
Nine Weeks of Groups, Fields & Galois Theory

April 14, 2024

These are my solutions to weekly exercises for the course on groups, fields & Galois
theory, taken during Jan-May, 2024. Most of the problems were from Dummit & Foote
and the sentence ”Proof of Question XY.Z, AB” refers to the Section XY.Z of Dummit
Foote, Exercise AB. Some questions, however, are from outside sources, and thus the
first line clearly states what we wish to prove.
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1 Week 1 : Basic group theory

Proof of Question 1.6, 4. Suppose there is group isomorphism φ : C \ {0} → R \ {0}.
Then a = φ(i) is a real number such that

a2 = φ(i2) = φ(−1) (∗)

We claim that φ(−1) = −1. Indeed, as φ is a multiplicative group isomorphism, therefore
φ(1) = 1 = φ((−1)2) = φ(−1)2. It follows that φ(−1) = ±1, but since φ is injective and
φ(1) = 1, therefore φ(−1) = −1, as required.

It follows from (∗) that a2 = −1 where a ∈ R, a contradiction.

Proof of Question 1.6, 25. a) Let p = (x0, y0) be a point in R2 and let

A =

ï
cos θ − sin θ
sin θ cos θ

ò
.

Represent p = (r cos θ0, r sin θ0) for some θ0 ∈ (0, 2π] and r > 0. We wish to show that
Ap = (r cos(θ + θ0), r sin(θ + θ0)). Indeed, we see that

Ap =

ï
cos θ − sin θ
sin θ cos θ

ò ï
r cos θ0
r sin θ0

ò
=

ï
r cos θ cos θ0 − r sin θ sin θ0
r sin θ cos θ0 + r cos θ sin θ0

ò
=

ï
r cos(θ + θ0)
r sin(θ + θ0)

ò
,

as required.

b) We know that elements of D2n are of form

D2n =
{
e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1

}
.

Hence, it suffices to define the map φ : D2n → GL2(R) on elements rk and srk so that it
satisfies

φ(rk) = φ(r)k

φ(srk) = φ(s)φ(rk) (1.1)

for all 0 ≤ k ≤ n− 1.
We now construct φ : D2n → GL2(R). For k = 0, we define φ(e) = I2. Fix 0 < k ≤ n−1.

We define

φ(rk) := Ak

where

A :=

ï
cos θ − sin θ
sin θ cos θ

ò
.
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Finally for srk, we define

φ(srk) := BAk

where

B :=

ï
0 1
1 0

ò
.

The fact that φ satisfies Eqns 1.1 is immediate now.

c) We wish to show that φ above is injective. We follow the notations of part b). Suppose
first that Ker (φ) contains rk for 0 < k ≤ n − 1. Then Ak = 0. Doing the multiplications,
we obtain

0 = Ak =

ï
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

ò
.

It follows that cos(kθ) = sin(kθ) = 0. Hence

cos(2πk/n) = sin(2πk/n) = 0

for 0 < k ≤ n − 1. As sin(2πk/n) = 0 implies 2k/n is an integer, therefore k = 0, a
contradiction to the assumption that 0 < k ≤ n− 1. Consequently, rk /∈ Ker (φ).

Suppose srk ∈ Ker (φ) for 0 ≤ k ≤ n − 1. If k = 0, then B = 0, which it is not, so
s /∈ Ker (φ). Else if 0 < k ≤ n− 1, then

0 = φ(srk) = BAk =

ï
sin(kθ) cos(kθ)
cos(kθ) − sin(kθ)

ò
.

We thus again have

cos(2πk/n) = sin(2πk/n) = 0

for 0 < k ≤ n − 1, which, as shown above, gives a contradiction. Thus, no non-identity
element is in the kernel of φ, hence showing φ is injective.

Proof of Question 2.2, 7. a) Suppose Z(D2n) ̸= e. Suppose rk ∈ Z(D2n) where 0 <
k ≤ n− 1. Then, rks = srk. As rs = sr−1 and r−1 = rn−1, it follows that

rks = sr−k = srn−k.

Thus, srn−k = srk from which it follows that rn−k = rk, that is n = 2k, a contradiction to
the assumption that n is odd.

Now suppose srk ∈ Z(D2n) where 0 ≤ k ≤ n − 1. If k = 0, then srn−1 = rn−1s. As
srn−1 = rs, therefore rn−1 = r and thus r2 = 0. Since n ≥ 3 and r is of order n, therefore
we have a contradiction. Finally, suppose 0 < k ≤ n − 1. Then, (srk)s = s(srk). Since
srk = r−ks = rn−ks, therefore we get rn−kss = srn−ks = rkss. It follows that n = 2k, a
contradiction to the fact that n is odd.

Hence we have a contradiction if any non-identity element lies in center, hence the center
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is trivial.

b) Let n = 2k. If rl ∈ Z(D2n) for 0 < l ≤ n − 1, then rls = srl. As rls = sr−l, it
follows that r2l = e. Since 0 < l ≤ n−1 and the order of r is n, we deduce that 2l = n = 2k
and thus l = k. Consequently, the only elements of the form rl in the center are rk.

We now show that elements of the form srl /∈ Z(D2n) for all 0 ≤ l ≤ n − 1. Observe
that in proof of a) above, we showed that s /∈ Z(D2n) by only using the fact that n ≥ 3,
therefore we conclude that s /∈ Z(D2n). So we may assume 0 < l ≤ n − 1. We thus have
that (srl)r−l = r−l(srl) as srl ∈ Z(D2n). We may write r−lsrl = srlrl, from which it
follows that srlr−l = srlrl. It follows that e = r2l. As 0 < l ≤ n − 1 and order of r is n,
therefore 2l = n = 2k and thus l = k. It would thus suffice now to show that srk cannot be
in the center. Indeed, if srk ∈ Z(D2n) then we have that (srk)sr = sr(srk). It follows that
we have ssr−kr = ssr−1rk, from which upon cancelling s, we obtain r−k+1 = rk−1. Thus,
r−k+1−k+1 = e. Hence r2(k−1) = e. It follows that 2(k − 1) | 2k. Hence, k − 1 | k, which is
not possible as k ≥ 2 since n = 2k ≥ 3. This proves that srl /∈ Z(D2n) for any 0 ≤ l ≤ n−1
and hence center only contains 1 and rk, as required.

Proof of Question 3.1, 36. Let G be a group and let Z = Z(G) be the center. We
wish to show that if G/Z is cyclic then Z = G, that is G is abelian. Let G/Z =
{Z, gZ, g2Z, . . . , gn−1Z} for some g ∈ G. Consequently, for every x ∈ G, there exists
z ∈ Z such that x = gkz.

Now pick x, y ∈ G. Then x = gkz1 and y = glz2 for 0 ≤ k, l ≤ n − 1 and z1, z2 ∈ Z.
Consequently,

xy = gkz1g
lz2 = gkglz2z1 = glgkz2z1 = glz2g

kz1 = yx,

as needed.

Proof of Questiuon 3.2, 18. Let G be a finite group, H ≤ G and N ⊴ G be a normal
subgroup. Suppose gcd (|G/N | , |H|) = 1. We wish to show that H ≤ N . Suppose there
exists h ∈ H such that h /∈ N . Then hN ∈ G/N is a non-zero element. Consider the cyclic
subgroup of G/N generated by hN as

⟨hN⟩ = {N,hN, h2N, . . . , hk−1N}

of size k. In particular the order of hN in G/N is k. Thus,

k| |G/N | (∗)

Also consider the subgroup ⟨h⟩ ≤ G generated by h. We claim that

k| |h| (∗∗)

Indeed, if hl = e for some l ∈ N, then hl ∈ N , that is hlN = (hN)l = N . It follows that k|l
and thus that k| |h|, as needed.

As |h| | |H| by Lagrange’s theorem, therefore from (∗) and (∗∗), it follows that k| |H|
and k| |G/N |. From properties of gcd, it further follows that

k| gcd(|G/N | , |H|).
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As the above gcd is 1, we conclude that k = 1. We thus deduce that ⟨hN⟩ = {N}, showing
that hN = N and thus h ∈ N , as required.

Proof of Question 3.3, 7. Let M,N ⊴ G such that G = MN . We wish to show that
G/M∩N ∼= G/M×G/N . This is a generalization of Chinese remainder theorem for groups.
Consider the map

φ : G −→ G/M ×G/N

g 7−→ (gM, gN).

Observe that since g = mn for m ∈M and n ∈ N , therefore

φ(g) = (gM, gN) = (nM,mN).

We claim that φ is a surjective group homomorphism whose kernel is M ∩N .
We first show that φ is a group homomorphism. Indeed, this is immediate as for any

g, h ∈ G, we can write

φ(gh) = (ghM, ghN) = (gM, gN)(hM, hN) = φ(g)φ(h).

We now wish to show that φ is surjective. Indeed, for any (gM, hN) ∈ G/M × G/N , we
may write g = m1n1 and h = m2n2 for mi ∈ M and ni ∈ N . It follows that (gM, hN) =
(n1M,m2N). Consequently the element k = m2n1 ∈MN = G is such that

φ(k) = (kM, kN) = (m2n1M,m2n1N).

Since M,N are normal, therefore m2n1M = m2Mn1 = Mn1 = n1M . Similarly we deduce
that m2n1N = m2N . Hence

φ(k) = (n1M,m2N) = (gM, hN)

as needed. This shows that φ is a surjective homomorphism. We now show that Ker (φ) =
M ∩N . Indeed, we see that g ∈ Ker (φ) iff (gM, gN) = (M,N) iff gM = M and gN = N
iff g ∈M and g ∈ N iff g ∈M ∩N , as needed.

