 7−→ fmgm′

where fm/gm = fm′/gm′ for two maximal ideals m,m′ in R. Thus, fmgm′ = fm′gm. Hence the above
map is well-defined and is injective as fmgm′ = 0 implies fm = 0 as gm′ ̸= 0. The result follows.

One may wonder when localization and Hom commutes. It does when one of the modules is
finitely presented.

Proposition 2.2.13. Let M,N be R-modules where M is finitely presented and S ⊆ R be a
multiplicative set. Then,

S−1(HomR (M,N)) ∼= HomS−1R

(
S−1M,S−1N

)
.

Proof. Consider the map

θM : S−1(HomR (M,N)) −→ HomS−1R

(
S−1M,S−1N

)
ϕ

s
7−→ m

t
7→ ϕ(m)

st
.

We claim that θM is an isomorphism. To this end, first observe that if M is free, then it is
immediate from standard Hom identities. Now consider a finite presentation Rm → Rn →M → 0
of M . Localizing at S we get a finite presentation (S−1R)m → (S−1R)n → S−1M → 0 of S−1M
as an S−1R-module. As Hom is left exact and localization is exact, then we get the following
commutative diagram where rows are exact:

0 HomS−1R

(
S−1M,S−1N

)
HomS−1R

(
(S−1R)n, S−1N

)
HomS−1R

(
(S−1R)m, S−1N

)
0 S−1HomR (M,N) S−1HomR (Rn, N) S−1HomR (Rm, N)

θM θRn ∼= θRm ∼= .

By five-lemma, θM is an isomorphism, as required.
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2.2.1 Local rings

A ring R is said to be local if there is a unique maximal ideal of R. In such a case we denote it
by (R,m). We first study tangent and cotangent space to certain type of regular local rings, which
are important in the study of rational points.

Definition 2.2.14. (Zariski (co)tangent space) Let (R,m) be a local ring. Then, we define the
Zariski cotangent space of (R,m) to be T ∗R = m/m2 and the Zariski tangent space to be its dual
TR = Homk

(
m/m2, k

)
.

Remark 2.2.15. The Zariski cotangent space T ∗R is a κ-vector space where κ = R/m is the
residue field. Indeed, the scalar multiplication is given by

κ× T ∗R −→ T ∗R

(c+m, x+m2) 7−→ cx+m2

where c ∈ R and x ∈ m. Indeed, this is well-defined as can be seen by a simple check. Consequently,
the tangent space TR = Homk

(
m/m2, k

)
is also a κ-vector space.

Definition 2.2.16. (Regular local ring) Let (A,m) be a local ring with k = A/m being the
residue field. Then A is said to be regular if dimk m/m

2 = dimA.

There is an important geometric lemma that one should keep in mind about certain local rings.

Definition 2.2.17. (Rational local k-algebras) Let k be a field. A local k-algebra (R,m) is said
to be rational if its residue field κ = R/m is isomorphic to the field k.

Rational local k-algebras have a rather simple tangent space.

Proposition 2.2.18. Let (A,mA) be a rational local k-algebra. Then,

TA ∼= Homk,loc (A, k[ϵ])

where k[ϵ] := k[x]/x2 is the ring of dual numbers and Homk,loc (A, k[ϵ]) denotes the set of all local
k-algebra homomorphisms.

Proof. Pick any k-algebra homomorphism ϕ : A → k[ϵ]. Denote by mϵ = ⟨ϵ⟩ ⪇ k[ϵ] the unique
maximal ideal of k[ϵ]. Since

k[ϵ]/mϵ
∼= k,

therefore k[ϵ] is a rational local k-algebra as well. By Lemma 24.0.7, we may write A = k ⊕ mA

and k[ϵ] = k ⊕mϵ. We now claim that the datum of a local k-algebra homomorphism ϕ : A→ k[ϵ]
is equivalent to datum of a k-linear map of k-modules θ : mA/m

2
A → k.

Indeed, we first observe that for any ϕ : A→ k[ϵ] as above, we have ϕ(mA) ⊆ mϵ. Thus, ϕ(m2
A) ⊆

m2
ϵ = 0. Thus, we deduce that for any such ϕ, Ker (ϕ) ⊇ m2

A. It follows from universal property of
quotients that any such ϕ is in one-to-one correspondence with k-algebra homomorphisms

ϕ̃ : A/m2
A
∼= k ⊕ (mA/m

2
A) −→ k[ϵ].
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As ϕ(mA) ⊆ mϵ, therefore ϕ̃(mA/m
2
A) ⊆ mϵ. Thus, we obtain a k-linear map of k-modules

θ : mA/m
2
A −→ k ∼= mϵ

where mϵ
∼= k as k-modules. It suffices to now show that from any such θ, one can obtain a unique

k-algebra map ϕ̃ : k ⊕ (mA/m
2
A) → k[ϵ], which furthermore sets up a bijection between all such ϕ̃

and θ.
Indeed, from k-linear map θ, we may construct the following k-algebra map

ϕ̃ : k ⊕ (mA/m
2
A) −→ k[ϵ]

(k + m̄) 7−→ k + θ(m̄)ϵ.

Then we observe that ϕ̃ is a k-algebra homomorphism as

ϕ̃((k1 + m̄1)(k2 + m̄2)) = ϕ̃(k1k2 + k1m̄2 + k2m̄1 + m̄1m̄2)
= k1k2 + k1θ(m̄2)ϵ+ k2θ(m̄1)ϵ+ θ(m̄1m̄2)ϵ
= k1k2 + k1θ(m̄2)ϵ+ k2θ(m̄1)ϵ
= (k1 + θ(m̄1)ϵ) · (k2 + θ(m̄2)ϵ)
= ϕ̃(k1 + m̄1) · ϕ̃(k2 + m̄2).

Hence, from θ one obtain ϕ̃ back, thus setting up a bijection and completing the proof.

In general, restriction and then extension of scalars wont yield the same module back. The
following gives a criterion when this happens.
Lemma 2.2.19. Let ϕ : A→ B be an A-algebra such that B ⊗A B ∼= B. If M is a B-module and
MA is the A-module by restriction, then

MA ⊗A B ∼=M.

Proof. Immediate since

MA ⊗A B ∼= (M ⊗B B)A ⊗A B ∼=M ⊗B (B ⊗A B) ∼=M ⊗B B ∼=M.

2.3 Structure theorem

Let M be a finitely generated R-module. We can understand the structure of such modules com-
pletely in terms of the ring R, when R is a PID (so that it’s UFD). This is the content of the
structure theorem. We first give the following few propositions which is used in the proof of the
structure theorem but is of independent interest as well, in order to derive a usable variant of struc-
ture theorem. The following theorem tells us a direct sum decomposition exists for any finitely free
torsion module over a PID.
Proposition 2.3.1. Let M be a finitely generated torsion module over a PID R. If Ann(M) = ⟨c⟩
where c = pk11 . . . pkrr and pi ∈ R are prime elements, then

M ∼=M1 ⊕ · · · ⊕Mr

where Mi = {x ∈ M | prii x = 0} ≤ M for all i = 1, . . . , r, that is, where Ann(Mi) = ⟨prii ⟩ for all
i = 1, . . . , r.
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The next result tells us that we can further write each of the above Mis as a direct sum
decomposition of a special kind.

Proposition 2.3.2. Let M be a finitely generated torsion module over a PID R. If AnnM = ⟨pr⟩
where p ∈ R is a prime element, then there exists r1 ≥ r2 ≥ · · · ≥ rk ≥ 1 such that

M ∼= R/⟨pr1⟩ ⊕ · · · ⊕R/⟨prk⟩.

The structure theorem is as follows.

Theorem 2.3.3. (Structure theorem) Let R be a PID and M be a finitely generated R-module.
Then there exists an unique n ∈ N ∪ {0} and q1, . . . qr ∈ R unique upto units such that qi−1|qi for
all i = 2, . . . , r and

M ∼= Rn ⊕R/⟨q1⟩ ⊕ · · · ⊕R/⟨qr⟩.

The most useful version of this is the following:

Corollary 2.3.4. Let M be a finitely generated torsion module over a PID R. Then, there exists
k-many prime elements p1, . . . , pk ∈ R, nj ∈ N for each j = 1, . . . , k and 1 ≤ r1j ≤ · · · ≤ rnjj ∈ N
for each j = 1, . . . , k such that

M ∼=
k⊕

j=1

Ä
R/⟨pr1jj ⟩ ⊕ · · · ⊕R/⟨p

njj
j ⟩
ä
.

Proof. This is a consequence of Propositions 2.3.1 and 2.3.2.

This is the famous structure theorem for finitely generated modules over a PID. Note that the
ring Z is PID and any abelian group is a Z-module. Thus, we can classify finitely generated abelian
groups using the structure theorem.

Example 2.3.5. An example of a module which is not finitely generated is the polynomial module
R[x] over a ring R. Indeed, the collection {1, x, x2, . . . } will make it free but not finitely generated.

Example 2.3.6. Classification of all abelian groups of order 360 = 23 · 32 · 5, for example, can
be achieved via structure theorem. Indeed using Corollary 2.3.4, we will get that there are 6 total
such abelian groups given by

•
( Z
2Z ⊕

Z
2Z ⊕

Z
2Z
)
⊕
( Z
3Z ⊕

Z
3Z
)
⊕
( Z
5Z
)

•
( Z
22Z ⊕

Z
2Z
)
⊕
( Z
3Z ⊕

Z
3Z
)
⊕
( Z
5Z
)

•
( Z
23Z
)
⊕
( Z
3Z ⊕

Z
3Z
)
⊕
( Z
5Z
)

•
( Z
2Z ⊕

Z
2Z ⊕

Z
2Z
)
⊕
( Z
32Z
)
⊕
( Z
5Z
)

•
( Z
22Z ⊕

Z
2Z
)
⊕
( Z
32Z
)
⊕
( Z
5Z
)

•
( Z
23Z
)
⊕
( Z
32Z
)
⊕
( Z
5Z
)

2.4 UFDs

2.5 Gauss’ lemma

Add results surrounding primitive polynomials and Gauss’ lemma here from notebook.
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2.5.1 Spectra of polynomial rings over UFDs

We now calculate the prime spectra of polynomial rings over UFDs. For that, we need the following
two lemmas.

Lemma 2.5.1. Let R be a UFD and I ≤ R[x] be an ideal containing two elements with no common
factors. Then I contains a non-zero constant from R.

Proof. Indeed, let f, g ∈ R[x] be two elements with no common factors. Let Q denote the fraction
field of R. We first claim that f, g ∈ Q[x] have no common factor as well. Indeed, suppose
h(x) ∈ Q[x] is a common factor of f(x) and g(x). It follows from the result on primitive polynomials
that we can write h(x) = ch0(x) where c ∈ Q and h0(x) ∈ R[x] is primitive. Hence, we see that
h0(x) ∈ R[x] is a polynomial such that h0|f and h0|g in Q[x]. Again, by general results in UFD, we
then conclude that h0|f and h0|g in R[x]. As f and g have no common factor, therefore h0(x) ∈ R[x]
is a unit. Hence h(x) ∈ Q[x] is a unit. Thus, there is no common factor of f(x) and g(x) in Q[x] if
there is none in R[x].

Hence, f(x), g(x) in Q[x] have gcd 1, where Q[x] is a PID. Consequently, f(x) and g(x) generates
the unit ideal in Q[x]. It follows that there exists p(x), q(x) ∈ Q[x] such that

1 = p(x)f(x) + q(x)g(x).

By theorem on primitive polynomials, we may write p(x) = a
bp0(x) and q(x) = c

dq0(x) where
a/b, c/d ∈ Q and p0(x), q0(x) ∈ R[x] are primitive. The above equation hence becomes

1 = a

b
p0(x)f(x) +

c

d
q0(x)g(x)

= adp0(x)f(x) + bcq0(x)g(x)
bd

,

which thus yields

bd = adp0(x)f(x) + bcq0(x)g(x)

where RHS is in I ≤ R[x] because ad, p0, bc, q0 ∈ R[x] and f, g ∈ I and LHS is in R. Hence I ∩ R
is not zero.

Lemma 2.5.2. Let R be a PID and f, g ∈ R[x] be non-zero polynomials such that f and g have
no common factors. Then,

1. any prime ideal p ⪇ R[x] containing f and g is maximal,
2. any maximal ideal m ⪇ R[x] containing f and g is of the form ⟨p, h(x)⟩ where p ∈ R is prime

and h(x) is prime modulo p,
3. there are only finitely many maximal ideals of R[x] containing f and g.

Proof. 1. : Let p ⪇ R[x] be a prime ideal containing f and g. Observe by Lemma 2.5.1 that there
exists b ∈ R \ 0 such that b ∈ p∩R, that is, p∩R ̸= 0. As R is a PID and p∩R is a prime ideal of
R, therefore p∩R = pR for some prime element p ∈ p∩R. We wish to show that R[x]/p is a field.
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Indeed, we see that (note ⟨p, p⟩ = p as p ∈ p)

R[x]
p
∼=

R[x]
pR[x]
⟨p,p⟩
pR[x]

=
R[x]
pR[x]

p
pR[x]

∼=
R
pR [x]
p

where p = π(p) where π : R[x] ↠ R
pR [x] is the quotient map. As R is a PID and pR is a non-

zero prime ideal, therefore it is maximal. Consequently, R/pR is a field and hence R
pR [x] is a

PID. Suppose p = 0, then f and g have a common factor given by p ∈ R, which is not possible.
Consequently, p is a proper prime ideal of R

pR [x] by correspondence theorem. But in PIDs, non-zero
prime ideals are maximal ideals, hence we obtain that R

pR [x]/p is a field, as required.
2. : Let m ⪇ R[x] be a maximal ideal of R[x] containing f and g. Hence, from Lemma 2.5.1

and R being a PID, there exists p ∈ R a prime such that m ∩R = pR. Hence R/pR is a field as R
is a PID and pR a non-zero prime ideal (so maximal). Consequently, we have a quotient map

π : R[x] ↠ R[x]
pR[x]

∼=
R

pR
[x]

As p ∈ m, therefore by correspondence thereom π(m) = m is a maximal ideal of R
pR [x]. As

R/pR is a field, therefore R
pR [x] is a PID. Hence, m = ⟨h(x)⟩ for some h(x) ∈ R[x] such that

h(x) is irreducible (so it generates a maximal ideal). Again, by correspondence theorem we have
π−1(m) = m = h(x)R[x] + pR[x] = ⟨p, h(x)⟩, as required.

3. : We will use notations of proof of 2. above. Take any maximal ideal m = ⟨p, h(x)⟩ ⪇ R[x]
which contains f(x) and g(x), p ∈ R is prime and h(x) is irreducible modulo p. As R is a PID,
so it is a UFD, hence R[x] is a UFD by Gauss’ lemma. Hence, writing f(x) and g(x) as product
of prime factors in R[x], we observe that there exists distinct primes p(x), q(x) ∈ R[x] such that
p(x), q(x) ∈ m. Replacing f by p and g by q, we may assume f and g are irreducible (or prime) in
R[x].

By Lemma 2.5.1, there exists b ∈ R \ 0 such that b ∈ m ∩ R. As the proof of 2. above shows,
p|b in R. As R is a PID, so it is a UFD, hence there are only finitely many choices for p.

Now, going modulo prime p, we see that f(x), g(x) ∈ m ⪇ R
pR [x] has a common factor in R

pR [x],
given by h(x) as m = ⟨h(x)⟩ (by proof of 2.). As h(x) generates a maximal ideal in R

pR [x], therefore
h(x) is a prime element of R

pR [x], which has to divide f(x) and g(x). As R
pR [x] is a PID, therefore

there are only finitely many choices for h(x), and since m = π−1(⟨h(x)⟩), therefore every choice of
p as above, yields finitely many choices for m.

Consequently, there are finitely many choices for p and once p is fixed, there are only finitely
many choices for the ideal m. As m = π−1(m), therefore there are finitely many maximal ideals
containing f and g.

We now classify Spec (R[x]) for a UFD R.

Theorem 2.5.3. Let R be a PID. Any prime ideal p ⪇ R[x] is of one of the following forms
1. p = 0,
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2. p = ⟨f(x)⟩ for some irreducible f(x) ∈ R[x],
3. p = ⟨p, h(x)⟩ for some prime p ∈ R and h(x) ∈ R[x] irreducible modulo p and this is also a

maximal ideal.

Proof. Indeed, pick any prime ideal p ⪇ R[x]. If p is 0, then it is prime as R[x] is a domain. We now
have two cases. If p is principal, then p = ⟨f(x)⟩ for some f(x) ∈ R[x]. As ⟨f(x)⟩ is prime therefore
f(x) is a prime element. As R[x] is a UFD by Gauss’ lemma, therefore f(x) is also irreducible.
Consequently, p = ⟨f(x)⟩ where f(x) is irreducible.

On the other hand if p is not principal, there exists f(x), g(x) ∈ p such that f(x) ̸ |g(x) and
g(x) ̸ |f(x). As R[x] is a UFD and p is prime, therefore there exists prime factors of f and g which
are in p. Replacing f and g by these prime factors, we may assume f and g are distinct irreducibles
in p. Consequently, by Lemma 2.5.2, we see that p = ⟨p, h(x)⟩ for some prime p ∈ R and h(x)
irreducible modulo p. Moreover by Lemma 2.5.2 we know that p in this case is maximal.

We now portray their use in the following.

Lemma 2.5.4. Let F be an algebraically closed field. Then,
1. every non-constant polynomial f(x, y) ∈ F [x, y] has at least one zero in F 2,
2. every maximal ideal of F [x, y] is of the form m = ⟨x− a, y − b⟩ for some a, b ∈ F .

Proof. 1. : Take any polynomial f(x, y) ∈ F [x, y]. Going modulo y, we see that f(x, y) ∈
F [x, y]/⟨y⟩ = F [x]. If f(x, y) = 0, then (a, 0) is a root of f(x, y) for any a ∈ F . if f(x, y) ̸= 0, then
since F is algebraically closed, therefore we may write f(x, y) = (x−a1) . . . (x−an). Consequently,
any (ai, 0) is a zero of f(x, y). Hence, in any case, f(x, y) has a root in F 2. 2. : Let R = F [x]. We
know that R is a PID. Take any maximal ideal m ⪇ R[y] = F [x, y]. Then by Theorem 2.5.3, we
have that either m = ⟨f(x, y)⟩ where f(x, y) is irreducible or m = ⟨p(x), h(x, y)⟩ where p(x) ∈ R is
prime and h(x, y) is irreducible modulo p(x).

In the former, we claim that ⟨f(x, y)⟩ is not maximal. Indeed, by item 1, we have that f(x, y)
has a zero in F 2, say (a, b). Dividing f(x, y) by y−b in R[y], we obtain f(x, y) = h(x, y)(y−b)+k(x),
where k(x) ∈ R. Consequently, k(a) = 0. Hence, k(x) = (x − a)l(x). Thus, we have f(x, y) =
h(x, y)(y − b) + (x − a)l(x), showing f(x, y) ∈ ⟨x − a, y − b⟩. By Theorem 2.5.3 above, we know
that ⟨x− a, y − b⟩ ∈ R[y] is a maximal ideal and we also know that it contains f(x, y). We hence
need only show that ⟨f(x, y)⟩ ⊊ ⟨x − a, y − b⟩. Indeed, observe that x − a /∈ ⟨f(x, y)⟩ as if it is,
then f(x, y)|x− a. But then f(x, y) is in R, hence y − b /∈ ⟨f(x, y)⟩. So in either case, ⟨f(x, y)⟩ is
properly contained in ⟨x− a, y − b⟩, showing that ⟨f(x, y)⟩ cannot be maximal. Thus, no maximal
ideal of R[y] can be of the form ⟨f(x, y)⟩.

In the latter, where m = ⟨p(x), h(x, y)⟩ where p(x) ∈ R is prime and h(x, y) is irreducible mod-
ulo p(x), we first see that p(x) = x− a for some a ∈ F as R = F [x] and only primes of F [x] are of
this type. Let π : R↠ R

p(x)R [y] ∼=
R

⟨x−a⟩ [y] ∼= F [y] be the quotient map by the ideal p(x)R[y]. Then
we see that by correspondence theorem, π(m) = m = ⟨h(x, y)⟩ is a prime ideal of F [y]. Hence,
m = ⟨k(y)⟩ for some k(y) ∈ F [y]. Further, since m is prime and F algebraically closed, therefore
k(y) = y − b. Thus, we see that modulo p(x) we have h(x, y) = k(y) = y − b. We then see that
m = π−1(m) = π−1(⟨y − b⟩) = ⟨p(x), y − b⟩ = ⟨x− a, y − b⟩, as required.

Another example gives us finiteness of intersection of two algebraic curves over an algebraically
closed field.
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Proposition 2.5.5. Let F be an algebraically closed field and f, g ∈ F [x, y] be two polynomials
with no common factors. Then, Z(f) ∩ Z(g) is a finite set, that is, f and g intersects at finitely
many points in A2

F .

Proof. We first show that for any h(x, y) ∈ F [x, y], h(a, b) = 0 for some (a, b) ∈ F 2 if and only if
h ∈ ⟨x− a, y− b⟩. Clearly, (⇐) is immediate. For (⇒), we proceed as follows. Going modulo y− b
in F [x, y], we obtain h(x, y) ∈ F [x, y]/⟨y− b⟩ ∼= F [x]. Observe that ⟨y− b⟩ is the kernel of the map
F [x, y] → F [x] taking y 7→ b, hence h(x, y) = h(x, b). As F is algebraically closed, therefore we
may write

h(x, b) = h(x, y) = (x− c1) . . . (x− cn)

for ci ∈ F . As, h(a, b) = 0, therefore (x− a)|h(x, b). Hence, for some i, we must have ci = a. This
allows us to write

h(x, y)− (x− a)k(x) ∈ ⟨y − b⟩

for some k(x) ∈ F [x]. It follows that for some q(x, y) ∈ F [x, y] we have

h(x, y)− (x− a)k(x) = (y − b)q(x, y)

Thus, h(x, y) ∈ ⟨x− a, y − b⟩. This completes the proof of the claim above.
Now, using above claim f(a, b) = 0 = g(a, b) if and only if f, g ∈ ⟨x−a, y−b⟩. By Lemma 2.5.2,

as f and g have no common factors, therefore there are finitely many maximal ideals containing f
and g. Further, by Lemma 2.5.4, we know that each such maximal ideal is of the form ⟨x−a, y−b⟩.
Hence, there are only finitely many maximal ideals containing f and g, each of which looks like
⟨x− a, y− b⟩. Hence, by above claim, there are finitely many points (a, b) ∈ F 2 such that f(a, b) =
0 = g(a, b).

2.6 Finite type k-algebras

We discuss basic theory of finite type k-algebras, that is, algebras of form k[x1, . . . , xn]/I.

Recall that for a field k, we denote by k[x] the polynomial ring in one variable and we denote
the rational function field k(x) to be the field obtained by localizing at prime 0. Further if K/k
is a field extension and α ∈ K, then k[α] is a subring of K generated by α ∈ K and it contains
k. Whereas, k(α) is a field extension k ↪→ k(α) ↪→ K. The following lemma shows that if K is
algebraic, then k(α) = k[α].

Lemma 2.6.1. Let k be a field and K/k be an algebraic extension. If α1, . . . , αn ∈ K, then
k[α1, . . . , αn] = k(α1, . . . , αn).

Proof. The proof uses a standard observation in field theory. First, let f1(x) ∈ k[x] be the minimal
polynomial of α1. Consequently, by a standard result in field theory, k[α1] = k[x]/f1(x) is a field.
Thus k[α1] = k(α1). Now observe that K/k(α1) is an algebraic extension. Consequently, the same
argument will yield k(α1)[α2] to be a field. By above, we thus obtain k(α1)[α2] = k[α1][α2] =
k[α1, α2] to be a field. Consequently, k[α1, α2] = k(α1, α2). One completes the proof now by
induction.
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Lemma 2.6.2. Let k be a field and K/k be an algebraic extension. Then the homomorphism

k[x1, . . . , xn] −→ k(α1, . . . , αn)
xi 7−→ αi

has kernel which is a maximal ideal generated by n elements.

Proof. (Sketch) Use the proof of Lemma 2.6.1 to obtain that for each 1 ≤ i ≤ n, we have that
k(α1, . . . , αi−1)[αi] ∼= k(α1, . . . , αi−1)[xi]/pi(α1, . . . , αi−1, xi) and divide an element p ∈ k[x1, . . . , xn]
in the kernel inductively by pi and replacing pi by remainder, starting at i = n.

2.7 Primary decomposition

This is a basic topic which allows us to talk about irreducible components of schemes. The main
motivating analogy here is the following: What prime ideals are to prime numbers is what primary
ideals are to prime powers.

Definition 2.7.1 (Primary ideals). An ideal q ≤ R is primary if R/q ̸= 0 and every zero-divisor
is a nilpotent.

Example 2.7.2. Examples are ⟨pn⟩ ≤ Z for primes p, ⟨xn, y⟩ ≤ k[x, y]. Indeed, Z/⟨pn⟩ has zero-
divisors exactly multiples of p, which are nilpotent. Similarly, as k[x, y]/⟨xn, y⟩ ∼= k[x]/⟨xn⟩ has
zero-divisors exactly multiples of x, which are again nilpotent.

We will now directly state the main results of primary decomposition. For details, see cite[AMD].

Proposition 2.7.3. Let R be a ring.
1. If q ≤ R is primary, then √q is a prime.
2. If for some a ≤ R,

√
a is maximal, then q is primary.

Due to above result, its beneficial to introduce the following terminology.

Definition 2.7.4 (p-primary ideals). Let p ≤ R be a prime ideal. A primary ideal q ≤ R is said
to be p-primary if √q = p.

Definition 2.7.5 (Primary decomposition). Let R be a ring and a ≤ R be an ideal. We call
a decomposable if a = ⋂n

i=1 qi where each qi is a pi-primary ideal for primes pi. This is called a
minimal primary decomposition if each pi is distinct and qi ̸⊇

⋂
j ̸=i qj for each i. Each of the pi is

called prime belonging to a. The minimal primes amongst {p1, . . . , pn} are called isolated primes
belonging to a. The remaining are called embedded primes of a. Given a primary decomposition of
a = ⋂n

i=1 qi, the primary ideals corresponding to isolated primes belonging to a are called isolated
primary components and primary ideals corresponding to embedded primes belonging to a are
called embedded primary components.

Lemma 2.7.6. Every decomposable ideal admits a minimal primary decomposition.

There are three important results about primary decomposition. The first says that decompos-
able ideals have unique isolated primes. Second says that any prime containing a decomposable
ideal a contains a minimal prime belonging to a. Finally, the isolated primary components are
unique. Here are the formal statements.
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Theorem 2.7.7 (Weak uniqueness of minimal primary decomposition). Let R be a ring, a ≤ R be
a decomposable ideal and a = ⋂n

i=1 qi be a minimal primary decomposition where qi are pi-primary
ideals for primes pi.

1. The isolated primes belonging to a are uniquely determined by a.
2. If p ⊇ a is a prime containing a, then p contains an isolated prime belonging to a. Conse-

quently, the minimal primes of A/a are in bijection with isolated primes belonging to a.
3. The isolated primary components of a are uniquely determined by a.

There is a correspondence result for primary ideals under localization.

Proposition 2.7.8. Let S ⊆ R be a multiplicative set and q ≤ R be a p-primary ideal. If S∩p = ∅,
then S−1q is an S−1p-primary ideal of S−1R. Consequently, there is a bijection between primary
ideals q ≤ R not intersecting S and primary ideals of S−1R.

The above discussion is for ideals which admit a primary decomposition. The question remains
that for which rings does every ideal admit a primary decomposition. One such answer is given by
noetherian rings.

Theorem 2.7.9 (Lasker-Noether). Let R be a noetherian ring. Then every ideal a ≤ R admits a
primary decomposition.
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3 Graded rings & modules
We now study a very important class of rings, which have an extra structure of having their additive
abelian group being graded by Z1. These include polynomial algebras and quotient of polynomial
algebras by homogeneous ideals. In particular, they are the algebraic counterparts of projective
varieties. These will also be essential while discussing dimension theory.

Definition 3.0.1 (Graded rings & homogeneous ideals). A ring S is said to be graded if the
additive subgroup of S has a decomposition

S =
⊕
d≥0

Sd

where Sd ⊆ S is a subgroup which is called the subgroup of degree d homogeneous elements, such
that for all d, e ≥ 0, we have

Sd · Se ⊆ Sd+e.

An ideal a ≤ S is said to be homogeneous if the additive subgroup of a has a decomposition

a =
⊕
d≥0

a ∩ Sd.

Remark 3.0.2. Hence, if S is a graded ring, then for all d ≥ 0, the abelian group Sd is an
S0-module. Moreover, as S = ⊕

d≥0 Sd, therefore S is an S0-algebra.

Polynomial rings S = k[x0, . . . , xn] are graded rings where Sd is the abelian subgroup of all
degree d homogeneous monomials. We will see more examples once we show how to construct quo-
tients and localizations of graded rings. But first we see some important properties of homogeneous
ideals.

Proposition 3.0.3. Let S be a graded ring and a ≤ S be any ideal. Then,
1. a is homogeneous if and only if there exists G ⊆ S a subset of homogeneous elements such

that G generates a.
2. Let a, b be two homogeneous ideals of S. Then a + b, a · b and

√
a are again homogeneous

ideals.
3. The homogeneous ideal a is prime if and only if for any two homogeneous f, g ∈ a it follows

that fg ∈ a implies either f ∈ a or g ∈ a.

We now define the notion of graded map of graded rings.

Definition 3.0.4 (Map of graded rings). Let S, T be graded rings. A ring homomorphism
ϕ : S → T is said to be a graded map if for all d ≥ 0 we get ϕ|Sd

: Sd → Td. That is, ϕ preserves
degree.

3.1 Constructions on graded rings

We now do familiar constructions on graded rings, like quotients, fraction fields and localizations.
1we choose to not work in excessive generality; Z-grading is sufficient for us.
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3.1.1 Homogeneous localization

Definition 3.1.1 (Homogeneous localization). Let S be a graded ring and T ⊆ S be a mul-
tiplicative set consisting only of homogeneous elements of S. Then we define (T )−1S to be the
degree 0 abelian group of the graded ring T−1S. Hence (T )−1S is a commutative ring with 1.

Remark 3.1.2. Indeed, T−1S is a graded ring where an element f/g ∈ T−1S for homogeneous
f has degree deg f − deg g. It is immediate to see that this is well-defined and satisfies (T−1S)d ·
(T−1S)e ⊆ (T−1S)d+e, making T−1S a graded ring.

The following is a discussion on localization of a graded ring S at a homogeneous prime ideal p.
Let T denote the multiplicative subset of S consisting of all homogeneous elements not contained in
p. Then T−1S is a graded ring whose degree d-elements are a/f where a ∈ Sd+e and f ∈ T of degree
e. These form an additive abelian group where a/f + b/g = ag + bf/fg where a ∈ Sd+k, b ∈ Sd+l

and f, g ∈ T are of degree k and l respectively. Indeed, then ag+ bf ∈ Sd+k+l and fg ∈ T of degree
k + l. Consequently, we define

S(p) := (T−1S)0

where (T−1S)0 is the degree 0 elements in the localization T−1S. We call this the homogeneous
localization of the graded ring S at the homogeneous prime ideal p. Thus S(p) = (Sp)0, i.e. homoge-
neous localization just picks out degree 0 elements from the usual localization. Note that the usual
localization T−1S is a graded ring where grading is given by subtracting the degree of numerator
by degree of denominator.

Lemma 3.1.3. Let S be a graded ring and p be a homogeneous prime ideal of S. Then, the
homogeneous localization S(p) is a local ring.

Proof. Consider the set m := (p · T−1S)∩ Sp. Then, m is a maximal ideal of Sp as any element not
in m in Sp is a fraction f/g where deg f = deg g and f /∈ p and thus it is invertible. Consequently,
Sp is local.

Remark 3.1.4. Note that if S is a graded domain, then S(⟨0⟩) yields a field whose elements are of
the form f/g where deg f = deg g and f, g g is a non-zero homogeneous element of S. This field is
called the homogeneous fraction field of graded domain S. This is a subfield of usual fraction field
S⟨0⟩.

Remark 3.1.5. Let S be a graded ring and g ∈ S be a homogeneous element. The homogeneous
localization of S at g is defined to be the following subring of Sg:

S(g) := {f/gn ∈ Sg | f is homogeneous with deg f = n deg g, n ∈ N} ≤ Sg.

Let S be a graded ring. Then an S-module M is said to be graded S-module if M = ⊕
d∈ZMd

where Md ≤ M is a subgroup of M such that Sd ·Me ⊆ Md+e. Then, for a homogeneous element
g ∈ S, we denote by M(g) the following submodule of Mg:

M(g) := {m/gn | m is homogeneous with degm = n deg g, n ∈ N} ≤Mg.

The following is an important structural result of homogeneous localization of a graded ring at
a homogeneous element.
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Proposition 3.1.6. Let S be a graded ring. Fix f ∈ S1, a degree 1 homogeneous element of S.
Consider the homogeneous localization S(f).

1. We have an isomorphism of abelian groups for all e ∈ Z:

(Sf )e ∼= feS(f).

Consequently,

Sf ∼=
⊕
e∈Z

feS(f).

2. We have an isomorphism of graded rings:

Sf ∼= S(f)

ï
t,
1
t

ò
.

This is also an isomorphism of S(f)-algebras.

Proof. 1. Fix e ∈ Z and consider the map

(Sf )e −→ feS(f)
g

fn
7−→ fe · g

fn+e
.

As f ∈ S1, this is well-defined. It is immediate that this is an isomorphism.

2. Consider the map

S(f)

ï
t,
1
t

ò
−→ Sf

t 7−→ f.

This is injective as if p(f, 1/f) = 0 in Sf for some p(t, 1/t) ∈ S(f)
[
t, 1t
]
, then by item 1, it follows

that p(t, 1/t) = 0. Furthermore, this is surjective by construction. This completes the proof.

For each graded S-module M , one can attach a sequence of graded modules.

Definition 3.1.7. (Twisted modules) Let S be a graded ring and M a graded S-module. Then,
define

M(l) :=
⊕
d∈Z

Md+l

to be the l-twisted graded module of M .

An important lemma with regards to localization of a graded ring at a positive degree element
is as follows, it will prove its worth in showing that projective spectrum of a graded ring is a scheme
(see Lemma ??).
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Lemma 3.1.8. Let S be a graded ring and f ∈ Sd, d > 0. Then we have a bijection

D+(f) ∼= Spec
(
S(f)

)
where D+(f) ⊆ Spec (S) is the set of all homogeneous prime ideals of S which does not contain f
and does not contain S+.

Proof. Consider the following map

ϕ : D+(f) −→ Spec
(
S(f)

)
p 7−→ (p · Sf )0,

that is, the degree zero elements of the prime ideal p · Sf of Sf . Indeed, ϕ(p) is a prime ideal of
S(f). Further, if (p · Sf )0 = (q · Sf )0 for p, q ∈ D+(f), then for any g ∈ p, one observes via above
equality that g ∈ q. Consequently, p = q. Thus ϕ is injective. For surjectivity, pick any prime
ideal p ∈ Spec

(
S(f)

)
. We will construct a prime ideal q ∈ D+(f) such that ϕ(q) = p. Indeed, let

K = {g ∈ S | g is homogeneous & ∃n > 0 s.t. g/fn ∈ p} and consider the ideal

q = ⟨K⟩.

We thus need to check the following statements to complete the bijection:
1. q is not the unit ideal of S,
2. q is homogeneous in S,
3. q is prime in S,
4. q doesn’t contain f ,
5. (q · Sf )0 = p.

Statement 4 tells us that q doesn’t contain S+. Statement 1 follows from a degree argument; if
1 ∈ q, then 1 = a1g1 + · · · + amgm for gi ∈ K and ai ∈ S, but 1 is a degree 0 element whereas
the minimum degree of the right is atleast > 0. Statement 2 is immediate as q is generated by
homogeneous elements. For statement 3, it is enough to check for homogeneous elements h, k ∈ S
that hk ∈ q =⇒ h ∈ q or k ∈ q. This is immediate, after observing that any homogeneous element
of q is in K because K is the set of all homogeneous elements of S of positive degree which is not
a power of f . Statements 4 and 5 are immediate checks.
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4 Noetherian modules and rings
Let R be a ring. An R-module M is said to be noetherian if it satisfies either of the following
equivalent properties:

1. Every increasing chain of submodules of M eventually stabilizes.
2. Every non-empty family of submodules of M has a maximal element.
3. Every submodule is finitely generated.