This shows that φ is a surjective homomorphism whose kernel is M ∩ N . By first
isomorphism theorem, it follows that

G/M ∩N ∼= G/M ×G/N,

as needed.

2 Week 2 : Symmetry groups, simple groups, Sylow’s theo-
rems

Proof of Question 3.5, 3. Let X = {(i i + 1) | 1 ≤ i ≤ n − 1} ⊆ Sn. We wish to show
that X is a generating set of Sn. As any σ ∈ Sn can be written as a product of disjoint
cycles, therefore it suffices to show that any k-cycle for 1 ≤ k ≤ n is generated by elements
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of X.
Pick any k-cycle σ = (i1 i2 . . . ik). We may write it as

σ = (i1 ik) · (i1 ik−1) · · · · · (i1 i3)(i1 i2).

We now reduce to writing an (i1 ik) as a product of elements of X for any 1 ≤ k ≤ n.
Indeed, we have

(i1 ik) = (i2 i1) · (i3 i2) · . . . (ik−1 ik−2) · (ik−1 ik) · (ik−2 ik−1) · · · · · (i2 i3) · (i1 i2)

where each element in the above factorization is in X, as required.

Proof of Question 3.5, 12. We wish to show that there exists an injective group homo-
morphism φ : Sn−2 → An. Consider the following map

φ : Sn−2 −→ An

σ 7−→
®
σ if σ ∈ An−2

σ(n− 1 n) else.

We first claim that φ is a group homomorphism. Indeed, pick any σ, τ ∈ Sn−2. If στ ∈ An−2,
then στ is a product of evenly many transpositions. Writing σ and τ individually as product
of transpositions, we see that στ is a product of evenly many transpositions if and only if
any one of the following happens:

1. both σ and τ can be written as evenly many product of transpositions,
2. both σ and τ can be written as odd many product of transpositions.

In case 1, we have σ, τ ∈ An−2, so that φ(σ) = σ and φ(τ) = τ . It follows that φ(στ) =
στ = φ(σ)φ(τ), as needed. Whereas in case 2, we have σ, τ /∈ An−2. It follows that φ(στ) =
στ = στ(n−1 n)(n−1 n) = σ(n−1 n)τ(n−1 n) = φ(σ)φ(τ) where τ(n−1 n) = (n−1 n)τ
because they are disjoint permutations.

Now suppose στ /∈ An−2. This is possible if and only if σ ∈ An−2 and τ /∈ An−2. It
follows that

φ(στ) = στ(n− 1 n) = φ(σ)φ(τ),

as needed. This shows that φ is a group homomorphism.
We now show φ is injective. Indeed, if φ(σ) = (), then either σ = () or σ(n− 1 n) = ().

In the former, we are immediately done. In the latter, we may multiply both sides on the
right by (n− 1 n) to obtain that σ = (n− 1 n), which is not possible as σ is a bijection of
{1, 2, . . . , n− 2}. This completes the proof.

Proof of Question 4.1, 8. a) We wish to show that the transitive action of Sn on A =
{1, 2, . . . , n} is doubly transitive. Indeed, pick any k ∈ A so that 1 ≤ k ≤ n. Denote
Gk = StabSn(k) = {σ ∈ Sn | σ(k) = k}. We wish to show that Gk acts transitively on
A\{k} = {1, . . . , k̂, . . . , n}. We may assume that n > 2 as for n = 2, the claim is immediate.
Pick any two elements i, j ∈ A \ {k}, which we can as n > 2. We wish to show that there
exists σ ∈ Gk such that σ(i) = j. Indeed, we have σ = (i j) ∈ Sn is such that σ(k) = k, so
that σ ∈ Gk. Further we have σ(i) = j, as needed.
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b) Let G be a group and A be a G-set. We wish to show that if the action of G on A
is doubly transitive, then it is primitive. Let B ⊆ A be a block, that is, for all σ ∈ G,
σ(B) = B or σ(B)∩B = ∅. We wish to show that if |B| > 1, then B = A. Indeed, pick any
a ∈ A. We wish to show that a ∈ B. Let b ∈ B and Gb = StabG(b) = {σ ∈ G | σ(b) = b}.

We now claim that for any σ ∈ Gb, we have σ(B) = B. Indeed, as σ(b) = b for any
σ ∈ Gb, it follows that σ(B) ∩B ̸= ∅. Since B is a block, therefore σ(B) = B, as required.

We now complete the proof. As G acts doubly transitive on A, therefore Gb acts tran-
sitively on A \ {b}. As |B| > 1, therefore there exists b′ ∈ B \ {b} and thus a σ ∈ Gb such
that σ(a) = b′ ∈ B. Since Gb ≤ G is a subgroup, therefore σ−1 ∈ Gb as well. By above
claim, σ−1(B) = B. Consequently,

a = σ−1(σ(a)) = σ−1(b′) ∈ σ−1(B) = B,

as needed. This completes the proof.

c) We wish to show that the action of D8 on square

b c

a d

is not doubly transitive. Indeed if so, then by part b) it has to be primitive. Denote r to be
rotation by π/2 CW and s to be the reflection along the diagonal as shown in the diagram.
Let us write D8 = {e, r, r2, r3, s, sr, sr2, sr3}. We claim that there is a non-trivial block of
D8 on the square. This will give a contradiction to primitivity. Indeed, consider B = {b, d}.
We claim that B is a block. Then,

r(B) = {c, a}
r2(B) = {b, d}
r3(B) = {c, a}
s(B) = {b, d}
sr(B) = {a, c}
sr2(B) = {b, d}
sr3(B) = {a, c}.

In all the above, we see that the σ(B) = B for σ(B) ∩ B = ∅ for all σ ∈ D8. Hence B is
indeed a non-trivial block, showing that action of D8 on square is not primitive.

Proof of Question 4.2, 4. We wish to find two elements in S8 which generate a sub-
group isomorphic to Q8. We interpret S8 as the group of bijections of the set Q8 =
{±1,±i,±j,±k}. Consider the left regular representation of Q8 in S8 is given by the
homomorphism

φ : Q8 −→ S8

g 7−→ mg
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where mg : Q8 → Q8 mapping as x 7→ gx. By Cayley’s theorem, or by direct observation,
this map is an injective group homomorphism. Consequently, the G := Im (φ) ≤ S8 is
isomorphic to Q8. As Q8 is generated by i and j and φ is an isomorphism onto G, it follows
that G is generated by φ(i) and φ(j), which we calculate as below:

φ(i) = (1 3 2 4)(5 7 6 8)

φ(j) = (1 5 2 6)(3 8 4 7).

Hence the above two permuations generate G, as required.

Proof of Question 4.2, 8. Let G be a group andH ≤ G be a subgroup with [G : H] = n.
We wish to show that there exists a normal subgroup K ⊴ G such that K ≤ H and
[G : K] ≤ n!.

Let X denote the set of all left-cosets of H in G, so that |X| = n. We see that G acts
on X by left multiplication, that is,

G×X −→ X

(g, g′H) 7−→ gg′H.

Consequently, we get a representation

φ : G −→ Bij(X)

g 7−→ mg

where mg : X → X taking g′H 7→ gg′H. Consider the kernel K = Ker (φ) which is a
normal subgroup of G. We claim that K ≤ H. Indeed, for any k ∈ K, we have mk(gH) =
kgH = gH. Thus (kg)g−1 = k ∈ H, as required. This shows that K ≤ H is a normal
subgroup of G

By first isomorphism theorem, we have an isomorphism G/K ∼= Im (φ). Thus, we deduce

|G/K| = [G : K] = |Im (φ)| ≤ n!,

as required.

Proof of Question 4.2, 14. Let G be a finite group of composite order n. Suppose for
all k|n, there exists a subgroup H ≤ G such that |H| = k. We wish to show that G cannot
be simple.

Suppose to the contrary that G is simple. Fix any proper subgroup H ⪇ G and let XH

denote the coset space of H in G. Then, we have an action of G

⟳

XH by left multiplication.
This induces a homomorphism

φH : G −→ Bij(XH)

into the group of bijections of XH and since |XH | = [G : H], therefore Bij(XH) ∼= S[G:H].
Now consider the kernel Ker (φH) ≤ G. Note that

Ker (φH) = {g ∈ G | gg′H = g′H ∀ g′H ∈ XH}
≤ H
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since gg′H = g′H implies that gg′·(g′)−1 = g ∈ H. Now sinceG is simple and Ker (φH) ⊴ G,
therefore either Ker (φH) = {e} or G. If Ker (φH) = G, then by above above it follows that

G = Ker (φH) ≤ H ≤ G

so that H = G, but our hypothesis that H be a proper subgroup gives a contradiction.
Consequently, Ker (φH) = {e} is the only possible case and hence φH is injective.

We have thus shown that for any proper subgroup H ⪇ G, φH is injective. Hence,
Im (φH) ≤ S[G:H] and thus |G| |[G : H]! for all H ⪇ G. By hypothesis, there is a subgroup
H for each k|n, hence it follows that

n|k! ∀ k|n. (1)

Let p be the smallest prime dividing n. Hence, by Eqn (1), it follows that n|p!. As for any
1 ≤ k < p, gcd(k, n) = 1 since p is the smallest factor of n other than 1, therefore n|p!
implies that n|p. Since p|n, so it follows that n = p, a contradiction to the assumption that
n is composite.

Proof of Question 4.3, 5. Let G be a group and Z ⊴ G be the center. If [G : Z] = n,
then we wish to show that every conjugacy class has atmost n elements.