We prove the equivalence of 1 and 3 as in Proposition 4.0.3. But before, let us see that noetherian
hypothesis descends to submodules and to quotients:

Lemma 4.0.1. Let R be a ring and M be a noetherian R-module.
1. If N is a submodule of M , then N is noetherian.
2. If M/N is a quotient of M , then M/N is noetherian.

Proof. 1. Take any submodule of M which is in N , then it is a submodule of N which is finitely
generated.
2. Take any submodule of M/N , which is of the form K/N where K ⊆ M is a submodule of M
containing N . Hence K is finitely generated and so is N . Thus K/N is finitely generated.

We also have that a finitely generated module over noetherian ring necessarily has to be noethe-
rian, so every submodule is also finitely generated, which is not usually the case. This is another
hint why having noetherian hypothesis can greatly ease calculations.

Lemma 4.0.2. Let R be a noetherian ring and let M be an R-module. Then M is a noetherian
module if and only if M is finitely generated.

Proof. The only non-trivial side is R ⇒ L. Since M is finitely generated, therefore there is a
surjection f : Rn ↠ M where Rn is noetherian as R is noetherian (you may like to see it as a
consequence of Corollary 4.0.5). Now take an increasing chain of submodules N0 ⊆ N1 ⊆ . . . of
M . This yields an increasing chain of ideals f−1(N0) ⊆ f−1(N1) ⊆ . . . , which stabilizes as R is
noetherian. Applying f to the chain again we get that N0 ⊆ N1 ⊆ . . . stabilizes.

Here’s the proof of equivalence as promised.

Proposition 4.0.3. Let R be a ring. An R-module M is noetherian if and only if every submodule
of M is finitely generated.

Proof. (L =⇒ R) Suppose R-module M is noetherian and let S ⊆ M be a submodule of M .
Note S is also noetherian. This means that any subcollection of submodules of S has a maximal
element. Let such a subcollection be the collection of all finitely generated submodules of S, which
clearly isn’t empty as {0} is there. This would have a maximal element, say N . If N = S, we are
done. If not, then take x ∈ S \ N and look at N + Rx ⊂ S. Clearly this is a submodule of S
strictly containing N and is also finitely generated as N is too. This contradicts the maximality of
N . Hence every submodule of M is finitely generated.
(R =⇒ L) Let every submodule of M be finitely generated. We wish to show that this makes
M into a noetherian module. So take any ascending chain of submodules S0 ⊆ S1 ⊆ S2 ⊆ . . . .
Consider the union S = ∪∞i=0Si. S is also a submodule because for any x, y ∈ S, since {Si} is
an ascending chain, there exists Si such that x, y ∈ Si, and so x + y ∈ Si ⊆ S. By hypothesis,
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S = ⟨x1, . . . , xk⟩. Let Sni be the smallest submodule containing xi. Then Smaxni is a member of
the chain which contains each of the xis, which thus means that the Smaxni is generated by xis
because if it didn’t then S would have either a smaller or a larger generating set, contradicting the
generation by x1, . . . , xk. Hence the chain stabilizes after Smaxni .

The reason one dwells with the noetherian hypothesis is reflected in the following properties
enjoyed by it. Given a short exact sequence of modules, it is possible to figure out whether the
middle module is noetherian or not by checking the same for the other two:

Proposition 4.0.4. Let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 be a short exact sequence of R-modules.

Then, the module M is noetherian if and only if M ′ and M ′′ are noetherian.

Proof. (L =⇒ R) Let M be noetherian. Then if we consider any ascending chain in M ′ or M ′′,
then we get an ascending chain in M because of the maps f and g. Remember inverse image
of an injective and direct image of a surjective module homomorphism of a submodule is also a
submodule.
(R =⇒ L) Consider an ascending chain of submodules S0 ⊆ S1 ⊆ . . . inM . We then have two more
ascending chains {(f)−1 (Si)} and {g(Si)} in M ′ and M ′′ respectively. Since these are noetherian,
therefore for both of them ∃k ∈ N such that these two chains stabilizes after k. Now, we wish to
show that {Si} also stabilizes after k. For this, we just need to show that Sk+1 ⊆ Sk. Hence take
any m ∈ Sk+1. We have g(m) ∈ g(Sk), therefore ∃s ∈ Sk such that g(m) = g(s) =⇒ g(m− s) = 0
inM ′′. Since the sequence is exact, therefore ∃m′ ∈M ′ such that f(m′) = m−s, or, m−s ∈ im (f).
Since m ∈ Sk+1 and s ∈ Sk ⊆ Sk+1, therefore m − s ∈ Sk+1. Hence m − s ∈ im (f) ∩ Sk+1 and
since im (f) ∩ Sk+1 = im (f) ∩ Sk, therefore m− s ∈ Sk and thus m ∈ Sk. This proves Sk+1 ⊆ Sk,
proving Sk = Sk+1 = . . . .

An easy consequence of the above is that direct sum of finitely many noetherian modules is
again noetherian:

Corollary 4.0.5. Suppose {Mi}ni=1 be a collection of noetherian R-modules. Then
⊕n

i=1Mi is also
a noetherian R-module.

Proof. Since the sum ⊕n
i=1Mi sits at the middle of the following short exact sequence:

0 −→M1
f−→

n⊕
i=1

Mi
g−→

n⊕
i=2

Mi −→ 0

where f is given by m 7−→ (m, 0, . . . , 0) and g is given by (m1, . . . ,mn) 7−→ (m2, . . . ,mn). The fact
that this is indeed exact is simple to see. One can next use induction to complete the proof.

An important result in the theory of noetherian rings is the following, which gives us few more
(but highly important) examples of noetherian rings in nature. In particular it tells us that the
one of the major class of rings which are studied in algebraic geometry, polynomial rings over
algebraically closed fields, are noetherian.

Theorem 4.0.6. (Hilbert basis theorem) Let R be a ring. If R is noetherian, then
1. R[x1, . . . , xn] is noetherian,
2. R[[x1, . . . , xn]] is noetherian.
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Proof. 1. We need only show that if R is noetherian then so is R[x]. Pick any ideal I ≤ R[x]. We
wish to show it is finitely generated. We go by contradiction, let I not be finitely generated.

Let f1 ∈ I be the smallest degree non-constant polynomial2 and denote I1 = ⟨f1⟩. Let f2 ∈
I \ I1 be the smallest degree non-constant polynomial and denote I2 = ⟨f1, f2⟩. Inductively, we
define In = ⟨f1, . . . , fn⟩ where fn ∈ I \ In−1 is of least degree non-constant. As I is not finitely
generated, therefore for all n ∈ N, In ⪇ I. Let fn(x) = anx

m + other terms for each n ∈ N so that
an ∈ R represents the coefficient of the leading term of fn(x). Consequently, we obtain a sequence
{an} ⊆ R. Let J = ⟨a1, . . . , an, . . .⟩. As R is noetherian, therefore there exists n ∈ N such that
J = ⟨a1, . . . , an⟩. It follows that for some r1, . . . , rn ∈ R we have

an+1 = r1a1 + · · ·+ rnan.

We claim that I = ⟨f1, . . . , fn⟩ =: In.
If not then fn+1 ∈ I \ In is of least degree non-constant. We will now show that fn+1 ∈ In, thus

obtaining a contradiction. Indeed, we have by the way of choice of fn+1 that deg fn+1 ≥ deg fi for
each i = 1, . . . , n. Consequently the polynomial

g =
n∑

i=1
rifi · xdeg fn+1−deg fi

has the property that its degree is equal to deg fn+1 and the coefficient of its leading term is equal
to fn+1. It follows that the polynomial g − fn+1 ∈ I has degree strictly less than that of fn+1.
By minimality of fn+1, it follows that g − fn+1 ∈ In. Note that by construction g ∈ In. Hence
fn+1 ∈ In, as required.

2. TODO : Write it from your exercise notebook.

Any localization of noetherian ring is again noetherian.

Proposition 4.0.7. Let R be a noetherian ring and S ⊂ R be a multiplicative set. Then S−1R is
a noetherian ring.

Proof. Any ideal of R is S−1I where I ⊆ R is an ideal by exactness of localization (Lemma 2.2.2).
As I is finitely generated as an R-module, therefore S−1I is finitely generated as an S−1R-module,
as needed.

Lemma 4.0.8. Let R be a ring with ⟨f1, . . . , fn⟩ = R. If each Rfi is noetherian, then R is
noetherian.

Proof. Pick any ideal I ⊆ R. We wish to show it is finitely generated. By exactness of localization
(Lemma 2.2.2), we get Ifi ⊆ Rfi is an ideal, thus finitely generated as Rfi-module. By Lemma
2.2.10, I is finitely generated as an R-module.

Corollary 4.0.9. Let R be a ring. Then, R is noetherian if and only if Rf is noetherian for all
f ∈ R.

2this exists by well-ordering by degree.
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4.1 Dimension 0 noetherian rings

We’ll see that they are equivalent to the following.

Definition 4.1.1 (Artinian rings). A ring R is said to be artinian if it satisfies descending chain
condition for its ideals.

The following are important properties of artinian rings.

Proposition 4.1.2. Let R be an artinian ring. Then,
1. every prime is maximal,
2. there are finitely many maximals,
3. the Jacobson radical is a nilpotent ideal.

There are two characterizations of artinian rings to keep in mind.

Theorem 4.1.3. Let R be a ring. Then the following are equivalent:
1. R is artinian.
2. R is noetherian and dimR = 0.
3. R is product of finitely many artinian local rings.

If we allow noetherian hypothesis on R, then we also get the following equivalences.

Theorem 4.1.4. Let R be a noetherian ring. Then the following are equivalent:
1. R is artinian.
2. Spec (R) is finite discrete.

For a finitely generated k-algebra, we furthermore have the following.

Proposition 4.1.5. Let k be a field and A be a finitely type k-algebra. Then the following are
equivalent:

1. A is artinian.
2. A is a finite k-algebra.

5 Supp (M), Ass (M) and primary decomposition
Let R be a ring and M be a finitely generated R-module. In the classical case when R is a field
and M is then a finite dimensional R-vector space, if x ∈ M then if even a single element of R
annihilate x, then all elements of R annihilate x. This luxury is not enjoyed when R is a ring
because not all elements of R may be invertible. What one does then is to study the associated
annihilating ideals corresponding to each element of M . The global version of this idea is exactly
the concept of annihilator ideal of M , i.e. aM := {r ∈ R | rM = 0}. A module M is then called
faithful if aM = 0. The following exposition is taken from cite[LocalAlgebra].

Now, if we have an R-module M , then we get an ideal of R. This gives us a closed subset of
Spec (R) (see Section ??). A basic question that then arises is what is the relationship between the
module M and the closed set V (aM ) ↪→ Spec (R). The following answers that.

Lemma 5.0.1. Let R be a ring and M be a finitely generated R-module. If p ∈ Spec (R) and
aM = Ann(M) be the annihilator ideal, then the following are equivalent:
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1. Mp ̸= 0.
2. p ∈ V (aM ).

Proof. If we can show that AnnRp(Mp) = (aM )p, then we have the following equivalence

Mp ̸= 0 ⇐⇒ AnnRp(Mp) ̸= Rp ⇐⇒ (aM )p ⪇ Rp ⇐⇒ aM ⊆ p

where last equivalence follows from a modified version of Lemma 2.2.3. Hence we reduce to showing
that AnnRp(Mp) = (aM )p. It is easy to see that AnnRp(Mp) ⊇ (aM )p. Let r/s ∈ AnnRp(Mp). We
wish to show that r/s ∈ (aM )p. Since M is finitely generated, therefore let {m1, . . . ,mn} be a
generating set of M . We thus reduce to showing that r/s ·mi/1 = 0 for each i = 1, . . . , n. This is
exactly the data provided by the fact that r/s ∈ AnnRp(Mp).

The above lemma hence gives us a closed subset of Spec (R) attached to each finitely generated
R-module M . This has a name.

Definition 5.0.2. (Support of a module) Let R be a ring and M be a finitely generated R-
module. Let aM be the annihilator ideal of M . Then, the support of the module M is defined to
be the closed set Supp (M) := V (aM ) ↪→ Spec (R). By Lemma 5.0.1, it is equivalently given by the
set of all those points p ∈ Spec (R) such that Mp ̸= 0.

We then define prime ideals associated to an R-module.

Definition 5.0.3. (Associated prime ideals) Let R be a noetherian ring andM be an R-module.
A prime ideal p ∈ Spec (R) is said to be associated to M if there exits m ∈M such that

p = {r ∈ R | rm = 0}.

The subspace of Spec (R) of all prime ideals associated to M is denoted Ass (M) ↪→ Spec (R).

One can have the following alternate definition of an associated prime ideal.

Lemma 5.0.4. Let R be a noetherian ring and M be an R-module. Then,

p ∈ Ass (M) ⇐⇒ ∃N ≤M such that N ∼= R/p.

Proof. L ⇒ R is easy, just consider the map R→M given by r 7→ rm where m ∈M corresponds
to p. Conversely, take any 0 ̸= n ∈ N . Then p = {r ∈ R | rn = 0} as if r ∈ R is such that rn = 0
and n = s+ p, then rn = rs+ p = p, that is rs ∈ p and since s /∈ p, therefore r ∈ p. Conversely, if
r ∈ p then for all n ∈ N , rn = 0.

One can show that Ass (M) is finite for cases of interest.

Proposition 5.0.5. Let R be a noetherian ring and M be a finitely generated R-module. Then
Ass (()M) is finite.

Moreover, localization behaves very nicely with associated primes.

Proposition 5.0.6. Let R be a noetherian ring and M be an R-module. For a multiplicative set
S ⊆ R such that S ∩ p = ∅, we have that S−1p ∈ Ass

(
S−1M

)
if and only if p ∈ Ass (M).
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The above proposition will allow us to define associated points of a coherent module over a
locally noetherian scheme.

So, for an R-moduleM , we get two subspaces of Spec (R), one is the closed subspace called sup-
port Supp (M) and the other is Ass (M). Support will be used later, but the concept of associated
prime ideals of M have a deeper connection with the ring R. They are not unrelated.

Lemma 5.0.7. Let M be an R-module. Then Ass (M) ↪→ Supp (M) ↪→ Spec (R).

Proof. For p ∈ Ass (M) let m ∈ M such that its annihilator is p. Then, for any r ∈ aM , rm = 0
and hence r ∈ p. Thus p ∈ V (aM ) = Supp (M).

We wish to show the following result from which primary decomposition follows.

Theorem 5.0.8. Let R be a noetherian ring and M be a finitely generated R-module. Then there
exists an injective map

M −→
∏

p∈Ass(M)
Ep

where for each p ∈ Ass (M), Ep is an R-module where Ass (Ep) is a singleton given by {p}. We
call such submodules p-primary.

This result clearly tells us that points of Ass (M) are somewhat special. Let us investigate.

Lemma 5.0.9. Let R be a noetherian ring and M be a finite R-module3. Then,
1. If N ⊆M is a submodule, then Ass (N) ⊆ Ass (M).
2. If N ⊆M is a submodule, then Supp (N) ⊆ Supp (M).
3. If N ⊆M is a submodule, then Ass (N) ⊆ Ass (M) ⊆ Ass (N) ∪Ass (M/N).
4. For any point p ∈ Spec (R), we have aR/p := Ann(R/p) = p. Thus, Supp (R/p) = V (p) is an

irreducible closed subset of Spec (R).
5. For any point p ∈ Spec (R), we have Ass (R/p) = {p}. Thus, Ass (R/p) is exactly the generic

point of Supp (R/p).
6. For all p ∈ Spec (R), there exists a maximal submodule N ⊆M such that p /∈ Ass (N).
7. For all p ∈ Ass (M), there exists a maximal submodule N ⊊ M such that p /∈ Ass (N) and

none of these maximal submodules are isomorphic to R/p.

Proof. Note that by Lemma 4.0.2, M is a Noetherian module.
1. If p ∈ Ass (N), then for some n ∈ N , p = {r ∈ R | rn = 0}. Result follows as n ∈M .
2. If p ∈ Supp (N), then p ⊇ aN . Result follows as aN ⊇ aM .
3. By 1, we need only show Ass (M) ⊆ Ass (N) ∪ Ass (M/N). Pick p ∈ Ass (M). By the

Lemma 5.0.4 and it’s proof, the submodule E of M containing of all elements of M who have
annihilator as p is isomorphic to R/p. If E ∩N = ∅, then M/N has a submodule isomorphic
to R/p and hence p ∈ Ass (M/N). Otherwise if E∩N ̸= ∅, then pick x ∈ E∩N . Since x ∈ E,
so annihilator of x is p and thus p ∈ Ass (E ∩N). By another use of Lemma 5.0.4, there is
a submodule F ⊆ E ∩ N which is isomorphic to R/p. It follows that N has a submodule
isomorphic to R/p. By a final use of Lemma 5.0.4, we conclude that p ∈ Ass (N).

4. Ann(R/p) = {r ∈ R | r(R/p) = p}. It follows from primality of p that Ann(R/p) = p.
3this is just another name for finitely generated R-modules.
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5. As above, this reduces to primality of p.
6. The set of all submodules N of M satisfying Ass (N) /∈ p has a maximal element as M is a

noetherian module.
7. If p ∈ Ass (M), then the maximal N obtained from 5 cannot be M . The other fact follows

from 4.

The primary decomposition now is a corollary of the main theorem.

Corollary 5.0.10 (Primary decomposition theorem). Let R be a noetherian ring and M be a
finitely generated R-module. If N ≤M is a submodule, then we can write

N =
⋂

p∈Ass(M/N)
Q(p)

where Q(p) is a p-primary submodule of M , that is, Ass (Q(p)) = {p}.

With the above investigation, we are now ready to prove Theorem 5.0.8.

Proof of Theorem 5.0.8. TODO.
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6 Tensor, symmetric & exterior algebras

6.1 Results on tensor products

We collect some important results on tensor products in this section which are used all over the
text. The following results are immediate corollaries of definition of tensor product, but are of
immense use in general.

Proposition 6.1.1. Following are some basic properties of tensor products.
1. Tensor product is associative and commutative upto isomorphism.
2. If {Mλ} is a family of R-modules and N is an R-module, thenÇ⊕

λ

Mλ

å
⊗R N ∼=

⊕
λ

Mλ ⊗R N.

3. Let ϕ : R → S be a ring homomorphism and M,N be two R-modules. Then the scalar
extended modules M ⊗R S and N ⊗R S satisfy the following

(M ⊗R S)⊗S (N ⊗R S) ∼= (M ⊗R N)⊗R S.

4. Let R be a ring and M be an R-module. If I, J ≤ R are two ideals, then

R/I ⊗R R/J ∼= R/I + J

as rings.
5. If R,S are two rings, then

R⊗S S[x] ∼= R[x]

as rings.

Proof. TODO.

The following is a helpful lemma showing that tensor product commutes with direct limits in
all positions.

Lemma 6.1.2. Let Mi, Ni bet Ri-modules where I is directed set and {Mi}, {Ni} and {Ri} are
directed systems of modules and rings. Let M := lim−→i∈I Mi, N := lim−→i∈I Ni and R := lim−→i∈I Ri.
Then,

lim−→
i∈I

(Mi ⊗Ri Ni) ∼=M ⊗R N

as R-modules.

Proof. We will construct R-linear maps f : lim−→i∈I(Mi ⊗Ri Ni) ←→ M ⊗R N : g which will be
inverses to each other. We first construct f as follows. For each i ∈ I, we have

fi :Mi ⊗Ri Ni →M ⊗Ri N →M ⊗R N
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given by (mi ⊗ ni) 7→ ((mi)⊗ (ni)) 7→ ((mi)⊗ (ni)). Note that M,N are Ri-modules canonically.
By universal property of lim−→i∈I , we obtain f as above. To construct g, we need only construct an
R-bilinear map

M ×N −→ lim−→
i∈I

(Mi ⊗Ri Ni)

((mi)i∈I , (ni)i∈I) 7−→ ((mi ⊗ ni)i∈I).

This can be said to be R-bilinear, thus yielding a map g as required. It is straightforward to see
they are inverses to each other.

The following says that localization commutes with tensor products.
Lemma 6.1.3. Let M,N be two R-modules and S ⊆ R be a multiplicative set. Then,

S−1(M ⊗R N) ∼= S−1M ⊗S−1R S
−1N.

Proof. We may write by Lemma 2.2.1 the following

S−1M ⊗S−1R S
−1N ∼= (M ⊗R S

−1R)⊗S−1R (S−1R⊗R N)
∼=M ⊗R (S−1R⊗S−1R (S−1R⊗R N))
∼=M ⊗R (N ⊗R S

−1R)
∼= (M ⊗R N)⊗R S

−1R

∼= S−1(M ⊗R N).

This completes the proof.

The following is important for calculations of tensor of quotient maps.
Proposition 6.1.4. Let R be a ring and f : M → N , g : M ′ → N ′ be two surjective R-linear
maps. Then

Ker (f ⊗ g) = id⊗ j(M ⊗Ker (g)) + i⊗ id(Ker (f)⊗M ′)

where i : Ker (f) ↪→M and j : Ker (g) ↪→M ′ are inclusions.
Next, we discuss the notion of fiber of a map of rings. This is easily understood in the scheme

language.
Definition 6.1.5 (Fiber at a prime ideal). Let ϕ : R → S be a ring homomorphism and let
p ⪇ R be a prime ideal. Then the fiber of ϕ at p is defined to be S ⊗R κ(p).

One of the fundamental observation about fiber at a prime ideal is that it is indeed the fiber of
the corresponding map of schemes (see Proposition ??), so that the notation makes sense.
Remark 6.1.6 (Extension of primes to polynomial ring). If p is a prime of A, then the extension
p⊗A A[x] is isomorphic to a prime of A[x]. Indeed, the following map shows that it is isomorphic
to prime pA[x]:

p⊗A A[x] −→ pA[x]
a⊗ x 7−→ ax.

However, if m is maximal in A, then mA[x] may not be maximal. Indeed, 0 is maximal in a field
F , but 0⊗F F [x] = 0 is not in F [x].
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Remark 6.1.7. Let f : A → B be a ring homomorphism and N be a B-module. Let NA be the
restriction of scalars to A and NB = NA⊗AB. It is in general not true that NB

∼= N ; in-fact, NB is
larger than N . Indeed we do have a map g : N → NB mapping n 7→ n⊗ 1 which is injective as can
be seen from universal property of tensor products applied to the bilinear map π : NA ×B → NA,
the projection map. Even more is true; we see that the map p : NB → N mapping n ⊗ b 7→ bn
provides a splitting of the following s.e.s.:

0 N NB CoKer (g) 0g

p

.

Thus, we have that in-fact N is a direct summand of NB.

6.2 Determinants

Fix a commutative ring R with unity for the remainder of this section. We shall show in this
section that there exists a unique determinant map overMn(R). This will motivate further notions
discussed in later sections.

We begin by defining a multilinear map over Mn(R).

Definition 6.2.1. (Multilinear map over Mn(R)) Let n ∈ N and consider Mn(R). An n-linear
map over Mn(R) is a function

D :Mn(R) −→ R

which is linear in each row. That is, if Ai denotes the ith-row of matrix A and c ∈ R, then for each
i = 1, . . . , n, we have

D(A1, . . . , Ai−1, cAi +Bi, Ai+1, . . . , An) = cD(A1, . . . , Ai−1, Ai, Ai+1, . . . , An)
+D(A1, . . . , Ai−1, Bi, Ai+1, . . . , An).

We may abbreviate the above by simply writing D(cAi +Bi) = cD(Ai) = D(Bi).

Example 6.2.2. The map

D :Mn(R) −→ R

A 7−→ cA1k1A2k2 . . . Ankn

is an n-linear map where c ∈ R is a constant and 1 ≤ ki ≤ n are n integers.

We first see that linear combination of n-linear maps is again n-linear.

Lemma 6.2.3. Let D1, . . . , Dr be n-linear maps and c1, . . . , cr ∈ R. Then c1D1 + · · ·+ crDr is an
n-linear map.

Proof. By induction, we may assume r = 2. Now this is a straightforward check.

We now come more closer to determinants by defining the following type of n-linear maps.

Definition 6.2.4. (Alternating & determinant maps) An n-linear map D : Mn(R) → R is
said to be alternating if
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1. D(A) = 0 if Ai = Aj for any i ̸= j,
2. D(σij(A)) = −D(A) where σij swaps rows Ai and Aj .

An alternating n-linear map D :Mn(R)→ R is said to be determinant if D(In) = 1.

Proposition 6.2.5. If D :Mn(R)→ R is an n-linear map such that D(A) = 0 whenever Ai = Ai+1
for some 1 ≤ i ≤ n, then D is alternating.

Proof. Let A ∈ Mn(R) and 1 ≤ i ̸= j ≤ n be such that Ai = Aj . We first wish to show
that D(σij(A)) = −D(A). We may assume j > i. We go by strong induction over j − i. We
first show this for j = i + 1. Indeed, we then have D(σi,i+1(A)) = D(Ai+1, Ai). Writing 0 =
D(Ai+1 +Ai, Ai +Ai+1) = D(Ai+1, Ai) +D(Ai, Ai+1). Thus we get D(Ai+1, Ai) = −D(Ai, Ai+1).

In the inductive case, suppose D(σij(A)) = −D(A) for all j − i ≤ k. We wish to show that if
j − i = k + 1, then the same holds. As σi,i+k+1(A) = σi+k,i+k+1 ◦ σi,i+k ◦ σi+k,i+k+1(A), therefore
we are done.

To get that D(A) = 0 for A such that Ai = Aj for some j > i, we may simply swap rows till
they are adjacent, which will be zero by our hypothesis.

We now define the main candidate for the determinant function over Mn(R).

Definition 6.2.6. (Ej) Let D :Mn−1(R)→ R be an n− 1-linear map. For each 1 ≤ j ≤ n, define
the following map

Ej :Mn(R) −→ R

A 7−→
n∑

i=1
(−1)i+jAijD(A[i|j]).

Further denote Dij(A) := D(A[i|j]).

Theorem 6.2.7. Let n ∈ N and D : Mn−1(R)→ R be an alternating n− 1-linear map. For each
1 ≤ j ≤ n, the map Ej :Mn(R)→ R defined as above is an alternating n-linear map. If moreover
D is a determinant map, then so is each Ej.

Proof. Fix 1 ≤ j ≤ n. We first wish to show that Ej is n-linear. As Dij : Mn(R) → R is linear
in every row except i. Thus A 7→ AijDij(A) is n-linear. It follows from Lemma 6.2.3 that Ej is
n-linear.

To show that Ej is alternating, it would suffice from Proposition 6.2.5 to show that Ej(A) = 0
if A has any two adjacent rows equal, say Ak = Ak+1. This one checks directly by the definition of
Ej .

To see that Ej is determinant if D is determinant is also easy to see.

We now show the uniqueness of determinants and alternating n-linear maps (upto the value on
In).

Theorem 6.2.8. Let D :Mn(R)→ R be an alternating n-linear map over Mn(R). Then,
1. D is given explicitly on A ∈Mn(R) by

D(A) =
(∑

σ∈Sn

sgn(σ)A1σ(1) . . . Anσ(n)

)
D(I),

hence D is unique upto its value over I,
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2. if D is determinant map, then it is uniquely given by

D(A) = detA :=
∑
σ∈Sn

sgn(σ)A1σ(1) . . . Anσ(n),

3. any alternating map D on Mn(R) is thus uniquely determined by its value on I as

D(A) = (detA) ·D(I).

Proof. The proof is straightforward but tedious. TODO.

Corollary 6.2.9. Let n ∈ N.
1. If A,B ∈Mn(R), then det(AB) = det(A) · det(B).
2. If B ∈ Mn(R) is obtained by Bj = Aj + cAi for some fixed 1 ≤ i, j ≤ n and rest of the rows

of B are identical to A, then det(B) = det(A).
3. If M ∈Mr+s(R) is given by

M =
ï
Ar×r Br×s

0 Cs×s

ò
then det(M) = det(A) · det(C).

4. For each 1 ≤ j ≤ n, we have

det(A) = Ej(A) =
n∑

i=1
(−1)i+jAij det(A[i|j]).

Proof. (Sketch) For 1. we can contemplate

D :Mn(R) −→ R

A 7→ det(AB).

One claims that D is an n-linear alternating map. Then apply Theorem 6.2.8, 3.

2. Follows by multilinearity of det.

3. As elementary row operations only change determinant upto sign and restricting an r+ s-linear
alternating map to first r or last s entries keeps it r-linear and s-linear alternating respectively,
therefore the result follows.

4. Follows from Theorem 6.2.7 and Theorem 6.2.8.

Construction 6.2.10. (Adjoint of a matrix) Let A ∈ Mn(R) be a square matrix. By Corollary
6.2.9, the sum Ej(A) = det(A) for each 1 ≤ j ≤ n

det(A) =
n∑

i=1
Aij(−1)i+j det(A[i|j]).
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Hence, let us define Cij := (−1)i+j det(A[i|j]) as the ijth-cofactor of A. Consequently, we get a
matrix (AdjA)ij = Cji, called the adjoint matrix. Hence, we may rewrite the determinant as

det(A) =
n∑

i=1
AijCij

=
n∑

i=1
(AdjA)jiAij .

Thus,

det(A)I = Adj(A) ·A.

This also allows us to write that in the case when A is invertible, we have

A−1 = 1
detAAdj(A).

As similar matrices have same determinant, therefore each linear operator on a finite dimensional
vector space has a unique determinant. Thus determinants are invariants of linear operators upto
similarity.

6.3 Multilinear maps

We now put the previous discussion in a more abstract framework where we work with modules
over a commutative ring with 1. We first recall that the rank of a finitely generated module is the
size of the smallest generating set. Further recall that a finitely generated free R-module V has a
well-defined rank and the smallest generating set is moreover a basis of V (i.e. linearly independent
set of generators).

For this section, we would hence fix a commutative ring R with 1.

Definition 6.3.1. (r-linear forms over a module) Let V be an R-module. An r-linear form L
over V is a function

L : V r = V × · · · × V −→ R

such that for any c ∈ R, βi ∈ V and (α1, . . . , αr) ∈ V r, we have

L(α1, . . . , cαi + βi, . . . , αn) = cL(α1, . . . , αi, . . . , αn) + L(α1, . . . , βi, . . . , αn)

for any 1 ≤ i ≤ r. An r-linear form is usually also called an r-tensor. A 2-linear form/tensor is also
usually called a bilinear form. Note that an r-linear form may not be linear. Denote the R-module
of all r-linear forms by M r(V ).

Remark 6.3.2. Let f1, . . . , fr ∈ V ∗ = HomR (V,R) =M1(V ) be a collection of linear functionals.
We then obtain L ∈M r(V ) given by

L(α1, . . . , αr) = f1(α1) · · · · · fr(αr).

Example 6.3.3. We give some examples.
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1. Let V = Rn be a free R-module of rank n. Then for a fixed matrix A ∈Mn(R), the map

V × V −→ R

(x, y) 7−→ xtAy

is a bilinear form over V .
2. Let V = Rn be a free R-module of rank n. Then we obtain the following n-linear form

det : V n −→ R

(α1, . . . , αn) 7−→ det(A)

where A ∈Mn(R) whose ith-row is αi. Hence, determinant is an n-tensor/n-linear form over
V .

Remark 6.3.4. (General expression of an r-linear form) Let L ∈ M r(V ) be an r-form over an
R-module V where V is a free module of rank n. Further denote e1, . . . , en be a basis of V . For
any (α1, . . . , αr) ∈ V r, we may write αi =

∑n
j=1Aijej . Hence we have A ∈ Mr×n(R). This yields

by n-linearity of L that

L(α1, . . . , αr) =
n∑

jr=1
· · ·

n∑
j1=1

A1j1 . . . ArjrL(ej1 , . . . , ejr)

=
∑

J={j1,...,jr}
AJL(eJ)

where J ∈ X where X is the set of all r-tuples with entries in {1, . . . , n}. There are therefore nr
terms in the above sum.

Definition 6.3.5. (Tensor product of linear forms) Let M be an R-module. We then define

−⊗− :M r(V )×M s(V ) −→M r+s(V )
(L,M) 7−→ L⊗M

where L⊗M : V r+s → R is given by (α1, . . . , αr, β1, . . . , βs) 7→ L(α1, . . . , αr)M(β1, . . . , βs).

Remark 6.3.6. We have following observations about tensor of forms:
1. L⊗ (T + S) = L⊗ T + L⊗ S,
2. (L⊗ T )⊗N = L⊗ (T ⊗N),
3. c(L+ T )⊗ S = cL⊗ S + cT ⊗ S,
4. L⊗ T ̸= T ⊗ L.

We now come to an important theorem about M r(V )

Theorem 6.3.7. Let V be a free R-module of rank n and B = {e1, . . . , en} ⊆ V be a basis of V .
Let X denote the set of all r-tuples with entries in {1, . . . , n}. Then,

1. the R-module M r(V ) is free of rank nr,
2. a basis of M r(V ) is given by fJ = fj1 ⊗ . . .⊗ fjr where B∗ = {f1, . . . , fn} ⊆ V ∗ =M1(V ) is

the dual basis of B, where J = {j1, . . . , jr} varies over all elements of X.
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Proof. (Sketch) We claim that {fJ}J⊆X forms a basis of M r(V ). Pick any (α1, . . . , αr) ∈ V r, then
by Remark 6.3.4, we first have αi =

∑n
j=1 fj(αi)ej . Consequently,

L(α1, . . . , αr) =
∑

J={j1,...,jr}
L(ej1 , . . . , ejr) · fj1 ⊗ . . .⊗ fjr(α1, . . . , αr)

=
∑

J={j1,...,jr}
L(eJ)fj1 ⊗ . . .⊗ fjr(α1, . . . , αr).

Thus, {fJ}J⊆X spans M r(V ). For linear independence, take any combination

∑
J⊆X

cJfJ = 0.

On the LHS, apply eI to get cI = 0 for each I ⊆ X.

Definition 6.3.8. (Alternating r-linear forms) Let V be an R-module. An r-linear form
L ∈M r(V ) is said to be alternating if

1. L(α1, . . . , αr) = 0 if αi = αj for i ̸= j,
2. L(ασ(1), . . . , ασ(r)) = sgn(σ)L(α1, . . . , αr) for all σ ∈ Sr.

The collection of all alternating r-linear forms is denoted by Λr(V ) and its a submodule of M r(V ).
Note that the second axiom follows from 1, but is important to keep it in mind.

Observe that Λ1(V ) =M1(V ) = V ∗.

Remark 6.3.9. Consider V = Rn, a free R-module of rank n. We saw earlier that det ∈ Mn(V )
is an n-linear form.. Theorem 6.2.8 shows that det is moreover an unique alternating form with
det(e1, . . . , en) = 1. Thus, det ∈ Λn(V ) ⊆ Mn(V ) is the unique alternating n-linear form over V
such that det(e1, . . . , en) = 1, i.e. Λn(V ) is a free R-module of rank 1.

Construction 6.3.10. Let V be an R-module. We now construct an R-linear map πr :M r(V )→
Λr(V ). For each L ∈M r(V ), define Lσ ∈M r(V ) given by Lσ(α1, . . . , αr) = L(ασ(1), . . . , ασ(r)) for
(α1, . . . , αr) ∈ V r. Consequently, we claim that the following map is well-defined:

πr :M r(V ) −→ Λr(V )
L 7−→

∑
σ∈Sr

sgn(σ)Lσ.

Indeed, we have to show that πrL is an alternating form. Let (α1, . . . , αr) ∈ V r be such that αi = αj

for i ̸= j. We wish to show that πrL(α1, . . . , αr) = 0. Let τ = (ij) be the transposition swapping
i and j. First observe that the map Sr → Sr given by σ 7→ τσ is a bijection. Consequently, if
we let σ1, . . . , σn!

2
to be any n!

2 elements of Sr, then the rest n!
2 are given by τσi, i = 1, . . . , n!/2.
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Consequently,

πrL(α1, . . . , αr) =
∑
σ∈Sr

sgn(σ)L(ασ(1), . . . , ασ(r))

=
∑
σ∈Sr

sgn(σ)L(ασ(1), . . . , ασ(r))

=
n!
2∑

i=1
sgn(σi)L(ασi(1), . . . , ασi(r)) +

n!
2∑

i=1
sgn(τσi)L(ατσi(1), . . . , ατσi(r))

=
n!
2∑

i=1
sgn(σi)L(ασi(1), . . . , ασi(r)) +

n!
2∑

i=1
−sgn(σi)L(ασi(1), . . . , ασi(r))

= 0.