Let G

⟳

G by conjugacy and x ∈ G. Denote C(x) = OrbG(x) to be the orbit of x under
this action, that is, the conjugacy class of x ∈ G. As G/Z is a group of order n, therefore
it suffices to construct a surjective function G/Z → C(x). Indeed, consider the following

φ : G/Z −→ C(x)

gZ 7−→ gxg−1.

Indeed, this is well-defined as if gh−1 ∈ Z (i.e. gZ = hZ), then gh−1 = z ∈ Z and thus
g = hz. Consequently,

gxg−1 = hzx(hz)−1 = hzxz−1h−1 = hxzz−1h−1 = hxh−1,

as needed. Now we claim that φ is surjective. Indeed, this is immediate as for any gxg−1 ∈
C(x), we have gZ ∈ G/Z which maps to gxg−1 under φ.

Proof of Question 4.3, 35. Let p be a prime and n ∈ N. We wish to find the size of the
following set

X =

ß
Conjugacy classes C(x) ⊆ Sn
where x ∈ Sn is of order p

™
.

We know that if x ∈ Sn, then conjugacy class of x has the following interpretation:

C(x) =

{All those permutations in Sn which
have the same cycle type as that of
x ∈ Sn

}
.

It follows that C(x) is uniquely determined by the cycle type of x, so that we are reduced
to counting the following

|X| = # Possible cycle types for elements x ∈ Sn of order p. (2)
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Pick an element x ∈ Sn of order p and consider its disjoint cycle decomposition (where we
do not write cycles of length 1):

x = x1 · · · · · xr

where xi are disjoint cycles. Since |x| = lcm(|x1| , . . . , lcm(xr)) = p, therefore |xi| |p for each
i = 1, . . . , r. It follows that |xi| = 1 or p. Since |xi| > 1 by assumption, therefore for each
i = 1, . . . , r we have |xi| = p. As xi are cycles, it follows that each xi is a cycle of length p.

By Eqn (2), we reduce to counting

|X| = # Possible non-trivial cycle types only consisting of cycles of length 1 or p.

Since cycle types corresponds to partitions of n, we further reduce to counting

|X| = # Non-trivial partitions of n consisting only of 1 and p. (3)

Now we may partition n non-trivially using 1 and p as follows:

n = p+ · · ·+ p︸ ︷︷ ︸
k-times

+1 + · · ·+ 1︸ ︷︷ ︸
n−kp-times

where 1 ≤ k ≤ N where N is the largest positive integer such that

Np ≤ n.

Hence we see from Eqn (3) that

|X| = N

and by definition of N , we see that

N =

õ
n

p

û
.

It follows that

|X| =
õ
n

p

û
,

as required.

Proof of Question 4.5, 16. Let G be a finite group of order pqr where p < q < r are
primes. We wish to show that G has a normal Sylow subgroup of order either p, q or r.
This shows that any group of order pqr where p, q, r are distinct primes is not simple.

Let np, nq and nr be the number of Sylow subgroups of order p, q and r in G. Assume
to the contrary that np, nq, nr > 1. By Sylow’s 3rd theorem we have the following list of
relations:

1. np = 1 mod p and np|qr thus np = q, r, qr,
2. nq = 1 mod q and nq|pr thus nq = p, r, pr,
3. nr = 1 mod r and nr|pq thus nr = p, q, pq.
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As p < q < r, so in item 3, since nr = 1 mod r, so nr ̸= p, q. It follows that nr = pq.
Similarly, from item 2 and p < q, we deduce that nq ̸= p. Thus, nq = r, pr. As p is smallest
in p, q, r, therefore np = q, r, qr.

Now observe that any two distinct cyclic subgroups in G of prime order s, then they
intersect trivially, otherwise they both contain a generator of each other. It follows from
the fact that nr = pq that there are pq(r − 1) distinct elements of order r in G. Similarly
there are nq · (q − 1) distinct elements of order q and np · (p− 1) distinct elements of order
p. As the sum of these three quantities should be less than |G| = pqr, it follows that

pq(r − 1) + nq · (q − 1) + np · (p− 1) ≤ pqr.

But since nq ≥ r and np ≥ q, it follows that

pq(r − 1) + r(q − 1) + q(p− 1) ≤ pqr. (4)

But pq(r − 1) + r(q − 1) + q(p − 1) = pqr + qr − q − r. Since q < r and qr > q + r as q, r
are primes therefore pqr + qr − q − r > pqr. This contradicts Eqn (4). This completes the
proof.

Proof of Question 4.5, 23. We wish to show that any groupG of order 462 is not simple.
Note that |G| = 462 = 2 · 3 · 7 · 11. Let n be the number of Sylow 11-subgroups. We claim
that n = 1. This will complete the proof as G would then have a unique normal Sylow
subgroup of order 11 by Sylow’s 2nd theorem, and thus be not simple.

By Sylow’s 3rd theorem, it follows that n|2 · 3 · 7 and n = 1 mod 11. The former
condition yields that

n = 1, 2, 3, 7, 6, 14, 21, 42.

But none of the above are 1 mod 11 except n = 1. This completes the proof.

3 Week 3 : Aut (Sn) = Inn(Sn) for n ̸= 6, semi-direct products

Proof of Question 4.4, 18. a) LetG be a group and φ ∈ Aut (()G) be an automorphism.
We wish to show that φ permutes the conjugacy classes ofG. Indeed, pick any φ ∈ Aut (()G)
and a conjugacy class C(x) = {gxg−1 | g ∈ G} where x ∈ G. We claim that

φ(C(x)) = C(φ(x)).

Indeed, to see (⊆), pick any element φ(gxg−1) ∈ φ(C(x)). We see that

φ(gxg−1) = φ(g)φ(x)φ(g−1) ∈ C(φ(x)).

Conversely, for hφ(x)h−1 ∈ C(φ(x)), we have h = φ(g) for some unique g ∈ G as φ is an
isomorphism. Consequently,

hφ(x)h−1 = φ(g)φ(x)φ(g)−1 = φ(gxg−1) ∈ φ(C(x)).

This completes the proof.

11



b) Let K be the conjugacy class of all transpositions and K ′ be the conjugacy class of
an element x ∈ Sn of order 2 but not a transposition. We wish to show that |K| ≠ |K ′|.
Using this, we further wish to show that any automorphism of Sn sends transpositions to
transpositions.

Recall that if g ∈ Sn, then the conjugacy class of g, denoted C, depends only on the
cycle type of g and contains exactly all those elements whose cycle type is equal to that of
g. As cycle type of a transposition is 2, therefore K consists of all elements of Sn of cycle
type 2, hence

|K| =
nP2

2
.

Now, let x ∈ Sn be an element such that K ′ is its conjugacy class. It follows from unique
decomposition into disjoint cycles of x that

x = x1 · · · · · xr

where xi are disjoint cycles and r ≥ 1. Since |x| = 2 and |x| = lcm(|x1| , . . . , |xr|), it follows
that for each i = 1, . . . , r, either |xi| = 1, 2. Since |xi| = 1 implies xi is identity, hence we
may assume by reducing r that x = x1 . . . xr and each xi is a disjoint cycle of order 2, that
is, xi is a transposition. Hence, the cycle type of x is 2 + 2 + · · ·+ 2︸ ︷︷ ︸

r-times

. It follows that K ′

consists of all elements of cycle type 2 + · · ·+ 2 r-times. It follows that∣∣K ′∣∣ = nC2 · n−2C2 . . .
n−2(r−1)C2

r!
.

We claim that the above count is not equal to |K| =
nP2
2 = nC2. Fix an n ≥ 7 and

2 ≤ r ≤ n/2. Observe that to show |K ′| ≠ |K|, it suffices to show that

n−2C2 . . .
n−2(r−1)C2 ̸= r!. (1.1)

Suppose to the contrary that there exists n and r as above such that in Eqn. (1.1) we have
an equality. Observe that

n−2C2 . . .
n−2(r−1)C2 =

(n− 2)!

2r−1(n− 2r)!
.

Hence our assumption gives the following equality:

(n− 2)! = r! · 2r−1 · (n− 2r)!

Now observe that

(n− 2)! = 1 · 2 · 3 · · · · · r︸ ︷︷ ︸
r!

· (r + 1) · · · · · (2r − 1)︸ ︷︷ ︸
⪈2r−1

· 2r · (2r + 1) · · · · · (n− 2)︸ ︷︷ ︸
⪈(n−2r)!

where (r + 1) · · · · · (2r − 1) ⪈ 2r−1 as r ≥ 2 so r + k ⪈ 2 for all 1 ≤ k ≤ r − 1. Similarly,
2r ·(2r+1) · · · · ·(n−2) ⪈ 2 ·3 · · · · ·(n−2r) as 2r+k ⪈ 4+k ⪈ k+2 for all 0 ≤ k ≤ n−2r−2.
Hence we have obtained that

r! · 2r−1 · (n− 2r)! = (n− 2)! ⪈ r! · 2r−1 · (n− 2r)!
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which gives the required contradiction.
Now for n ≤ 5, we see that since 2 ≤ r ≤ n/2, therefore n = 4, 5 and r = 2 is the only

possibility. In this case, Eqn. (1.1) is immediately true. For n = 2, 3, there is no element
of order 2 which is not a transposition. This completes the proof that |K| ≠ |K ′| .

Finally let φ ∈ Aut (()Sn) and K be the set/conjugacy class of all transpositions. We
then wish to show that φ(K) = K. Indeed, in part a), we saw that automorphisms take
conjugacy classes to conjugacy classes. Therefore φ(K) is a conjugacy class of Sn. In order
to show that φ(K) = K, it would thus suffice to show that φ(K) contains a transposition
(as φ(K) is itself a conjugacy class). Let x ∈ K be a transposition. As φ : Sn → Sn is an
automorphism, therefore we claim that φ(x) is also a transposition.