Hence, πr is indeed an R-linear map from M r(V ) into Λr(V ).
Finally note that if L ∈ Λr(V ), then πrL = r!L as Lσ = sgn(σ)L for any σ ∈ Sr.

Example 6.3.11. Let V = Rn be the free R-module of rank n. Let e1, . . . , en ∈ V be the standard
R-basis of V . Further, let f1, . . . , fn ∈ M1(V ) be the associated dual basis. Note that for any
α ∈ V , we have α = f1(α)e1 + . . . fn(α)en. Then, we get an n-form

L = f1 ⊗ . . .⊗ fn ∈Mn(V ).

Consequently we obtain an alternating n-form given by

πrL =
∑
σ∈Sn

sgn(σ)(fσ(1) ⊗ . . .⊗ fσ(n)).

Observe that for any (α1, . . . , αn) ∈ V n, we obtain

πrL(α1, . . . , αn) =
∑
σ∈Sn

sgn(σ)
(
fσ(1) ⊗ . . .⊗ fσ(n)

)
(α1, . . . , αn)

=
∑
σ∈Sn

sgn(σ)
(
fσ(1)(α1) · · · · · fσ(n)(αn)

)
.

This is exactly the determinant of the n × n matrix over R given by A = (fj(αi)). That is,
πrL = det.

The following properties of πr will become important later on.

Proposition 6.3.12. Let V be an R-module and L ∈ M r(V ) and M ∈ M s(V ) be r and s-forms
over V respectively. Then,

πr+s(πr(L)⊗ πs(M)) = r!s!πr+s(L⊗M).

Proof. TODO : Magnum tedium.

The above has a very nice and useful corollary.
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Corollary 6.3.13. Let V be a free R-module of rank n with f1, . . . , fn ∈ V ∗ be a dual basis of
V ∗. Let I ∈ Xr and J ∈ Xs where Xr and Xs are the sets of r and s combinations of {1, . . . , n},
respectively, such that I and J are disjoint (ik ̸= jl for any 1 ≤ k ≤ r, 1 ≤ l ≤ s). Denote
DI = πr(fI) and DJ = πs(fJ) where fI = fi1⊗ . . .⊗fir ∈M r(V ) and fJ = fj1⊗ . . .⊗fjs ∈M s(V ).
Then,

πr+s(DI ⊗DJ) = r!s!DI⨿J .

Proof. Follows immediately from Proposition 6.3.12

We now come to the main result about alternating forms.

Theorem 6.3.14. Let V be a free module of rank n over R.
1. If r > n, then Λr(V ) = 0.
2. If 0 ≤ r ≤ n, then rank of Λr(V ) is nCr.

Proof. (Sketch) Using Remark 6.3.4, statement 1 is straightforward. For 2, observe that we can
write for (α1, . . . , αr) ∈ V r, r ≤ n as follows

L(α1, . . . , αr) =
∑

J={j1,...,jr}∈X
L(eJ)(fj1 ⊗ . . .⊗ fjr)(α1, . . . , αr)

where X is the set of all r-permutations of {1, . . . , n} (as for any repeatitions, the corresponding
term is 0). Now, partitioning the set X into classes in which permutations represent the same
combination, we obtain an indexing set X̂ of size nCr. Again, by the fact that L is alternating, we
observe sgn(σ)L(ej1 , . . . , ejr) = L(ejσ(1) , . . . , ejσ(r)). Consequntly we may write the above sum as

L(α1, . . . , αr) =
∑

J={j1,...,jr}∈X̂

L(ej1 , . . . , ejr)
∑
σ∈Sr

sgn(σ)
Ä
fjσ(1) ⊗ . . .⊗ fjσ(r)

ä
(α1, . . . , αr).

Therefore denote for each J ∈ X̂ the following

DJ =
∑
σ∈Sr

sgn(σ)
Ä
fjσ(1) ⊗ . . .⊗ fjσ(r)

ä
.

One can observe that the DJ for each J ∈ X̂ can alternatively be written as

DJ = πr(fj1 ⊗ . . .⊗ fjr).

The above shows that DJ is in Λr(V ) and that it spans Λr(V ). The claim now is that these are also
linearly independent. Indeed, that follows immediately by using the fact that fjs are dual basis of
ejs.

We can now abstractly obtain the determinant of a linear operator T : V → V on a free
R-module V of rank n.

Corollary 6.3.15. Let V be a free R-module of rank n and T : V → V be an R-linear operator.
Then,

1. rank of Λn(V ) = 1,
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2. there exists a unique cT ∈ R such that for all L ∈ Λn(V ),

L ◦ T = cTL.

This cT is defined to be the determinant of the operator T .

Proof. Statement 1 follows from Theorem 6.3.14. For statement 2, one need only observe that L◦T
is again an alternating n-tensor and then use statement 1.

6.4 Exterior algebra over characteristic 0 fields

Let us first make the exterior algebra over characteristic 0 fields, before moving to arbitrary ring.

Definition 6.4.1. (Wedge product) Let K be a field of characteristic 0 and V be an R-vector
space. For any r, s ∈ N, define

Λr(V )× Λs(V ) −→ Λr+s(V )

(L,M) 7−→ L ∧M := 1
r!s!πr+s(L⊗M).

Observe that DI ∧DJ = 1
r!s!πr+s(πr(fI) ⊗ πs(fJ)) = r!s!

r!s!πr+s(fI ⊗ fJ) and the latter is either 0 if
I and J have a common index or DI⨿J if they are distinct. This follows from Proposition 6.3.12.

In the following result, we see that wedge product is a anti-commutative, distributive and
associative operation.

Proposition 6.4.2. Let V be a K-vector space over a field K of characteristic 0.
1. Let ω, η ∈ Λk(V ), φ ∈ Λl(V ). Then, wedge product is distributive as

(ω + η) ∧ φ = ω ∧ φ+ η ∧ φ,

2. Let ω ∈ Λk(V ), η ∈ Λl(V ). Then, wedge product is anti-commutative as

ω ∧ η = (−1)klη ∧ ω,

3. Let ω ∈ Λk(V ), η ∈ Λl(V ), φ ∈ Λm(V ). Then, wedge product is associative as

(ω ∧ η) ∧ φ = ω ∧ (η ∧ φ).

Proof. We need only check these identities on the basis elements {DI} of each Λr(V ).
1. Let ω = DI , η = DJ and ϕ = DM . Then,

(DI +DJ) ∧DM = πk+l((DI +DJ)⊗DM ) = πk+l(DI ⊗DM +DJ ⊗DM )
= πk+l(DI ⊗DM ) + πk+l(DJ ⊗DM ) = DI ∧DM +DJ ∧DM

as required.
2. TODO.

Using above, we come to the following definition.
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Definition 6.4.3. (Exterior algebra) Let V be a K-vector space where K is a field of charac-
teristic 0. Then the exterior algebra over V is

Λ(V ) = K ⊕ Λ1(V )⊕ Λ2(V ) . . .
= K ⊕

⊕
k≥1

Λk(V )

where the product is given by wedge product which by Proposition 6.4.2 is associative, unital,
distributive but non-commutative. This is also sometimes called the Grassmann algebra over V .

Remark 6.4.4. Observe that if V is of dimension n, then

Λ(V ) = K ⊕
n⊕

k=1
Λk(V )

as all the higher forms are automatically 0. Consequently, the dimension of Λ(V ) by Theorem
6.3.14 is seen to be

dimK Λ(V ) = 1 +
n∑

k=1

nCk

=
n∑

k=0

nCk

= 2n.

Remark 6.4.5. Let V be a K-vector space of dimension n, where K is of characteristic 0. The
exterior algebra Λ(V ) is a graded K-algebra of dimension 2n over K. Indeed, the grading is correct
as if ω ∈ Λk(V ), η ∈ Λl(V ), then ω ∧ η ∈ Λk+l(V ).

6.5 Tensor, symmetric & exterior algebras

We now define the three algebras TM,SM and ∧M associated to a module M over R without any
restriction imposed as earlier.

Definition 6.5.1 (TM,SM and ∧M). Let R be a ring and M be an R-module.
1. The tensor algebra over M is defined to be

TM =
⊕
n≥0

TnM

where TnM = M ⊗ . . . ⊗ M n-times and T 0M = R. This is a non-commutative graded
R-algebra where the multiplication is given by tensor product.

2. The symmetric algebra over M is defined to be the quotient

SymM = TM/I =
⊕
n≥0

SnM

where I is the two-sided graded ideal of TM given by

I = ⟨x⊗ y − y ⊗ x|x, y ∈M⟩.
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This is a commutative graded R-algebra where SymnM denotes TnM/I∩TnM . To emphasize
the base ring R, we sometimes write SymR(M) as well. Note that there is a canonical R-linear
map M → SymR(M) given by the composite M → TM ↠ Sym(M) where M → TM is the
inclusion in the first factor.

3. The exterior algebra over M is defined to be the quotient

∧M = TM/J =
⊕
n≥0
∧nM

where J is the two-sided graded ideal of TM given by

J = ⟨x⊗ x | x ∈M⟩.

This is a skew-commutative4 graded R-algebra where ∧nM denotes TnM/J ∩ TnM .

6.5.1 Symmetric algebra

We begin by discussing the universal property of symmetric algebra.

Proposition 6.5.2. Let R be a ring and M be an R-module. Then the R-algebra SymR(M)
satisfies the following universal property: for any commutative R-algebra S and an R-linear map
f : M → S, there exists a unique R-linear map of algebras f̃ : SymR(M) → S such that the
following commutes:

SymR(M) S

M

f̃

f
.

Thus, we have a natural bijection

HomMod(R) (M,S) ∼= HomAlg(R) (SymR(M), S).

Using the above property, we have following easy conclusions.

Lemma 6.5.3 (Base change). Let R be a ring and R→ S be an R-algebra. If M is an R-module,
then we have an isomorphism of graded rings:

SymR(M)⊗R S ∼= SymR(M ⊗R S)

Lemma 6.5.4. Let R be a ring and M,M ′ be R-modules. Then

SymR(M ⊕M ′) ∼= SymR(M)⊗R SymR(M ′).
4as J contains x⊗ y + y ⊗ x by opening (x+ y)⊗ (x+ y) ∈ J .
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6.5.2 Exterior algebra

The following are three important properties of exterior powers of modules.

Theorem 6.5.5. Let R be a ring.
1. [Free modules]. The exterior power ∧k(Rn) is a free module of rank nCk with basis elements
{ei1 ∧ ei2 ∧ · · · ∧ eik} where {ij}j=1,...,k is an increasing sequence from the set 1,. . . , n and
eij = δij ∈ Rn.

2. [Tensor product]. Let f : R→ S be a ring map and M be an R-module. Then,

(∧kM)⊗R S ∼= ∧k(M ⊗R S).

3. [Binomial formula]. Let M,N be two R-modules. Then,

∧k(M ⊕N) ∼=
k∑

i=0
∧iM ⊗R ∧k−iN.
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7 Field theory
We cover some basic material on Galois theory.

7.1 Finite extensions, algebraic extensions & compositum

Recall that a field extension K/F is said to be finite if K/F is a finite dimensional F -vector
space and then we denote [K : F ] := dimF K. It is said to be algebraic if for every α ∈ K,
there exists p(x) ∈ F [x] such that p(α) = 0, that is, the inclusion F ↪→ K is integral. Let
I = {p(x) ∈ F [x] | p(α) = 0} ≤ F [x] be an ideal. The generating element mα,F (x) of I is called
the minimal polynomial of α ∈ K. Note that this is irreducible as I is a prime ideal as it is kernel
of a map.

The main basic result connecting algebraic and finite extensions is that finitely generated alge-
braic extensions are equivalent to finite extensions. This is immediate from Proposition 8.1.9, but
we give an elementary proof. We first begin by elementary observations.

Theorem 7.1.1. Let K/F be a field extension and α ∈ K.
1. If K/F is finite, then it is algebraic.
2. If K/L/F are extensions, then

[K : F ] = [K : L] · [L : F ]

where [K : L] or [L : F ] is infinity if and only if [K : F ] is infinity.
3. If α1, . . . , αn are algebraic over F , then F (α1, . . . , αn) = F [α1, . . . , αn].
4. We have [F (α) : F ] = degmα,F .
5. The extension F (α1, . . . , αn)/F is algebraic if and only if α1, . . . , αn are algebraic over F .
6. K/F is a finite-type algebraic extension if and only if K/F is finite.
7. If K/L and L/F are both algebraic, then K/F is algebraic.
8. The set of all algebraic elements in K over F forms a subfield of K containing F denoted

Kalg/F .

Proof. 1. Pick any element x ∈ K and consider {1, x, x2, . . . }. Finiteness of K/F makes sure that
there is a finite subset of above which is linearly depenedent.

2. Take bases of K/L and L/F and consider their pairwise product. One sees that this new
collection is linearly independent and its F -span is K.

3. As F [α] is a field as it is isomorphic to F [x]/⟨mα,F (x)⟩ and mα,F (x) is irreducible. By
universal property of quotients, we get F [α] = F (α). By induction, we wish to show that
F (α1, . . . , αn−1)[αn] = F (α1, . . . , αn−1)(αn) = F (α1, . . . , αn−1, αn), which completes the proof.

4. We have F (α) = F [α] = F [x]
mα,F (x) and this is of dimension degmα,F (x) over F .

5. Forward is immediate. For converse, proceed by induction. Clearly, F (α1)/F is algebraic as
it is finite. Composition of finite is finite, so F (α1, . . . , αn)/F is finite, thus algebraic.

6. Forward is the only non-trivial side. Let K = F (α1, . . . , αn) and by algebraicity, αi are
algebraic. Now F (α1)/F is finite as algebraic. By induction, we get the result.

7. Pick α ∈ K and consider mα,L(x) ∈ L[x] as mα,L(x) = xn+ cn−1x
n−1+ · · ·+ c1x+ c0, ci ∈ L.

Then, consider F (c0, . . . , cn−1) ⊆ L. As L/F is algebraic, thus ci ∈ L are algebraic and thus by
previous, we get F (c0, . . . , cn−1)/F is algebraic and finite. As F (c0, . . . , cn−1)(α)/F (c0, . . . , cn−1)
is algebraic as it is finite, thus F (c0, . . . , cn−1, α)/F is algebraic as it is composite of two finite
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extensions.
8. Indeed, pick any two algebraic elements α, β ∈ K over F . Then F (α, β) is an algebraic

extension over F and thus F (α, β) ⊆ Kalg/F .

Next, we define compositum, the smallest field containing two subfields.

Definition 7.1.2 (Compositum of fields). Let F,K be two fields in a field L. Then compositum
of F and K in L is the smallest field in L containing both F and K. This is denoted by F ·K.

The following are the main results for compositum. We will see more later when needed.

Theorem 7.1.3. Let K/F be a field extension and K1,K2 ⊆ K be two subfields containing F .
Then,

1. If K1 = F (α1, . . . , αn) and K2 = F (β1, . . . , βm), then K1 ·K2 = F (α1, . . . , αn, β1, . . . , βm).
2. If K1/F and K2/F are algebraic, then K1 ·K2/F is algebraic.
3. If K1/F and K2/F are finite, then K1 ·K2/F is finite.
4. If [K1 : F ] and [K2 : F ] are coprime, then [K1 ·K2 : F ] = [K1 : F ] · [K2 : F ].
5. We have [K1 ·K2 : F ] ≤ [K1 : F ] · [K2 : F ].

Proof. 1. It is clear that K1 ·K2 ⊇ F (α1, . . . , αn, β1, . . . , βm) since K1 ·K2 contains both K1, K2
and F . For the converse, as K1 · K2 is the smallest field containing both K1 and K2 therefore
K1 ·K2 ⊆ F (α1, . . . , αn, β1, . . . , βm).

2. Let L be the algebraic closure of F in K1 ·K2. By hypothesis, L ⊇ K1,K2. Thus L ⊇ K1 ·K2.
3. By Theorem 7.1.1, 6, K1 = F (α1, . . . , αn) and K2 = F (β1, . . . , βm) where αi, βj are algebraic

elements over F . By item 1, K1 ·K2 = F (α1, . . . , αn, β1, . . . , βm) is a finitely generated algebraic
extension, thus finite, as required.

4. Since we have

[K1 ·K2 : F ] = [K1 ·K2 : K1][K1 : F ]
= [K1 ·K2 : K2][K2 : F ].

By hypothesis, [K1 · K2 : F ] is a multiple of [K1 : F ] · [K2 : F ]. Thus we redude to showing
[K1 ·K2 : F ] ≤ [K1 : F ] · [K2 : F ]. Note by above equations, it suffices to show that

[K1 ·K2 : K1] ≤ [K2 : F ].

To this end, let α1, . . . , αn ∈ K2 be an F -basis of K2. It thus suffices to show that K1-span of
α1, . . . , αn is whole of K1 ·K2, that is, we wish to show

L := K1 · α1 + · · ·+K1 · αn = K1 ·K2.

Note that it suffices to show that L is a field containing both K1 and K2. Indeed, the fact that L
contains K2 is immediate as L contains F and α1, . . . , αn. Further L contains K1 as L contains
1 since L contains K2 and that it is a K1-vector space. Thus, L ⊇ K1,K2. We thus reduce to
showing that L is a field.

To this end, observe that if l ∈ L, then l = c1α1+· · ·+cnαn for ci ∈ K1. Now, l ∈ K2(c1, . . . , cn).
Thus l−1 ∈ K2(c1, . . . , cn) = K2[c1, . . . , cn], that is, l−1 is a polynomial in ci with coefficients in
K2. But any element of K2 is an F -linear combination of α1, . . . , αn. As K1 ⊇ F , therefore l−1 is
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a linear combination of α1, . . . , αn with coefficients in K1 (powers of ci multiplied by elements of
F , so in K1). Thus, l−1 ∈ L, as needed. The fact that L is multiplicatively closed is immediate.
This completes the proof.

5. Follows from proof of item 4 above.

We now see that a finite algebra over a domain which is a domain induces a finite extension of
fraction fields.
Lemma 7.1.4. Let B ↪→ A be a finite B-algebra where both A,B are domains. Then Q(A) is a
finite extension of Q(B).
Proof. Let α1, . . . , αn ∈ A be a generating set of A as a B-module and let ϕ : B ↪→ A be the
structure map of the finite B-algebra structure on A. Now let S = B − {0}. Now we get a map
S−1ϕ : Q(B) ↪→ S−1A. This is a finite map since S−1A as the Q(B) span of α1, . . . , αn in S−1A is
S−1A. To complete the proof, we need only show that the natural inclusion S−1A ↪→ Q(A) given
by a

b 7→
a
b is a finite map. We see something stronger: Q(A) = S−1A. Indeed, this is true because

S−1A is a field containing A as S−1A is a domain which is finite over the field Q(B), so that by
Lemma 8.1.14, we get that S−1(A) is a field. As it contains A, so it also contains Q(A). This
completes the proof.

7.2 Maps of field extensions

There are some important results which allow us to extend a field homomorphism from a smaller
field to a bigger field. These come in handy while discussing splitting fields and algebraic closures.
Proposition 7.2.1 (Extension-I). Let ϕ : F → F ′ be a field isomorphism. Let p(x) ∈ F [x] be an
irreducible polynomial and let ϕ(p(x)) ∈ F ′[x] be the irreducible polynomial in the image. If α is
a root of p(x) and β is a root of ϕ(p(x)), then there exists a field isomorphism ϕ̃ : F (α) → F ′(β)
mapping α 7→ β and extending ϕ:

F (α) F ′(β)

F F ′
ϕ

∼=

ϕ̃
∼=

.

Proof. Since F (α) = F [x]/p(x) and F ′(β) = F ′[x]/ϕ(p(x)), therefore we need only construct an
isomorphism between them via ϕ which takes x̄ to x̄ (as x̄ in F (α) is the root of p(x) in F (α) and
similarly for F (β)).

Indeed, consider the map

ϕ : F [x]→ F ′[x]
x 7→ x.

Then, we get ϕ̃ : F [x]
ϕ−1(ϕ(p(x)))

∼=−→ F ′[x]
ϕ(p(x)) . This completes the proof.

Corollary 7.2.2. If p(x) ∈ F [x] is irreducible and α ̸= β are two roots, then there is an isomor-
phism

F (α) −→ F (β)
α 7−→ β
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which is id on F .

Proof. Use ϕ = idF with F ′ = F on Proposition 7.2.1 to get the result.

We next show that transcendental elements are mapped to transcendental elements under a
field homomorphism.

Proposition 7.2.3. Let ϕ : F → F ′ be a morphism of fields. If K/F is a field extension, ψ : K →
F ′ is a morphism extending ϕ, then the following are equivalent:

1. α ∈ K is transcendental over F ,
2. ψ(α) ∈ F ′ is transcendental over ϕ(F ) ⊆ F ′.

Proof. The main observation is that for transcendental element α ∈ K over F , we have that F [α]
is isomorphic to polynomial ring F [x]. Using this, we consider the restriction ψ : F (α)→ F ′. Note
that α ∈ F (α) is transcendental over F if and only if Ker (ψ) = 0. Further ψ(α) is transcendental
over ψ(F ) if and only if Ker (ψ) = 0. We win.

7.3 Splitting fields & algebraic closure

Given a polynomial, we will now construct the smallest field where that polynomial splits into
linear factors. We will then see that splitting fields are exactly what are called normal extensions.

Definition 7.3.1 (Splitting field). Let f(x) ∈ F be a field and f(x) ∈ F [x] be a polynomial.
The splitting field of f(x) over F is the smallest field extension K/F such that f(x) ∈ K[x] is
product of linear factors, that is, K is the smallest field containing all roots of f(x).

Theorem 7.3.2. Splitting field exists.

Proof. Let f(x) ∈ F be a field and f(x) ∈ F [x] be a polynomial. We wish to construct the smallest
field K/F containing all roots of F . We induct over deg f(x) = n. If n = 1, then K = F will do.
Suppose for every polynomial g(x) of degree n − 1 or lower has a splitting field, which we denote
by Kg/F . Pick f(x) ∈ F [x] be of degree n. We wish to construct the splitting field of f(x). We
have two cases. If f(x) is reducible, then f(x) = g(x)h(x) where deg g,deg h < n. We thus have
splitting fields Kg and Kh for g and h respectively. We claim that Kg · Kh is a splitting field of
f(x). Indeed, Kg ·Kh contains all roots of f(x) so splitting field is a subfield of Kg ·Kh. But since
splitting field of f(x) also contains roots of g(x) and h(x), it follows that it must contain Kg and
Kh and thus Kg ·Kh as well. Hence splitting field is exactly Kg ·Kh.

On the other hand if f(x) is irreducible, then let K = F [x]
⟨f(x)⟩ which is a finite extension of F .

Now, K has atleast one root of f(x), namely x̄, which we label as α ∈ K. Thus, we have that
f(x) = (x− α)g(x) in K[x]. Thus g(x) ∈ K[x] is of degree n− 1. Hence by inductive hypothesis,
there exists a field Lg/K/F such that g(x) splits into linear factor/Lg contains all roots of g(x).
Thus Lg(α) contains all roots of f(x). We claim that Lg(α) is contains a splitting field of f(x).
Indeed, we may take intersection of all sub-fields of Lg(α) which contains all roots of f(x). Such a
collection is non-empty as Lg(α) contains all roots of f(x). As intersection of subfields is a subfield,
we win the induction step.

We now show that splitting fields are unique upto isomorphism.
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Proposition 7.3.3 (Extension-II). Let ϕ : F → F ′ be a field isomorphism and f(x) ∈ F [x] be a
polynomial. Let ϕ(f(x)) ∈ F ′[x] be the image of f(x) under ϕ. Then, ϕ lifts to an isomorphism
ϕ̃ : K → K ′ where K/F is the splitting field of f(x) and K ′/F ′ is the splitting field of ϕ(f(x)):

K K ′

F F ′
ϕ

∼=

ϕ̃
∼=

.

Proof. We will induct on degree of f(x). If deg f(x) = 1, then F has the root of f and thus we
may take ϕ̃ to be ϕ itself. Let deg f = n and suppose that for any polynomial of degree n − 1 or
lower over any extension of F , we have the required map. Let f(x) = p(x)g(x) where p(x) ∈ F [x]
is an irreducible factor of f(x). Thus deg p(x) ≤ n − 1. Now, let α be a root of p(x) and α′ be
a root of ϕ(p(x)). Thus by Extension-I (Proposition 7.2.1), it follows that we have an extension
χ : F (α) → F ′(α′) which extends ϕ. Now consider h(x) = f(x)/x − α in F (α)[x]. Then, h(x)
has degree n − 1 over F (α), so by inductive hypothesis, we get an extension ϕ̃ : Kh → K ′

h where
Kh/F (α) and K ′

h/F
′(α′) are splitting fields of h(x) and χ(h(x)) respectively. We claim that Kh is

the splitting field of f(x). Indeed, Kh has all roots of f(x), so it contains the splitting field. But
roots of h(x) are just those of f(x) except α, so Kh is the splitting field of f(x). This completes
the proof.

7.3.1 Algebraic closure

We now discuss some basic properties of algebraic closure. Note that there is a subtlety to the
definition of an extension being algebraically closed.

Definition 7.3.4 (Algebraically closed fields & extensions). A field K is algebraically closed
if every polynomial in K[x] has a root. An extension K/F is called an algebraically closed extension
if K/F is algebraic and K is algebraically closed. In this case, K is called the algebraic closure of
F .

Remark 7.3.5. The linguistic subtlety here is that C/Q is not algebraically closed extension as it
is not algebraic. But Q̄/Q is an algebraically closed extension.

We will omit the statement that an algebraic closed extension of any field exists as it can be
found in any standard book. We however state the following important results about equivalence
conditions for a field to be algebraically closed.

Theorem 7.3.6. Let F be a field. Then the following are equivalent:
1. F is algebraically closed.
2. Only irreducible polynomial in F [x] are linear.
3. If K/F is algebraic, then K = F .

Proof. The only non-trivial part is that of 3. ⇒ 1. Indeed, pick any f(x) ∈ F [x]. Then, consider
the splitting field K/F of f(x). As K/F is finite, therefore K/F is algebraic and thus by hypothesis
we have K = F . It follows that F has all roots of F , as required.
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7.4 Separable, normal extensions & perfect fields

Let us begin with definitions.

Definition 7.4.1 (Separable polynomials & extensions). A polynomial f(x) ∈ F [x] is said
to be separable if f(x) has no repeated roots. That is, there doesn’t exists α ∈ F̄ such that
(x − α)2|f(x). An extension K/F is said to be separable if it is algebraic and for all α ∈ K, the
minimal polynomial mα,F (x) ∈ F [x] is separable.

Definition 7.4.2 (Normal extensions). An extension K/F is said to be normal if it is algebraic
and for all α ∈ K, the minimal polynomial mα,F (x) ∈ F [x] has all roots in K and is thus a product
of linear factors in K[x].

Remark 7.4.3. Note that if K/F is normal, then K contains the splitting field of all f(x) ∈ F [x].
Thus every splitting field of some f(x) ∈ F [x] is an intermediate extension of K/F .

Definition 7.4.4 (Frobenius & perfect fields). Let K be a field of characteristic p > 0. Then
the Frobenius is the field map Fr : K → K mapping x 7→ xp. A field K is perfect if either
char(K) = 0 or the Frobenius Fr : K → K is an isomorphism.

7.4.1 Basic properties

For finite normal extensions, we essentially have the following as the most important observation.

Theorem 7.4.5. Let K/F be a finite normal extension. If α ∈ K and Z(mα,F (x)) ⊆ K is the set
of all F -conjugates of α, then Aut (K/F ) acts on Z(mα,F (x)) transitively.

We prove this using the following statements.

Proposition 7.4.6. Let K/F be an algebraic extension and α ∈ K. Then,
1. For any σ ∈ Aut (K/F ), σ(α) ∈ K is an F -conjugate of α.
2. If β ∈ K̄ is an F -conjugate of α, then there exists a map

σ : K −→ K̄

such that σ(α) = β, σ|F = id and σ(α) = β.
3. If K/F is a finite normal extension and σ : K → K̄ is a field homomorphism such that σ|F =

idF , then σ(K) = K. That is, if σ : K → K̄ is an F -homomorphism, then σ ∈ Aut (K/F ).

Proof. 1. Apply σ on mα,F (α) = 0 to get the desired result.

2. By Extension-I (Proposition 7.2.1), we have an extension of id : F → F denoted χ : F (α) →
F (β). By a generalization of Extension-II (Proposition 7.3.3) which gives us the same result but
for splitting fields of arbitrary collection, we get an extension of χ to σ̃ : K̄ → K̄ extending χ.
Defining σ = σ̃|K : K → K̄, we get that σ extends idF and σ(α) = β, as required.

3. Pick any α ∈ K. We first wish to show that σ(α) ∈ K. By item 1, σ(α) ∈ K̄ is an F -conjugate
of α. As the minimal polynomial mα,F (x) ∈ F [x] splits linearly in K, this shows that σ(α) ∈ K,
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hence showing that σ(K) ⊆ K. To show equality, we need only show that [K : σ(K)] = 1. Indeed,
since

[K : F ] = [K : σ(K)] · [σ(K) : F ] <∞

and since σ : K → σ(K) is an F -isomorphism, therefore [K : F ] = [σ(K) : F ]. It follows that
[K : σ(K)] = 1, as required.

Theorem 7.4.7 is now immediate.

Proof of Theorem 7.4.7. Pick any two root β ∈ Z(mα,F (x)). It suffices to show that there exists
σ ∈ Aut (K/F ) which maps α 7→ β. Indeed, by Proposition 7.4.6, 2 & 3, we have such an F -
automorphism.

7.4.2 Characterization of normality and separability

Our goal is to study two questions. First is to understand the relationship between splitting fields
and normal extensions (we will see that they are equivalent). Second is to understand the relation-
ship between separability and the automorphisms of the extension.

Understanding these two problems will give us the tool which will allow us to show when a field
extension is separable or normal, which will come in handy while doing Galois theory.

Let us begin by the first question.

Theorem 7.4.7. Let K/F be an extension. Then the following are equivalent:
1. K/F is a splitting field of some S ⊆ F [x].
2. K/F is a normal extension.

Another important characterization of normal extensions in the finite setting is the following.

Theorem 7.4.8. Let K/F be a finite extension. Then the following are equivalent:
1. K/F is a normal extension.
2. For every σ ∈ HomF

(
K, F̄

)
, we have σ(K) = K where note that F̄ = K̄.

Proof. (1. ⇒ 2.) This is the content of Proposition 7.4.6, 3.

(2. ⇒ 1.) Pick any α ∈ K. We wish to show that every F -conjugate β of α in F̄ = K̄ is in
K. Indeed, by Proposition 7.4.6, 2, it follows that there exists σ : K → F̄ such that σ(α) = β. By
our hypothesis, σ(K) = K, thus, σ ∈ Aut (K/F ). Hence, β ∈ K, as required.

We now build towards answering the second question.

Definition 7.4.9 (Separable degree). Let K/F be a finite extension. Then the separable degree
of K/F is defined to be

[K : F ]s =
∣∣HomF

(
K, F̄

)∣∣
where HomF

(
K, F̄

)
is finite in size since K/F is finite.

There’s a tower law for separable degree as well.
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Proposition 7.4.10. Let L/K/F be field extensions and L/F be finite. Then,

[L : F ]s = [L : K]s · [K : F ]s.

The following is an easy lemma.

Lemma 7.4.11. Let K/F be a finite extension. Then

[K : F ]s ≤ [K : F ].

Proof. For K = F (α), this is immediate as any σ ∈ HomF

(
K, F̄

)
takes α to some F -conjugate of

α. Thus, [K : F ]s = # conjugates of α in F̄ ≤ degmα,F (x) = [K : F ]. Now proceed by induction
via tower law (Proposition 7.4.10).

Theorem 7.4.12. Let K/F be a field extension. Then the following are equivalent:
1. [K : F ]s = [K : F ].
2. K/F is a separable extension.

We can now prove that composition of separable extensions is separable.

Lemma 7.4.13. Let L/K and K/F be separable extensions. Then L/F is separable.

Proof. We have [L : F ]s = [L : K]s · [K : F ]s by tower law (Proposition 7.4.10). By Theorem 7.4.12
we have [L : F ]s = [L : K] · [K : F ] = [L : F ] and thus we conclude that L/F is separable.

Another important criterion for separability of a polynomial is to check its derivatives. This is
useful in positive characteristic settings.

Lemma 7.4.14. Let f(x) ∈ F [x] be a polynomial where F is a field. If f(x) is irreducible, then
the following are equivalent.

1. f(x) is separable.
2. f ′(x) ̸= 0.

Proof. (1. ⇒ 2.) If f ′(x) is zero, then f(x) and f ′(x) will have a common root, which implies that
f(x) has a repeated root, a contradiction.

(2. ⇒ 1.) Suppose f(x) is inseparable, that is, it has a repeated root. This is equivalent to
stating that there is a non-trivial common factor of f ′(x) and f(x), say p(x), which we may assume
to be the gcd of f(x) and f ′(x). As f(x) is irreducible and p(x)|f(x), therefore p(x) = f(x). But
p(x)|f ′(x), so f(x)|f ′(x). This is not possible as deg f ′ ≤ deg f − 1.

Using the above theorems, we obtain the following useful criterion usually used in induction
steps and allows us to reduce to checking the separability and normality for a single element.

Proposition 7.4.15. Let K/F be a field extension and α ∈ K be an algebraic element. If the
minimal polynomial mα,F (x) ∈ F [x]

1. is a separable polynomial, then F (α)/F is a separable extension,
2. has all roots in F (α), then F (α)/F is a normal extension.
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Proof. 1. Note that since mα,F (x) is separable, we get

[F (α) : F ]s = |S(id, F (α)/F )| = #conjugates of α = degmα,F (x) = [F (α) : F ].

By Theorem 7.4.12, we win.

2. We claim that F (α)/F is the splitting field of mα,F (x) in this case. Indeed, F (α)/F is the
smallest field containing F and α. By hypothesis, it contains all the roots of mα,F (x), of which α
is one. It follows that F (α)/F is the smallest field containing all roots of mα,F (x), as required.

One can further define the separable closure of algebraic extensions.

Definition 7.4.16 (Separable closure). Let K/F be an algebraic extension. Consider the set of
elements

L = {α ∈ K | α is separable over F}.

Then L is a field and L/F is said to be the separable closure of F in K.

Remark 7.4.17. Indeed, separable closure L of F in K is a field as if α, β ∈ L then F (α, β)/F
is a separable extension by Proposition 7.4.15, 1 (applied twice). It follows that F (α, β) ⊆ L and
thus L contains α± β, α · β and α−1, β−1.

7.4.3 Perfect fields

There are essentially two main results here. The first one saying any finite field is perfect and the
second saying some important equivalent criterion to be perfect.

Theorem 7.4.18 (Finite fields are perfect). Let Fpn be a finite field of characteristic p. Then Fpn

is perfect.

Theorem 7.4.19 (Perfect equivalence theorem). Let F be a field. Then the following are equiva-
lent:

1. F is a perfect field.
2. Every algebraic extension of F is separable.
3. Every irreducible polynomial in F [x] is separable.

7.5 Galois extensions

For simplicity, let us only work with finite Galois extensions.

Definition 7.5.1 (Galois extensions & Galois group). An extension K/F is Galois if it is
finite, separable and normal. That is, for all α ∈ K, the minimal polynomial mα,F (x) ∈ F [x] has
all roots in K and each of them is distinct. The Galois group of a Galois extension K/F , denoted
Gal (K/F ), is defined to be the automorphism group Aut (K/F ).

Let us first see that every splitting field of a separable polynomial is a Galois extension over
the base.
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Proposition 7.5.2. Let F be a field and f(x) ∈ F [x] be a separable polynomial. Let K/F be the
splitting field of f(x) over F . Then K/F is a Galois extension and Gal (K/F ) is called the Galois
group of the polynomial f(x).

Proof. We first establish that K/F is Galois. Indeed K/F is finite as it is a splitting field of a
polynomial. As it is a splitting field, so it is normal (Theorem 7.4.7). To show separability, it
suffices to show that the separable degree [K : F ]s = [K : F ] (Theorem 7.4.12). To this end, we
first have K = F (α1, . . . , αn) for αi ∈ K elements algebraic over F . Consequently, by the tower
law for separable degree (Proposition 7.4.10), we obtain

[K : F ]s = [K : F (α1, . . . , αn−1)]s · · · · · [F (α1, α2) : F (α1)]s · [F (α1) : F ]s.

By Proposition 7.4.15, it suffices to show thatmαi,F (α1,...,αi−1)(x) ∈ F (α1, . . . , αi−1)[x] is a separable
polynomial for each i. Indeed, since f(αi) = 0, thus mαi,F (α1,...,αi−1)(x)|f(x) in F (α1, . . . , αi−1)[x].
As f(x) is separable, and F (α1, . . . , αi−1) = F , it follows that mαi,F (α1,...,αi−1)(x) is separable, as
required.

There’s a converse to the above result as well.

Proposition 7.5.3. Let K/F be a Galois extension. Then there exists f(x) ∈ F [x] a separable
polynomial whose splitting field is K.

Proof. As K/F is Galois, therefore finite and hence we may write K = F (α1, . . . , αn) for αi ∈ K
such that no αi and αj are conjugate for i ̸= j (by normality of K/F , this is possible). As
K/F is separable, therefore each mαi,F (x) ∈ F [x] is a distinct separable polynomial. Let f(x) =∏n

i=1mαi,F (x). This is a separable polynomial as no αi are conjugates. Moreover, f(x) splits into
linear factors over K. It follows that the splitting field of f(x), denoted L, is contained in K. As
L contains each of the αi and F , it follows that L = K, as required.

Thus, for the purposes of clarity, we summarize the above two results in the following corollary.

Corollary 7.5.4. Let K/F be a field extension. Then the following are equivalent.
1. K/F is a Galois extension.
2. There is a separable polynomial f(x) ∈ F [x] whose splitting field is K.

Proof. Follows from Proposition 7.5.2 and 7.5.3.

We have the following equivalent criterion to be Galois.

Theorem 7.5.5. Let K/F be a finite extension. Then the following are equivalent:
1. K/F is a Galois extension.
2. |Aut (K/F )| = [K : F ].

An extremely important result to keep in mind is the following, telling us that a fixed field by
a finite subgroup of the automorphism group always gives a Galois extension(!)

Theorem 7.5.6. Let K be a field and G ≤ Aut (K) be a finite subgroup. Then,
1. The extension K/KG is a Galois extension.
2. The Galois group of K/KG is equal to G;

Gal
Ä
K/KG

ä
= G.
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7.5.1 Théorème fondamental de la théorie de Galois

Theorem 7.5.7 (Fundamental theorem). Let K/F be a Galois extension with Galois group G =
Gal (K/F ). Then the maps

{L | K/L/F is an intermediate extension}

{H | H ≤ G is a subgroup}

Gal(K/−)K(−)

establish a bijection. Moreover, we have the following:
1. For any intermediate K/L/F , the extension K/L is a Galois extension.
2. Both the maps above are antitone, i.e. they reverse the order.
3. For any intermediate extension K/L/F , the following are equivalent:

(a) L/F is a Galois extension.
(b) Gal (K/L) is a normal subgroup of G and in this case,

Gal (L/F ) ∼=
G

Gal (K/L) .

4. For any intermediate extension K/L/F 5 we have a bijection (where F̄ is an algebraic closure
of F containing K)

[L : F ]s = HomF

(
L, F̄

)
= {σ : L→ F̄ | σ|F = idF } ∼=

G

Gal (K/L)

where the RHS is the set of cosets of Gal (K/L) ≤ G.
5. For any two intermediate extensions K/L1, L2/F with Hi = Gal (K/Li), we have

(a) Gal (K/L1 · L2) = H1 ∩H2 in G,
(b) Gal (K/L1 ∩ L2) = ⟨H1, H2⟩ in G.

7.6 Consequences of Galois theory

We now portray several consequences of Galois theory (not just fundamental theorem, but field
theory in general as well). We begin from observing that finite fields are Galois theoretically quite
simple.

For mental clarity, we mention below the topics we cover in this section.
• Galois group of finite fields
• Primitive element theorem
• Compositum & Galois closure
• Norm & trace of a finite separable extension
• Norm & trace in general
• Galois group of ≤ 4 degree polynomials
• Solvability by radicals
• Linearly disjoint extensions
5even if L/F is not Galois, i.e. Gal (K/L) is not normal.
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7.6.1 Galois group of finite fields

The important result in finite fields is that any finite extension of a finite field is a Galois extension.

Theorem 7.6.1. Let F = Fpm be a finite field of characteristic p. Let K/F be an algebraic
extension. Then the following are equivalent.

1. K/F is a finite extension.
2. K/F is a Galois extension.

Proof. (1. ⇒ 2.) As K/F is a finite dimensional F -vector space, say of dimension n, therefore
K is the finite field Fpnm . As Fpnm is by definition the splitting field of xpnm − x ∈ Fp[x] which
is separable as its derivative is −1 and xpnm − x has no roots in common with −1. It follows by
Corollary 7.5.4 that Fpnm/Fp is a Galois extension. As Fpn is an intermediate extension, therefore
by fundamental theorem (Theorem 7.5.7), it follows that Fpnm/Fpn is a Galois extension. (2. ⇒
1.) A Galois extension is always finite.

Next, we show that the Galois group of any finite extension of a finite field is cyclic.

Proposition 7.6.2. Let Fpm be a characteristic p finite field. If K/Fpm is a finite extension of
degree n, then K/Fpm is a Galois extension with Galois group

Gal (K/Fpm) ∼= Z/nZ.

Proof. We have seen by Theorem 7.6.1 that K/F is a Galois extension. By Theorem 7.5.5, it is
further clear that |Gal (K/Fpm)| = n. It hence suffices to show that there exists an element of order
n in Gal (K/Fpm). Indeed, consider the following automorphism

σ : K −→ K

α 7−→ αpm .

We show that σ is of order n in Gal (K/Fpn). Indeed if σk(α) = αpmk = α for α the generating
element of the multiplicative cyclic group of order pnm− 1 of Fpn , then we conclude that n = k, as
required. This completes the proof.

Corollary 7.6.3. Let F be a finite field and f(x) ∈ F [x] be a polynomial. If α is a root of f(x),
then F (α) is the splitting field of f(x).

Proof. As F (α)/F is an extension of degree deg f(x), therefore by Theorem 7.6.1, it follows that
F (α)/F is Galois, thus it has all conjugates of α and thus is a field containing all roots of f(x).
Clearly, F (α) is the smallest field containing all roots of f(x), thus, F (α) is the splitting field of
f(x).

7.6.2 Primitive element theorem

An important theorem in Galois theory is the observation that a finite separable extension is always
simple. In particular, every Galois extension is a singly generated field extension.

Theorem 7.6.4 (Primitive element theorem). Let K/F be a finite separable extension. Then there
exists α ∈ K such that K = F (α).

Proof. Omitted.
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7.6.3 Compositum & Galois closure

We now study how Galois extensions behave with compositums. One calls it the sliding lemma as
it says that Galois extensions slides through arbitrary extensions.

Proposition 7.6.5 (Sliding lemma). Let K/F be a Galois extension and F ′/F be an arbitrary
extension such that K,F ′ ⊆ Ω where Ω is some large field. Then,

1. The extension K · F ′/F ′ is a Galois extension.
2. There is an injective group homomorphism

Gal
(
K · F ′/F ′) ↪→ Gal (K/F )

whose image is Gal (K/F ′ ∩K). That is,

Gal
(
K · F ′/F ′) ∼= Gal

(
K/F ′ ∩K

)
.

Proof. 1. We first observe by primitive element theorem (Theorem 7.6.4) that K = F (α) for some
α ∈ K. We hence have K · F ′ = F ′(α). As α is algebraic over F and F ⊆ F ′, thus, F ′(α)/F ′ is
algebraic. As F ′(α) is finitely generated as well, thus F ′(α)/F ′ is finite, as required.

Next, we show that F ′(α)/F ′ is separable. Indeed, by Proposition 7.4.15, 1, it suffices to show
that mα,F ′(x) is a separable polynomial in F ′[x]. As mα,F ′(x)|mα,F (x) and the latter is separable,
hence mα,F ′(x) is separable.

Finally, we wish to show that F ′(α)/F ′ is normal. Again by Proposition 7.4.15 and the fact
that mα,F ′(x)|mα,F (x) where the latter has all roots in F (α) ⊆ F ′(α), we conclude the proof.

2. Consider the map

ϕ : Gal
(
K · F ′/F ′) −→ Gal (K/F )

σ 7−→ σ|K .

This is well-defined since K = F (α), so σ restricted to F (α) maps inside F (α) as all F ′-conjugates
of α are F -conjugates of α. Now ϕ can easily be seen to be an injective group homomorphism.
We need only find its image now. Indeed, we first claim that for every σ ∈ Gal (K · F ′/F ′), the
element σ|K fixes F ′ ∩K. Indeed, σ fixes F ′ and K = F (α). Thus F ′ ∩K ⊆ F ′ ∩ F , the latter of
which is fixed. By item 1 and fundamental theorem (Theorem 7.5.7), K/F ′ ∩K is Galois. Thus,
ϕ : Gal (K · F ′/F ′) → Gal (K/F ′ ∩K). We need only show that it is surjective. To this end,
we need only show that Gal (K/F ′ ∩K) = Im (ϕ). By fundamental theorem (Theorem 7.5.7), it
suffices to show that their fixed fields are same. Let Gal (K/F ′ ∩K) = H1 and Im (ϕ) = H2, so
that H2 ≤ H1. We already have by fundamental theorem that KH2 ≥ KH1 = F ′ ∩ K. On the
other hand, if x ∈ KH2 , then x ∈ K ∩ (K · F ′)Gal(K·F ′/F ′) = K ∩ F ′, as required.

The following tells us that compositum and intersections of Galois is Galois.

Proposition 7.6.6 (Compositum & intersection of Galois). Let K1/F and K2/F be Galois exten-
sions where K1,K2 ⊆ Ω for some large field Ω. Then,

1. Extension K1 ·K2/F is Galois.
2. Extension K1 ∩K2/F is Galois.
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3. There is an injective group homomorphism

ϕ : Gal (K1 ·K2/F ) ↪→ Gal (K1/F )×Gal (K2/F )
σ 7→ (σ|K1

, σ|K2
)

whose image is

Im (ϕ) = {(σ, τ) | σ|K1∩K2
= τ |K1∩K2

}
= Gal (K1/F )×Gal(K1∩K2/F ) Gal (K2/F ) .

Hence, in particular, if K1 ∩K2 = F , then

Gal (K1 ·K2/F ) ∼= Gal (K1/F )×Gal (K2/F ) .

Proof. 1. By Lemma 7.4.13 and sliding lemma (Proposition 7.6.5), we deduce that K1 ·K2/F is a
separable extension. By primitive element theorem (Theorem 7.6.4) or otherwise, we may deduce
that K1 · K2/F is finite as well. We need only show that K1 · K2/F is normal. To this end, we
show that K1 ·K2 is a splitting field of some polynomial in F [x]. Indeed, consider K1 = F (α) and
K2 = F (β) by primitive element theorem (Theorem 7.6.4) so thatK1·K2 = F (α, β). AsKi = F (αi)
are normal over F , therefore Fi is splitting field of polynomial fi(x) ∈ F [x], for i = 1, 2. Thus, we
claim that f1 · f2 ∈ F [x] has splitting field K1 ·K2. Indeed, f1 · f2 splits in K1 ·K2 as both f1 and
f2 splits in it. Thus if K is the splitting field of f1 · f2, then K ⊆ K1 ·K2. As K ⊇ Ki for each
i = 1, 2 since Ki are splitting fields of fi and fi splits in K, thus we also have K ⊇ K1,K2 and
thus K ⊇ K1 ·K2. It follows that K = K1 ·K2 and thus K1 ·K2 is normal by Theorem 7.4.7, as
required.

2. Observe that K1 ∩ K2 is finite and separable over F . We now show that it is normal as
well. Indeed, for any α ∈ K1 ∩K2, we have mα,F (x) ∈ F [x] is such that it has all roots in K1 and
K2 since both are Galois over F . It follows that mα,F (x) has all roots in K1 ∩K2, showing that
K1 ∩K2 is normal, as required.

3. Injectivity is immediate. For surjectivity, use sliding lemma (Proposition 7.6.5) in conjunc-
tion with a size argument via Theorem 7.5.5.

We now show that any finite separable extension admits a Galois closure.

Lemma 7.6.7. Let K/F be a finite separable extension. Then there exists a Galois extension L/F
such that L ⊇ K which is smallest with respect to containing K.

Proof. We first show that there exists a Galois extension of F containing K. Indeed, consider
K = Fα1 + · · · + Fαn and let mαi,F (x) ∈ F [x] be minimal polynomial of αi. As K is separable,
each ofmαi,F (x) is a separable polynomial in F [x]. Thus let Ki/F be the splitting field ofmαi,F (x).
By Proposition 7.5.2, it follows that Ki/F are all Galois. By compositum of Galois (Proposition
7.6.6), we deduce that L = K1 · · · · ·Kn is a Galois extension of F which contains K as it contains
α1, . . . , αn. Thus we have found a Galois extension of F containing K, as required.

We now wish to show that there is a smallest Galois extension of F containing K. Indeed,
consider E = ⋂

L/A/K/F A where A/F is a Galois extension containing K. By fundamental theorem
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(Theorem 7.5.7), it follows that there are only finitely many intermediate extensions of L/F , thus
finitely many such A. Thus E is Galois by intersection of Galois (Proposition 7.6.6). Clearly, by
construction E is the smallest field extension of F containing K and is Galois. This completes the
proof.

The above lemma allows us to define the following.

Definition 7.6.8 (Galois closure of a finite separable extension). Let K/F be a finite
separable extension. Then the smallest extension L/F containing K such that L/F is Galois is
called the Galois closure of K/F . Lemma 7.6.7 shows that it always exists.

7.6.4 Norm & trace of a finite separable extension

Let K/F be an extension. A main technique in field theory is to construct non-trivial elements in
K not in F . To this end one of the important set of tools available are those provided by norm &
trace of a finite separable extension.

Definition 7.6.9 (Norm & Trace). Let K/F be a finite separable extension. Consider a fixed
algebraic closure F̄ of F . Define

NK/F (α) =
∏

σ∈HomF (K,F̄)
σ(α)

and

TrK/F (α) =
∑

σ∈HomF (K,F̄)
σ(α)

which we respectively call the norm and trace of α in K/F . Note that HomF

(
K, F̄

)
is finite by

Lemma 7.4.11.

We can give an alternate definition norm and trace.

Lemma 7.6.10. Let K/F be a finite separable extension. Let L/K/F be the Galois closure of
K/F and let {σ1, . . . , σk} ∈ Gal (L/F ) be distinct coset representatives of Gal (L/K) in Gal (L/F ).
Then

NK/F (α) =
k∏

i=1
σi(α)

and

TrK/F (α) =
k∑

i=1
σi(α).

If K/F is Galois, then NK/F (α) =
∏

σ∈Gal(K/F ) σ(α) and TrK/F (α) =
∑

σ∈Gal(K/F ) σ(α).
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Proof. By fundamental theorem 7.5.7, 4, we have a bijection of sets (which is an isomorphism of
groups if K/F is Galois by fundamental theorem):

HomF

(
K, F̄

) ∼= Gal (L/F )
Gal (L/K) .

The result now follows from definition of norm and trace.

We now state some basic properties of these two functions.

Proposition 7.6.11. Let K/F be a finite separable extension. Let L/K/F be the Galois closure
of K/F .

1. For any α ∈ K, NK/F (α) ∈ F and TrK/F (α) ∈ F .
2. For any α, β ∈ K, we have

NK/F (αβ) = NK/F (α)NK/F (β)

and

TrK/F (α+ β) = TrK/F (α) + TrK/F (β).

3. If K = F (
√
D) for some D ∈ F , then for a, b ∈ F we have

NK/F (a+ b
√
D) = a2 − b2D

and

TrK/F (a+ b
√
D) = 2a.

Proof. For item 1, since these are coefficients of mα,F (x), so they are in F . Item 2 follows immedi-
ately from Lemma 7.6.10. For item 3, observe that there is only one other conjugate of α = a+b

√
D

(as minimal polynomial is quadratic) given by ᾱ = a− b
√
D. Now use Lemma 7.6.10.

Lemma 7.6.12. Let K/F be a finite separable extension of degree n and α ∈ K. Then
1. Element α acting by left multiplication on K is an F -linear transformation, which we denote

by Tα : K → K.
2. The minimal polynomial of element α ∈ K, denoted mα,F (x) is same as the minimal polyno-

mial of the F -linear map Tα : K → K, denoted p(x) ∈ F [x].
3. The norm NK/F (α) and trace TrK/F (α) are respectively the determinanat and trace of the

F -linear map Tα.

Proof. 1. Indeed, Tα : K → K is given by x 7→ αx which F -linear as Tα(x + cy) = α(x + cy) =
αx+ cαy = Tα(x) + cTα(y) where c ∈ F .

2. As mα,F (x) is irreducible, we need only show that p(x)|mα,F (x). Note that mα,F (Tα) = 0
since for any z ∈ K, we have

mα,F (Tα)(z) = mα,F (α)z = 0.
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Hence p(x)|mα,F (x), as required.

3. Let mα,F (x) = xd + ad−1x
d−1 + · · · + a1x + a0 in F [x] and [K : F ] = n. By item 2, the

minimal polynomial p(x) of Tα is also mα,F (x). Determinant of Tα is the product of all eigenvalues
(with repetitions) and trace of Tα is the sum of all eigenvalues. One can then deduce6 that

NK/F (α) = (−1)nan/d0

and

TrK/F (α) =
−n
d
ad−1.

As K/F is separable, therefore we may write p(x) = mα,F (x) = (x − λ1) · · · · · (x − λd) where λi
are distinct eigenvalues of Tα or equivalently, F -conjugates of α. It is now sufficient to show that
each eigenvalue λi has algebraic multiplicity n/d.

Let Φ(x) ∈ F [x] be the characteristic polynomial of Tα. Since p(x) and Φ(x) have same
irreducible factors and p(x) is irreducible, it follows that Φ(x) = p(x)k for some k ≥ 1. As Φ(x)
has degree n and p(x) has degree d, therefore we conclude that k = n/d, as required.

7.6.5 Norm & trace in general

We now define norm and trace for an arbitrary finite extension using the observation made in
Lemma 7.6.12.

Definition 7.6.13 (Norm & trace). Let K/F be a finite extension and α ∈ K. Let Tα : K → K
be the F -linear transformation obtained by multiplication by α. Then, we define

NK/F (α) = detTα
TrK/F (α) = TrTα.

The main theorem here is the following characterization of separability of a finite extension.

Theorem 7.6.14 (Trace pairing & separability). Let K/F be a finite extension. Then the following
are equivalent.

1. K/F is separable.
2. The trace pairing

⟨−,−⟩ : K ×K −→ F

(α, β) 7−→ TrK/F (αβ)

is a non-degenerate bilinear map.

Recall that a bilinear map T : V × V → k on a k-vector space V is non-degenerate if for any
k-basis {vi}ni=1 of V , the matrix (T (vi, vj))1≤i,j≤n is a non-singular matrix.

In order to prove the above theorem, we would require transitivity of trace. To this end, we
first have the following basic results.

6by Questions 17 and 18 of Section 14.2 of DF, cite[DummitFoote]
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Lemma 7.6.15. Let K/F be a finite extension of degree n. Then, for any x, y ∈ K and c ∈ F , we
have

1. TrK/F (x+ y) = TrK/F (x) + TrK/F (y).
2. TrK/F (cx) = cTrK/F (x).
3. NK/F (xy) = NK/F (x)NK/F (y).
4. NK/F (cx) = cnNK/F (x).

Proof. Immediate.

The following result can be used for inductive arguments.

Proposition 7.6.16. Let K/F be a finite extension and x ∈ K. Then, for any intermediate
extension K/L/F such that x ∈ L, we have

TrK/F (x) = [K : L] · TrL/F (x)

NK/F (x) =
(
NL/F (x)

)[K:L]
.

Proof. Let {w1, . . . , we} be an L-basis of K. It then follows that the linear operator Tx : K → K
obtained by multiplication by x is such that it restricts to an operator on each Lwi, i = 1, . . . , e.
Hence the matrix of Tx will be a diagonal block matrix where the block Mi will be the matrix of
Tx|Lwi

. Taking trace, we deduce that

TrK/F (x) =
e∑

i=1
Tr(Mi) =

e∑
i=1

TrL/F (x) = TrL/F (x) · e = [K : L] · TrL/F (x),

as required. Similarly for determinant.

The following states how to calculate trace of x in F (x)/F .

Lemma 7.6.17. Let K/F be a finite extension and x ∈ K. Let mx,F (z) = zd + ad−1z
d−1 + · · ·+

a1z + a0 where d = [F (x) : F ]. Then,

TrF (x)/F (x) = −ad−1

NF (x)/F = (−1)da0.

Proof. Omitted.

We can now state an important formula for calculation of norm and trace in terms of conjugates
and inseparability index (see §7.8).

Proposition 7.6.18. Let K/F be a finite extension and x ∈ K. Then we have

TrK/F (x) =

Ñ ∑
σ∈HomF (K,F̄)

σ(x)

é
· [K : F ]i

NK/F (x) =

Ñ ∏
σ∈HomF (K,F̄)

σ(x)

é[K:F ]i

.
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Proof. Note that in both the claims above, we need only show the above equality for K/F being
inseparable. Indeed, for separable case, we can deduce this equality from Lemma 7.6.12.

Let K/F be inseparable and thus let F be of characteristic p > 0. By Lemma 7.8.15, we deduce
that [K : F ]i = pn and thus RHS = 0 in the first equation above. We thus need only see that
TrK/F (x) = 0 as well. Indeed, by Lemma 7.6.17, we need only show that the sum of all conjugates is
a multiple of p. Indeed, by Corollary 7.8.9, we have that each root of mx,F has common multiplicity
pn. Thus sum of roots of mx,F will be a multiple of pn, thus 0, as required. One similarly proceeds
for showing the same for norm.

The following is an important result.
Theorem 7.6.19 (Transitivity of trace & norm). Let L/K/F be finite extensions and α ∈ L.

TrK/F (TrL/K(α)) = TrL/F (α)
NK/F (NL/K(α)) = NL/F (α).

Proof. Applying Proposition 7.6.18 in our case, we get

TrL/K(α) = [L : K]i ·
∑

σ∈homK(L,K̄)

σ(α).

Applying TrK/F onto above, we yield (note that F̄ = K̄ as K/F is finite and Lemma 7.8.14):

TrK/F

(
TrL/K(α)

)
= TrK/F

Ñ
[L : K]i ·

∑
σ∈homK(L,K̄)

σ(α)

é
= [L : K]i[K : F ]i ·

∑
τ∈homF (K,F̄ )

τ

Ñ ∑
σ∈homK(L,K̄)

σ(α)

é
= [L : F ]i ·

∑
τ∈homF (K,F̄ )

∑
σ∈homK(L,K̄)

τ̃(σ(α))

where τ̃ is an extension of τ : K → F̄ to τ̃ : K̄ → F̄ . We now define a bijection

ϕ : homK(L, K̄)× homF (K, F̄ ) −→ homF (L, F̄ )
(σ, τ) 7−→ τ̃ ◦ σ.

Note that τ̃ ◦σ is id on F and τ on k. This is injective as if τ̃ ◦σ = τ̃1 ◦σ1, then restricting to K we
get τ = τ1 and thus, σ = σ1. Moreover, this is surjective as the size of domain is [L : K]s · [K : F ]s
which is same as the size of codomain [L : F ]s. It follows that ϕ is a bijection.

We can now write the above equation as

TrK/F (TrL/K(α)) = [L : F ]i ·
∑

κ∈homF (L,F̄ )

κ(α)

= TrL/F (α),

as required. One can follow exact same procedure to show that

NK/F (NL/K(α)) = NL/F (α),

as required.
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We may now prove the main theorem stated at the beginning of the section.

Proof of Theorem 7.6.14. (2. ⇒ 1.) Suppose K/F is inseparable such that char(F ) = p > 0. Then
[K : F ]i = pn by Lemma 7.8.15. Hence, by Proposition 7.6.18, it follows that ⟨α, β⟩ = 0 for each
α, β ∈ K. Hence ⟨−,−⟩ is a degenerate bilinear map, a contradiction.
(1. ⇒ 2.) Suppose K/F is separable. Note it suffices to show that for each non-zero α ∈ K, there
exists β ∈ K such that TrK/F (αβ) = ⟨α, β⟩ ̸= 0. Indeed, we first show this for L/K/F the Galois
closure of K/F . Observe that if for some α ∈ K non-zero we have that for all α′ ∈ L we get
TrL/F (αα′) = 0, then

TrL/F (αα′) =
∑

σ∈Gal(L/F )
σ(α)σ(α′).

By linear independence of characters, we deduce that σ(α) = 0 for all σ ∈ Gal (L/F ), a contradic-
tion as each σ is an automorphism and α ̸= 0 in K. It follows that there exists α′ ∈ L such that
TrL/F (αα′) ̸= 0. By transitivity of trace (Theorem 7.6.19), we deduce

0 ̸= TrL/F (αα′) = TrK/F

(
TrL/K(αα′)

)
= TrK/F (α · TrL/K(α′)).

Letting β = TrL/K(α′), we conclude the proof.

7.6.6 Galois groups of ≤ 4 degree polynomials

Recall that an elementary symmetric function si is the sum of the products of {x1, . . . , xn} taken
i at a time, that is, s1 = x1 + · · ·+ xn, s2 = x1x2 + . . . xn−1xn, sn = x1 . . . xn. Further recall that
Sn acts on F (x1, . . . , xn) by permuting xi. A symmetric function is a rational function invariant
under the action of Sn. We first have the fundamental theorem of symmetric functions.

Theorem 7.6.20. Let F be a field. The fixed field of F (x1, . . . , xn) under the action of Sn is
F (s1, . . . , sn). Thus every symmetric function is a rational function in s1, . . . , sn.

This has major consequences.

Corollary 7.6.21. Let F be a field. Then, F (x1, . . . , xn)/F (s1, . . . , sn) is a Galois extension with
Galois group Sn.

Proof. Follows from Theorem 7.6.20 and 7.5.6.

Next result tells us that if a polynomial has algebraically independent elements/indeterminates
as roots, then that polynomial is special in that its Galois group has maximal symmetry. This is
an important result as if we wish to find a closed form solution of roots in terms of the coefficients,
then we ought to take coefficients as algebraically independent elements. In such a situation, the
following result then tells us the Galois group of a "general" n-degree polynomial whose roots we
assume to be indeterminates.

Theorem 7.6.22. Let x1, . . . , xn be indeterminates and F be a field. Then,
1. The polynomial f(x) = (x− x1) . . . (x− xn) can be expressed as

f(x) = xn − s1xn−1 + s2x
n−2 − · · ·+ (−1)n−1sn−1x+ (−1)nsn

where si are elementary symmetric polynomials in x1, . . . , xn.
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2. The polynomial f(x) as above is separable and its splitting field over F (s1, . . . , sn) is F (x1, . . . , xn)
with Galois group Sn.

3. If a polynomial g(x) has indeterminates as coefficients, then its roots are also indeterminates.

Remark 7.6.23. As Corollary 7.5.4 guarantees, the above theorem tells us exactly the polynomial
whose splitting field is the Galois extension F (x1, . . . , xn)/F (s1, . . . , sn) of Theorem 7.6.20.

We now use discriminants of a polynomial to get information about its Galois group.

Definition 7.6.24 (Discriminant). Let f(x) ∈ F [x] be a polynomial with roots x1, . . . , xn. Then
the discriminant of f(x) is defined to be

Df :=
∏
i<j

(xi − xj)2.

Before beginning, we need some observations.

Lemma 7.6.25. Let F be a field and f(x) ∈ F [x] be a separable polynomial (so that Df ̸= 0). Let
K/F be the splitting field of f(x) over F . Then,

1. Df ∈ F .
2.
√
Df ∈ K.

Proof. Let α1, . . . , αn ∈ K be the distinct roots of f(x). Then, for any σ ∈ Gal (K/F ), σ(Df ) = Df

as σ(αi) = αj bijectively. This proves item 1. Item 2 is immediate.

Remark 7.6.26. Let f(x) ∈ F [x] be a separable polynomial and let K/F be the splitting field of
f(x). For any σ ∈ Gal (K/F ), we get a permutation of Z(f) ⊆ K, the zero set of f(x), that is,
Z(f) is a Gal (K/F )-set. If there are n roots of f(x), then we get a group homomorphism

Gal (K/F ) ↪→ Sn

which is furthermore injective as if any σ ∈ Gal (K/F ) gives the identity permutation of roots,
then it is the identity map K → K. We now always view Galois group of a separable polynomial
f(x) as a subgroup of Sn where n is the number of roots of f(x), all of which are distinct as f(x)
is separable.

We make the most important statement about the discriminants now.

Proposition 7.6.27. Let f(x) ∈ F [x] be a separable polynomial with splitting field K/F . Then
the following are equivalent.

1. Gal (K/F ) is a subgroup of An.
2. Df ∈ F is a square of an element in F and that element is

√
Df . That is,

√
Df ∈ F .

Proof. (1. ⇒ 2.) As any σ ∈ An fixes ∏
i<j(xi − xj) ∈ Z[x1, . . . , xn] where x1, . . . , xn are the roots

of f(x), therefore σ ∈ Gal (K/F ) fixes
√
Df . It follows by fundamental theorem (Theorem 7.5.7)

that
√
Df ∈ F .

(2. ⇒ 1.) Pick any element σ ∈ Gal (K/F ). To show that σ ∈ An, we wish to show the cri-
terion mentioned above. This critetion is equivalent to showing that σ(

√
Df ) =

√
Df . This is

equivalent by fundamental theorem to showing that
√
Df ∈ F , which is what we are given.
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7.6.7 Solvability by radicals

We next discuss the various results surrounding solvability of a polynomials.

Definition 7.6.28 (Elements & polynomials solvable by radicals). LetK/F be an extension.
An algebraic element α ∈ K over F is solvable by radicals if there exists simple radical extensions

F = K0 ⊆ K1 ⊆ · · · ⊆ Ki ⊆ Ki+1 ⊆ · · · ⊆ Kn ∋ α

where Ki+1 = Ki(a1/ni

i ) where ai ∈ Ki−1, ni ≥ 1. The field Kn are called roots extensions. A
polynomial f(x) ∈ F [x] is solvable by radicals if all its roots are solvable by radicals.

Remark 7.6.29. Note that if f(x) is solvable, then its root extension contains the splitting field.

Definition 7.6.30 (Solvable extensions). An extension K/F is solvable if it is Galois and the
Galois group Gal (K/F ) is solvable7.

We have the following main theorem.

Theorem 7.6.31 (Solvability by radicals). Let F be a characteristic 0 field and f(x) ∈ F [x]. Then
the following are equivalent:

1. f(x) is solvable by radicals.
2. If K/F is the splitting field of f(x), then K/F is a solvable extension.

Corollary 7.6.32 (Abel-Ruffini). Let F be a characteristic 0 field. For n ≥ 5, the general polyno-
mial f(x) = xn−sn−1x

n−1+sn−2x
n−2−· · ·+(−1)ns0 where si are elementary symmetric functions

of roots x1, . . . , xn, is not solvable over F (s1, . . . , sn).

Proof. By Theorem 7.6.22, we deduce that its splitting field is K(x1, . . . , xn) and its Galois group
is Sn. For n ≥ 5, we know that Sn is not solvable. It follows by Theorem 7.6.31 that f(x) is not
solvable by radicals, that is, there is no root extension of f(x). This means that the roots of f(x)
are not obtained by radicals in coefficients.

7.6.8 Linearly disjoint extensions

We begin by following observation.

Lemma 7.6.33. Let L/F and K/F be two finite extensions of F contained in some large field Ω.
Then the following conditions are equivalent.

1. Any F -basis of L/F is a K-basis of LK/K.
2. Any F -basis of K/F is an L-basis of LK/L.
3. [LK : K] = [L : F ].
4. [LK : F ] = [L : F ] · [K : F ].

Proof. Fairly standard arguments, hence omitted.

This allows us to define the following.
7A group G is solvable if there exists a normal series with prime cyclic factors.
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Definition 7.6.34 (Linearly disjoint extensions). Let L/F and K/F be two finite extensions
of F contained in some large field Ω. Then L/F and K/F are said to be linearly disjoint if they
satisfy any of the equivalent conditions of Lemma 7.6.33.

The name is motivated by the following observation.

Lemma 7.6.35. Let L/F and K/F be two finite extensions which are linearly disjoint. Then
L ∩K = F .

Proof. As we have an isomorphism Gal (K · L/L) ∼= Gal (K/L ∩K) by Proposition 7.6.5, hence
it follows that we have an equality in degree [K · L : L] = [K : L ∩ K]. By linear disjointness,
[K · L : L] = [K : F ]. As L ∩ K ⊇ F , thus by tower law we deduce that [L ∩ K : F ] = 1, as
required.

The following shows that above criterion is necessary, but not sufficient.

Example 7.6.36. Here is an example of extensions K/F and L/F such that L ∩K = F but still
they are not linearly disjoint. For F = Q, take K = Q(21/3) and L = Q(ω21/3). Observe that
K ∩ L = F . However, as [K · L : F ] = 6 and [K : F ] = 3 = [L : F ], we deduce that L/F and K/F
are not linearly disjoint.

The following theorem shows a sufficient criterion which when satisfied together with L∩K = F ,
makes L/F and K/F linearly disjoint.

Lemma 7.6.37. Let L/F and K/F be two finite extensions. If K/F is Galois and L ∩K = F ,
then L/F and K/F are linear disjoint.

Proof. By Proposition 7.6.5, we have thatK·L/L is Galois and we have an isomorphism Gal (K · L/L) ∼=
Gal (K/L ∩K) = Gal (K/F ). Thus, we have an equality [K · L : L] = [K : F ], hence K/F and
L/F are linearly disjoint.

Hence, we may summarize this discussion as follows.

Corollary 7.6.38. Let K/F and L/F be two finite extensions. If K/F and L/F are linearly
disjoint, then K ∩L = F . The converse holds if any of the K/F or L/F is a Galois extension.

7.7 Cyclotomic extensions

We discuss the extension Q(ζn)/Q where ζn is an nth-root of unity, that is, a solution of xn − 1
in C. We will see that nth-roots of unity form a cyclic group µn ∼= Z/nZ, therefore we define a
primitive nth root of unity to be a generator of Z/nZ. Thus, there are ϕ(n) many primitive n-th
roots of unity, where ϕ is the Euler totient function. We also discuss the main theorems of abelian
and cyclic extensions (Kronecker-Weber and Kummer).

We denote the group of n-th roots of unity as µn. Some basic facts about µn are as follows.

Lemma 7.7.1. Let n ∈ N. Then,
1. µn is a finite cyclic group isomorphic to Z/nZ.
2. If d|n, then µd ↪→ µn.
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Proof. 1. µn is finite of size n since its the set of roots of xn − 1 in C. This is a group since
product of any two n-th roots of unity is an n-th root of unity. Thus µn is a finite subgroup of the
multiplicative group C×. It follows that µn is cyclic.

2. Consider the map

ϕ : µd −→ µn

ζ 7−→ ζ.

This is well-defined since a d-th root of unity is also an n-th root of unity if d|n. Further, this is
clearly a group homomorphism.

Thus µd ≤ µn is precisely the subgroup of order d-elements of µn.

Definition 7.7.2 (nth-cyclotomic polynomial). Let n ∈ N. The nth-cyclotomic polynomial is
defined to be the polynomial Φn(x) = ∏

ζ∈µ×
n
(x − ζ), that is, the polynomial whose all roots are

the primitive nth-roots of unity.

We immediately have the following observations.

Lemma 7.7.3. Let Φn(x) be the nth-cyclotomic polynomial. Then,
1. Φn(x)|xn − 1.
2. xn − 1 = ∏

d|nΦd(x).

Proof. Follows from the observation that xn − 1 = ∏
ζn=1(x− ζ).

Remark 7.7.4. Using Lemma 7.7.3, we see that we can calculate Φn(x) recursively by finding Φd

for all d|n and d ̸= n. In particular,

Φn(x) =
xn − 1∏

d|n,d ̸=nΦd(x)
.

We now state and prove the following theorem, which in particular tells us that cyclotomic
polynomial Φn(x) is monic irreducible of degree ϕ(n). Once shown, we would be able to conclude
that the the minimal polynomial of a primitive nth-root of unity is Φn(x).

Theorem 7.7.5. Let n ∈ N. Then,
1. Φn(x) is a monic polynomial of degree ϕ(n) in Z[x].
2. Φn(x) is an irreducible polynomial in Z[x].
3. Φn(x) is the minimal polynomial of any primitive nth-root of unity ζn ∈ C.
4. If ζn is a primitive nth-root of unity, then Q(ζn)/Q is a degree ϕ(n) extension.