Suppose φ(x) = y1 . . . yr is the disjoint cycle decomposition of φ(x). As φ−1 is a homo-
morphism, therefore we obtain

x = φ−1(y1) . . . φ
−1(yr).

Let x = x1 . . . xs be the disjoint cycle decomposition of x obtained by decomposing each
φ−1(xi) as a disjoint cycle decomposition. Since x is a transposition, therefore for all except
one i0, xi = (), so that x = xi0 . It thus follows that x = φ−1(yi0) = xi0 . Hence φ(x) = yi0
where yi0 is a cycle. As φ(x) is of order 2 (automorphisms preserves order), therefore yi0 is
a cycle of order 2, that is, a transposition, as needed.

c) Let σ ∈ Aut (()Sn). We wish to show that there exists distinct a, b2, . . . , bn ∈ {1, 2, . . . , n}
such that σ((1 k)) = (a bk) for all 2 ≤ k ≤ n.

Observe from part b) that σ((a b)) is also a transposition. We first show that each
σ((1 k)) and σ((1 l)) are not disjoint transpositions for 1 ≤ k ̸= l ≤ n. Denote

σ((1 k)) = (ak bk)

σ((1 l)) = (al bl). (1.2)

Assuming that (ak bk) and (al bl) are disjoint, we deduce that

σ((1 l k)) = σ((1 k) · (1 l)) = (ak bk) · (al bl)

is a disjoint cycle decomposition of σ((1 l k)). It follows that σ((1 l k)) is an order 2
element, but σ is an automorphism and (1 l k) a 3-cycle, so σ((1 l k)) must have order 3,
a contradiction. This shows that in Eqn. (1.2), (ak bk) and (al bl) are not disjoint. Hence
we write σ((1 k)) = (a bk) and σ((1 l)) = (a bl). Note that since σ is an automorphism,
therefore bk ̸= bl.

We now show that σ((1 m)) is also of the form (a bm). Indeed, denote σ((1 m)) =
(am bm) for m ̸= k, l. Then, by above (am bm) is not disjoint with (a bk) and (a bl). If
am = a or bm = a, then we are done. If not, then it follows that am = bk and bm = bl.
Consequently, we have σ((1 m)) = (bk bl). We claim that this implies (1 m) = (k l), which
is a contradiction to the fact that m ̸= k, l. Indeed, we have the following

σ((1 m)) = (bk bl) = (a bk) · (a bl) · (a bk)
= σ((1 k) · (1 l) · (1 k))
= σ((k l)).

13



As σ is an automorphism, so it follows that (1 m) = (k l) as required.
This shows that for each 1 ≤ k ≤ n, we have

σ((1 k)) = (a bk)

for some a, bk ∈ {1, . . . , n}. We now need only show that bk ̸= bl for k ̸= l. This is imme-
diate, for if bk = bl for some k ̸= l, then σ((1 k)) = (a bk) = (a bl) = σ((1 l)) and thus
(1 k) = (1 l), a contradiction.

d) We wish to show the following:

1. Sn is generated by the set X = {(1 k) | 1 ≤ k ≤ n}.
2. Any σ ∈ Aut (()Sn) is uniquely determined by values on each (1 k) ∈ X.
3. Aut (()Sn) = Inn(Sn)

1. Indeed, since we know that each element of Sn can be written as a product of trans-
positions, hence it suffices to show that each transposition (k l) is obtained by product of
elements from X. This is immediate as

(k l) = (1 k)(1 l)(1 k).

2. Pick any σ ∈ Aut (()Sn). By part c), we conclude that σ defines a permutation of
{1, 2, . . . , n}. If τ ∈ Aut (()Sn) is any other permuation such that τ((1 k)) = σ((1 k)) for
all 2 ≤ k ≤ n, then since X generates Sn, therefore σ = τ .
3. By item 2, it follows that every σ ∈ Aut (()Sn) gives a unique permutation of {1, 2, . . . , n}.
Hence there are atmost n! automorphisms of Sn, i.e |Aut (()Sn)| ≤ n!. But since Inn(Sn) ≤
Aut (()Sn) and Inn(Sn) ∼= Sn/Z(Sn) where Z(Sn) is trivial, therefore |Inn(Sn)| = |Sn| = n!.
Consequently, n! ≤ Aut (()Sn) ≤ n!. Hence, it follows that Aut (()Sn) = Inn(Sn) ∼= Sn if
n ̸= 6.

Proof of Question 5.4, 19. a) We wish to show that any simple non-abelian group is
perfect. Indeed, let G be such a group. It would suffice to show that G′ ≤ G is a normal
subgroup. Denote

X = {ghg−1h−1 | g, h ∈ G} ⊆ G.

Pick any k ∈ G. We wish to show that kG′k−1 = G′. Denote

I := {H ≤ G | H ⊇ X}.

Since G′ =
⋂
H∈I H. Thus,

kG′k−1 =
⋂
H∈I

kHk−1. (2.1)

Hence we reduce to showing that G′ =
⋂
H∈I kHk

−1. To this end, it is sufficient to show
that

I = {kHk−1 | H ∈ I}, (2.2)
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that is, conjugating with k permutes I. Indeed for (⊇), pick H ∈ I. We first claim that
kHk−1 ∈ I. We must show that kHk−1 ⊇ X if H ⊇ X. Indeed, pick ghg−1h−1 ∈ X. Write

ghg−1h−1 = k · (k−1gk) · (k−1hk) · (k−1gk)−1 · (k−1hk)−1︸ ︷︷ ︸
∈X⊆H

·k−1.

It follows that ghg−1h−1 ∈ kHk−1. This shows X ⊆ kHk−1, that is, kHk−1 ∈ I.
For (⊆), pick H ∈ I. We wish to show that H = kMk−1 for some M ∈ I. Since

k−1Hk ∈ I by above, therefore k(k−1Hk)k−1 = H. This shows the claim in Eqn. (2.2) and
thus completes the proof.

b) Let H,K ≤ G be a perfect subgroups of G. We wish to show that ⟨H,K⟩ ≤ G is
also a perfect subgroup. We first observe the following fact that we know.

Lemma 3.0.1. Let G be a group and S ⊆ G be a subset. Then the subgroup ⟨S⟩ ≤ G
generated by S consists of finite product of elements from S and S−1. That is,

⟨S⟩ = {s1 . . . sn ∈ G | si ∈ S or s−1
i ∈ S}.

Now consider the commutator subgroup of ⟨H,K⟩ denoted D1⟨H,K⟩. We wish to show
that

D1⟨H,K⟩ = ⟨H,K⟩.

We already have D1⟨H,K⟩ ⊆ ⟨H,K⟩. For the converse, pick a1b1 . . . anbn ∈ ⟨H,K⟩ where
ai ∈ H and bi ∈ K by Lemma 1. Now observe that a commutator element of either H or
K is a commutator element of ⟨H,K⟩. As we wish to show that a1b1 . . . anbn ∈ D1⟨H,K⟩,
therefore it suffices to write it as a product of commutators of ⟨H,K⟩.

Indeed, since we have the following as H and K are perfect:

ai = hih
′
ih

−1
i h′−1

i

bi = kik
′
ik

−1
i k′−1

i

for each 1 ≤ i ≤ n where hi ∈ H and hi ∈ K. Consequently, we may write

a1b1 . . . anbn = (h1h
′
1h

−1
1 h′−1

1 )(k1k
′
1k

−1
1 k′−1

1 ) . . . (hnh
′
nh

−1
n h′−1

n )(knk
′
nk

−1
n k′−1

n )

where the product in each bracket is in D1⟨H,K⟩. Hence, a1b1 . . . anbn ∈ D1⟨H,K⟩, as
needed.

We now wish to show that subgroup generated by any collection of perfect subgroups
is perfect. Indeed, let {Hα}α∈I be a collection of perfect subgroups of G. We claim that
H = ⟨Hα | α ∈ I⟩ is perfect. Indeed, pick any element aα1 . . . aαn of H where aαi ∈ Hαi . We
wish to show that aα1 . . . aαn ∈ D1H. As each Hαi is perfect, therefore aαi = gαig

′
αi
g−1
αi
g′−1
αi

for each i ∈ I and gαi , g
′
αi

∈ Hαi . As every commutator element of Hα is a commutator
element of H, therefore by writing

aα1 . . . aαn =

n∏
i=1

gαig
′
αi
g−1
αi
g′−1
αi
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we deduce that aα1 . . . aαn ∈ D1H, as needed. This completes the proof.

c) We wish to show that any conjugate of a perfect subgroup is perfect. Let g ∈ G and
H ≤ G be a perfect subgroup. We wish to show that gHg−1 is also perfect. It suffices to
show that ifH ≤ G is a subgroup thenD1(gHg−1) = gD1(H)g−1. Indeed, this is immediate
from the following expression for any h, k ∈ H:

(ghg−1)(gkg−1)(ghg−1)−1(gkg−1)−1 = g(hkh−1k−1)g−1.

This completes the proof.

d) We wish to show that any group G has a unique maximal perfect subgroup and this
subgroup is normal.

Indeed, let J = {H ≤ G | H is a perfect subgroup}. Consider the subgroup H̃ = ⟨H ≤
G | H ∈ J⟩ generated by all perfect subgroups. By part b), H̃ is a perfect subgroup of G. It
is also maximal perfect subgroup as if there is any perfect subgroup H ≤ G, then H ≤ H̃.
Uniqueness is also clear as if there is another maximal perfect subgroup say K ≤ G, then
K ∈ J and thus K ≤ H̃. Since K is maximal, therefore K = H̃, as needed.