Proof. 1. The fact that degree of Φn)(x) is ϕ(n) follows from the fact that in C it is a product of
ϕ(n) many linear factors. This also shows that Φn(x) is a monic polynomial. We need only show
that coefficients lie in Z. To this end, we proceed by induction. For n = 1, Φn(x) = x− 1 ∈ Z[x].
For n = 2, Φ2(x) = x+ 1 ∈ Z[x]. Now suppose that for all d < n Φd(x) ∈ Z[x]. Then we have

Φn(x) =
xn − 1∏

d|n,d ̸=nΦd(x)
,
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thus f(x) := ∏
d|n,d̸=nΦd(x) ∈ Z[x] by inductive hypothesis. As f(x)|xn−1 in Q[x] and f(x) ∈ Z[x],

therefore by results surrounding Gauss’ lemma, we get f(x)|xn − 1 in Z[x], that is, Φn(x) ∈ Z[x].

2. Let Φn(x) = f(x)g(x) in Z[x] where we assume that f(x) is an irreducible factor of Φn(x)
(by Z[x] being an UFD). We claim that f(x) has all primitive nth-roots of unity as a root over C,
so that f(x) = Φn(x) over Z. Indeed, let ζa ∈ µn be any other primitive root, then (a, n) = 1 and
so we may write a = p1 . . . pk where pi are primes not dividing n. We wish to show that ζa is a
root of f(x). It suffices to show that if ζ is a root of f(x), then ζp is a root of f(x) as well for any
prime p not dividing n. This is what we will show now.

Indeed, let ζ ∈ µn a primitive nth-root of unity which is a root of f(x). As f(x) is irreducible
over Z[x], therefore irreducible over Q[x] as well, hence f(x) is the minimal polynomial of ζ over Q.
Consider p a prime not dividing n. We wish to show that ζp is also a root of f(x). Indeed, as Φn(x)
has ζp as a root, therefore either f(ζp) = 0 or g(ζp) = 0 over C. Suppose the latter is true. Thus
g(xp) has ζ as a root. As g(xp) ∈ Q[x], therefore f(x)|g(xp) in Q[x]. As f(x), g(xp) ∈ Z[x], therefore
by results surrounding Gauss’ lemma, we conclude that f(x)|g(xp) in Z[x]. Let g(xp) = f(x) · h(x)
where h(x) ∈ Z[x]. Going modulo p, we get that ḡ(xp) = (ḡ(x))p. Thus, (ḡ(x))p = f̄(x)h̄(x) in Fp[x].
Thus, ḡ and f̄ have a common factor in Fp[x] as both have ζ as a root. Thus, Φ̄n(x) = f̄(x)ḡ(x)
has a repeated factor, thus, Φn(x) is not separable over over Fp. But since Φ′

n(x) = nxn−1 ̸= 0
has only x = 0 as a root, therefore Φn(x) is separable. It follows that we have a contradiction to
the separability of xn−1 as Φn(x) is a factor of xn−1, thus ζp cannot be a root of g(x), as required.

3. As Φn(ζn) = 0 for any primitive nth-root of unity, therefore we get that mζn,Q|Φn(x). As
mζn,Q is irreducible and so is Φn(x), thus mζn,Q = Φn, as required.

4. As Φn(x) is the minimal polynomial of ζn which has degree ϕ(n), the result follows.

We now wish to study the Galois group of a cyclotomic extension.

Definition 7.7.6 (Cyclotomic extension). Let ζn ∈ C be a primitive nth-root of unity. The
extension Q(ζn)/Q is called a cyclotomic extension.

It is easy to see that every cyclotomic extension is Galois.

Lemma 7.7.7. Let Q(ζn)/Q be a cyclotomic extension. Then Q(ζn)/Q is a Galois extension.

Proof. By Theorem 7.7.5, 4, it follows that Q(ζn)/Q is finite. Observe that mζn,Q(x) ∈ Q[x] is
Φn(x) by Theorem 7.7.5, 3 which is separable. As ζn is the primitive nth-root of unity, therefore it
generates all other roots of unity. Consequently, Q(ζn)/Q is normal as well, as required.

Calculation of Galois group of Q(ζn)/Q is quite easy.

Theorem 7.7.8. Let Q(ζn)/Q be a cyclotomic extension where ζn is a primitive nth-root. Then,
the map

(Z/nZ)× −→ Gal (Q(ζn)/Q)
a 7−→ σa : ζn 7→ ζan

is an isomorphism.
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Proof. Immediate.

Cyclotomic extensions are a particular example of an abelian extension.

Definition 7.7.9 (Abelian extension). Let K/F be a field extension. If K/F is Galois and
Gal (K/F ) is an abelian group, then K/F is called an abelian extension.

Remark 7.7.10. If K1,K2/F are abelian extensions, then any subfield K1/L/F is an abelian
extension by fundamental theorem (Theorem 7.5.7) and compositum K1 ·K2/F is also abelian by
Proposition 7.6.5.

An important result in the theory of finite abelian extensions is the fact that any extension
of Q is abelian if and only if it is contained in a cyclotomic extension. Using this result, one can
heuristically say that finite abelian groups are to groups what are cyclotomic extensions are to field
extensions(!)

Theorem 7.7.11 (Kronecker-Weber). Let K/Q be an extension. Then the following are equivalent:
1. K/Q is a finite abelian.
2. K ⊆ Q(ζn) for some n ∈ N.

Moreover, if G is any finite abelian group, then there exists K/Q finite abelian such that Gal (K/Q) ∼=
G.

Another important line of thought around cyclotomic extensions is the situation when Galois
group is cyclic. We have seen that Galois groups of finite fields are cyclic (Proposition 7.6.2).
Moreover, if p is a prime, then by Theorem 7.7.8, the cyclotomic extension Q(ζp)/Q also has cyclic
Galois group for ζp a primitive pth-root of unity. We now see that such Galois extensions are of a
very simple type.

Definition 7.7.12 (Cyclic extensions). An extension K/F is said to be cyclic if it is Galois and
Gal (K/F ) is cyclic.

Theorem 7.7.13 (Kummer-I). Let F be a characteristic p > 0 field and ζn ∈ F where ζn is a
primitive nth-root of unity for gcd(n, p) = 1.

1. If K = F (a1/n) for some non-zero a ∈ F , then K/F is a cyclic extension of degree d where
d|n.

2. If K/F is a cyclic extension of degree n, then K = F (a1/n) for some non-zero a ∈ F .

Proof. 1. We first show that K/F is Galois. Let α = a1/n. Finiteness is clear as mα,F (x)|xn − a.
We wish to show that mα,F (x) is separable. Indeed, since xn − a has derivative nxn−1 which is a
non-zero polynomial (as gcd(n, p) = 1) whose only root is 0, therefore xn− a is separable and thus
so is mα,F (x). Finally, as all roots of xn−a are {ζknα}k=0,...,n−1, which are in K as ζn ∈ F , therefore
xn − a splits in K into linear factors, and hence so does mα,F (x). Indeed, K is the splitting field
of xn − a over F .

Next, we show that K/F is cyclic. Indeed, consider the map

ϕ : Gal (K/F ) −→ µn

σ 7−→ σ(α)
α

.
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This is well defined as σ(α) = ζkσn α, some conjugate of α. Thus, ϕ(σ) = ζkσn . We claim that this is
an injective group homomorphism, and thus Gal (K/F ) is cyclic.

Indeed, this is a group homomorphism as ϕ(σ ◦ τ) = σ(τ(α)) = σ(ζkτn α)/α = ζkσn ζkτn . Hence,
it is a group homomorphism. It is moreover injective as if ζkσn = ζkτn , then σ(α) = τ(α). As σ, τ
are F -automorphisms of K = F (α) mapping α to the same element, therefore σ = τ , as needed.
Furthermore, as |Gal (K/F )| | |µn|, therefore [K : F ] = d where d|n.

2. We wish to find an nth-root of some a in K and show that it generates K. As Gal (K/F ) = ⟨σ⟩
is cyclic, therefore consider the following element of K constructed out of any α ∈ K:

β = α+ ζnσ(α) + ζ2nσ
2(α) + · · ·+ ζn−1

n σn−1(α).

Observe that

σ(β) = σ(α) + ζnσ
2(α) + ζ2nσ

3(α) + · · ·+ ζn−1
n α

= ζn−1
n β.

Similarly, we get for each 0 ≤ k ≤ n− 1 the following relation:

σk(β) = ζn−k
n β.

Hence, we see that p(x) = xn − βn has all roots in K given by {ζn−k
n β}0≤k≤n−1.

We claim that βn ∈ F . Indeed, we show that for G = Gal (K/F ) = ⟨σ⟩, the element βn is
in KG and since KG = F by fundamental theorem (Theorem 7.5.7), hence we will be done. As
σ(βn) = (ζn−1

n β)n = βn, therefore βn ∈ KG = F , as required. Hence, β = a1/n for a = βn ∈ F .
We finally claim that F (β) = K. Indeed, as K/F (β)/F is an intermediate extension and

Gal (K/F ) is cyclic hence abelian, therefore F (β)/F is Galois by fundamental theorem (Theo-
rem 7.5.7). As σ ∈ Gal (F (β)/F ), therefore |Gal (F (β)/F )| ≥ n. But by fundamental theorem,
Gal (F (β)/F ) = Gal(K/F )

Gal(K/F (β)) , thus, |Gal (K/F (β))| = [K : F (β)] = 1, thus, [K : F ] = [K :
F (β)][F (β) : F ] = [F (β) : F ], thus showing that F (β) = K, as required.

An important corollary strengthening the second statement of Kummer is as follows.

Corollary 7.7.14 (Kummer-II). Let F be a field of characteristic p > 0 and ζn ∈ F be a primitive
nth-root of unity where gcd(n, p) = 1. If K/F is a cyclic extension of degree d where d|n, then
K = F (a1/d) for some a ∈ F non-zero8.

Proof. Note that as ζn ∈ F , therefore µn ⊆ F×. Recall from Lemma 7.7.1 that µd ↪→ µn. It follows
that F contains a primitive dth-root of unity. As gcd(n, p) = 1, it follows that gcd(d, p) = 1. By
Kummer-I (Theorem 7.7.13, 2), it follows that K = F (a1/d) ⊆ F (a1/n), for some non-zero a ∈ F ,
as required.

Remark 7.7.15. Assuming the hypothesis of Corollary 7.7.14, we see that if K/F is cyclic of
degree d where d|n, then K = F (a1/d). Now note that we can write K = F ((an/d)1/n) = F (b1/n)
where b = an/d.

8Note that as d|n, hence F (a1/d) ⊆ F (a1/n).
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7.8 Inseparable & purely inseparable extensions

We now study a type of extension which is prevalent in the study of varieties of characteristic p > 0.
Recall that an extension K/F is inseparable if it is not separable, that is, there is some element in
K whose minimal polynomial over F is inseparable.

Some of our main results are characterizations of irreducible and minimal polynomials in char-
acteristic p > 0 fields as stated in Proposition 7.8.2 and Corollary 7.8.9.

Definition 7.8.1 (Purely inseparable extension). Let F be a field of characteristic p > 0 and
K/F be an extension. An element α ∈ K is said to be purely inseparable if for some n ≥ 0, we
have

αpn ∈ F.

If every element of K is purely inseparable, then K/F is said to be purely inseparable.

Before beginning the study of purely inseparable fields, we need a fundamental result about
irreducible polynomials in positive characteristic fields.

Proposition 7.8.2 ("Polynomial Frobenius"). Let F be a field of characteristic p > 0. If f(x) ∈
F [x] is an irreducible polynomial, then there exists an irreducible and separable polynomial g(x) ∈
F [x] such that

f(x) = g(xpn)

for some n ≥ 0.

Proof. Suppose that f(x) is separable. Then g = f and n = 0 would do. Hence we may assume
that f(x) is inseparable. Thus, by Lemma 7.4.14, it follows that f ′(x) = 0. Writing

f(x) =
m∑
j=0

ajx
j ,

we deduce that j = pkj . Thus, we may write

f(x) =
m∑
j=0

ajx
pkj = h(xp)

where h(x) = ∑m
j=0 ajx

kj ∈ F [x]. As f(x) is irreducible, therefore it follows that h(x) is irreducible.
Note that degree of h is deg f

p . If h is separable, then we are done. If not, then we repeat the process,
starting from h(x), to yield h1(x) satisfying h1(xp) = h(x) and thus h1(xp

2) = f(x). As at each step
the resulting polynomial has degree strictly smaller than that of previous, hence the process has to
stop. As the process at a separable polynomial, we thus obtain g(x) separable and irreducible such
that g(xpn) = f(x), as required.

There are some other restatements of the definition, which are important to keep in mind. All
of these uses the "Polynomial Frobenius" (Proposition 7.8.2) in a crucial manner.
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Theorem 7.8.3. Let F be a characteristic p > 0 field and K/F be an algebraic extension. The
following are equivalent:

1. K/F is purely inseparable.
2. For every α ∈ K not in F , the minimal polynomial mα,F (x) in F [x] is an inseparable poly-

nomial.
3. For every α ∈ K, the minimal polynomial mα,F (x) in F [x] is of the form

mα,F (x) = xp
n − a

for some a ∈ F .

Proof. (1. ⇒ 2.) For some n ∈ N, we have αpn = a ∈ F . Thus, mα,F (x)|xp
n−a. As f(x) = xp

n−a
and derivative f ′(x) = 0 as char(F ) = p, therefore xpn − a has repeated roots. Now suppose
xp

n − a = f1(x) . . . fk(x) where each fi(x) ∈ F [x] is an irreducible factor of xpn − a. Since
xp

n − a = (x − α)pn in K[x], it follows that each fi(x) divides (x − α)mi in K[x]. In particu-
lar, each fi(x) is inseparable. As mα,F (x) = fi(x) for some i as mα,F (x) is irreducible dividing
xp

n − a in F [x], it follows that mα,F (x) is inseparable.

(2. ⇒ 1.) Pick any α ∈ K. We wish to find n ≥ 0 such that αpn ∈ F . This is equivalent to showing
that mα,F (x)|xp

n − a for some a ∈ F . If α ∈ F , we are done. We may thus assume α ∈ K \ F .
Consider the minimal polynomial mα,F (x) ∈ F [x]. As it is irreducible, by Proposition 7.8.2 it
follows that mα,F (x) = f(xpn) where f(x) ∈ F [x] is irreducible and separable. As f(αpn) = 0, it
follows that mαpn ,F (x)|f(x). As both are irreducible, it follows at once that mαpn ,F (x) = f(x). We
deduce that mαpn ,F (x) is separable. By our hypothesis, it follows that αpn ∈ F , as required.

(2. ⇒ 3.) Pick any α ∈ K. If α ∈ F , there is nothing to do. We may thus assume α ∈ K \ F .
Consider mα,F (x) ∈ F [x] which is irreducible and by hypothesis is inseparable. Observe by Poly-
nomial Frobenius (Proposition 7.8.2) that there exists g(x) ∈ F [x] irreducible and separable such
that for some n ≥ 0 we get

mα,F (x) = g(xpn).

It follows that g(αpn) = 0 and thus mαpn ,F (x) = g(x). We thus further deduce that mαpn ,F (x) is
irreducible and separable. By our hypothesis, we must have αpn = a ∈ F and thus mαpn ,F (x) =
g(x) = x− a. As mα,F (x) = g(xpn) = xp

n − a, hence we get the desired result.

(3. ⇒ 1.) Pick any element α ∈ K not in F . As mα,F (x) = xp
n − a and a ∈ F , therefore

αpn = a ∈ F , as required.

It is clear from above that any non-trivial purely inseparable extension is inseparable. A simple
corollary states that perfect fields don’t have non-trivial inseparable extensions.

Corollary 7.8.4. Let F be a field. Then, the following are equivalent:
1. An algebraic extension K/F is inseparable9.
2. F is not a perfect field10.
9that is, there is an element whose minimal polynomial is inseparable.

10see Definition 7.4.4
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Proof. This is just the contrapositive of Theorem 7.4.19.

Corollary 7.8.5. Let F be a perfect field. If K/F is purely inseparable, then K = F .

Proof. Suppose K/F is non-trivial. By Corollary 7.8.4, it follows that F is not perfect, a contra-
diction.

The following shows that the subfield generated by a purely inseparable element is purely
inseparable.

Proposition 7.8.6. Let F be a characteristic p > 0 field and K/F be a field extension and α ∈ K
be an algebraic element which is a purely inseparable element over F . Then F (α)/F is purely
inseparable.

Proof. As α ∈ K is algebraic over F , therefore F (α) = F [α]. Pick any β ∈ F [α]. We may write

β = amα
m + · · ·+ a1α+ a0.

As αpn ∈ F , thus we get

βp
n = ap

n

m α
mpn + · · ·+ ap

n

1 α
pn + ap

n

0 ∈ F,

as needed.

The following result is important for it says that the separable closure of an algebraic extension
completely divides the extension into separable and a purely inseparable part.

Proposition 7.8.7. Let F be a field of characteristic p > 0 and K/F be an algebraic extension.
Let L/F be the separable closure11 of F in K. Then, K/L is purely inseparable.

Proof. Pick any element α ∈ K not in L. We wish to show that αpn ∈ L for some n ≥ 0.
Consider mα,F (x) ∈ F [x]. Observe that mα,F (x) is inseparable as α /∈ L. By Polynomial Frobenius
(Proposition 7.8.2), it follows that mα,F (x) = f(xpn) for some irreducible separable f(x) ∈ F [x]. It
follows that mαpn ,F (x) = f(x) and thus αpn is a separable element, that is, αpn ∈ L, as needed.

7.8.1 Inseparability index

Our goal now is tom understand the deviation of an algebraic extension from separability. Recall
that perfect fields have no deviation (Theorem 7.4.19). Hence, answering this question would shed
light on characteristic p > 0 algebra.

We first begin by observing that separable degree always divides the degree in characteristic
p > 0(!)

Proposition 7.8.8. Let K/F be a finite extension where char(F ) = p > 0. Then

[K : F ]s | [K : F ].
11see Definition 7.4.16.
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Proof. By Proposition 7.4.10, it suffices to show the above statement for K = F (α) for some α ∈ K.
Now since

[F (α) : F ]s =
∣∣HomF

(
F (α), F̄

)∣∣
= # of distinct roots of mα,F (x) in F̄ .

Further, since

[F (α) : F ] = degmα,F (x)
= # of total roots of mα,F (x) in F̄ ,

therefore it suffices to show that each root mα,F (x) is repeated same no. of times in F̄ , that is,
multiplicity of each root of mα,F (x) is same. Indeed, by Polynomial Frobenius (Proposition 7.8.2),
we have an irreducible and separable f(x) ∈ F [x] such that

mα,F (x) = f(xpn)

for some n ≥ 0. Let α1, . . . , αm ∈ F̄ be the distinct roots of mα,F (x). Observe that αpn

i is a root
of f(x) for each i = 1, . . . ,m. It is clear that the function

{Roots of mα,F (x)} −→ {Roots of f(x)}
αi 7−→ αpn

i

is surjective. Indeed, since degmα,F (x) ≥ deg f(x). Thus, every root of f(x) is of the form αpn

i .
Thus, we get

f(x) = (x− αpn

1 ) . . . (x− αpn
m ).

Thus

mα,F (x) = f(xpn) = (xpn − αpn

1 ) . . . (xpn − αpn
m )

= (x− α1)p
n
. . . (x− αm)pn ,

as needed. This completes the proof.

We state one of the important consequences of the proof above.

Corollary 7.8.9 (Minimal polynomials in char p). Let K/F be a finite extension where char(F ) =
p > 0. If α ∈ K, then every root of mα,F (x) has same multiplicity equal to pn for some n ≥ 0. In
particular, p| degmα,F (x).

Proof. In the proof of Proposition 7.8.8, we deduced that if α1, . . . , αm ∈ F̄ are roots of mα,F (x),
then

mα,F (x) = (x− α1)p
n
. . . (x− αm)pn

as required.
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Remark 7.8.10. The Corollary 7.8.9 generalizes the statement in Theorem 7.8.3, 3, in the sense
that a purely inseparable extension is a finite extension of F with char(F ) = p > 0 such that every
element has minimal polynomial with only one root with multiplicity pn. In precise terms, we have
the following result.

Corollary 7.8.11. Let K/F be a finite extension where char(F ) = p > 0. Then the following are
equivalent:

1. K/F is a purely inseparable extension.
2. Every element α ∈ K not in F has minimal polynomial which has only one distinct root.

Proof. (1. ⇒ 2.) This is clear from Theorem 7.8.3.

(2. ⇒ 1.) As K/F is finite, therefore by Corollary 7.8.9, we have

mα,F (x) = (x− α)pn = xp
n − αpn

in K[x]. However, comparing the equality above in F [x], we deduce that αpn ∈ F , as required.

Remark 7.8.12. Now consider K = F (α) over F where char(F ) = p > 0 and α algebraic over
F . Then we saw in Corollary 7.8.9 that mα,F (x) has every root repeated pn many times for some
n ≥ 0. We can capture this common multiplicity of roots as [K : F ]/[K : F ]s since [K : F ] is
the total number of roots of mα,F (x) and [K : F ]s is the number of distinct roots of mα,F (x), so
that the ratio will yield us the common multiplicity which is pn. If pn = 1 (i.e. n = 0), then we
see that mα,F (x) has no repeated roots. It follows that F (α)/F would then be separable. This
fraction is thus storing information about separability of an extension. We now generalize this for
not necessarily principal extensions.

Definition 7.8.13 (Inseparability index). LetK/F be a finite extension where char(F ) = p > 0.
Then the inseparability index of K/F is defined to be

[K : F ]i :=
[K : F ]
[K : F ]s

.

As both usual degree and separable degree satisfies tower law, therefore inseparability index
also satisfies tower law.

Lemma 7.8.14. Let L/K/F be finite extensions where char(F ) = p > 0. Then,

[L : F ]i = [L : K]i · [K : F ]i.

Proof. Immediate.

Using the tower law, we observe that inseparability index is always a power of characteristic.

Lemma 7.8.15. Let K/F be a finite extension where char(F ) = p > 0. Then [K : F ]i = pk for
some k ≥ 0.

Proof. As K/F is finite and inseparability index satisfies tower law (Lemma 7.8.14), we may re-
duce to showing that [F (α) : F ]i is a power of p. Indeed, observe that [F (α) : F ] = degmα,F

and [F (α) : F ]i = # distinct roots of mα,F . By Corollary 7.8.9, we deduce that degmα,F =
(# distinct roots of mα,F ) · (pn) where pn is the common multiplicity of each root of mα,F . Hence,
[F (α) : F ]i is pn, as required.
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It should be clear that if K/F is purely inseparable, then [K : F ]i = 1. We now correctly prove
it.

Lemma 7.8.16. Let K/F be a finite and purely inseparable extension where char(F ) = p > 0.
Then,

[K : F ]s = 1.

Proof. By tower law for separable degree (Proposition 7.4.10), we may assume that K = F (α). As
[F (α) : F ]s is the number of distinct zeroes of mα,F (x), therefore by Corollary 7.8.11, we win.

The following is a simple, yet enlightening observation.

Lemma 7.8.17. Let F be a field of characteristic p > 0. If K/F a purely inseparable extension,
then it is normal.

Proof. Indeed, as α ∈ K is such that mα,F (x)|xp
n − a for some a = αpn ∈ F , therefore all distinct

roots ofmα,F (x) are distinct roots of xp
n−a as well. However, overK we have xpn−a = xp

n−αpn =
(x − α)pn . Thus, xpn − a has only one distinct root, it follows that mα,F (x) has only one distinct
root, α ∈ K. Since α ∈ K is arbitrary, hence K/F is normal, as required.
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7.9 Transcendence degree

Definition 7.9.1. (Transcendence) Let K/k be a field extension.
1. A collection of elements {αi}i∈I of K is said to be algebraically independent if the map

k[xi | i ∈ I] −→ K

xi 7−→ αi

is injective.
2. A transcendence basis of K/k is defined to be an algebraically independent set {αi | i ∈ I} of
K/k such that K/k(αi | i ∈ I) is an algebraic extension.

3. The extension K/k is said to be purely transcendental if K ∼= k(xi | i ∈ I) for some indexing
set I.

Lemma 7.9.2. Let K/k be a field extension. Then, {αi}i∈I is a transcendence basis of K/k if and
only if {αi}i∈I is a maximal algebraically independent set of K/k.

Proof. (L ⇒ R) If {αi}i∈I is not maximal, then there exists S ⊂ K containing {αi}i∈I such that S
is algebraically independent. Let β ∈ S \ {αi}i∈I . But since K/k({αi}i∈I) is an algebraic extension
and β /∈ k({αi}i∈I) by algebraic independence of S, therefore we have a contradiction to algebraic
nature of the extension K/k({αi}i∈I).
(R ⇒ L) Suppose K/k({αi}i∈I) is not algebraic. Then there exists β ∈ K which is transcendental
over k({αi}i∈I). Thus the set {αi}i∈I ∪ {β} is a larger algebraically independent set, contradicting
the maximality.

Lemma 7.9.3. Let K/k be a field extension. Then any two transcendence basis have the same
cardinality.

Proof. See Tag 030F of cite[Stacksproject].

Definition 7.9.4. (Transcendence degree) Let K/k be a field extension. The cardinality of any
transcendence basis is said to be the transcendence degree, denoted trdeg K/k. Furthermore, if A
is a domain containing k, then we define trdeg A/k to be the transcendence degree of A0, the field
of fractions of A, over k.

Remark 7.9.5. Let K/k be a field extension. If trdeg K/k = 1, then there exists α ∈ K such that
α is not an algebraic element over k but K/k(α) is algebraic. In particular, for any transcendental
element α ∈ K over k, the set {α} is algebraically independent over k. Precisely, there is a
one-to-one bijection between the set of all singletons which are algebraically independent and all
transcendental elements of K/k.

Example 7.9.6. There are some basic examples which reader might have encountered. For exam-
ple, one knows that Q(π)/Q is transcendental as π ∈ Q(π) is not algebraic over Q. Consequently,
trdeg Q(π)/Q is 1, as Q(π)/Q(π) is algebraic.

For another example, consider the next obvious situation of Q(e, π)/Q. Since {e} and {π} are
algebraically independent sets over Q, therefore trdeg in this case is ≥ 1. But it is an unknown
problem whether {e, π} forms an algebraically independent set over Q(!) Consequently, if they do,
then trdeg Q(e, π)/Q = 2 and if they don’t, then the best we can say is trdeg Q(e, π)/Q ≥ 1.
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Example 7.9.7. We have trdeg k(x1, . . . , xn)/k = n as {x1, . . . , xn} forms a maximal algebraically
independent set.

We observe some basic first properties of transcendence degree. First, transcendence degree
satisfies additive tower law.

Lemma 7.9.8 (Additive tower law). Let L/K/k be field extensions. Then

trdeg L/k = trdeg L/K + trdeg K/k.

The following shows that that whatever transcendence degree of a k-algebra may be, there will
be that many transcendental elements in it.

Lemma 7.9.9. Let A = k[α1, . . . , αn] be an integral domain where αi ∈ K for some field extension
K/k. If trdeg A/k = r > 0, then there exists αi1 , . . . , αir which are transcendental over k.
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8 Integral dependence and normal domains

The main topic of interest of study in this section is the following question: "let R be a ring and
S be an R-algebra. How do all those elements of S behave like which satisfy a polynomial with
coefficients in R?".

8.1 Definitions and basic theory

In order to investigate this further, let us bring some definitions.

Definition 8.1.1. (Integral elements and integral algebra) Let R be a ring and S be an
R-algebra. An element s ∈ S for which there exists p(x) ∈ R[x] such that p(s) = 0 in S is said
to be an integral element over R. Further, S is said to be integral over R if every element of S is
integral over R.

To begin deriving properties, we would need a fundamental result about endomorphisms of
finitely generated modules.

Theorem 8.1.2 (Cayley-Hamilton). Let R be a ring, M be a finitely generated R-module generated
by n elements and I ≤ R be an ideal. If ϕ :M →M is an R-linear map such that

ϕ(M) ⊆ IM,

then there exists a monic polynomial

p(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

in R[x] such that p(ϕ) = 0 in HomR (M,M) and ak ∈ Ik for k = 1, . . . , n.

Proof. See Theorem 4.3, pp 120, [cite Eisenbud].

There are two immediate corollaries of Cayley-Hamilton which will remind the reader of finite-
dimensional vector space case.

Corollary 8.1.3. Let R be a ring and M be a finitely generated R-module. If φ : M → M is a
surjective R-module homomorphism, then φ is an isomorphism.

Proof. Using φ, we may regard M as an R[z]-module. Note that M is a finitely generated R[z]-
module. Let I = ⟨z⟩ ≤ R[z]. Since the action of z on M is by φ and φ is surjective, therefore
IM = M . We may use Cayley-Hamilton with ϕ = id to deduce that there is a polynomial
p(x, z) ∈ R[x, z] such that p(z, id) = 0 and p(x, z) is a monic polynomial in R[z][x]. Consequently,
we can write 0 = p(z, id) = 1 + q(z)z for some q(z) ∈ R[z]. It follows that −q(z) is the inverse of
z in R[z]. Since z ∈ R[z] denotes the endomorphism φ, so we have found an R-linear inverse of φ,
namely the one corresponding to −q(z), as required.

Corollary 8.1.4. Let R be a ring and M be a finitely generated R-module. If M ∼= Rn, then any
generating set of n elements of M is linearly independent. In particular, any generating set of n
elements of M is a basis.
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Proof. Denote f :M → Rn to be the given isomorphism. Pick S = {s1, . . . , sn} to be a generating
set of M . This yields a surjection g : Rn →M . We wish to show that g is an isomorphim. Observe
that gf :M →M is surjective. It follows from Corollary 8.1.3 that gf is an isomorphism. Since f
is an isomorphism, hence it follows that g is an isomorphism, as required.

Here is an another application of Cayley-Hamilton.

Corollary 8.1.5. Let R ̸= 0 be a ring. If ϕ : Rm → Rn is an injective R-linear map, then m ≤ n12.

Proof. Assuming to the contrary, assume thatm > n and ϕ is injective. Then we have the composite
which is also injective:

ψ : Rm ϕ→ Rn ↪→ Rm,

where the latter is the inclusion into first n-coordinates. By Cayley-Hamilton, we get that ψ satisfies
a monic polynomial in R:

ψk + rk−1ψ
k−1 + · · ·+ r1ψ + r0 = 0.

We may assume that k is least possible. If r0 = 0, then by injectivity of ψ, we would have an even
smaller degree polynomial which annihilates ψ, not possible. Hence r0 ̸= 0 and thus applying the
above polynomial at em = (0, 0, . . . , 0, 1) gives that r0 = 0, a contradiction.

The fundamental result which drives the basic results about integral algebras is the following
equivalence.

Proposition 8.1.6. Let R→ S be an R-algebra and s ∈ S. Then the following are equivalent.
1. s ∈ S is integral over R.
2. R[s] ⊆ S is a finite R-algebra.
3. R[s] ⊆ S is contained in a finite R-algebra.
4. There is a faithful R[s]-module M which when restricted to R is finitely generated as an

R-module.

Proof. 1 ⇒ 2 ⇒ 3 ⇒ 4 follows at once. We do 4 ⇒ 1. Indeed, let I = ⟨s⟩ ≤ R[s] be the ideal
generated by s ∈ R[s]. Consequently, s induces an endomorphism ms : M → M by scalar multi-
plication. Observe that ms(M) = IM . It follows by Cayley-Hamilton (Theorem 8.1.2) that there
exists a monic p(x) ∈ R[s][x] such that p(ms) = 0 as an R[s]-linear map M → M . Consequently,
for any a ∈M , we have p(ms)(a) = 0, where upon expanding one sees that p(ms) = mq(s) for some
q(s) ∈ R, q(x) ∈ R[x]. But since M is faithful, therefore q(s) = 0, as required.

Lemma 8.1.7. Let R→ S be an R-algebra and s1, . . . , sn ∈ S be integral over R. Then R[s1, . . . , sn]
is a finite R-algebra.

Proof. We proceed by induction over n. Base case follows from Proposition 8.1.6. Assume that
Rk = R[s1, . . . , sk] is a finite R-algebra. Since sk+1 ∈ S is integral over R, therefore it is integral
over Rk. It follows from Proposition 8.1.6 that Rk[sk+1] is a finite Rk-algebra. Since Rk is a finite
R-algebra, therefore Rk[sk+1] = R[s1, . . . , sk+1] is a finite R-algebra, as required.

12proof is taken from here.

https://mathoverflow.net/questions/136/atiyah-macdonald-exercise-2-11
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One then obtains that finite generation of an algebra by integral elements as an algebra is
equivalent to finite generation as an R-module.
Lemma 8.1.8. Any finite R-algebra is integral over R.

Proof. Let S be a finite R-algebra and let s ∈ S be an element. Let ms : S → S be the R-linear
given by multiplication by s. As S is a finitely generated R-module, then by Cayley-Hamilton
(Theorem 8.1.2), it follows that there is a monic p(x) ∈ R[x] such that p(ms) = 0 as an R-linear
map. Applying p(ms) to 1 ∈ S yields p(s) = 0, as required.

Proposition 8.1.9. Let R be a ring and S be an R-algebra. Then the following are equivalent.
1. S is a finite R-algebra.
2. S = R[s1, . . . , sn] where s1, . . . , sn ∈ S are integral over R. In particular, S is integral over

R.
That is, an R-algebra is finite if and only if it is a finite type and integral R-algebra.

Proof. Observe that 2.⇒ 1. is just Lemma 8.1.7. For 1. ⇒ 2. proceed as follows. By Lemma 8.1.8,
it follows that S is integral over R. Let s1, . . . , sn ∈ S be a generating set of S as an R-module. It
is now clear that R[s1, . . . , sn] = S as S is finitely generated.

The following result show that all integral elements form a subring of S.
Proposition 8.1.10. Let R be a ring and S be an R-algebra. The set of all elements of S integral
over R forms a subalgebra of S, called the integral closure of R in S.

Proof. Let s, t ∈ S be integral over R. Then R[s, t] is a subalgebra of S. It suffices to show that
every element of R[s, t] is integral over R. By Proposition 8.1.9, the algebra R[s, t] is integral over
R as it is finite by Lemma 8.1.7.

With this, a natural situation is when every element of S is integral over R.
Definition 8.1.11. (Normalization & integral extension) Let R be a ring and S be an R-
algebra. The subalgebra A of all integral elements of S over R is said to be the integral closure
of S over R. One also calls A the normalization of R in S. If S is fraction field of R, then A is
also denoted by R̃. Further, if R ↪→ S is a ring extension and every element of S is integral over
R, then S is said to be an integral extension of R. If f : R→ S is an integral R-algebra, then the
map f is said to be integral.

Composition of integral maps is integral.
Lemma 8.1.12. Let R → S and S → T be integral maps. Then the composite R → S → T is
integral.

Proof. Pick any element t ∈ T . We wish to show that R[t] is contained in a finite R-algebra by
Proposition 8.1.6. As S → T is integral, there exists p(x) ∈ S[x] monic such that p(t) = 0. So we
have

tn + sn−1t
n−1 + · · ·+ s1t+ s0 = 0

in T where si ∈ S. Let S′ = R[s0, . . . , sn−1]. As R→ S is integral, therefore S′ is a finite R-algebra
by Lemma 8.1.7. Note that R ⊆ S′. By the above equation, it then follows that S′[t] is a finite
S′-algebra. As composition of finite maps is finite, therefore S′[t] is a finite R-algebra containing
R[t], as required.
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Another trivial observation is that a map which factors an integral map becomes integral.

Lemma 8.1.13. Let A→ C be an integral map. If there is a map A→ B such that

A C

B

commutes, then B → C is an integral map.

Proof. Pick any element c ∈ C. There exists non-zero monic p(x) ∈ A[x] such that p(x) is non-zero
in C[x] and p(c) = 0 in C. Observe that p(x) ∈ B[x] is also a non-zero monic as if not then p(x)
would be zero in C[x] because the above triangle commutes. The result then follows.

The following observation is simple to see, but comes in very handy while handling intermediate
rings that pop-up while subsequent localizations.

Lemma 8.1.14. Let A be an integral B-algebra. Then the following are equivalent:
1. A is a field.
2. B is a field.

Proof. (1. ⇒ 2.) Let b ∈ B. There is a c ∈ A such that bc = 1. We will show that c ∈ B. By
integrality, we must have

cn + bn−1c
n−1 + · · ·+ b1c+ b0 = 0

where bi ∈ B. Multiplying by bn−1 both sides, we get the relation which shows that c ∈ B, as
required.

(2. ⇒ 1.) Pick any element a ∈ A. By integrality, there exists ci ∈ k such that

an + cn−1a
n−1 + · · ·+ c1a+ c0 = 0

in A. Consider this equation in the fraction field Q(A) to multiply by a−1, so that we may get

an−1 + cn−1a
n−2 + · · ·+ c2a+ c1 + c0a

−1 = 0

in Q(A). It thus follows that a−1 is a polynomial in A with coefficients in k, that is, a−1 ∈ A, as
required.

8.2 Normalization & normal domains

A special situation in Definition 8.1.11 is when R is a domain and S is its fraction field. These
domains will play a crucial role later on, especially in arithmetic.

Definition 8.2.1. (Normal domain) Let R be a domain and S be its fraction field. If the
normalization of R in S is R itself, then R is said to be a normal domain.
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Example 8.2.2. Let R be a domain, K its fraction field and R̃ be the normalization of R in K.
It follows that R̃ ↪→ K is a normal domain. Indeed, let R̂ be normalization of R̃ in K. Then, we
have maps

R ↪→ R̃ ↪→ R̂

where both inclusions are integral maps by construction. It follows from Lemma 8.1.12 that the
inclusion R ↪→ R̂ is integral, forcing R̂ ⊆ R̃ which further implies R̃ = R̂.

Further investigation into normal domains lets us identify all UFDs as normal domains.

Proposition 8.2.3. All unique factorization domains are normal domains.

Proof. Let R be a UFD and K be its fraction field. Let a
b ∈ K with gcd(a, b) = 1. Suppose a

b is
integral over R so that there exists p(x) = xn+cn−1x

n−1+ . . . c1x+c0 ∈ R[x] such that p(a/b) = 0.
It follows by rearrangement that

an + cn−1ba
n−1 + . . . c1b

n−1 + c0b
n = 0.

Hence, b|an. As gcd(a, b) = 1, hence we deduce thay b|a, a contradiction.

Example 8.2.4. Consequently, Z and Z[x1, . . . , xn] are normal as well. Moreover, as Gauss’ lemma
states that R is UFD if and only if R[x] is UFD, therefore we deduce that R[x1, . . . , xn] is a normal
domain if R is UFD.

We have something similar to Gauss’ lemma for normal domains.

Proposition 8.2.5. A ring R is normal if and only if R[x] is normal.

Proof. TODO.

Further, we can obtain a generalization of the fact that a monic irreducible in Z[x] is irreducible
in Q[x].

Proposition 8.2.6. Let R ↪→ S be a ring extension and let f ∈ R[x] be a monic polynomial. If
f = gh in S[x] where g and h are monic, then the coefficients of g and h are integral over R.

We also obtain that any monic irreducible in the polynomial ring in one variable over a normal
domain is prime.

Lemma 8.2.7. Let R be a ring and f(x) ∈ R[x] be a monic irreducible. If R is a normal domain,
then f(x) is a prime element.

Thus, for normal domains R, monic irreducible and monic prime polynomials are equivalent
concepts.

We now show that normalization is a very hereditary process as it preserves many properties
of the original ring. Indeed, we first show that normalization and localization commutes.

Proposition 8.2.8. Let f : R → S be an R-algebra and M ⊆ R be a multiplicative set. If A ⊆ S
is the integral closure of R in S, then M−1A is the integral closure of M−1R in M−1S.
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Proof. We may assume that f is inclusion of a subring of S by replacing R by f(R) and M
by f(M). Consequently, we have inclusions R ↪→ A ↪→ S which induces inclusions M−1R ↪→
M−1A ↪→ M−1S. We wish to show that M−1A is the integral closure of M−1R in M−1S. Pick
an element s/m ∈ M−1S where m ∈ M which is integral over M−1R. Consequently, there exists
ri/mi ∈M−1R for 0 ≤ i ≤ k − 1 such that( s

m

)k
+ rk−1
mk−1

( s
m

)k−1
+ . . .

r1
s1

( s
m

)
+ r0
m0

= 0

in M−1S. Multiplying by product of denominators and absorbing coefficients into ri, we get

m′sk + rk−1s
k−1 + · · ·+ r1s+ r0 = 0

which we may multiply by (m′)k−1 to get

(m′s)k + rk−1(m′s)k−1 + · · ·+ r1(m′)k−2(m′s) + r0(m′)k−1 = 0.

It follows that m′s ∈ A, thus s/1 ∈M−1A and thus s/m ∈M−1A.
Conversely, pick an element a/m ∈M−1A. We wish to show that it is integral over M−1R. As

a ∈ A, therefore we have

an + rn−1a
n−1 + . . . a1r + a0 = 0

for ri ∈ R. This equation in M−1S can be divided by mn to obtain( a
m

)n
+ rn−1

m

( a
m

)n−1
+ · · ·+ r1

mn−1

( a
m

)
+ r0
mn

= 0.

It follows that a/m is integral over M−1R, as required.

An immediate, but important corollary of the above is the following.

Corollary 8.2.9. Let A be a domain, K be its fraction field and Ã be its normalization. Then, for
all g ∈ A, we have Ãg = Ãg in K.

Another important corollary is that being a normal domain is a local property.

Proposition 8.2.10. Let R be a domain. Then the following are equivalent:
1. R is a normal domain.
2. Rp is a normal domain for each prime p ∈ Spec (R).
3. Rm is a normal domain for each maximal m ∈ Spec (R).

Proof. By Proposition 8.2.8, we immediately have that (1. ⇒ 2.) and (1. ⇒ 3.). The (2. ⇒ 3.)
is immediate. We thus show (3. ⇒ 1.). Let K be the fraction field of R. Observe that each Rm is
a domain and have fraction field K again, where m ∈ Spec (R) is a maximal ideal. Thus we have
R ↪→ Rm ↪→ K. Pick x ∈ K which satisfies a monic polynomial over R. It follows that x satisifes
a monic polynomial over Rm for each maximal m ∈ Spec (R). Thus x ∈ Rm for each m as Rm is a
normal domain. We thus deduce from Lemma 2.2.12 that x ∈ ⋂

m̸=RRm = R, as required.
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Remark 8.2.11 (Normalization is a strongly local construction). Let A be an arbitrary domain.
Then we get an inclusion ϕA : A ↪→ Ã where Ã is the normalization of A in its fraction field. We
claim that the collection of maps {ϕA : A ↪→ Ã} one for each domain is a construction which is
strongly local on domains (see Definitions ?? & ??).

Indeed, first {ϕA : A ↪→ Ã} is a construction on domains as if η : A → B is an isomorphism,
then we have an isomorphism η̃ : Ã→ B̃ given as follows: we have an isomorphism η̄ : KA → KB

between their fraction fields, given by a/a′ 7→ η(a)/η(b). Now a/a′ ∈ KA is integral over A if
and only if η(a)/η(a′) ∈ KB is integral over B. This shows that η̄ : KA → KB restricts to an
isomorphism η̃ : Ã → B̃. Moreover, if η : A → A is id, then so is η̃ and it satisfies the square and
cocycle condition as well of Definition ??. We now claim that normalization is strongly local.

Indeed, pick g ∈ A non-zero. Then, the localization of the inclusion ϕA : A ↪→ Ã at element g
yields (ϕA)g : Ag ↪→ Ãg = Ãg which is equal to the normalization of the domain ϕAg : Ag ↪→ Ãg.
It follows that any integral scheme X admits a normalization in light of Theorem ??. Indeed, this
is what is the content of Theorem ??.

We have a universal property for normalization of domains.

Proposition 8.2.12. Let A be a domain and Ã be the normalization of A in its fraction field.
Then for any normal domain B and an injective map A ↪→ B, there exists a unique map Ã → B
such that following commutes:

Ã B

A

.

Proof. Let f : A ↪→ B. This, by universal property of fraction fields, induces a unique injective
map ϕ : K ↪→ L from fraction field of A to that of B such that ϕ|A = f . Let x ∈ Ã. Then

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

holds in K where ai ∈ A. Applying ϕ on the above equation yields

ϕ(x)n + f(an−1)ϕ(x)n−1 + · · ·+ f(a1)ϕ(x) + f(a0) = 0

in L. It follows that ϕ(x) is an integral element of L over B. As B is normal it follows that
ϕ(x) ∈ B. Consequently, we have a unique map

ϕ|Ã : Ã→ B

such that the triangle commutes, as required.

In certain situations (especially those arising in geometry and arithmetic), normalization pre-
serves noetherian property. TODO.

8.3 Noether normalization lemma

Finally, as a big use of normalization in geometry, we obtain the following famous result.
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Theorem 8.3.1. 13 Let k be a field and A be a finite type k-algebra. Then, there exists elements
y1, . . . , yr ∈ A algebraically independent over k such that the inclusion k[y1, . . . , yr] ↪→ A is an
integral map.

Proof. Let us assume that k is infinite. Let x1, . . . , xn ∈ A be generators of A as a k-algebra. Sup-
pose there is no algebraically independent subset of {x1, . . . , xn}. Thus, each x1, . . . , xn is integral
over k. As A = k[x1, . . . , xn], therefore by Proposition 8.1.9 it follows that A is integral over k, so
there is nothing to show here.

Consequently, we may assume that there is a largest algebraically independent subset of {x1, . . . , xn},
denoted {x1, . . . , xr}. It follows that each xr+1, . . . xn is integral/algebraic over k. If r = n, then A
is the affine n-ring over k, so there is nothing to show. Consequently, we may assume that n > r.
We now proceed by induction over n.

In the base case, we have n = 1, and thus r < 1. It follows that A = k[x] where x ∈ A is
algebraically dependent over k, that is, x is integral over k. Consequently, A is integral over k by
Lemma 8.1.7 and there is nothing to show. We now do the inductive case.

Assume that every finite type k-algebraB ⊆ A with n−1 generators have elements {y1, . . . , ym} ⊆
B algebraically independent over k such that B is integral over k[y1, . . . , ym]. Denote An−1 =
k[x1, . . . , xn−1] ⊆ A. It now suffices to find a finite type k-algebra B ⊆ A generated by n − 1
elements not containing xn such that the following two statements hold about B:

1. xn ∈ A is integral over B,
2. B[xn] = A.

For if such a B exists, then we have integral maps k[y1, . . . , ym] ↪→ B and B ↪→ B[xn] = A
(Proposition 8.1.6). Then, by Lemma 8.1.12, it follows that k[y1, . . . , ym] ↪→ A is integral, as
needed.

Indeed, first observe that since xn is algebraic over k and k ⊆ An−1, therefore xn is algebraic
over An−1. Consequently, there is a polynomial f(z1, . . . , zn−1, zn) ∈ k[z1, . . . , zn] of total degree N
such that f(x1, . . . , xn−1, xn) = 0. Using this, we now construct the required algebra B as follows.
Let F be the highest degree homogeneous part of f and denote it by

F (z1, . . . , zn) =
∑

i1+···+in=N

ci1...inz
i1
1 . . . z

in
n

where ci1...in and is 0 for those indices which are not present in F and is 1 for those which are
present. Let (λ1, . . . , λn−1) ∈ kn−1 be a tuple such that F (λ1, . . . , λn−1, 1) ̸= 0. Such a tuple exists
because the field is infinite (n might be arbitrarily large). Consequently, for each 0 ≤ i ≤ n − 1,
consider the following elements of A:

x′i = xi − λixn.

Let B = k[x′1, . . . , x′n−1] ⊆ A. We now show that above two hypotheses are satisfied by B.
This will conclude the proof. First, we immediately have the second hypothesis as B[xn] =
k[x′1, . . . , x′n−1, xn] = k[x1, . . . , xn] = A. We thus need only show that xn is integral over B.
This also follows by the way of construction of B; consider the polynomial

g(z1, . . . , zn−1, zn) := f(z1 + λ1zn, . . . , zn−1 + λn−1zn, zn)

in k[z1, . . . , zn−1, zn]. We wish to show the following two items
13Exercise 5.16 of AMD.
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1. g(z1, . . . , zn−1, zn) is monic in zn,
2. g(x′1, . . . , x′n−1, xn) = 0.

This would suffice as a polynomial in B[zn] is just a polynomial in k[x′1, . . . , x′n−1, zn]. Indeed, we
see that

g(z1, . . . , zn−1, zn) = f(z1 + λ1zn, . . . , zn−1 + λn−1zn, zn)
= F (z1 + λ1zn, . . . , zn−1 + λn−1zn, zn) + · · ·
=

∑
i1+···+in=N

ci1...in(z1 + λ1zn)i1 . . . (zn−1 + λn−1zn)in−1zinn + · · ·

=
( ∑

i1+···+in=N

ci1...inλ
i1
1 z

i1
n . . . λ

in−1
n−1 z

in−1
n zinn

)
+ . . .

= zNn

( ∑
i1+···+in=N

ci1...inλ
i1
1 . . . λ

in−1
n−1

)
+ · · ·

= zNn F (λ1, . . . , λn−1, 1) + · · · .

It follows that g is monic in zn and g(x′1, . . . , x′n−1, xn) = f(x1, . . . , xn−1, xn) = 0. This completes
the proof.

8.4 Dimension of integral algebras

We will prove the Cohen-Seidenberg theorems about primes in an integral extension. The main
theorem will allow us to deduce that, apart from other things, dimension of an integral R-algebra
is equal to that of R.
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9 Dimension theory
We will discuss the notion of dimension of rings and how that notion corresponds to dimension of
the corresponding affine scheme. Further, the notion of dimension applied to algebraic geometry
will garnish us with a concrete geometric intuition to situations which otherwise may feel completely
sterile.

9.1 Dimension, height & coheight

As usual, all rings are commutative with 1.

Definition 9.1.1. (Dimension of a ring) Let R be a ring. Then dimR is defined as follows

dimR := sup
r
{p0 ⊋ p1 ⊋ · · · ⊋ pr | pi are prime ideals of R}.

Definition 9.1.2. (Height/coheight of a prime ideal) Let R be a ring and p ⪇ R be a prime
ideal. Then height of p is defined as follows:

ht p := sup
r
{p = p0 ⊋ p1 ⊋ · · · ⊋ pr | pi are prime ideals of R}.

Similarly, the coheight of p is defined by

coht p := sup
r
{p = p0 ⊊ p1 ⊊ · · · ⊊ pr | pi are prime ideals of R}

Remark 9.1.3. Note that the dimension of a prime ideal p as a ring may not be same as its height
in R, as there might be many more primes in p which may fail to be primes in the ring R. But
clearly, dim p ≥ ht p.

Recall that the dimension of a topological space X is defined as

dimX = sup
r
{Z0 ⊋ Z1 ⊋ · · · ⊋ Zr | Zi are irreducible closed subsets of X}.

We now have some immediate observations about height, coheight and dimension.

Lemma 9.1.4. Let R be a ring. Then,
1. ht p = dimRp,
2. coht p = dimR/p,
3. ht p+ coht p ≤ dimR.

Proof. Prime ideals of R/p are in one-to-one order preserving bijection with prime ideals of R
containing p. Prime ideals of Rp are in one-to-one order preserving bijection with prime ideals of
R contained in p. Let Y denote the length of all chains of prime ideals of R passing through p.
Consequently, supY ≤ dimX. But supY = ht p+ coht p.

Lemma 9.1.5. Let R be a PID. Then, dimR = 1. Consequently, Z and k[x] are one dimensional
rings for any field k14.

14as the intuition agrees!
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Proof. Any chain is either of the form ⟨0⟩ or ⟨x⟩ ⊋ ⟨0⟩.

Further, by Theorem 2.5.3 we see the following.

Lemma 9.1.6. If R is a PID which is not a field, then dimR[x] = 2.

Proof. Indeed, by Theorem 2.5.3, the longest chain of prime ideals of the form 0 ⪇ ⟨f(x)⟩ ⪇
⟨p, h(x)⟩ where f(x) is irreducible and h(x) is irreducible modulo prime p ∈ R, as one can see
immediately.

The following is also a simple assertion, which basically is why one introduces dimension of a
ring.

Lemma 9.1.7. Let R be a ring. Then,

dim Spec (A) = dimA.

Proof. Immediate from definitions and Lemma ??.

Let us now give some more helpful notions, especially the dimension of an R-module.

Definition 9.1.8. (Dimension of a module and height of ideals) Let M be an R-module.
Then the dimension of M is defined as

dimM := dimR/Ann(M).

Further, for an ideal I ≤ R, we define the height of I as the infimum of heights of all prime ideals
above I:

ht I := inf{ht p | p ⊇ I, p ∈ Spec (R)}.

We have the corresponding topological result.

Lemma 9.1.9. Let R be a ring and M be a finitely generated R-module. Then,

dimM = dim Supp (M)

where Supp (M) ⊆ Spec (R) is the support of the module M .

Proof. The result follows as Supp (M) is the closed subset V (AnnM) so that any irreducible closed
set in Supp (M) will be irreducible closed in Spec (R) and then we can use Lemma ??.

9.2 Dimension of finite type k-algebras

In algebraic geometry, one is principally interested in finite type algebras over a field. Thus it is
natural to engage in the study of their dimensions. We discuss some elementary results in this
direction in this section. See Section 2.6 for basics of finite type k-algebras.

The main results are as follows.
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Theorem 9.2.1. Let k be a field and A be a finite type k-algebra which is a domain15. Then,

dimA = trdeg A/k.

Proof. By normalization, there exists algebraically independent elements x1, . . . , xd ∈ A such that
the inclusion B := k[x1, . . . , xd] ↪→ A is an integral map. It follows that A is a finite B-algebra
and thus K(A)/K(B) is a finite extension by Proposition 8.2.8. It follows that trdeg K(A)/k =
trdeg K(B)/k = d. Moreover, since A is integral B-algebra, therefore by Cohen-Seidenberg we
have dimA = dimB = d. This completes the proof.

Theorem 9.2.2. Let k be a field and A be a finite type k-algebra which is a domain and let p ⪇ A
be a prime ideal. Then,

ht p+ dimA/p = dimA.

9.3 Fundamental results

We begin with the fundamental theorem of dimension theory.

Theorem 9.3.1 (Fundamental theorem).

The following is the famous principal ideal theorem.

Theorem 9.3.2 (Krull’s Hauptidealsatz). Let R be a noetherian ring. If I ≤ R is a principal
ideal, then any minimal prime p containing I is such that

ht (p) ≤ 1.

In particular, if I ̸= 0 and R a domain, then any minimal prime containing I has height 1.

15note that such algebras are exactly the ones which correspond to affine algebraic varieties.
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10 Completions
Do from Chapter 7 of Eisenbud

10.1 Hensel’s lemma

Theorem 10.1.1 (Hensel). Let (A,m) be a noetherian local ring and (Â, m̂) be the m-adic comple-
tion of A. Let f ∈ Â[x1, . . . , xn]. If f̄ has a solution (ā1, . . . , ān) in Â/m̂ = A/m, then (ā1, . . . , ān)
can be extended to (a1, . . . , an) in An

k on which f vanishes.
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11 Valuation rings
We begin with the basic theory of valuation rings.

11.1 Valuations & discrete valuations

Definition 11.1.1. (Valuation on a field) Let K be a field and G be an abelian group. A
function v : K → G ∪ {∞} is said to be a valuation of K with values in G if v satisfies

1. v(xy) = v(x) + v(y),
2. v(x+ y) ≥ min{v(x), v(y)},
3. v(x) =∞ if and only if x = 0.

Let Val(K,G) denote the set of all valuations over K with values in G.

Few immediate observations are in order.

Lemma 11.1.2. Let K be a field, G be an abelian group and v ∈ Val(K,G) be a valuation. Then,
1. R = {x ∈ K | v(x) ≥ 0} ∪ {0} is a subring of K,
2. m = {x ∈ K | v(x) > 0} ∪ {0} is a maximal ideal of R,
3. (R,m) is a local ring,
4. R is an integral domain,
5. R⟨0⟩ = K,
6. ∀x ∈ K, x ∈ R or x−1 ∈ R.

Proof. Items 1 and 4 are immediate from the axioms of valuations. Items 2 and 3 are immediate
from the observation that {x ∈ K | v(x) = 0} ∪ {0} is a field in R. For items 5 and 6, we need to
observe that v(1) = 0 and for any x ∈ K×, v(x−1) = −v(x).

Remark 11.1.3. We call the subring R ⊂ K above corresponding to a valuation v over K to be
the value ring of v.

Definition 11.1.4. (Valuation rings) Let R be an integral domain. Then R is said to be a
valuation ring if it is the value ring of some valuation over K = R⟨0⟩.

Definition 11.1.5. (Domination) Let K be a field and A,B ⊂ K be two local rings in K. Then
B is said to dominate A if B ⊇ A and mB ∩A = mA.

There is an important characterization of valuation rings inside a field K with respect to all
local rings in K.

Theorem 11.1.6. Let K be a field and R ⊂ K be a local ring. Denote Loc(K) to be the set of all
local rings in K together with the partial order of domination. Then, the following are equivalent,

1. R is a valuation ring.
2. R is a maximal element of the poset Loc(K).

Furthermore, for every local ring S ∈ Loc(K), there exists a valuation ring R ∈ Loc(K) which
dominates S.

Proof. See Tag 00I8 of cite[Stacksproject].

An important type of valuation rings are where the value group is the integers.
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Definition 11.1.7. (Discrete valuation rings) Let R be a valuation ring. Then R is said to be
a discrete valuation ring (DVR) if the value group of R is the integers Z.

It turns out that noetherian local domains of dimension 1 have some important characteriza-
tions, one of them being that they are exactly local Dedekind domains.

Theorem 11.1.8. Let A be a noetherian local domain of dimension 1. Then the following are
equivalent

1. A is a DVR.
2. A is a normal domain (that is, a local Dedekind domain).
3. A is a regular local ring.
4. The maximal ideal of A is principal and the generator t is called the "local parameter" of A.

Proof. Do it from Atiyah-Macdonald page 94.

It is a simple fact to see the following.

Proposition 11.1.9. Let R be a DVR with local parameter t ∈ R and F = Q(R). Then,
1. Every element of R is of the form utn for u ∈ R× = R \ tR and n ∈ N ∪ {0}.
2. We have that R is a PID. In particular, every ideal is generated by some power of the local

parameter.
3. The discrete valuation of R is given by (note that F = {utn | n ∈ Z})

ν : F −→ Z
utn 7−→ n.

Proof. 1. Let a ∈ R which is not a unit, hence a ∈ tR, thus a = rt where r ∈ R. As r ∈ tR, then
r = r1t and thus a = r1t

2. Doing the same on r1 and continuing, we get an ascending chain, which
terminates by noetherian condition, yielding us the factorization a = utn where u ∈ R is a unit
and n ∈ N, as required.

2. By Theorem 11.1.8, (R, tR) is a local ring. Let I be a proper ideal. We wish to show that
it is generated by some tn. To this end, we first show that I is a free R-module. Indeed, as R is
a Dedekind domain (Theorem 11.1.8), we deduce that any ideal is a line bundle (Theorem 12.0.4,
5). As projective modules over local rings are free, it follows that I ∼= R. Consequently, I = aR
and we conclude by 1.

3. We need only check that ν is a valuation and its value ring is R. Indeed the latter is im-
mediate by item 1. The former is immediate by definition.

Example 11.1.10. (Z⟨p⟩ and k[x]⟨p(x)⟩) Let p ∈ Z be a prime and p(x) ∈ k[x] be irreducible. Then
both Z⟨p⟩ and k[x]⟨p(x)⟩ are DVRs as they are local rings of PIDs (see Theorem 11.1.8). Moreover,
their local parameters are p ∈ Z⟨p⟩ and p(x) ∈ k[x]⟨p(x)⟩.

Example 11.1.11 (p-adic integers, Ẑp). Let p be a prime and consider the p-adic integer ring
Ẑp = lim←−n

Z/pnZ. An element x of Ẑp can be written as

x = (x1, . . . , xn, . . . )
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such that for all k < l, xk = xl mod pk. This defines Ẑp as a quotient of ∏n≥1 Z/pnZ. We will
follow the above characterization of elements of Ẑp.

Then we claim that Ẑp is a DVR. Indeed, we first show that Ẑp is a domain. Let x =
(x1, . . . , xn, . . . ) and y = (y1, . . . , yn, . . . ) be two p-adic integers. If none of x or y is zero, we
claim that xy = (x1y1, . . . , xnyn, . . . ) ̸= 0 as well. Indeed, let k = ν(x), that is, the largest k such
that xk = 0 mod pk and similarly let l = ν(y). Then, it is easy to see that xk+lyk+l is the largest
term of xy which is non-zero. Thus, xy ̸= 0. This shows that Ẑp is a domain.

We also denote by Q̂p the fraction field of Ẑp, the field of p-adic rationals. We construct a
discrete valuation on Q̂p with value ring being Ẑp. Indeed, consider

νp : Q̂p −→ Z
x

y
7−→ νp(x)− νp(y)

where νp(x) for x ∈ Ẑp is the largest n such that xn = 0 mod pn. It can easily be seen that this
defines a discrete valuation whose value ring is Ẑp, thus showing that Ẑp is a DVR. As ν(p) = 1
where p = (0, p, p, . . . , p, . . . ) ∈ Ẑp, hence the local parameter of Ẑp is p.

11.2 Absolute values

We discuss the basics of absolute values and places, which will be used to state Ostrowski’s theorem
which classifies the places of Q.
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12 Dedekind domains
We will now discuss a class of rings which forms the right context for doing number theory in more
abstract setting. We give here the barebones, rest will be developed as needed elsewhere.

Definition 12.0.1 (Dedekind domain). A noetherian normal domain of dimension 1 is defined
to be a Dedekind domain.

The following are some of the many equivalent characterizations of a Dedekind domain.

Theorem 12.0.2. Let R be a noetherian domain of dimension 1. Then the following are equivalent:
1. R is normal (equivalently, Dedekind).
2. Every primary ideal q of R is of the form q = pn for some prime ideal p and n ≥ 0.
3. Rp is a DVR for each non-zero prime p.

Theorem 12.0.3. Let R be a domain. Then the following are equivalent:
1. R is a Dedekind domain.
2. Every fractional ideal of R is invertible.

The following are some of the striking consequences of Dedekind condition.

Theorem 12.0.4. Let R be a Dedekind domain.
1. Any finitely generated torsion-free R-module is projective.
2. Any ideal I ≤ R is a unique product of positive prime powers upto permutation, that is,

I = pn1
1 . . . pnr

r , ni ≥ 1.

3. Any invertible ideal I ∈ Cart(R) is a unique product of prime powers upto permutation, that
is,

I = pn1
1 . . . pnr

r , ni ∈ Z \ {0}

where a negative power of pi has the obvious meaning.
4. Cart(R) is the free abelian group generated by Spec (R) \ {0}:

Cart(R) ∼= Z(Spec (R) \ {0}).

5. Pic(R) is the group of isomorphism classes of ideals of R under multiplication:

Pic(R) ∼= {0 ̸= I ≤ R upto R-linear isomorphism}.

Remark 12.0.5 (The Dedekind philosophy). Let R be a Dedekind domain. Then, the ideals are
"generalized numbers of R with multiplication" and they are upto isomorphism given by the Picard
group Pic(R), which are the line bundles upto isomorphism. Hence the analogy

"Generalized numbers of R upto isomorphism" ↭ Line bundles on R upto isomorphism.

Similarly, the invertible ideals of R, that is, Cartier divisors of R16 are "generalized fractions of R
with multiplication" and they are given by the Cartier group Cart(R). Hence the analogy

"Generalized fractions of R" ↭ Cartier divisors on R.
16which, we would like to remind, are codimension-1 cycles on R(!)
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Proof of Theorem 12.0.4, 1. Let F = Q(R) and M a finitely generated torsion-free module over
R. We proceed by induction on dimF M ⊗R F . If dimF M ⊗R F = 0, then M ⊗R F = M0 = 0,
thus any non-zero element of M is torsion, which is not possible and thus M = 0, which is free
so projective17. Now suppose all finitely generated torsion-free modules with dimF M ⊗R F ≤ n
are projective. Let M be torsion-free finitely generated with dimF M ⊗R F = n + 1. Hence,
M ⊗R F ∼= Fn+1 as F -vector spaces. Now observe that as M is torsion-free, therefore the map

M −→M⊗RF ∼=M0

m 7−→ m⊗ 1 7→ m

1

is an injection. Consequently, we may consider M ⊆ Fn+1. Consider any projection map Fn+1 →
F . As any finitely generated submodule of F is a fractional ideal, therefore I = Im

(
M ↪→ Fn+1 → F

)
is a fractional ideal. As R is Dedekind, so I is invertible (Theorem 12.0.3). As we have a surjection
M ↠ I and I is projective (see Cart-Pic sequence, Theorem ??), thus, the surjection is split and
we have M ∼= N ⊕ I. As I is rank 1 projective, therefore by additivity of dimension, we have
dimF N ⊗R F = n. As M is torsion-free, so is N . By inductive hypothesis, N is projective, hence
M ∼= N ⊕ I is projective as well.

The following are some basic examples of Dedekind domains.

Example 12.0.6 (PIDs are Dedekind). Let R be a PID. Then R is Dedekind as PIDs are noethe-
rian, normal (since UFD) and of dimension 1 as every finite prime chain has length 1.

If R = Z, then by Theorem 12.0.4, 4 & 5, we deduce that

Pic(Z) = 0
Cart(Z) ∼= Q×.

Similarly, if R = k[x] for some field k, then,

Pic(k[x]) = 0
Cart(k[x]) ∼= k(x)×.

Example 12.0.7 (Local Dedekind domains (i.e. DVRs)). By Theorem 11.1.8, local Dedekind
domains are equivalent to DVRs, so DVRs forms another class of important Dedekind domains.
Indeed, by Theorem 12.0.2, DVRs are exactly the local rings of Dedekind domains.

Hence for Z, the local rings Z⟨p⟩ for each prime p ∈ Z give local Dedekind domains and so does
k[x]⟨p(x)⟩ for each irreducible polynomial p(x) ∈ k[x].

17Essentially this is where we will be using the torsion-free hypothesis, the rest can be done without it, as can be
seen.
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13 Tor and Ext functors
We discuss two important functors in this section.

13.1 Some computations

Do exercises from Bruzzo.
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14 Projective and injective modules
In this section we define an important object in the study of algebraicK-theory, projective modules.
These generalize finitely generated free R-modules. This notion is further used in a very important
geometric concept called depth and Cohen-Macaulay condition. In order to reach there, we would
need a concept called projective dimension, which we cover here.

14.1 Projective modules

All rings will be associative with 1, but may not be commutative, unless stated otherwise. We
denote Proj(R) to be the category of finitely generated projective left R-modules. Below are some
easy to prove equivalent characterizations of projective modules and some of their properties.

Proposition 14.1.1. Let R be a ring and P be a left R-module. Then the following are equivalent:
1. P is finitely generated projective.
2. Any short exact sequence 0→M → N → P → 0 is split exact.
3. There exists a module Q such that P ⊕Q ∼= Rn.
4. There exists a surjection π : Rn ↠ P which splits.
5. The functor HomR (P,−) : Mod(R)→ Ab is an exact functor, where Mod(R) is the category

of left R-modules.

Proposition 14.1.2. Let P,Q ∈ Proj(R) be two finitely generated projective modules. Then18,
1. P ⊕Q is a finitely generated projective module,
2. Any direct summand of P is a finitely generated projective module.
3. If R is commutative, then P ⊗R Q is a finitely generated projective R-module.
4. If R is commutative, then P is flat.
5. ♣We have that P̌ = HomR (P,R) is a projective Rop-module. If R is commutative, then P̌ is

a projective R-module.
6. ♣If R is commutative, then rank(P̌ ) = rank(P ).
7. ♣If R is commutative, then trace of P , that is τP := Im

Ä
ev : P̌ ⊗R P → R

ä
, is an idempotent

ideal of R.

Proof. † Item 1. and 2. are immediate from Proposition 14.1.1. For item 3, observe that if
P ⊕ P ′ = R⊕n, then (P ⊗R Q) ⊕ (P ′ ⊗R Q) = (P ⊕ P ′) ⊗R Q = R⊕n ⊗R Q = Q⊕n. As Q is
projective, therefore Q⊕n is projective by item 1. We conclude by item 2.

For item 4, we need only show that for an injective map f : M ′ → M , the map f ⊗ id :
M ′ ⊗R P →M ⊗R P is also injective. As P is projective, so there exists Q f.g. projective module
such that P ⊕Q = Rn. Consequently, we get the commutative diagram as below:

(M ′ ⊗R P )⊕ (M ′ ⊗R Q) M ′ ⊗R (P ⊕Q) (M ′)⊕n

(M ⊗R P )⊕ (M ⊗R Q) M ⊗R (P ⊕Q) M⊕n

∼=

(f⊗id)⊕(f⊗id)

∼=
f⊗id f⊕n

∼= ∼=

.

The right vertical map is injective by hypothesis. By commutativity of the diagram above, the rest
of the two vertical maps are also injective. Hence, f ⊗ id :M ′⊗R P →M ⊗R P is injective as well,

18We put ♣ wherever finite generation of P and Q are not needed, i.e. if only projectivity of P and Q are needed.
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as required.
Item 5 follows from existence of Q such that P ⊕Q ∼= Rn and that direct sum in first variable

commutes with hom.
For item 6, first observe that P ⊗R κ(p) ∼= Pp/pPp. Since HomR (P,R)p ∼= HomRp (Pp, Rp) = P̌p

as one of the modules in the hom is finitely presented (see Proposition 2.2.13), therefore we need
only show that Pp

∼= HomRp (Pp, Rp). To this end, as localization of projective modules is projective
since localization is exact, we deduce that Pp is projective Rp-module. Consequently, Pp is free as Rp

is local (see Theorem 24.0.9). Hence the required isomorphism Pp
∼= HomRp (Pp, Rp) is immediate.

For item 7, the fact that τP is an ideal is immediate from definition of ev as ϕ ⊗ x 7→ ϕ(x).
We now show that τ2P = τP . To this end, we need only show that τP ⊆ τ2P . It can be seen that
it is sufficient to show that any element x ∈ P can be written as x = ∑n

i=1 ψi(x)xi for xi ∈ P
and ψi ∈ P̌ . Indeed, as there exists Q such that P ⊕ Q = RF , therefore for any x ∈ P , we may
write x = ∑n

i=1 rixi where ri = fi(x) where {fi}i∈F is the dual basis of (RF )̌. This completes the
proof.

Recall that an R-module M is locally free if for all p ∈ Spec (R), there exists a basic open
p ∈ D(f) ⊆ Spec (R) such that Mf is a free Rf -module19. An important local characterization of
projective modules is the following.

Theorem 14.1.3. Let R be a commutative ring and M be an R-module. Then the following are
equivalent:

1. M is finitely generated projective.
2. M is locally free of finite rank.

Proof. (1. ⇒ 2.) Pick p ∈ Spec (R). Then, Mp is a finitely generated Rp-module which is also pro-
jective as localization is exact. It follows from Theorem ?? that Mp = (Rp)⊕n. Let {mi/si}i=1,...,n
be an Rp-basis of Mp. It follows by multipliying by s1 . . . sn that we have a map f : Rn →M which
may not be surjective, however, fp : Rn

p → Mp is surjective. Denoting N = CoKer (f), we deduce
that Np = 0. As N is finitely generated, it follows that there exists s ∈ R such that Ns = 0. But
since Ns = CoKer (fs), where fs : Rn

s → Ms, thus, we deduce that fs is surjective. Since Ms is a
projective Rs-module, thereforeMs⊕P = Rn

s where P is a finitely generated projective Rs-module.
Localizing at p again, we see that Mp ⊕ Pp = Rn

p , but since Mp = Rn
p , thus, Pp = 0. It follows

by finite generation that there exists t ∈ R such that t · P = 0 and thus Pt = 0. It follows that
Mst ⊕ Pt = Rn

st and thus Mst = Rn
st so that f = st will do the job.

(2. ⇒ 1.) The proof is in two steps. In step 1, one shows that a locally free module of finite
rank is finitely presented with free stalks. This follows from faithfully flat descent. In step 2, one
shows that finitely presented modules with free stalks are projective. Indeed, let M be such a
module. Then, we have an exact sequence

Rm → Rn π→M → 0.

By Proposition 14.1.1, it suffices to show that π splits. To this end, it is sufficient to show that π∗ :
HomR (M,Rn)→ HomR (M,M) is surjective, as then idM will have a section, as required. Indeed,
as surjectivity of maps of modules is a local property (fp :Mp → Np is surjective for all p ∈ Spec (R)

19That is, M̃ is locally free, i.e. a vector bundle over Spec (R).
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if and only if f :M → N is surjective), thus we reduce to showing that (π∗)p is surjective. As Hom
and localization commutes if one of the modules is finitely presented (see Proposition 23.1.2.13 of
[FoG]), therefore we wish to show that πp∗ : HomRp

(
Mp, R

n
p

)
→ HomRp (Mp,Mp) is surjective.