We now show that H̃ is normal. Pick any g ∈ G and consider the conjugate gH̃g−1.
As H̃ is perfect, therefore by part c), so is gH̃g−1. Consequently, gH̃g−1 ∈ J and thus
gH̃g−1 ≤ H̃. We now wish to show that H̃ ≤ gH̃g−1. Pick h ∈ H̃. Since kH̃k−1 ≤ H̃
for each k ∈ G, therefore g−1H̃g ≤ H̃ as well. It follows that g−1hg ∈ H̃ and thus
h = g(g−1hg)g−1 ∈ gH̃g−1. This shows that H̃ = gH̃g−1 for all g ∈ G, and thus H̃ is
normal.

Proof of Question 5.5, 6. Let K be a cyclic group and H be a group. Consider two
homomorphisms

φ1, φ2 : K → Aut (()H),

which we may assume to be injective if K is infinite. Suppose Im (φ1) and Im (φ2) are
conjugate subgroups in Aut (()H). We then wish to show that then there is an isomorphism

H ⋉φ1 K
∼= H ⋉φ2 K.

By assumption, there exists σ ∈ Aut (()H) such that σIm (φ1)σ
−1 = Im (φ2). As K is

cyclic, therefore let k ∈ K be the generator of K. Consequently, there exists n ∈ Z such
that

σ ◦ φ1(k) ◦ σ−1 = φ2(k)
n. (3.1)

Now consider the function

ψ : H ⋉φ1 K −→ H ⋉φ2 K

(h, ka) 7−→ (σ(h), kan).
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We first show that ψ is a group homomorphism. Let (h1, k
a), (h2, k

b) ∈ H ⋉φ K be two
elements where a, b ∈ Z. Then

ψ((h1, k
a) · (h2, kb)) = ψ

Ä
(h1φ1(k

a)(h2), k
a+b)
ä

= ψ
Ä
(h1 · σ−1 ◦ φ2(k

an) ◦ σ(h2), ka+b)
ä

=
Ä
σ
(
h1 · (σ−1 ◦ φ2(k

an) ◦ σ(h2))
)
, k(a+b)n

ä
=
Ä
σ(h1) · φ2(k

an)(σ(h2)), k
(a+b)n

ä
= (σ(h1), k

an) · (σ(h2), kbn)

= ψ ((h1, k
a)) · ψ

Ä
(h2, k

b)
ä
,

as needed. We now construct an inverse of ψ. We divide this in two cases for K. First
suppose that K is infinite cyclic with generator k. Then since σ−1Im (φ2)σ = Im (φ1),
therefore we get some m ∈ Z such that

σ−1 ◦ φ2(k) ◦ σ = φ1(k)
m.

Hence, we have that φ2(k) = σ ◦φ1(k
m)◦σ−1 = φ2(k)

nm. Consequently, kmn−1 ∈ Ker (φ2).
Since φ2 is injective by our hypothesis, therefore kmn = k.

Now consider the following map

κ : H ⋉φ2 K −→ H ⋉φ1 K

(h, ka) 7−→ (σ−1(h), kam).

We claim that this map is an inverse for ψ. Indeed we first show that κ◦ψ = id. Indeed, pick
(h, ka) ∈ H⋉φ1K. Then κ(ψ((h, ka))) = κ((σ(h), kan)) = (h, kanm) = (h, (knm)a) = (h, ka).
Similarly, it follows that ψ ◦ κ = id.

Finally, assume that K = ⟨k⟩ is a finite cyclic group of order l. Consider the following
map (it suffices to define the map only on the generator of K):

κ : H ⋉φ2 K −→ H ⋉φ1 K

(h, k) 7−→ (h, km)

where m ∈ N is a positive integer such that kmn = k. We show the existence of such an
integer m later. Let us otherwise complete the proof. Indeed, κ◦ψ = id as for any (h, ka) ∈
H ⋉φ1 K, we get κ(ψ((h, ka))) = κ((σ(h), kan)) = (σ−1σ(h), kanm) = (h, (kmn)a) = (h, ka).
Similarly, one sees the other direction.

Now we show the existsence of m. We wish to find m ∈ N such that l|mn − 1. This
is equivalent to showing that gcd(n, l) = 1. We will show that by approriately replacing
n so that the new induced map ψ still is a homomorphism, this can be achieved. Observe
that φ2(k) ∈ Aut (()H) is an element of order coprime to n as φ2(k)

n is a generator of
Im (φ2) = ⟨φ2(k)⟩. Denoting a = |φ2(k)|, we have gcd(a, n) = 1. Moreover, we know in
general that a|l. Now observe the following lemma:

Lemma 3.0.2. Let a, n, l ∈ Z be integers such that gcd(a, n) = 1 and a|l. Then there exists
n′ ∈ Z such that n′ = n mod a and gcd(n′, l) = 1.
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Proof. Consider n′ = n+ q1 . . . qk · a where qi is a prime such that qi|l and qi ̸ | n. Pick any
prime p|l. If p|n, then p ̸ | q1 . . . qka. Similarly, if p ̸ | n, then p|q1 . . . qka. This shows in
both cases that p ̸ | n′, as required.

Finally, using Lemma 3.0.2, we claim that we can replace n by n′ and the map ψ
thus obtained would still be a homomorphism. Indeed, in Eqn. (3.1), one observes that
φ2(k)

n = φ2(k)
n′

as n′ = n mod a, where a = |φ2(k)|. This completes the proof.

Proof of Question 5.5, 8. a) We first wish to find a non-trivial group of order 75 =
3 · 52. By general results on semi-direct products, we need only construct a non-trivial
map φ : Z3 → Aut (()Z5 × Z5) to construct a group (Z5 × Z5)⋉φ Z3, which would thus be
non-abelian. Indeed, we further reduce to showing that Aut (()Z5 × Z5) has an element of
order 3. It thus remains to be seen that what is the order of Aut (()Z5 ×Z5). Observe that
automorphisms of Zp×Zp are just invertible Zp-linear transformations Zp×Zp → Zp×Zp, for
any prime p. It follows that Aut (()Zp×Zp) = GL2(Zp). Since |GL2(Zp)| = (p2−1)(p2−p),
therefore we see that

|Aut (()Z5 × Z5)| = |GL2(Z5)| = 480 = 23 · 3 · 5.

Hence, there is an element of order 3 in Aut (()Z5 × Z5) by Cauchy’s theorem, as required.
We now construct an explicit element matrix A ∈ GL2(Z5) of order 3, which we then

use to construct the map φ : Z3 → Aut (()Z5 × Z5). Indeed, observe that the matrix

A =

ï
0 −1
1 −1

ò
∈ GL2(Z5)

is of order 3. Indeed, one constructs this as the companion matrix of p(x) = x2 + x + 1
where p(x) ∈ Z5[x]. Then since x3 − 1 = (x − 1)p(x), therefore A3 − I = 0, as required.
Hence, the map

φ : Z3 −→ GL2(Z5)

1 7−→ A

gives the required map φ. Hence, the operation of group (Z5×Z5)⋉φZ3 is given as follows.
Consider two elements ((a1, b1), c1) and ((a2, b2), c2) in (Z5 ×Z5)⋉φ Z3. We showcase their
product as follows:

((a1, b1), c1) · ((a2, b2), c2) =


((a1, b1) · (a2, b2), 0) if c1 = 0

((a1, b1) · (−b2, a2 − b2), c2) if c1 = 1

((a1, b1) · (−a2 + b2,−a2), 2c2) if c1 = 2.

The above multiplication on the set (Z5 × Z5) × Z3 hence defines a group which is non-
abelian of order 75, as needed.

b) We wish to classify all groups of order 75. Indeed, we claim that upto isomorphism,
there are only three groups of order 75, out of which two are abelian and only one is
non-abelian:
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1. Z75,
2. Z3 × Z5 × Z5,
3. (Z5 × Z5)⋉φ Z3,

where φ is as constructed in part a). The first two follows from structure theorem for finitely
generated abelian groups and the fact that Zm×Zn ∼= Zmn is gcd(m,n) = 1. The non-trivial
part is to show that any non-abelian group G of order 75 is isomorphic to (Z5 ×Z5)⋉φ Z3.
We show this now.

We first claim that there is a unique Sylow 5-subgroup of G. Indeed, let n5 be the no.
of Sylow 5-subgroups of G. Then by Sylow’s third theorem, it follows that n5 = 1 mod 5
and n5|3. The only solution to this is n5 = 1. Hence, there is a unique Sylow 5-subgroup
K ∼= Z25 of order 25. By Sylow’s second theorem, K is a normal subgroup. Moreover,
observe by Cauchy’s theorem that there exists an element of order 5 in K. This means
that K is not cyclic of order 25. Hence, every element in K is of order 5. Pick two disjoint
subgroups of order 5 in K, which exists as every non-identity element in a group of order 5
is a generator. It follows that K ∼= Z5 × Z5.

Observe that there are subgroups of order 3 by either Cauchy or Sylow. Pick any one
and call it H. Note H ∼= Z3. We claim that H ∩K = e and H ·K = G. Indeed, this follows
from size arguments as |H ·K| = |H||K|

|H∩K| = 75. Hence, we deduce that G is an internal semi-

direct product of H and K. It follows that under the conjugation map ψ : H → Aut (()K),
we have G = K ⋉ψ H ∼= (Z5 × Z5) ⋉ψ Z3. Observe that Aut (()Z5 × Z5) ∼= GL2(Z5) and
thus is of order 480 = 25 · 3 · 5.

Since the images of ψ and φ are both subgroups of order 3 in Aut (()Z5×Z5), therefore
they are both Sylow 3-subgroups of Aut (()Z5 × Z5). It thus follows by Sylow’s second
theorem that Im (ψ) and Im (φ) are conjugate. By Question 5.5, 6, it follows that G ∼=
(Z5 × Z5)⋉ψ Z3

∼= (Z5 × Z5)⋉φ Z3, as needed.

Proof of Question 5.5, 24. Let n = pα1
1 . . . pαr

r be a positive integer where pi are distinct
primes. We wish to show that the following are equivalent:

1. Every group of order n is abelian.
2. Each αi = 1 or 2 and pi ̸ | p

αj

j − 1 for all i, j.

(1. ⇒ 2.) Suppose to the contrary that statement 2 is not true. In each case, we then
construct a non-abelian group of order n, taking help of semi-direct products.

If statement 2 is not true, then either for some i0 = 1, . . . , r, αi0 ≥ 3 or for some
i0, j0 = 1, . . . , r, we get pi0 |p

αj0
j0

− 1. Before proving both the cases, we state the following
claims.

Lemma 3.0.3. There is a non-abelian group of order:

1. p3,
2. pα for each α ≥ 3,
3. pq where p|q − 1,
4. pq2 where p|q2 − 1,
5. pαqβ where 1 ≤ α, β ≤ 2 and p|qβ − 1.

Proof. Items 1 and 3 are done in Dummit & Foote. For item 2, consider any group of
order pα−3, say H and let K be a non-abelian group of order p3 as constructed in item 1.
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Then, H × K is a non-abelian group of order pα, as it contains a non-abelian subgroup.
For item 4, since p|q2 − 1, Aut (()Zq × Zq) = GL2(Fq) and |GL2(Fq)| = (q2 − 1)(q2 − q),
therefore p| |Aut (()Zq × Zq)|. It follows by Cauchy’s theorem that there exists a non-trivial
map φ : Zp → Aut (()Zq × Zq). As any non-trivial (the underlying map is non-trivial)
semi-direct product yields a non-abelian group, therefore (Zq × Zq)⋉φ Zp is a non-abelian
group of order pq2, as needed. Using item 4, one can prove item 5 as follows. We proceed
by considering various cases on α and β.

1. If α = 1 = β. Then, by item 3, we are done.
2. If α = 1 and β = 2. Then, by item 4, we are done.
3. If α = 2 and β = 1. Then p|q − 1 and thus by item 3, we have a non-abelian group

of order pq, say H. Take the group of order p, say K, and consider H ×K, which is
thus a non-abelian group of order p2q.

4. If α = 2 and β = 2. Then, by item 4, there is a non-abelian group of order pq2. We
may multiply it by the group of order p to get a non-abelian group of order p2q2.

This completes the proof of the lemma.

We now use Lemma 3.0.3 to complete this direction. Indeed, if αi0 ≥ 3, then by the
above lemma, we have a group H of order p

αi0
i0

. Let K be a group of order
∏
j ̸=i0 p

αj

j . Then
H ×K is a group of order n which is not abelian, a contradiction.

Finally, if there exists i0, j0 ∈ {1, . . . , r} such that pi0 |q
αj0
j0

− 1, then we proceed as fol-
lows. We may first assume that all 1 ≤ αi ≤ 2 as if not, then we are in previous case and
we would be done. By Lemma 3.0.3, 5, there is a non-abelian group H of order p

αi0
i0
q
αj0
j0

.
Let K be any group of order

∏
k ̸=i0,j0 p

αk
k . Then H ×K is a non-abelian group of order n,

a contradiction. This completes the proof of forward direction.

(2. ⇒ 1.) we proceed by strong induction on n. The case for n = 1, 2 is immediate.
Now suppose that every group of order m =

∏r
i=1 p

αi
i < n such that αi = 1 or 2 and

pi ̸ | p
αj

j − 1 for all i, j is abelian. Let G be a group of order n. By inductive hypothesis,
every proper subgroup of G is abelian. We wish to show that G is abelian. The proof of this
is complicated and hence we first state all the steps we need in the following proposition.

Proposition 3.0.4. Let G be of order n =
∏r
i=1 p

αi
i such that αi = 1 or 2 and pi ̸ | p

αj

j − 1
for all i, j . Suppose further that every proper subgroup of G is abelian. Then the following
statements are true:

1. G is solvable.
2. There exists a proper normal subgroup N ⊴ G such that G/N is prime cyclic.
3. The center ZG is equal to G. That is, G is abelian.

The proof of (2. ⇒ 1.) would then follow from item 4 in above proposition.

Proof of Proposition 1. 1. This follows from item 1 and Exercise 56 of §4.5 of Dummit-
Foote.

2. By item 2, G is solvable. Then, by one of the equivalent criterion of solvability, it
follows that there is a composition series with prime cyclic factors. Therefore there
is a normal proper subgroup N ⊴ G such that G/N ∼= Zp, where p is a prime, as
required.
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3. By item 3, there is a normal subgroup N ⊴ G of index prime p1 (WLOG) where
p1 is a prime dividing |G| = n = pα1

1 . . . pαr
r . Now consider the action of G/N as

automorphisms of N by conjugation, that is,

G/N ×N −→ N

(gN, n) 7−→ gng−1.

This determines a homomorphism

φ : G/N → Aut (()N). (5.1)

Observe that

|N | = pα1−1
1 pα2

2 . . . pαr
r

where 1 ≤ αi ≤ 2. Observe that N is abelian by item 1. In particular, N is an abelian
group of order pα1−1

1 pα2
2 . . . pαr

r . It follows by structure theorem of finitely generated
abelian groups that either N is isomorophic to Zp1 ×N ′ or to N ′, where N ′ is some
abelian group of order pα2

2 . . . pαr
r .

Now since Aut (()K1 × K2) ∼= Aut (()K1) × Aut (()K2) by pre and post composing
with inclusions and surjections of factors, we deduce that

Aut (()N) ∼=
®
Aut (()Zp1)×Aut (()N ′) or,

Aut (()N ′).

Thus, |Aut (()N)| = (p1 − 1) × |Aut (()N ′)| or |Aut (()N)| = |Aut (()N ′)|. Observe
that since p1 ̸ | pαj

j − 1 for all j = 2, . . . , r, therefore we claim that p1 ̸ | |Aut (()N ′)|.
Indeed, by another use of structure theorem, for each j = 2, . . . , r, either N ′ will have
Zpj as a factor or Zp2j as a factor or Zpj × Zpj as a factor. Consequently, |Aut (()N ′)|
will have either pj − 1 as a factor p2j − pj as a factor, (p2j − 1)(p2j − pj) as a factor.
As p1 does not divide any of the three, therefore we conclude that the map φ in Eqn.
(5.1) is trivial. That is, the conjugation action of G/N on N is trivial. Therefore for
every gN ∈ G/N , gng−1 = n for all n ∈ N . It follows that N ≤ ZG. If N = ZG,
then G/ZG is cyclic and thus G is abelian, so we are done. If N ⪇ ZG, then ZG/N
determines a non-trivial subgroup of G/N ∼= Zp1 . It then also follows that ZG = G,
as required.

This completes the proof of the proposition.

This completes the proof of the result.

4 Week 4 : Free groups, irreducibility

Proof of Question 6.3, 3. We wish to show that the commutator subgroup H = [G : G]
of G = Z ∗ Z is not finitely generated. Recall that

H = ⟨ghg−1h−1 | g, h ∈ G⟩.
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Suppose that H is finitely generated. We first claim that there is a finite subset of S =
{ghg−1h−1 | g, h ∈ G} which generates H. Indeed, since there is a finite generating set, say
T = {t1, . . . , tn} ⊆ H, therefore we may write each ti ∈ T as a finite product of elements
from S. Let F ⊆ S be the finite subset obtained by taking all elements of S which appear
in factorization of each ti ∈ T . Thus F generates H, as required.

Let F = {gkhkg−1
k h−1

k | k = 1, . . . , L} and furthermore, denote

gk = amk1 bmk2 . . . a
mklk−1 b

mklk

hk = ank1 bnk2 . . . a
nklk−1 b

nklk

where a, b ∈ G are the two generating elements of G. Now observe the following for each
1 ≤ k ≤ L:

gkhkg
−1
k h−1

k = amk1 bmk2 . . . . . . . . . b−nk2a−nk1 .

Now let M =
∑L

k=1mk1 and N =
∑L

k=1 nk1 . Further, denote

H ′ = ⟨gkhkg−1
k h−1

k | k = 1, . . . , L⟩

which is equal to H by assumption. Since any element in H ′ is obtained by finite product
of elements from F . Thus, every element in H ′ will be of form amk1 bmk2 . . . . . . b−nl2a−nl1

for some 1 ≤ k, l ≤ L. Pick any κ > max{M,N}. Then the element aκbκa−κb−κ is in H,
but not in H ′. This shows that H ′ ̸= H, a contradiction. Thus H is not finitely generated,
as required.

Proof of Question 6.3, 10. Consider S6 and the following five elements t′i in S6:

t′1 = (1 2)(3 4)(5 6)

t′2 = (1 4)(2 5)(3 6)

t′3 = (1 3)(2 4)(5 6)

t′4 = (1 2)(3 6)(4 5)

t′5 = (1 4)(2 3)(5 6).

We wish to show the following three statements:
1. (t′i)

2 = 1 for each i = 1, . . . , 5, (t′it
′
j)

2 = 1 for |i− j| ≥ 2 and (t′it
′
i+1)

3 = 1 for each
1 ≤ i ≤ 4.