This is true as the map πp : Rn
p → Mp is surjective by exactness of localization and since Mp is a

projective Rp-module as it is free by our hypothesis. This concludes the proof.

Remark 14.1.4. By Theorem 14.1.3, it follows that vector bundles over Spec (R) are in one-to-one
bijection with projective modules over R.

Using the above result, we can show that rank of a projective module is a continuous function
from Spec (R) to Z.

Proposition 14.1.5. Let R be a commutative ring and M be a projective R-module. Then rank :
Spec (R)→ Z is a continuous map.

Proof. † By discreteness of Z, it suffices to show that each fibre of rank is an open set. Indeed,

rank−1(n) = {p ∈ Spec (R) | dimκ(p)M ⊗R κ(p) = n}
= {p ∈ Spec (R) | dimκ(p)Mp/pMp = n}.

By Theorem 14.1.3,M is locally free, henceMp
∼= Rk

p for all p in some largest open set U ⊆ Spec (R).
Consequently, dimκ(p)Mp/pMp = dimκ(p)(Rp/pRp)k = dimκ(p) κ(p)k = k for all p ∈ U . Thus the
above fibre is either empty or non-empty open set, as required.

A simple example shows that Proj(R) cannot be abelian.

Example 14.1.6. Let Z be free Z-module of rank 1. Observe that 2Z ⊆ Z is also a free module
of rank 1. Hence both Z and 2Z are projective Z-modules. However, Z/2Z is not a projective
Z-module as it cannot be a direct summand of Z⊕n for any n ∈ N since Z⊕n doesn’t have any
2-torsion element. Consequently, Proj(R) is not abelian.

One observes that rank of a constant rank projective module remains same under extension of
scalars.

Proposition 14.1.7. Let f : R→ S be a ring homomorphism between commutative rings. If P is
a finitely generated projective R-module, then

rank(P ⊗R S) = rank(P ) ◦ f∗.

Hence, if P is constant rank n, then so is P ⊗R S.

Proof. Let q ∈ Spec (S) and f∗(q) = f−1(q) = p ∈ Spec (R). We need only show that if P⊗Rκ(p) ∼=
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κ(p)n, then (P ⊗R S)⊗S κ(q) ∼= κ(q)n. Indeed, as

(P ⊗R S)⊗S κ(q) ∼= P ⊗R κ(q)
∼= P ⊗R Sq ⊗S S/q
∼= P ⊗R Rp ⊗Rp Sq ⊗S S/q
∼= Pp ⊗Rp Sq ⊗S S/q
∼= Rn

p ⊗Rp Sq ⊗S S/q

∼= Sn
q ⊗S S/q

∼= (Sq ⊗S S/q)n
∼= κ(q)n,

as required.

It is quite intuitive to claim that finite rank projective modules ought to be finitely generated.
Indeed it is true.

Proposition 14.1.8. Let R be a commutative ring and M be a finite rank projective module. Then
M is finitely generated.

Proof. † A result of Kaplansky states that a module over commutative ring R is projective if and
only if it is locally free (we have done the finite case above in Theorem 14.1.3). Since by Theorem
14.1.3, it is sufficient to show that M is locally free of finite rank, where by above we already know
it is locally free, we need only show that M is also finitely locally free. Let f ∈ R be such that
Mf
∼= RF

f . We wish to show that |F | < ∞. As M is finite rank, therefore for each p ∈ Spec (R),
dimκ(p)M ⊗R κ(p) < ∞. If f /∈ p, then since Mp = (Mf )p ∼= (RF

f )p ∼= RF
p , we deduce that

M ⊗R κ(p) ∼=Mp/pMp
∼= (Rp/pRp)F = κ(p)F . Thus |F | <∞, as required.

An important conceptual result which will guide us in defining higher K-groups is the cofinality
of free modules in projective modules.

Lemma 14.1.9. Let R be a ring and let Free(R)∼= be the isomorphism classes of finitely generated
free R-modules. This is a monoid under direct sum with identity 0. Then Free(R)∼= is cofinal in
Proj(R)∼=.

There is also a characterization of finitely generated projective modules in terms of flatness.

Proposition 14.1.10. Let R be a commutative ring and M be an R-module. Then the following
are equivalent:

1. M is a finitely presented flat R-module.
2. M is a finitely generated projective R-module.

Proof. (1. ⇒ 2.) As M is finitely generated, thus to show that it is flat, it suffices to show that
Mp is a free Rp-module for each p ∈ Spec (R). As localization is exact, we reduce to assuming that
R is a local ring and M is a finitely presented flat R-module. By Corollary 6.6 of cite[Eisenbud], it
follows that M is projective R-module. As projective modules over local rings are free (Theorem
24.0.9), thus M is free, as required.
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(2. ⇒ 1.) As M is finitely generated projective, then it is finitely presented as if M ⊕ N ∼= Rn

where N is thus also finitely generated projective, then we get a presentation N → Rn →M → 0,
as required. Clearly, M is flat by Proposition 14.1.2, 4.

14.2 Divisible modules and Baer’s criterion

Baer’s criterion gives a characterization of injective R-modules. It consequently helps to show that
divisible modules are injective in Mod(R) and thus that Mod(R) has enough injectives.

Definition 14.2.1 (Divisible modules). An R-module M is said to be divisible if for every
r ∈ R, the multiplication by r map µr :M →M is surjective.

Theorem 14.2.2. (Baer’s criterion) Let R be a ring and M be an R-module. The following are
equivalent:

1. M is an injective R-module.
2. For any ideal a ≤ R and any map f : a→M , there exists an extension g : R→M such that

the following commutes:
0 a R

M

f
g

.

That is, one needs to check injectivity condition along inclusions of submodules of R.

Proof. 1. ⇒ 2. is immediate from definition. For 2. ⇒ 1. we proceed as follows. Pick i : A→ B an
injection of submodule A ≤ B and a map f : A→M . We wish to extend this to g : B →M . Indeed,
consider the poset P of tuples (A′, f ′), f ′ : A′ →M an extension of f with (A′, f ′) ≤ (A′′, f ′′) such
that A′ ⊆ A′′ and f ′′ extends f ′. By Zorn’s lemma, we have a maximal extension f̄ : Ā→M . We
reduce to showing that Ā = B. If not, then there is b ∈ B \ Ā. Consider Ã = Rb + Ā. We claim
that there is a map f̃ : Ã → M extending f . Indeed, consider the ideal a = {r ∈ R | rb ∈ Ā}.
The map f̄ defines a map a → M given by r 7→ f̄(rm). By hypothesis, this has an extension, say
κ : R → M . Thus, we may define g : Ã → M as rb + ā 7→ κ(r) + f̄(ā). This extends f as if
rb + ā ∈ A, then rb ∈ Ā. Consequently, κ(r) + f̄(ā) = f̄(rb) + f̄(ā) = f̄(rb + ā) = f(rb + ā), as
needed.

As a corollary, we see that injective R-modules are divisible.

Corollary 14.2.3. Let R be a ring and M be an R-module. If M is injective, then M is divisible.

Proof. Pick any m ∈ M and r ∈ R. Then, we have an R-linear map µr : ⟨r⟩ → M given by
r 7→ m. By Theorem 14.2.2, 2, this extends to an R-linear homomorphism g : R → M where
µr(r) = g(r) = rg(1) = m, Thus g(1) ∈M is such that rg(1) = m, as needed.
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15 Multiplicities
We study Hilbert polynomial and multiplicity of a graded module at a prime. This is useful to do
intersection theory in projective spaces. In the general setting, we will assign a Hilbert polynomial
to each projective variety, which yields invariants of the variety in question.

15.1 Length

We begin by studying length of modules.

Definition 15.1.1 (Length of a module). Let R be a ring and M be an R-module. Then the
length of M is given by the length of the longest ascending chain of submodules of M :

lenR(M) := sup{r ∈ N |M0 ⊊M1 ⊊M2 ⊊ · · · ⊊Mr is a chain of submodules of M}.

A finite chain M0 ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mr is called a maximal length chain if it cannot be
extended, that is, each factor Mi/Mi−1 is a simple module. A maximal length chain is also called a
composition series. Consequently, length of a module M is defined to be the length of the longest
composition series.

An important result about length of modules is the fact that over a local ring R, any two
composition series have the same length and composition factors.

Theorem 15.1.2 (Jordan-Hölder). Let R be a local ring and M be an R-module which contains a
composition series. Then any other composition series has the same length and composition factors.
That is, length of M is equal to length of any composition series.

The following are essential properties of length which one uses while dealing with maps.

Lemma 15.1.3. Let f : R → S be a map of rings and M be an S-module. Then lenR(M) ≥
lenS(M) and equality holds if f is surjective.

Proof. Follows from correspondence of submodules via a quotient map.

We wish to characterize finite length modules over a noetherian ring. We begin with a lemma.

Lemma 15.1.4. Any finite length R-module is finitely generated.

Proof. If M is not finitely generated, then let {fα}α∈I be a generating set of M and let {fn}n be
a subsequence. Then, the chain

0 ⊊ ⟨f1⟩ ⊊ ⟨f1, f2⟩ ⊊ . . .

is a chain of submodules of M which doesn’t stabilizes, a contradiction to finite length.

Using results on artinian rings (§4.1), we see an important characterization of artinian rings
and finite length rings.

Theorem 15.1.5. Let R be a ring. The following are equivalent:
1. R is artinian.
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2. R has finite length.

Proof. (1. ⇒ 2.) By Theorem 4.1.3, 3, we reduce to assuming R is local artinian, (R,m). By
Proposition 4.1.2, 3, Jacobson radical of R is nilpotent, which is just m. We construct a chain of
ideals of R, where each subquotient has finite length. Indeed, consider the chain

0 = mn ⊊ mn−1 ⊊ · · · ⊊ m2 ⊊ m ⊊ R.

Note that mi−1/mi is an κ = R/m-module. If any one of mi/mi−1 is infinite dimensional as an
κ-vector space, then the above chain of ideals can be refined to an infinite chain of strictly decreas-
ing ideals, a contradiction to artinian condition. Hence each subquotient is a finite dimensional
κ-module and hence its length as an R-module is equal to its dimension as a κ-module (Lemma
15.1.3).

(2. ⇒ 1.) Take any descending chain of ideals I0 ⊋ I1 ⊋ I2 ⊋ . . . . If it doesn’t stabilize,
then we have an infinite length chain, so that len(R) is not finite, a contradiction.

The following is an essential result which we’ll use later.

Proposition 15.1.6. Let R be a noetherian ring and M be a finitely generated R-module. If
p ∈ Supp (M) is a minimal prime of M , then Mp is a finite length Rp-module.

Proof. As Supp (M) = V (Ann(M)), therefore a minimal prime p ∈ Supp (M) is an isolated/minimal
prime of Ann(M). As Mp is an Rp-module, therefore it suffices to construct a composition series
of Mp. Let M be generated by f1, . . . , fn ∈ M , so that Mp is also generated by their respective
images. We thus get the following chain:

0 ⊆ ⟨f1⟩ ⊆ ⟨f1, f2⟩ ⊆ · · · ⊆ ⟨f1, . . . , fn⟩ =Mp.

It suffices to show that ⟨f1,...,fi⟩
⟨f1,...,fi−1⟩ is a finite length Rp-module. Indeed, we have a surjection

⟨fi⟩↠
⟨f1, . . . , fi⟩
⟨f1, . . . , fi−1⟩

,

hence it suffices to show that ⟨fi⟩ is a finite length Rp-module. To this end, pick any x ∈M . We’ll
show that xRp is a finite length Rp-module. Observe that ⟨x⟩ = xRp is isomorphic to Rp/I where
I is the annihilator of x in Rp. We may write I = aRp where a ≤ R is contained in p. Hence,
we wish to show that S = Rp/aRp is a finite length Rp-module, that is S is a finite length ring.
Indeed, as S = (R/a)p and p is a minimal prime in Supp (M), that is, minimal prime containing
Ann(M), and since Ann(M) ⊆ a ⊆ p, therefore p is a minimal prime of a as well. It follows that
S = (R/a)p is a dimension 0 ring. Since R is noetherian and noetherian property is inherited by
quotients and localizations, therefore S is a noetherian ring of dimension 0, hence artinian. From
Theorem 15.1.5, it follows that S is of finite length, as required.

Proposition 15.1.7. Let R be a noetherian ring and M be an R-module. Then the following are
equivalent:

1. M has finite length.
2. M is finitely generated and dimR/Ann(M) = 0, i.e. R/Ann(M) is an artinian ring.
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Proof. (1. ⇒ 2.) By Lemma 15.1.4,M is finitely generated. Let 0 =M0 ⊊M1 ⊊M2 ⊊ · · · ⊊Mr =
M be a composition series of M , which exists as len(M) <∞. We thus get that Mi/Mi−1 ∼= R/mi

for some maximal ideals mi by Lemma 2.1.1. Note that dimR/Ann(M) = 0 if and only if Supp (M)
consists only of maximal ideals. So let p ∈ Supp (M). Thus Mp ̸= 0. It follows that for some i,
(Mi/Mi−1)p ̸= 0. As (Mi/Mi−1)p = (R/mi)p, therefore this can only happen if mi ⊆ p, i.e. mi = p,
as required. This also shows that Supp (M) = {m1, . . . ,mr}.

(2. ⇒ 1.) We need only construct a composition series of M . We have Supp (M) consists only
of maximal ideals. Consider Supp (M) ⊆ Spec (R). As M is finitely generated, say by f1, . . . , fn.
Then we get a chain of submodules

0 ⊊ ⟨f1⟩ ⊊ ⟨f1, f2⟩ ⊊ · · · ⊊ ⟨f1, . . . , fn⟩ =M.

We need only show that each subquotient is a finite length R-module. Indeed, as we have a
surjection

⟨fi⟩↠
⟨f1, . . . , fi⟩
⟨f1, . . . , fi−1⟩

,

so it suffices to show that ⟨fi⟩ is a finite length R-module. To this end, it suffices to show that for
each x ∈ M , the submodule Rx is of finite length. Indeed, we have Rx ∼= R/I where I = Ann(x).
As I ⊇ Ann(M), therefore

R/I ∼=
R/Ann(M)
I/Ann(M) .

As R/Ann(M) is an artinian ring and any quotient of artinian ring is an artinian ring, it follows at
once that R/I is an artinian ring. By Theorem 15.1.5, R/I ∼= Rx is of finite length, as required.

15.2 Degree of a graded module

We begin by studying multplicity at a prime.

Definition 15.2.1 (Multiplicity at a prime). Let R be a ring and M be an R-module. The
multiplicity of M at prime p ∈ Spec (R) is given by

µp(M) := lenRp Mp.

Definition 15.2.2 (Hilbert function). Let R be a ring andM be a graded k[x0, . . . , xn]-module.
The Hilbert function of M is defined to be the following

ϕM : Z −→ Z
d 7−→ dimkMd.

The main theorem on Hilbert functions is that it is actually a numerical polynomial (a rational
polynomial which on large integers give integers), and that this polynomial is unique.

Theorem 15.2.3 (Hilbert-Serre). Let S = k[x0, . . . , xn] and M be a finitely generated graded S-
module. Then, there exists a polynomial PM (x) ∈ Q[x] such that it is unique with respecto the
following properties:
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1. there exists D ∈ N such that for all d ≥ D, we have

ϕM (d) = PM (d),

that is, PM is a numerical polynomial,
2. the degree of PM (x) is equal to dimV (AnnR(M))20.

The PM (x) is called the Hilbert polynomial of M .

Proof. See Theorem 7.5 of cite[Hartshorne].

We will now define the degree of a graded S = k[x0, . . . , xn]-module. This will allow us to do
define the notion of degree of projective schemes over k.

Definition 15.2.4 (Degree of a graded S-module). Let S = k[x0, . . . , xn] and M be a graded
S-module. Then, we define

degSM := deg(PM )! · c↑(PM )

where c↑(PM ) denotes the leading coefficient of the Hilbert polynomial PM .

Remark 15.2.5. Let r = deg(PM ). We may alternatively view the degree of M as

degSM = P
(r)
M (x),

that is, the rth-derivative of PM .

20It is a simple exercise to see that the annihilator ideal of a graded S-module is homogeneous.
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16 Kähler differentials
We study analogues of tangent and cotangent bundles of topology in commutative algebra.

Definition 16.0.1 (Derivations & Kähler differentials). Let S be an R-algebra and M be
an S-module. An R-linear derivation d : S → M is a group homomorphism such that it satisfies
Leibnitz’s rule:

d(fg) = fd(g) + gd(f).

The set of all R-linear derivations S →M forms an S-module denoted DerR(S,M). We define the
S-module of Kähler differentials of S/R as the follows. Define X = {d(f) | f ∈ S} be a set of free
symbols one for each f ∈ S. Then define Käh(S) to be the S-submodule of S⊕X generated by

d(fg)− fd(g)− gd(f), d(af + bg)− ad(f)− bd(g)

for all a, b ∈ R and f, g ∈ S. We then define ΩS/R to be the following quotient:

0→ Käh(S)→ S⊕X → ΩS/R → 0.

Observe that d(a) = 0 in ΩS/R for all a ∈ R, thus if R ↠ S is surjective, then ΩS/R = 0. The
canonical map

d : S −→ ΩS/R

f 7−→ d(f)

is an R-linear derivation of S in ΩS/R called the universal R-linear derivation.

We immediately have the following helpful characterization.

Proposition 16.0.2 (Universal property of ΩS/R). Let S be an R-algebra. The for any S-module
M and any R-linear derivation e : S → M , there exists a unique S-linear homomorphism d̃ :
ΩS/R →M such that the following commutes:

ΩS/R M

S

ẽ

d e
.

Proof. Consider the S-linear map

e⊕X : S⊕X −→M
n∑

i=1
fidgi 7−→

n∑
i=1

fiegi.

It follows at once that Ker
(
e⊕X

)
⊇ Käh(S). By universal property of cokernels, we thus obtain a

unique S-linear map

ẽ : ΩS/R −→M

such that the required triangle commutes.
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Corollary 16.0.3. Let S be an R-algebra and M be an S-module. Then there is an S-linear
isomorphism

DerR(S,M) ∼= HomS

(
ΩS/R,M

)
.

Proof. The S-linear isomorphism is given by e 7→ ẽ, which is injective by universal property and
surjective by composition with universal R-linear derivation d.

Remark 16.0.4. Just as tensor product is the representing object of bilinear maps from M ×N ,
similarly ΩS/R is the representing object of R-linear derivations from S.

Example 16.0.5. Let R be a ring and S = R[x1, . . . , xn]. Then we claim that ΩS/R is free
S-module of rank n given by

ΩS/R = Sdx1 ⊕ · · · ⊕ Sdxn.

Indeed, as ΩS/R is a finitely generated S-module by dx1, . . . , dxn via Leibnitz’s rule, therefore we
have an S-linear surjection

S⊕n −→ ΩS/R

(p1, . . . , pn) 7−→
n∑

i=1
pidxi.

This has an inverse given by the unique maps ∂i : ΩS/R → S induced by the R-linear derivations
∂i : S → S mapping p 7→ ∂

∂xi
p. This completes the proof.

Remark 16.0.6 (Relative cotangent functor). The assignment of Kähler differentials is functorial.
Indeed, by universal properties, we have

S S′ ΩS/R ΩS′/R′

R R′ S S′

ϕ ϕ̃

d

ϕ

d
.

Moreover, the S-linear map

ϕ̃ : ΩS/R → ΩS′/R′

is equivalent to the S′-linear map

S′ ⊗S ΩS/R −→ ΩS′/R′

f ′ ⊗ fdg 7−→ f ′ϕ(f)dϕ(g).

We have two fundamental exact sequences aiding computations.

Proposition 16.0.7 (Cotangent sequence/First sequence). Let R be a ring and R → S → T be
ring homomorphisms. Then the following is an exact sequence of T -modules where the maps are
the obvious ones:

T ⊗S ΩS/R −→ ΩT/R −→ ΩT/S −→ 0.
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Proof. Kernel on the right is exactly the T -submodule generated by ds for s ∈ S. This is exactly
the image of the left as well.

Proposition 16.0.8 (Conormal sequence/Second sequence). Let S be an R-algebra and I ≤ S be
an ideal. Denote T = S/I to be the quotient S-algebra. Then the following is an exact sequence

I/I2
d−→ T ⊗S ΩS/R −→ ΩT/R −→ 0.

The map d : x+ I2 7→ 1⊗ dx and the other is the natural map corresponding to π : S → S/I.

It is wise to discuss the following result immediately, so that one can see how the geometric
discussion of differentials might be carried.

Theorem 16.0.9 (Diagonal criterion). Let S be an R-algebra and ϕ : S⊗R S → S be the structure
morphism. Let I = Ker (ϕ) which is an S-module as it is a submodule of S-module S ⊗R S. Then,
for the R-linear derivation e : S → I/I2 mapping s 7→ 1⊗ s− s⊗ 1, the pair (I/I2, e : S → I/I2)
is isomorphic to (ΩS/R, d : S → ΩS/R):

(I/I2, e) ∼= (ΩS/R, d).

Proof. We need only prove that both the pairs satisfy the same universal property as stated in
Proposition 16.0.2. TODO

Kähler differentials behaves nicely with tensor products and localizations. The main idea behind
both proofs is to use functoriality of Kähler differentials and the resulting maps and then form their
inverses (see Remark 16.0.6).

Proposition 16.0.10 (Base change). Let R be a ring and R′ and S be R-algebras. Consider the
pushout square

S S ⊗R R
′

R R′

⌜

.

Then,

ΩS⊗RR′/R′ ∼= ΩS/R ⊗S (S ⊗R R
′).

Proposition 16.0.11 (Localization). Let S be an R-algebra and M ⊆ S be a multiplicative set.
Consider the following commutative square

S M−1S

R Rid

.

Then

ΩM−1S/R
∼=M−1ΩS/R.
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17 Depth, Cohen-Macaulay & regularity
We now study some homological properties of commutative rings with 1.

17.1 Regular rings, projective & global dimension

Definition 17.1.1 (Regular ring, projective and global dimension). A noetherian ring R
is said to be regular if every R-module M has a finite length projective resolution. That is, if for
every R-module M , there exists an exact sequence

0→ Pn → Pn−1 → · · · → P0 →M → 0

such that Pi are projective R-modules where n is the length of the projective resolution. The
projective dimension of an R-module M is defined as

pd(M) := inf{length of projective resolution of M}.

Further we define global dimension of R as

gl dim(R) := sup{pd(M) |M ∈Mod(R)}.

By far the most important class for us is the regular local rings. We first establish the following
to resolve the tension made in Definition 2.2.16, amongst other goals.

Theorem 17.1.2. Let (R,m) be a local ring with k = R/m. Then the following are equivalent:
1. R is a regular local ring21.
2. dimk m/m

2 = dimR.
3. If m has minimal generating set as {a1, . . . , an}, then dimA = n.
4. gl dim(A) = dimA <∞.

Some more properties of regular local rings are as follows.

Proposition 17.1.3. Let (R,m) be a regular local ring.
1. R is a noetherian normal domain, in particular, a Krull domain (see Definition ??).
2. If x ∈ m \m2, then xR is a prime ideal.

Localization of a regular ring at a prime is a regular local ring.

Lemma 17.1.4. Let A be a regular ring. For any p ∈ Spec (A), the local ring Ap is regular.

Proof. Take any Ap-module M . We wish to show that M has a finite length projective resolution
by Ap-modules. To this end, consider the localization map A → Ap. By restriction, we have an
A-module MA. By Lemma 2.2.19, we have MA ⊗A Ap

∼= M . Consequently, as MA has a finite
length resolution by projective A-modules, localizing at p, we get a finite length resolution of M
by projective Ap-modules, as localization of projective modules is projective.

Our first goal is to show that regular local rings are UFD. This will help us in showing that on
a locally factorial domain (more generally locally factorial noetherian integral separated scheme),
Weil and Cartier divisor groups agree. We will do this using the theory of Weil and Cartier divisors
themselves.

21in the sense of Definition 17.1.1.
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Theorem 17.1.5. Let R be a regular local ring. Then R is a UFD.

First observe the following important reduction.

Proposition 17.1.6. Let R be a noetherian domain. Then the following are equivalent:
1. R is a UFD.
2. All height 1 primes of R are principal.

Proof. (1. ⇒ 2.) Let p be a non-zero prime ideal. Pick any non-zero a ∈ p. As R is a UFD, we
may write a = pn1

1 . . . pnk
k where pi ∈ R are primes. Assume k ≥ 2. As p is a prime and a ∈ p, it

follows that there exists pi ∈ p. Thus, piR ⊊ p, which is a contradiction to height 1 of p. It follows
that k = 1, and thus p = piR, as required.

(2. ⇒ 1.) Observe that a noetherian domain is in particular a factorization domain. Conse-
quently, we need only show that any irreducible element is prime. Let f ∈ R be irreducible. We
wish to show that fR is a prime ideal. By Krull’s Hauptidealsatz (Theorem 9.3.2), if p is a minimal
prime containing fR, then since R is a domain, we deduce that p is of height 1. By our hypothesis,
p = pR is principal where p ∈ R is a prime element. As fR ⊆ pR, we deduce that p|f , i.e. f = pr
for some r ∈ R. But f is irreducible, therefore either p or r is a unit. As p is prime, so r is a unit
and thus fR = pR is a prime ideal, as required.

Proof of Theorem 17.1.5. By Proposition 17.1.6, we need only show that height 1 primes of R
(prime divisors of R) are principal. We do this by induction on dim(R). If dim(R) = 1, then
by Theorem 11.1.8, we deduce that R is a DVR and thus is PID, so a UFD. Now assume that
dim(R) = n and any regular local ring of dimension < n is UFD. Let f ∈ m \m2. By relative Weil
divisors (Proposition ??), as fR is principal (Proposition 17.1.3, 2), we get that Cl(R) ∼= Cl(Rf ).
By R UFD iff Cl(R) = 0, we reduce to showing that S = Rf is a UFD. By Proposition 17.1.6, it
suffices to show that all height 1 primes of S are principal, which is same as showing that all height
1 primes are free of rank 1.

Let p be a height 1 prime of S. As R is regular, p is obtained by localizing a prime of R at
f and localization being exact, we deduce that we have a free resolution of p (finitely generated
projective modules over local ring R) as

0→ Skn → · · · → Sk0 → p→ 0.

For any prime q ∈ S, pq is a prime ideal of Sq of height 1 where Sq is a regular local ring of dim
< n, so that by inductive hypothesis, it is UFD and thus by Proposition 17.1.6, it follows that pq
is principal and thus free. Hence pq is free at each prime of S, hence p is projective module of rank
1 i.e. a line bundle.

By above resolution, we deduce that p is a stably free line bundle over S. As stably free line
bundles are free22, we get that p is free, as required.

22if M is a line bundle such that M⊕Rn = Rn+1, then taking ∧n+1 both sides, we deduce that ∧n+1(M⊕Rn) ∼= R.
Now ∧n+1(M ⊕Rn) ∼=

⊕n+1
i=0 ∧iM ⊕ ∧n+1−iRn =

⊕n+1
i=1 ∧iM ⊕ ∧n+1−iRn =

⊕n+1
i=1 (∧

iM)
nCn+1−i . Localizing at p,

we deduce that Rp
∼=
⊕n+1

i=1 (∧
iRp)

nCn+1−i , from which we deduce that
⊕n+1

i=2 (∧
iM)

nCn+1−i is zero at each prime p
and is thus 0 module. It follows that R ∼= ∧1M ∼= M , as required.
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17.2 Depth

We begin with the notion of depth of an R-module.

Definition 17.2.1 (I-depth). Let R be a ring, I ≤ R be an ideal and M a finitely generated
R-module such that IM ⊊M . Define the I-depth of M as

depthI(M) := min{i ≥ 0 | ExtiR(R/I,M) ̸= 0}.

For a local ring (R,m, κ) and a finitely generated R-module M , we define

depth(M) := depthm(M) = min{i ≥ 0 | ExtiR(κ,M) ̸= 0},

that is, depth of M is just the m-depth of M as an R-module23.

The main theorem about depth is the famous Auslander-Buchsbaum theorem.

Theorem 17.2.2 (Auslander-Buchsbaum). Let R be a noetherian local ring. For a non-zero finitely
generated R-module M with pdR(M) <∞, we have

pdR(M) + depth(M) = depth(R).

23One might as well call the depth of a local ring as its Ext-dimension.
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18 Filtrations
Do from Chapter 5 of Eisenbud

19 Flatness
This is one of the important parts of commutative algebra, as this notion corresponds to the idea
of a continuous family of schemes, in some sense, as is discussed in the respective part above.

Definition 19.0.1. (Flat modules and flat map of rings) Let R be a ring. An R-module M
is said to be flat if for any short exact sequence of R-modules

0 N1 N2 N3 0

the following sequence is exact

0 M ⊗R N1 M ⊗R N2 M ⊗R N3 0 .

A map ϕ : A → B is a flat map if B is a flat A-module. In this case one also calls B to be a flat
A-algebra.

Remark 19.0.2. 1. By right exactness of tensor products, it is sufficient to check that the s.e.s.
0→ N1 → N2 is taken to s.e.s 0→M ⊗R N1 →M ⊗R N2.

2. Since localisation is an exact functor (Lemma 2.2.2), thus the natural map A → S−1A is a
flat map for any multiplicative set S ⊆ A.

Recall that TorRi (M,−) is the ith-left derived functor of N 7→M ⊗RN . A module M is said to
be flat if the tensor functor N 7→M ⊗R N is exact. Here are equivalent notions of flatness:

Theorem 19.0.3. Let R be a ring and M be an R-module. Then the following are equivalent:
1. M is a flat R-module.
2. TorRi (M,N) = 0 for all i ≥ 1 and R-modules N .
3. TorR1 (M,N) = 0 for all R-modules N .
4. TorR1 (M,N) = 0 for all finitely generated R-modules N .
5. TorR1 (M,R/I) = 0 for every ideal I ≤ R.
6. I ⊗R M →M is injective for every ideal I ≤ R.
7. I ⊗R M → IM is an isomorphism for every ideal I ≤ R.
8. Mp is a flat Rp-module for every p ∈ Spec (R).

Proof. (1. ⇔ 2.) Pick any projective resolution of N as P•
ϵ→ N → 0 and consider the complex

M ⊗ P•. As TorRi (M,N) = Ker (di ⊗ id)/Im (di+1 ⊗ id), therefore to show (1 ⇒ 2), it suffices to
show that Im (di+1 ⊗ id) = Ker (di ⊗ id). By applying −⊗M on 0→ Im (di+1) = Ker (di)

ιi+1→ Pi
di→

Im (di)→ 0, we get that Ker (di ⊗ id) = Im (ιi ⊗ id), so that we reduce to showing Im (ιi+1 ⊗ id) =
Im (di+1 ⊗ id). This is provided by tensoring the following diagram with M and using flatness of
M :

0 Im (di+1) Pi

Pi+1

ιi+1

di+1
di+1 .
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The converse is immediate by the long exact sequence of a derived functor associated to a short
exact sequence. Note that (2. ⇒ 3.) is easy.

(3. ⇔ 1.) If TorR1 (M,N) = 0 for any N , then M is flat as for any short exact sequence
0 → N1 → N2 → N3 → 0, the corresponding l.e.s. of Tor gives exactness of 0 → M ⊗ N1 →
M ⊗N2 →M ⊗N3 → 0.

(4. ⇔ 3.) If N is any R-module, then we have a

Some more properties of flat modules are as follows.

Theorem 19.0.4. Let R be a ring and M be an R-module.
1. If M is projective, then M is flat.
2. If R is local and M is flat, then M is free.
3. If M is finitely generated, then M is projective if and only if M is flat.
4. If M,N are flat R-modules, then so is M ⊗R N .
5. If M = ⊕iMi, then M is flat if and only if Mi are flat.
6. If S ⊆ R is a multiplicative set, then S−1A is flat.
7. If 0→M ′ →M →M ′′ → 0 is exact and M ′′ is flat, then M is flat if and only if M ′ is flat.
8. (Extension of scalars) If f : R→ S is a ring homomorphism and M is flat, then M ⊗R S is

a flat S-module.
9. (Restriction of scalars for flat maps) If f : R → S is a flat ring homomorphism and N is a

flat S-module, then N is a flat R-module.
10. Rings R[x1, . . . , xn] is a flat R-module.
11. If R is a PID, then M is flat if and only if M is torsion free.

Proof. 3. Follows from associativity of tensor products at once.

4. (⇒) Take any s.e.s. 0 → P → Q → P ′ → 0. Tensoring with M gives 0 → ⊕iP ⊗ Mi →
⊕iQ ⊗Mi → ⊕iP

′ ⊗Mi → 0. It is clear that 0 → P ⊗Mi → Q ⊗Mi → P ′ ⊗Mi → 0 is exact as
Ker (⊕iP ⊗Mi → ⊕iQ⊗Mi) = ⊕iKer (P ⊗Mi → Q⊗Mi). The other side (⇐) is easy.

5.

6.

7. Let 0 → P → Q be injective map of R-modules. By flatness of S as an R-module, we have
0 → P ⊗R S → Q ⊗R S is an exact sequence of S-modules. By flatness of N as an S-module, we
have 0 → (P ⊗R S) ⊗S N → (Q ⊗R S)SN is exact. By associativity and S ⊗S N ∼= N , the result
follows.

8. Note that R[x1, . . . , xn] is isomorphic as R-module to ⊕
i∈NR. The proof then follows from

item 4.
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20 Lifting properties : Étale maps
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21 Lifting properties : Unramified maps
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22 Lifting properties : Smooth maps
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23 Simple, semisimple and separable algebras
These algebras are at the heart of the Galois phenomenology, i.e. all things related to polynomials
splitting in a bigger field or not. Our study of these objects will thus motivate the study of the
corresponding geometrical picture.Find and write more

about these algebras,
Chapter ??. 23.1 Semisimple algebras

Definition 23.1.1. (Semisimple algebras over a field k) Let A be a k-algebra. Then A is a
semisimple k-algebra if the Jacobson radical of A is 0.

23.2 Separable algebras

We will first study a rather special type of separable algebras, which are finitely generated and free
as modules. Let us first give an example of such an algebra which is motivating our definition given
later.

Example 23.2.1. Consider a ring A and the A-algebra An. There is something special about An;
it is “separated” into finitely pieces which looks like A. This can be formalized. Indeed, we have
the most obvious fact about such algebras that the obvious map

ϕ : An −→ HomA (An, A)
(a1, . . . , an) 7−→ ei 7→ ai

is an isomorphism of A-algebras. More specifically, the map ϕ takes (ai) = (a1, . . . , an) to the
following mapping

ϕ((ai)) : An −→ A

(b1, . . . , bn) 7−→ a1b1 + · · ·+ anbn.

We now wish to generalize this. That is to say, taking above phenomenon as a definition we want
to generalize when an A-algebra B “separates” into simple pieces. For this to work, we need to
find an alternate characterization of the above phenomenon. For this, a little bit of thought shows
that the above map is obtained as the dual map of the φ ∈ HomA (An,HomA (An, A)) under the
⊗-Hom adjunction

HomA (An ×An, A) ∼= HomA (An,HomA (An, A))

where the isomorphism is given by

(An ×An f→ A) 7−→ ((ai) 7→ ((bi) 7→ f((ai), (bi)))) .

Now, consider the map

φ̃ : An ×An −→ A

((ai), (bi)) 7−→
n∑

i=1
aibi.
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The tensor-hom isomorphism tells us that φ̃ is the dual map of φ above. Now notice that this dual
map φ̃ has a very simple description; it is given by the following commutative diagram:

An ×An A

HomA (An, An)

φ̃

Tr .

It is this dual map that we shall generalize to the setting of arbitrary A-algebra B which is finitely
generated and free of rank n. Indeed, for any A-algebra B and chose any generating set of B as
an A-module, so that for any element b ∈ B, we can write b = (b1, . . . , bn) ∈ An. We thus get a
natural map φ̃ as in the diagram below

(b, c) B ×B A

(bicj)1≤i,j≤n HomA (B,B)

φ̃

κ Tr .

Now, consider the tensor-hom dual of φ̃ to obtain

φ : B −→ HomA (B,A)
b 7−→

(
c 7→ φ̃(b, c)

)
.

In order to mimic the case of An, we would require the map φ to be an isomorphism. Indeed, this
is what we do in the definition given below.

Before defining a nice class of separable algebras, let us define an A-algebra B to be finitely free
if B is finitely generated and free as an A-module.