2. S6 is generated by t′i, 1 ≤ i ≤ 5.
3. The map φ : S6 → S6 given on generators by (i i+ 1) 7→ t′i for each i = 1, . . . , 5 is an

automorphism.
1. Let i ∈ {1, . . . 5}. Then since each t′i is a product of disjoint transpositions, there-
fore t′it

′
i = 1. For the next, observe that all the pairs (i, j) such that |i− j| ≥ 2 are

(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 1), (3, 5), (4, 1), (4, 2), (5, 1), (5, 2), (5, 3). We show this only
for one pair from the above, the rest follows exactly similarly. Let (i, j) = (5, 3). Then

t′5t
′
3 = (1 4)(2 3)(5 6) · (1 3)(2 4)(5 6)

= (1 2)(3 4).
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Then since t′5t
′
3 is a product of disjoint transpositions, therefore (t′5t

′
3)

2 = 1, as required.
Finally, to show that (t′it

′
i+1)

3 = 1 for each i = 1, . . . , 4, we show this again only for one i,
the rest following in the exact same manner. Indeed, let i = 4. Then

t′4t
′
5 = (1 2)(3 6)(4 5) · (1 4)(2 3)(5 6)

= (1 5 3)(2 6 4).

As t′4t
′
5 is a product of disjoint 3-cycles, hence it follows at once that (t′4t

′
5)

3 = 1, as required.
This completes the proof of item 1.

2. Recall the following presentation of Sn:

Sn = ⟨t1, . . . , tn−1 | t2i = 1, (titi+1)
3 = 1 ∀i and titj = tjti ∀ |i− j| ≥ 2⟩.

By item 1, we already have five elements t′1, . . . , t
′
5 which satisfies (t′i)

2 = 1 = (t′it
′
i+1)

3

for all i. Now since t′it
′
jt

′
it
′
j = 1 for each |i− j| ≥ 2, and since each t′i = t′−1

i , therefore

t′it
′
jt

′−1
i t′−1

j = t′it
′
jt

′
it
′
j = 1, as needed.

Thus we have found the required five elements in S6 which satisfies the relations the
generators have to satisfy. Hence, S6 = ⟨t′1, . . . , t′5⟩.

3. Let ti := (i i + 1). Observe that {ti} and {t′i} both are generating sets of S6 which
satisfy the same relations, that is, both of them gives a presentation of S6. The φ defined
on ti as ti 7→ t′i gives a unique group homomorphism. Similarly we may define ψ : S6 → S6
on the generating set {t′i} as t′i 7→ ti. Now it is immediate that ψ ◦ φ on generating set
{ti} maps as ti 7→ ti. Thus ψ ◦ φ = id. Similarly, φ ◦ ψ = id. Hence, φ : S6 → S6 is an
isomorphism, as required.

Proof of Question 13.1, 5. Let α ∈ Q be a root of a monic polynomial p(x) ∈ Z[x]. We
wish to show that α is an integer.

Let us write α = a
b where we may assume gcd(a, b) = 1. Recall that Z is a UFD, so the

results surrounding Gauss’ lemma holds here. As p(x) ∈ Q[x] has a zero in Q given by α, it
follows that bx− a|p(x) in Q[x]. As gcd(a, b) = 1, therefore bx− a is a primite polynomial
in Z[x]. Hence by general results around Gauss’ lemma, we deduce that bx−a|p(x) in Z[x].
Consequently, there exists q(x) ∈ Z[x] such that

p(x) = (bx− a) · q(x).

As p(x) is monic, it follows that the leading coefficient on LHS is 1. Thus, there exists c ∈ Z
such that bc = 1, showing that b is a unit in Z. As the only units of Z are ±1, therefore we
have b = ±1. It follows that α = a

b is an integer, as required.

Proof of Question 13.1, 8. We wish to show that if a ̸= 0, 2,−1, then the polynomial
p(x) = x5 − ax− 1 ∈ Z[x] is irreducible.

First observe that if q(x) ∈ Z[x] divides p(x) then p(x) = q(x)·r(x) for some r(x) ∈ Z[x].
It follows that q(x) and r(x) are monic. It thus suffices to show that there are no linear or
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quadratic monic factors of p(x). Indeed, suppose q(x) = x − n ∈ Z[x] is a linear factor of
p(x). Then, we yield

n5 − an− 1 = 0.

We may write this as n(n4−a) = 1. As n and n4−a are integers, therefore we deduce that
either n = 1 and n4 − a = 1, or n = −1 and n4 − a = −1. In both cases, a = 0 or a = 2,
which we assumed to not be the case, hence a contradiction. This shows that p(x) has no
linear factors.

In the other case, if p(x) has x2 + bx+ c as a factor, then we may write

p(x) = (x2 + bx+ c) · (x3 + dx2 + ex+ f)

for d, e, f ∈ Z. Expanding the RHS, we deduce that

p(x) = x5 − ax− 1 = x5 + (b+ d)x4 + (c+ bd+ e)x3 + (cd+ be+ f)x2 + (bf + ce)x+ cf.

From this, it follows that

b+ d = 0

c+ bd+ e = 0

cd+ be+ f = 0

bf + ce = −a
cf = −1.

The last equality in particular implies that c = 1 and f = −1 or c = −1 and f = 1. Suppose
the former is true, that is c = 1, f = −1. By fourth equality, we get −b+ e = −a. Solving
the rest, we obtain d(1− e) = 1 and e = 1 + d2. Solving these two yields d = 1. It follows
that e = 0, but then d2 = −1, not possible.

Now suppose the latter is true, that is c = −1, f = 1. One can then derive from above
equations that d(2 + d2) = 1. It follows that d > 0. But there is no solution to the above,
a contradiction.

This proves that p(x) has a no linear or quadratic factors, hence is irreducible.

Proof of Question 13.2, 4. We wish to find degree of α = 2+
√
3 over Q. Observe that

for p(x) = x2 − 4x + 1 ∈ Q[x] is such that p(α) = 0. Therefore mα,Q(x)|p(x). As mα,Q(x)
is not linear as α ̸∈ Q, it follows that mα,Q(x) = p(x).

Next, we wish to find degree of β = 1 + 21/3 + 22/3. Observe first that

1

21/3 − 1
=

(21/3)3 − 1

21/3 − 1
= 1 + 21/3 + 22/3 = β

It follows from above that β ∈ Q(21/3), so that Q(β) ⊆ Q(21/3). We now claim that
Q(21/3) ⊆ Q(β). Indeed, as β = (21/3 − 1)−1, therefore this is immediate. We thus deduce
that Q(21/3) = Q(β), and thus [Q(β) : Q] = [Q(21/3) : Q] = 3, as required.
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Proof of Question 13.2, 5. We wish to show that x3− 2 and x3− 3 are irreducible over
F = Q(i). Indeed, it suffices to show that F [x]/⟨x3 − 2⟩ and F [x]/⟨x3 − 3⟩ are prime ideals
(or, equivalently by PID condition, maximal ideals). We first prove this for x3−2. We wish
to show that F [x]/⟨x3 − 2⟩ is a domain. Indeed, since F ∼= Q[y]/⟨y2 + 1⟩, therefore we get
that

F [x]

x3 − 2
∼=

Q[y]
y2+1

[x]

x3 − 2
∼=

Q[x, y]

x3 − 2, y2 + 1
.

Now observe that ⟨x3−2, y2+1⟩ is a prime ideal in Q[x, y] as it is the kernel of the following
map

θ : Q[x, y] −→ C

f(x, y) 7−→ f(21/3, i).

Indeed, it is clear that ⟨x3 − 2, y2 + 1⟩ ⊆ Ker (θ). Conversely, if f(x, y) ∈ Ker (θ), then
the image of f(x, y) in Q[x, y]/⟨y2 + 1⟩ ∼= Q(i)[x] is f(x, y) and is in the ideal ⟨x3 − 2⟩.
Thus, f(x, y) = p(x) · (x3 − 2) in Q(i)[x]. Going back to Q[x, y], we obtain that f(x, y) =
p(x) · (x3 − 2) + q(x, y) · (y2 + 1), as required. This shows that Ker (θ) = ⟨x3 − 2, y2 + 1⟩.
Thus, ⟨x3 − 2, y2 + 1⟩ is prime, as required. This completes the proof. One can show that
x3 − 3 is irreducible in F [x] in the exact same manner.

Proof of Question 13.2, 17. Let F be a field and f(x) ∈ F [x] be an irreducible poly-
nomial of degree n. Let g(x) ∈ F [x]. We wish to show that if p(x) ∈ F [x] is an irreducible
factor of f(g(x)) ∈ F [x], then deg p(x) is a multiple of n.

We translate this problem into finite degree field extensions and their properties. Denote

K =
F [x]

⟨f(x)⟩

and

L =
F [x]

⟨p(x)⟩
.

Both are field extensions of finite degree over F with [K : F ] = deg f(x) = n and [L : F ] =
deg p(x). We claim the following two statements:

1. There is an injective homomorphism K ↪→ L.
2. The extension L/K is finite.

This would complete the proof as then we would have

deg p(x) = [L : F ] = [L : K] · [K : F ] = [L : K] · n,

as required. Hence we reduce to proving the above two claims.
For item 1, observe the map

θ : F [x] −→ F [x]

x 7−→ g(x).
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Consider the ideal ⟨p(x)⟩ ≤ F [x]. We have

θ−1(⟨p(x)⟩) = {r(x) ∈ F [x] | p(x) divides r(g(x))}
⊇ ⟨f(x)⟩.