Definition 23.2.2. (Free separable algebras) Let A be a ring and B be a finitely free A-algebra
of rank n and chose a generating set of B, so for b ∈ B, we can write b = (b1, . . . , bn) for bi ∈ A.
Define ϕ̃ to be the following map

(b, c) B ×B A

(bicj)1≤i,j≤n HomA (B,B)

ϕ̃

κ Tr .

Then B is said to be a separable A-algebra if the tensor-hom dual map ϕ : B → HomA (B,A) is
an isomorphism of A-algebras.

We would now like to show how separable algebras become familiar in the case of algebras over
a field.

Proposition 23.2.3. Let k be a field and A be an k-algebra. Then, the following are equivalent
1. A is a free separable k-algebra.
2. A = ∏n

i=1Ki where Ki are finite separable extensions of field k.



122 24 MISCELLANEOUS

Proof. Important exercise,
Chapter ??.

Another characterization of separable algebras is as follows.

Lemma 23.2.4. Let A be a ring and B be a finitely free A-algebra. Then the following are
equivalent.

1. B is a separable A-algebra.
2. For all {w1, . . . , wn} in B which is a generating set of free A-module B, we have

det (Tr(wiwj)1≤i,j≤n) ∈ A×.

Proof.Important exercise,
Chapter ??.

24 Miscellaneous
We collect in this section results which so far doesn’t fit in any other prior section. Perhaps this
means our arrangement of material is not optimal.

The following result is a generalization of Lagrange interpolation formula.

Lemma 24.0.1. Let K/F be an algebraic field extension. Then for any α1, . . . , αn ∈ K, such that
αi is not equal to any αj nor any of its conjugate, and for any choice β1, . . . , βn ∈ K, there exists
a polynomial f(x) ∈ F [x] such that f(αi) = βi for all i = 1, . . . , n.

Proof. Let α1, . . . , αn ∈ K be such that αj is not equal to αi nor any of its conjugates for any j ̸= i.
Let β1, . . . , βn ∈ K[αi]. We wish to find a polynomial f(x) ∈ F [x] such that f(αi) = βi for each
i = 1, . . . , n.

We first observe that as K is an algebraic extension of F , therefore there exists pi(x) ∈ F [x]
which is the minimal polynomial of αi ∈ K. This polynomial is obtained by looking at the kernel
of evaluation at αi, ϕi : F [x] → K where x 7→ αi. Consequently, pi(x) is a monic irreducible
polynomial of least degree in F [x] such that pi(αi) = 0, for each i = 1, . . . , n.

As mi := ⟨pi(x)⟩ ≤ F [x] are maximal ideals and pi(x) ̸= pj(x) because αi ̸= αj , αj
24, therefore

mi + mj = F [x] for all i ̸= j. Hence mi are comaximal. Consequently, we obtain by Chinese
remainder theorem that

F [x] F [x]
m1...mn

F [x]
m1
× · · · × F [x]

mn
F [α1]× · · · × F [αn]

f(x) f(x) +m1 . . .mn (f(x) +mi)i (f(α1), . . . , f(αn))

∼= ∼=

.

Consequently, by above diagram, for the elements (β,1 . . . , βn) ∈ F [α1] × · · · × F [αn], there exists
a polynomial f(x) ∈ F [x] such that (f(α1), . . . , f(αn)) = (β1, . . . , βn). Hence f(αi) = βi for each
i = 1, . . . , n. This completes the proof.

The following is a general exercise in basic ideal theory.

Lemma 24.0.2. Let R be a commutative ring with unity. Let p ⪇ R be a prime ideal and I, J ≤ R
be ideals. Then,

24because conjugates have same minimal polynomials.
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1. Ik ⊆ p for some k ≥ 0 implies I ⊆ p,
2. the following are equivalent:

(a)
√
I +
√
J = R,

(b) I + J = R,
(c) Ik + J l = R for all k, l > 0.

Proof. 1. Let I ≤ R be an ideal and p ⪇ R be a prime ideal. Then, we wish to show that
Ik ⊆ p =⇒ I ⊆ p for any k ∈ N.

Indeed, pick any x ∈ I. As xk ∈ I, therefore xk ∈ p. As xk = x · xk−1 ∈ p, therefore either
x ∈ p of xk−1 ∈ p. If the former, then we are done. If the latter, then we have xk−1 = x · xk−2 ∈ p.
Continuing in this manner, we eventually reach to the conclusion that x ∈ p.
2. ((a) ⇒ (b)) : As we have x ∈

√
I and y ∈

√
J such that x+ y = 1, therefore for some n,m ∈ N

we have xn ∈ I and ym ∈ J . Now, observe that

1 = 1n+m = (x+ y)n+m =
n+m∑
r=0

n+mCrx
ryn+m−r

=
n∑

r=0

n+mCrx
ryn+m−r +

n+m∑
r=n+1

n+mCrx
ryn+m−r.

If 0 ≤ r ≤ n, then yn+m−r ∈ J and if n+1 ≤ r ≤ n+m, then xr ∈ I. Hence∑n
r=0

n+mCrx
ryn+m−r ∈

J and ∑n+m
r=n+1

n+mCrx
ryn+m−r ∈ I. This shows that there exists a ∈ I and b ∈ J then a+ b = 1.

((b) ⇒ (c)) : As we have x ∈ I and y ∈ J such that x+ y = 1, thus writing 1 = 1k+l again, we
see

1 = 1k+l = (x+ y)k+l

=
k+l∑
r=0

k+lCrx
ryk+l−r

=
k∑

r=0

k+lCrx
ryk+l−r +

k+l∑
r=k+1

k+lCrx
ryk+l−r.

If 0 ≤ r ≤ k, then yk+l−r ∈ J l and if k + 1 ≤ r ≤ k + l, then xr ∈ Ik. Consequently, we have∑k
r=0

k+lCrx
ryk+l−r ∈ J l and ∑k+l

r=k+1
k+lCrx

ryk+l−r ∈ Ik. Hence there exists a ∈ Ik and b ∈ J l

such that a+ b = 1.
((c) ⇒ (a)) : Setting k = l = 1, we have that there exists x ∈ I and y ∈ J such that x+ y = 1. As√
I ⊇ I and

√
J ⊇ J , therefore x ∈

√
I and y ∈

√
J such that x + y = 1. Hence

√
I +
√
J = R.

This completes the proof.

The following is a counterexample to the claim that a sub-algebra of a finite type algebra is a
finite type algebra.

Lemma 24.0.3. Let R be a ring. The ring R[t, tx, tx2, . . . , txi, . . . ] is neither a finite type R-algebra
nor a finite type R[t]-algebra.

Proof. Let S = R[t, tx, tx2, tx3, . . . ]. We wish to show that S is not a finitely generated R or R[t]
algebra.
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a) We first show that S is not finitely generated R-algebra. Indeed, let p1, . . . , pn ∈ S be
generators of S as an R-algebra. Then, we have that pi ∈ R[t, tx, . . . , txmi ] as a polynomial
can atmost be in finitely many indeterminates. Hence, letting M = maximi, we obtain that
p1, . . . , pn ∈ R[t, tx, . . . , txM ]. It then follows that the R-algebra generated by p1, . . . , pn will only
be inside R[t, tx, . . . , txM ]. We consequently reduce to showing that R[t, tx, . . . , txM ] ̸= S.

Let txM+1 ∈ S. We claim that txM+1 /∈ R[t, tx, . . . , txM ]. Assuming to the contrary, we have
that for some ak0,...,kM ∈ R

txM+1 =
∑

k0,...,kM

ak0,...,kM t
k0 . . . (txM )kM

=
∑

k0,...,kM

ak0,...,kM t
k0+···+kM · xk1+2k2+···+MkM .

We thus deduce that ak0,...,kM ̸= 0 if and only if k0 + · · ·+ kM = 1. As ki ∈ Z≥0, we further deduce
that the only non-zero coefficients are a1,0,...,0, a0,1,...,0, . . . , a0,0,...,1. Hence, the above equation
reduces to

txM+1 = a1,0,...,0t+ a0,1,...,0tx+ · · ·+ a0,0,...,1tx
M .

Clearly, for no choice of coefficients a1,0,...,0, a0,1,...,0, . . . , a0,0,...,1 in R can we make both sides equal
in R[t, x]. This is a contradiction.
b) We now wish to show that S is not finitely generated as an R[t]-algebra. Assuming to the
contrary, there exists p1, . . . , pn ∈ S such that S is generated by them as an R[t]-algebra. Again
for the same reason as in a), we see that p1, . . . , pn ∈ R[t, tx, . . . , txM ] for some M ∈ Z>0. Now,
as R[t, tx, . . . , txM ] = R[t][tx, tx2, . . . , txM ], therefore the R[t]-algebra generated by p1, . . . , pn will
only be inside R[t][tx, tx2, . . . , txM ]. Hence, we reduce to showing that R[t][tx, tx2, . . . , txM ] ̸= S.
To this end, the exact same technique as in part a) works verbatim, as we need only show that
txM+1 /∈ R[t][tx, tx2, . . . , txM ] = R[t, tx, . . . , txM ].

This completes the proof.

The following result characterizes all ideals of F [[x]], yielding that F [[x]] is a local PID, i.e. a
DVR, and tells us that localization of F [[x]] at the local parameter x yields the Laurent series ring,
i.e. the fraction field of F [[x]].

Proposition 24.0.4. Let F be a field and R = F [[x]].
1. An element in a = a0 + a1x+ · · · ∈ R is a unit if and only if a0 ̸= 0.
2. Every non-zero ideal of R is of the form xkR.
3. R[x−1] = Q(R) = F ((x)).

Proof. 1. (⇒) Since ∑
i≥0 aix

i is a unit in F [[x]], therefore there exists ∑i≥0 bix
i which is an inverse

of ∑i≥0 aix
i. Consequently, we have

(a0 + a1x+ . . . ) · (b0 + b1x+ . . . ) = 1
(a0b0 + (a1b0 + a0b1)x+ . . . ) = 1.

Comparing the degree 0 term both sides, we obtain a0b0 = 1. Therefore, if a0 = 0, then a0b0 = 0
and we would thus obtain a contradiction.
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(⇐) Suppose a0 ̸= 0. We wish to find ∑
i≥0 bix

i such that
(∑

i≥0 aix
i
)
·
(∑

j≥0 bjx
j
)
= 1. We can

calculate what bis should be by observing the following:(∑
i≥0

aix
i

)
·

(∑
j≥0

bjx
j

)
=

∑
k≥0

ckx
k

where ck = ∑
i+j=k aibj . We now claim that there exists a unique solution for each bi in the

equations given by setting c0 = 1 and ck = 0 for all k ≥ 1. We show this by strong induction.
Indeed, for c0 = a0b0 = 1 yields that b0 = a−1

0 . For k = 1, we have c1 = a1b0 + a0b1 = 0 which thus
yields b1 = −a−1

0 a1b0. We now wish to show that if bl has a unique solution for all l = 0, . . . k − 1,
then bk has a unique solution as well. Indeed, bk satisfies the following equation coming from ck = 0:

0 =
∑

i+j=k

aibj

= a0bk +
∑

i+j=k,j<k

aibj .

By inductive hypothesis, for all 0 ≤ j < k, bj has a unique solution. Consequently by the above, bk
has a unique solution as well. This completes the induction which yields the required formal power
series.
∑

j≥0 bjx
j which acts as the inverse of ∑

i≥0 aix
i. 2. We wish to show that any non-zero ideal

I ≤ R is of the form I = xkR where k ∈ N. Pick any ideal I ≤ R. For any power series
p(x) = cnx

n + cn+1x
n+1 + . . . where cn ̸= 0, we define n to be the co-degree of p(x). Then, let

p(x) = ckx
k + ck+1x

k+1 + . . . be the element of I with least co-degree (such an element exists by
virtue of well-ordering of N). Consequently, we obtain p(x) = xk(ck + ck+1x+ . . . ).

We thus claim that I = xkR. Indeed, pick any f(x) ∈ I. Then, f(x) = dnx
n + dn+1x

n+1 + . . .
where dn ̸= 0. Hence, we may write f(x) = xn(dn + dn+1x + . . . ). By item 1, we know that
dn + dn+1x + . . . is a unit in R, so that we may write f(x) = xnu, u ∈ R is a unit. Now, as
f(x) ∈ I, thus co-degree of f is atleast k as p(x) ∈ I with co-degree k is the least co-degree el-
ement. Consequently, we may write f(x) = xkxn−ku. Hence f(x) ∈ xkR. Conversely, pick any
xkg(x) ∈ xkR. Since p(x) = xk(ck + ck+1x+ . . . ) where ck ̸= 0, therefore ck + ck+1x+ . . . is a unit,
hence p(x) = xkv for some unit v ∈ R. Thus, xk ∈ I and hence xkg(x) ∈ I. This completes the
proof.

3. We wish to show that R[ 1x ] = Q(R), the fraction field of R, i.e. F ((x)). Indeed, as x ∈ R
is a non-zero element, therefore 1/x ∈ Q(R) and consequently, R[ 1x ] ⊆ Q(R). We now wish to show
that converse also holds.

Pick any f(x)
g(x) ∈ Q(R) where f(x), g(x) ∈ R are power series. Let f(x) have co-degree n and

g(x) have co-degree m. We may then write

f(x)
g(x) = cnx

n + cn+1x
n+1 + . . .

dmxm + dm+1xm+1 + . . .

where cn, dm ̸= 0. We may further write above as
f(x)
g(x) = xnu

xmv
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for units u = cn + cn+1x+ . . . , v = dm + dm+1x+ · · · ∈ R (by item 1).
If n > m, then f(x)

g(x) = xn−mw
1 for some unit w ∈ R and we know that xn−m

1 ∈ R[ 1x ]. If n < m,
then f(x)

g(x) = w
xm−n for some unit w ∈ R and we know that 1

xm−n ∈ R[ 1x ]. Finally if n = m, then f(x)
g(x)

is a unit of R and hence of R[ 1x ].
Hence in all cases, f(x)

g(x) ∈ R[
1
x ]. We thus conclude Q(R) ⊆ R[ 1x ], completing the proof.

In the following theorem, we show some important properties of the ring Z[ω], where ω is a
third root of unity.

Theorem 24.0.5. Let R = Z[ω] where ω = e
2πi
3 is a cube root of unity.

1. R is a Euclidean domain.
2. The function given by

f : Spec (Z[ω]) −→ Spec (Z)

π 7−→
®
p if π = p upto associates,
ππ̄ else.

is surjective such that f−1(p) is either {π, π̄} or {p} (upto associates) for any prime p ∈
Spec (Z).

3. Let p ∈ Z be a prime. The following are equivalent:
(i) p splits in Z[ω], that is p = αᾱ for some α ∈ Z[ω],
(ii) x2 ± x+ 1 has a root in Fp, that is, ∃a ∈ Fp such that a ̸= 1 and a3 = ±1,
(iii) either p = 3 or p = 1 mod 3.

4. Take any n ∈ Z. The following are equivalent:
(i) n = a2 ± ab+ b2 for some a, b ∈ Z,
(ii) primes 2 mod 3 occurs evenly many times in the prime factorization of n.

Proof. 1. We first wish to show that R is a Euclidean domain. We claim that the following
function

d : R \ {0} −→ N ∪ {0}
α = a+ bω 7−→ αᾱ = a2 + b2 − ab

satisfies the axiom of size function for R. Indeed, pick any α, β ∈ R where β ̸= 0. We may
then write

α

β
= αβ̄

ββ̄
= αβ̄

c
= a+ ib

where a, b ∈ Q. As any rational x ∈ Q can be written as x = n + q where n ∈ Z and
0 ≤ q ≤ 1/2, therefore we may write

α

β
= a+ ib = (n1 + r1) + ω(n2 + r2)

where n1, n2 ∈ Z and 0 ≤ r1, r2 ≤ 1/2. Thus,

α = β(n1 + ωn2) + β(r1 + ωr2) (1.1)
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As α, β(n1 + ωn2) ∈ R, therefore by (1.1) we deduce that β(r1 + ωr2) ∈ R.
Note that since the size function d is the norm map, which is actually a multiplicative map
defined on whole of C as

C −→ R
z 7−→ zz̄,

hence, we see that

d(β(r1 + ωr2)) = ββ̄(r21 + r22 − r1r2)

≤ ββ̄
Å 1
22 + 1

22
ã

= ββ̄

2
< ββ̄

= d(β).

Thus, Eq. (1.1) is the required division of α by β. This proves that R is a Euclidean domain.
2. Let R be an arbitrary Euclidean domain and let Spec (R) denote the set of all prime ideals of
R. As R is a Euclidean domain, therefore it is a PID. Consequently, Spec (R) is in one-to-one
bijection with prime/irreducible elements of R together with 0. Hence, we write p ∈ Spec (R)
to mean a prime element of R. We know that Z[ω] and Z are Euclidean domains.
We wish to show that there is a surjective map

f : Spec (Z[ω]) −→ Spec (Z)

π 7−→
®
p if π = p upto associates,
ππ̄ else.

such that f−1(p) is either {π, π̄} or {p} (upto associates) for any prime p ∈ Spec (Z) where
π ∈ Spec (Z[ω]) is a prime element.
We first observe that Z[ω] has a non-trivial automorphism given by α = a+bω 7→ ᾱ = a+bω2.
Pick π ∈ Spec (Z[ω]) a non-zero prime element. Observe that automorphisms takes a prime
element to a prime element. As Z is a UFD, therefore for p1, . . . , pl ∈ Spec (Z) non-zero
primes, and π1, . . . , πk ∈ Spec (Z[ω]) non-zero primes, we may write

ππ̄ = a2 + b2 − ab
= p1 . . . pl

= π1 . . . πk

where the last equality comes from writing prime factorization of each pi in Z[ω].
Now, as Z[ω] is a UFD, therefore k = 2 and hence l ≤ 2. We now have two cases
(i) If l = 2, then ππ̄ = p1p2. Expanding each pi into product of primes in Z[ω], we

immediately deduce by unique factorization in Z[ω] that p1 = π and p2 = π̄ upto
associates (wlog). Hence, π̄ = p2 = p1. That is,

ππ̄ = p2.
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(ii) If l = 1, then

ππ̄ = p

for some non-zero prime p ∈ Spec (Z).
This defines the function f : Spec (Z[ω]) → Spec (Z). Next, we wish to show that this is
surjective. Indeed, pick any non-zero p ∈ Spec (Z). Using prime factorization in Z[ω], we
obtain primes π1, . . . , πk in Z[ω] such that

p = π1 . . . πk.

Again using the conjugation automorphism yields us

p2 = (π1π̄1) . . . (πkπ̄k).

Note πiπ̄i ∈ Z. Hence, by unique factorization of Z, we obtain k ≤ 2. We now have two cases
(i) If k = 2, then p2 = (π1π̄1)(π2π̄2). As πi are not units, we deduce that p = π1π̄1 and

p = π2π̄2. Consequently, we have π1π̄1 = π2π̄2. Thus, by unique factorization of Z[ω],
we further deduce that π1 = π2 or π̄2. Hence, p = ππ̄ for a unique π ∈ Spec (Z[ω]).

(ii) If k = 1, then

p2 = ππ̄

for some π ∈ Spec (Z[ω]). Writing p as a product of primes in Z[ω], we immediately
deduce of unique factorization of Z[ω] that p = π′ upto units for some non-zero prime
π′ ∈ Spec (Z[ω]). Consequently, p2 = π′π̄′ = ππ̄. Again by unique factorization of Z[ω],
we immediately deduce that π = π′ upto units.

This shows the surjectivity of the map f .
3. (i) ⇐⇒ (ii) : By part b), p splits in Z[ω] iff p is not prime in Z[ω]. This happens iff Z[ω]/p

is not a domain. We now observe

Z[ω]
pZ[ω]

∼=
Z[x]

⟨x2+x+1⟩
⟨p,x2+x+1⟩
⟨x2+x+1⟩

∼=
Z[x]

⟨p, x2 + x+ 1⟩

∼=
Z[x]
pZ[x]

⟨p,x2+x+1⟩
pZ[x]

∼=
Fp[x]

⟨x2 + x+ 1⟩ .

Hence, p is not prime in Z[ω] iff x2 + x + 1 is reducible in Fp[x]. As a polynomial of degree
2 or 3 over a field is reducible iff it has a root in the field, therefore p is not prime in Z[ω]
iff x2 + x + 1 has a root in Fp. Similarly, since ω2 has minimal polynomial x2 − x + 1 and
Z[ω] = Z[ω2], hence repeating the above yields p is not prime in Z[ω] iff x2−x+1 has a root
in Fp[x].
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(ii) ⇒ (iii) : If p = 2, then x2 ± x + 1 has no roots in F2. Consequently, let p ̸= 2, 3.
We then wish to show that p = 1 mod 3. Let a ∈ Fp be the root of f(x) = x2± x+1. Thus,
a3 = ±1. Observe that a ̸= ±1 as if a = 1, then f(1) and f(−1) are either 1 or 3 and since
p ̸= 3, therefore f(1), f(−1) ̸= 0, a contradiction.
As a3 = ±1 and a ̸= ±1, therefore the order of a ∈ F∗

p is either 3 or 6. In either case, as∣∣F∗
p

∣∣ = p− 1, therefore by Lagrange’s theorem, 3|p− 1 or 6|p− 1. But in both cases, we have
p = 1 mod 3.

(iii) ⇒ (ii) : If p = 3, then 1 ∈ F3 is root of x2 + x + 1 and 2 is the root of x2 − x + 1.
If p = 1 mod 3, then we proceed as follows. As F∗

p is a cyclic group of order p− 1 and since
p− 1 = 3k for some k ∈ Z, hence there exists an element a ∈ Fp of order 3. Consequently, we
have a3 = 1 and thus x3 − 1 in Fp[x] has a root. As x3 − 1 = (x− 1)(x2 + x+ 1) and a ̸= 1,
hence a is a root of x2 + x+ 1.
Now since

Fp[x]
⟨x2 + x+ 1⟩

∼=
Fp[x− 1]

⟨(x− 1)2 + (x− 1) + 1⟩ =
Fp[x]

⟨x2 − x+ 1⟩

therefore if x2 + x+ 1 has a root in Fp, then so does x2 − x+ 1.
4. (i) ⇒ (ii) : Write the prime factorization of n in Z[ω] as follows

n = (a+ bω)(a+ bω2)
= (π1 . . . πk)(π̄1 . . . π̄k)
= (π1π̄1) . . . (πkπ̄k).

From parts b) and c), we know that for any prime element π ∈ Z[ω], we have ππ̄ = p iff p = 3
or 1 mod 3 and ππ̄ = p2 iff p = 2 mod 3. Consequently, we have

n = (p1 . . . pm)(p2m+1 . . . p
2
k)

where we call primes p1, . . . , pm which are either 3 or 1 mod 3 of split type. Similarly, we
call the primes pm+1, . . . , pk which are 2 mod 3 of unsplit type. From above it is clear
that unsplit type primes appear evenly many times (they appear in squares) in the prime
factorization of n.

(ii) ⇒ (i) : Let n ∈ Z be such that its prime factorization in Z is as follows

n = (p1 . . . pm)(q2k11 . . . q2knn )

where qi are primes of unsplit type, that is, qi = 2 mod 3 and pi are of split type, that is, 3
or 1 mod 3. Now, by part b), we may write pi = πiπ̄i as they split in Z[ω] and qi = ξi, where
ξi, πi are primes in Z[ω].
It follows that we may write

n = (π1π̄1 . . . πmπ̄m)
Ä
ξ2k11 . . . ξ2knn

ä
= (ξk11 . . . ξknn )(π1 . . . πm) · (ξk11 . . . ξknn )(π̄1 . . . π̄m)
= αᾱ
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where α = (ξk11 . . . ξknn )(π1 . . . πm) = a+ bω, as required.
This completes the proof.

Example 24.0.6. As an example use of above we may now find all ordered tuples (a, b) ∈ Z2 such
that 2100 = a2 − ab+ b2.

Observe that

2100 = 22 · 3 · 52 · 7
= 22 · 52 · (2 + ω)(2 + ω2)(3 + ω)(3 + ω2).

We now wish to find the distinct α ∈ Z[ω] such that 2100 = αᾱ. For this, we first need to find all
units of Z[ω].

Indeed, we claim that the units of Z[ω] are 1,−1, ω,−ω, 1+ω,−1−ω. We give a terse proof of this
fact as follows. Let a+bω ∈ Z[ω] be a unit, so that there exists c+dω such that (a+bω)(c+dω) = 1.
Then, the multiplicative map

Z[ω]→ Z
α 7→ αᾱ

yields in Z that (a2 + b2 − ab)(c2 + d2 − cd) = 1. This forces a2 + b2 − ab = 1 = c2 + d2 − cd. From
these equations one can deduce that c+dω = (a−b)−bω. Hence, a+bω is a unit iff a2+b2−ab = 1.
It follows by AM-GM inequality on a2 and b2 that ab ≤ 1. Hence, we deduce that a = 1, b = 1
or a = −1, b = −1 or a = 0 or b = 0. Correspondingly, we get the six units of Z[ω] as mentioned
above.

In order to count the number of distinct pairs (a, b) ∈ Z2 such that n = a2+b2−ab = (a+bω)(a+
bω2) properly, let us bring some notations. Let Xn = {(a + bω) | (a + bω)(a + bω2) = n} ⊆ Z[ω].
Denote f : Z[ω] → Z to be the multiplicative map α 7→ αᾱ. We thus have Xn = f−1(n). Now
observe that

1. for each a+ bω ∈ Xn, we have b+ aω ∈ Xn,
2. for each a+ bω ∈ Xn, we have a+ bω2 ∈ Xn,
3. for each a+ bω ∈ Xn and u ∈ Z[ω] a unit, we have u(a+ bω) ∈ Xn. This is because in Z[ω],

inverse of a unit is its conjugate.
Our goal is to count ordered tuples (a, b) ∈ Z2 such that n = a2 + b2 − ab. Immediately, we see
that such ordered tuples are in bijection with Xn. Hence, we reduce to counting Xn.

From the above discussion, we see the elements in Xn obtained by multiplying by units are
• 2 · 5 · 1 · (2 + ω)(3 + ω) = 50 + 40ω,
• 2 · 5 · −1 · (2 + ω)(3 + ω) = −50− 40ω,
• 2 · 5 · ω · (2 + ω)(3 + ω) = −40 + 10ω,
• 2 · 5 · (−ω) · (2 + ω)(3 + ω) = 40− 10ω,
• 2 · 5 · (1 + ω) · (2 + ω)(3 + ω) = 10 + 50ω,
• 2 · 5 · (−1− ω) · (2 + ω)(3 + ω) = −10− 50ω,
• 2 · 5 · 1 · (2 + ω2)(3 + ω) = 40− 10ω.
• 2 · 5 · −1 · (2 + ω2)(3 + ω) = −40 + 10ω,
• 2 · 5 · ω · (2 + ω2)(3 + ω) = 10 + 50ω,
• 2 · 5 · (−ω) · (2 + ω2)(3 + ω) = −10− 50ω,
• 2 · 5 · (1 + ω) · (2 + ω2)(3 + ω) = 50 + 40ω,
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• 2 · 5 · (−1− ω) · (2 + ω2(3 + ω) = −50− 40ω.
Similarly, those obtained by swapping are

• 40 + 50ω,
• −40− 50ω,
• 10− 40ω,
• 50 + 10ω,
• −50− 10ω.

Hence, there are 12 such ordered tuples (a, b) ∈ Z2 given by (40, 50), (−40,−50), (10,−40), (50, 10), (−50, 10), (50, 40), (−50,−40), (−40, 10), (10, 50), (−10,−50).

The following is a simple but powerful lemma about certain type of k-algebras.

Lemma 24.0.7. Let k be a field and A be a k-algebra such that there is a maximal ideal m ⪇ A
for which A/m ∼= k. Then,

A ∼= k ⊕m

where k ⊕m obtains the k-algebra structure from A.

Proof. Consider the triangle
A k

A/m

π ∼=
.

Pick any a ∈ A. We have π(a) ∈ A/m ∼= k, so let π(a) ∈ k by identifying under that isomorphism.
Consequently, we may write a = π(a) + (a − π(a)). Note since π(a − π(a)) = π(a) − π(π(a)) =
π(a) − π(a) = 0 by the commutativity of the above, therefore a ∈ m. Furthermore m ∩ k = 0 is
immediate as m is a proper ideal. It follows that A = k⊕m as k-linear subspaces, and thus k⊕m is
a k-algebra as well, isomorphic to A, where, since (k1+m1)·(k2+m2) = k1k2+k1m2+k2m1+m1m2
inside of A, hence we may define the k-algebra structure on k ⊕m as

(k1,m1) · (k2,m2) = (k1k2, k1m2 + k2m1 +m1m2)

for (ki,mi) ∈ k ⊕m.

The following proposition shows that any submodule of a free module over a PID is free (which
is not true in general). This is also a main ingredient in computation of K0 of a PID (that it is Z).

Proposition 24.0.8. Let R be a PID and X an indexing set. Then any submodule of R⊕X is free.

Proof. Let M ≤ R⊕X be a submodule. For each Y ⊆ X, consider the submodule

MY :=M ∩R⊕Y .

Denote by T the following partially ordered set

T =
{
(B, Y ) | Y ⊆ X, B ⊆M s.t. MY =

⊕
b∈B

Rb

}
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where (B1, Y1) ≤ (B2, Y2) if and only if B1 ⊆ B2 and Y1 ⊆ Y2.
We first claim that T is non-empty. Indeed, consider any finite subset Y ⊆ X. We claim that

M∩R⊕Y is free. To this end, first observe thatM∩R⊕Y ≤ R⊕Y . As finite direct sum of noetherian
modules is noetherian, therefore R⊕Y is noetherian. As a module is noetherian if and only if every
submodule is finitely generated, therefore M ∩R⊕Y is finitely generated.

By structure theorem of finitely generated modules over a PID, we deduce that

M ∩R⊕Y ∼=
R

d1R
⊕ · · · ⊕ R

dkR
⊕Rn. (5.1)

As R is a PID, so in particular a domain, therefore R⊕Y has no R-torsion element. Consequently, in
Eq. (5.1), we conclude that di = 1 for each i = 1, . . . , k, that is, M ∩R⊕Y ∼= Rn. Hence, M ∩R⊕Y

is free, as required. More generally this argument shows that any submodule of RX where X is
finite is free. This shows that T is non-empty.

We next wish to show that T has a maximal element. We will use Zorn’s lemma on T for this.
Pick any totally ordered subset T ⊆ T. We wish to show that T has an upper bound. Indeed,
denote

C =
⋃

(B,Y )∈T
B & Z =

⋃
(B,Y )∈T

Y.

We claim that

MZ :=M ∩R⊕Z =
⊕
c∈C

Rc.

For (⊆), pick an element m ∈MZ . We may write

m = (mα)α∈Z

where mα ∈ R for each α ∈ Z and mαi ̸= 0 only for i = 1, . . . , k. As αi ∈ Z and T is totally
ordered, therefore for some (B, Y ) ∈ T , we have αi ∈ Y for each i = 1, . . . , k. Thus, m ∈M ∩RY =⊕

b∈B Rb. In particular, m ∈ ⊕
b∈B Rb ⊆

⊕
c∈C Rc as B ⊆ C. This shows (⊆). For (⊇), pick any

(mc)c∈C ∈
⊕

c∈C Rc. Then mc = 0 for all but finitely many c1, . . . , ck. As T is totally ordered and
mci ∈ Rci, therefore there exists (B, Y ) ∈ T such that all ci ∈ B for i = 1, . . . , k. We then conclude
that m ∈⊕

b∈B Rb =M ∩R⊕Y ⊆M ∩R⊕Z , as needed. This shows that (C,Z) ∈ T.
It is clear that for any (B, Y ) ∈ T , we have (B, Y ) ≤ (C,Z) by construction. Hence we have

produced an upper bound for any toset of T. It follows by Zorn’s lemma that T has a maximal
element. Let it be denoted by (B̃, Ỹ ).

It now suffices to show that Ỹ = X as it would imply M = M ∩ R⊕X ∈ T, and hence is free.
To this end, suppose Ỹ ⊊ X. Then there exists Ỹ ⊊ Y ′ such that Y ′ \ Ỹ is finite. We shall
now construct an element (B′, Y ′) ∈ T such that (B̃, Ỹ ) ≤ (B′, Y ′) and (B̃, Ỹ ) ̸= (B′, Y ′), thus
contradicting the maximality of (B̃, Ỹ ).

We first have the following exact sequence

0 M ∩R⊕Ỹ M ∩R⊕Y ′ CoKer (()i) 0i π (5.2)
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We claim that CoKer (()i) is a free module. To this end, we first claim that

CoKer (i) = M ∩R⊕Y ′

M ∩R⊕Ỹ
∼= K

where K ≤ R⊕Y ′\Ỹ is a submodule. Indeed, consider the map ϕ̃ obtained by the universal property
of quotients

M ∩R⊕Y ′
R⊕Y ′\Ỹ

M∩R⊕Y ′

M∩R⊕Ỹ

ϕ

ϕ̃

where ϕ is the R-linear map which takes (mα)α∈Y ′ 7→ (mα)α∈Y ′\Ỹ . It is clear that Ker (ϕ) =
M ∩R⊕Ỹ . Consequently, ϕ̃ is an inclusion and let K ≤ R⊕Y ′\Ỹ be its image.

As Y ′\Ỹ is finite and we showed above that every submodule of a finitely generated free module
is free, therefore

K =
⊕
z∈Z

Rz ∼= R⊕Z .

where Z ⊆ R⊕Y ′\Y . This shows that CoKer (()i) ∼= R⊕Z is a free R-module. In particular, it
is projective. Consequently, the exact sequence of (5.2) is split exact so that there exists j :
CoKer (()i) ↪→M ∩R⊕Y ′ such that πj = idCoKer(()i). It now follows immediately that

M ∩R⊕Y ′ = Ker (π)⊕ j (CoKer (i))

=
Ä
M ∩R⊕Ỹ

ä
⊕ j (CoKer (i))

where j (CoKer (i)) ∼= R⊕Z so it is free. Hence, we see that B′ ⊇ B̃. This shows that (B′, Y ′) ≥
(B̃, Ỹ ), completing the proof.

A similar result to the above yields that projective modules over a local ring are free.
Theorem 24.0.9. Let (R,m) be a local ring25. If P is a finitely generated projective R-module,
then P is free. Moreover, rankP = dimR/m P/mP .

Let us digress for a moment and first show a crucial property of local rings which is the technical
heart of the proof.
Proposition 24.0.10. Let (R,m) be a local ring. If {x̄1, . . . , x̄n} is an R/m-basis of (R/m)⊕n for
xi ∈ R, then {x1, . . . , xn} is an R-basis of R⊕n.
Proof. Let xi = (ai1, . . . , ain) ∈ Rn. Consequently, we get a matrix A = (aij) ∈ Mn(R) whose
rows are xi. Note that it is sufficient to show that A is invertible, that is A ∈ GLn(R). Denote
Ā ∈Mn(R/m) to be the matrix reduced mod m. Note that Ā is invertible, that is, Ā ∈ GLn(R/m),
as it is a basis of (R/m)n. Consequently, there exists B ∈ Mn(R) such that Ā · B̄ = In = B̄ · Ā.
We now construct an inverse of A in GLn(R). Note that we have A ·B = (cij) where cii ∈ R× and
cij ∈ m for i ̸= j. Doing an elemeantry column operations on A · B, we deduce that there exists
E ∈ GLn(R) such that (A · B) · E is a diagonal matrix with diagonal entries being units of R, as
required.

25the argument works also for non-commutative local rings.
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The proof is now immediate.

Proof of Theorem 24.0.9. Let P be a finitely generated projective R-module. Denote κ = R/m be
the residue field of (R,m). Let dimκ P/mP = n and {x̄i}i=1,...,n ∈ P/mP be a κ-basis of P/mP for
xi ∈ P . We claim that {xi}i=1,...,n is an R-basis of P . Indeed, as P is projective, there exists a
projective module Q such that P ⊕ Q = Rm+n. Going modulo m, we get that dimκQ/mQ = m.
Let {x̄n+i}i=1,...,m be a κ-basis of Q/mQ for xn+i ∈ Q. Consequently, {xi}i=1,...,n+m ⊆ Rn+m

is such that {x̄i}i=1,...,n+m forms a κ-basis of (R/m)n+m. By Proposition 24.0.10, it follows that
{xi}i=1,...,n+m is an R-basis of Rn+m = P ⊕Q. It is clear from Rm+n = P ⊕Q that {x1, . . . , xn} ⊆
Rn+m spans P and are linearly independent, as required.
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