But since f(x) is irreducible, therefore ⟨f(x)⟩ is maximal and since θ is non-trivial, it follows
that

θ−1(⟨p(x)⟩) = ⟨f(x)⟩.

We now at once conclude that θ induces the following injection:

K =
F [x]

⟨f(x)⟩
↪→ F [x]

p(x)
= L,

as needed.
We now prove item 2. As finite extensions are equivalent to finitely generated algebraic

extensions, therefore we reduce to showing that L/K is finitely generated and algebraic.
Since L/F is algebraic and K ⊇ F , therefore we immediately, deduce that L/K is algebraic.
We hence need only show that L/K is a finitely generated K-algebra.

To this end, we first observe that L is generated by one element over F as we have a
surjection F [y] ↠ L given by y 7→ x̄. We also have an injection F [y] ↪→ K[y] given by
y 7→ y, which extends the inclusion F ↪→ K. Now consider the map F [y] → L given by
y 7→ x̄. We have the following comutative diagram:

K[y]

F [y] L

.

The commutativity of the above triangle immediately forces the map K[y] → L to be
surjective. This shows that L is generated by a single image as a K-algebra, as needed.
This completes the proof.

5 Week 5 : Degree, splitting fields & normal extensions

Proof of Question 13.2, 22. Let K/F be a field and K ⊇ K1,K2 ⊇ F be two subfields.
We wish to show that the following are equivalent:

1. K1 ⊗F K2 is a field.
2. [K1K2 : F ] = [K1 : F ] · [K2 : F ].

(1. ⇒ 2.) We first show that K1 ⊗F K2
∼= K1K2. This would suffice as dimF (K1 ⊗F K2) =

dimF K1 · dimF K2, which is equivalent to thus [K1K2 : F ] = [K1 : F ][K2 : F ]. Indeed,
consider the bilinear mapping f : K1×K2 → K1K2 given by (k1, k2) 7→ k1k2. Consequently,
we get a map φ : K1 ⊗F K2 → K1K2 which maps on simple tensors as k1 ⊗ k2 7→ k1k2. As
K1⊗F K2 is a field, it suffices to show that φ is a surjection. Indeed, it suffices to show that
K1,K2 ⊆ Im (φ). Indeed, as φ(k1 ⊗ 1) = k1 and φ(1⊗ k2) = k2, therefore Im (φ) ⊇ K1K2,
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thus Im (φ) = K1K2, as required.

(2. ⇒ 1.) Consider the above map φ : K1⊗FK2 → K1K2 which we showed to be surjective.
Considering φ as an F -linear map, we see that dimF K1 ⊗F K2 = dimF K1 · dimF K2 =
[K1 : F ] · [K2 : F ] = [K1K2 : F ] = dimF K1K2. It follows that φ is an isomorphism, thus
showing that K1 ⊗F K2 is a field as K1K2 is a field.

Proof of Question 13.4, 3. We wish to find the splitting field of p(x) = x4+x2+1 and
its degree. Indeed, observe that we can write

p(x) = (x+ 1)(x− 1)(x− ω2)(x+ ω2)(x− ω)(x+ ω).

Then the splitting field is Q(ω) and its degree is 2.

Proof of Question 13.4, 4. We wish to find splitting field of p(x) = x6−4 and its degree.
Indeed, observe that we can write

p(x) = (x− 21/3)(x− ω21/3)(x− ω221/3)(x+ 21/3)(x+ ω21/3)(x+ ω221/3).

Then the splitting field is Q(ω, 21/3) and its degree 6 as [Q(ω) : Q] = 2 and [Q(21/3) : Q] = 3
have gcd 1.

Proof of Question 13.4, 5. LetK/F be a finite extension. Then the following are equiv-
alent:

1. K/F is a splitting field.
2. For every irreducible polynomial g(x) ∈ F [x] which has a root in K, g(x) has all roots

in K.

(1. ⇒ 2.) Pick any irreducible g(x) ∈ F [x] such that it has a root α ∈ K. Let β be another
root of g(x) in the algebraic closure. We wish to show that β is in K. Observe that since β
is a root of g(x), therefore we can lift id : F → F to an isomorphism F (α) → F (β) which
fits in the following diagram:

F (α) F (β)

F F
id

ψ

∼=

.

Observe that ψ(f(x)) = f(x). Now, we can further lift ψ to an isomorphism of the splitting
fields of f(x) over F (α) and F (β) as

L1 L2

F (α) F (β)
ψ

∼=

θ
∼=

where L1 is the splitting field of f(x) over F (α) and L2 is the splitting field of f(x) over
F (β).

We now claim that L1 = K(α). Indeed, as L1 contains all roots of f(x), therefore
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L1 ⊇ K and thus L1 ⊇ K(α). Conversely, L1 ⊆ K(α) as K(α) contains all roots of f(x)
over F (α), therefore L1 ⊆ K(α). Hence L1 = K(α). Similarly, we get that L2 = K(β).

As α ∈ K, it follows that K(α) = K. Hence θ : K ∼= K(β). As both K and K(β) are
both 1-dimensional K-vector spaces, therefore β ∈ K, as required.

(2. ⇒ 1.) We construct a polynomial f(x) ∈ F [x] such that K is the splitting field of
F . Indeed, as K/F are finite, therefore K = F (α1, . . . , αn) is a finitely generated algebraic
extension over F . Let p1, . . . , pn ∈ F [x] be minimal polynomials of α1, . . . , αn respectively.
Define

f(x) = p1(x) · · · · · pn(x) ∈ F [x].

We claim that K is the splitting field of f(x) over F . Indeed, let L/F be the splitting field
of f(x) over F . As each pi(x) ∈ F [x] is irreducible and has a root in K, namely αi, it follows
by our hypothesis that pi(x) splits into linear factors over K, for each i = 1, . . . , n. Thus,
f(x) is split into linear factors over K and thus L ⊆ K. For the converse, as L contains
αi as αi is a root of pi(x), and also contains F , thus L contains K = F (α1, . . . , αn). Thus
L = K, as required. This completes the proof.

6 Week 6 : Irreducible & separable polynomials, perfect
fields

Proof of Question 9.4, 16. Let f(x) = anx
n + · · · + a1x + a0 ∈ F [x] be a polynomial

and consider the reverse polynomial f!(x) := xnf(1/x). We first wish to find coefficients of
f! in terms of coefficients of f . Observe that

f!(x) = xnf(1/x)

= xn
Å
an

1

xn
+ · · ·+ a1

1

x
+ a0

ã
= an + an−1x+ · · ·+ a1x

n−1 + a0x
n.

Thus, if ck(f!) denotes the coefficient of xk in f!(x) for 0 ≤ k ≤ n, then we have

ck(f!) = an−k

for each 0 ≤ k ≤ n.
We next wish to show that f(x) is irreducible if and only if f!(x) is irreducible. Indeed,

first observe that f!!I(x) = f(x), so we need only show that f(x) is irreducible implies f!(x)
is irreducible. To this end, suppose f!(x) is not irreducible so that we have

f!(x) = g(x)h(x)
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where g, h ∈ F [x] and 1 ≤ deg g(x), deg h(x) ≤ n with deg g(x) = m1 and deg h(x) = m2

clearly with m1 +m2 = n. Now,

f(x) = f!!(x) = xng(1/x)h(1/x)

= xm1+m2g(1/x)xm2h(1/x)

= xm1g(1/x)xm2h(1/x)

= g!(x)h!(x)

where 1 ≤ deg g!(x), deg h!(x) ≤ n. Hence, this shows that f(x) is not irreducible, a
contradiction.

Proof of Question 13.5, 2. We wish to first find all irreducible polynomials of degrees
1, 2 and 4 over F2.

1. For degree 1, we have the following two irreducibles : x, x+ 1.
2. For degree 2, we first find degree 2 reducibles by multiplying all degree 1 irreducibles:
x(x + 1) = x2 + x, x2, (x + 1)2 = x2 + 1. Thus, any polynomial in F2 of degree 2
which is not one of the above has to be irreducible. As there are only four degree 2
polynomials, it follows that there is only one degree 2 irreducible polynomial, namely
x2 + x+ 1.

3. For degree 4, we again first find all degree 4 reducibles. Indeed if p(x) ∈ F2[x]
is a degree 4 reducible, then p(x) = f(x)g(x) for f(x), g(x) ∈ F2[x] with 1 ≤
deg f(x),deg g(x) ≤ 3 and deg f(x) + deg g(x) = 4. Let us state all the eight de-
gree 3 polynomials as well here: x3, x3+1, x3+x, x3+x2, x3+x+1, x3+x2+1, x3+
x2 + x, x3 + x2 + x+ 1. Thus, we have the following cases for degrees of f and g:
(a) If deg f(x) = deg g(x) = 2. In this case, the degree 4 reducibles we get by

multiplying two degree 2 polynomials are: x4+x2, x4+x3, x4+x3+x2+x, x4, x4+
1.

(b) If deg f(x) = 1 and deg g(x) = 3. In this case, p(x) is obtained by multiplying
a degree 3 polynomial with either x or x + 1. Thus we get following degree 4
reducibles corresponding to this case which are not already in item (a): x4 +
x, x4 + x3 + x+1, x4 + x2 + x, x4 + x3 + x2 +1, x4 + x3 + x, x4 + x2 + x+1, x4 +
x3 + x2, x4 + x.

Using these two cases, we get total twelve reducible degree 4 polynomials. Conse-
quently, the rest four are going to be the only degree 4 irreducible polynomials and
they are:

• x4 + x+ 1
• x4 + x2 + 1
• x4 + x3 + 1
• x4 + x3 + x2 + x+ 1.

This completes the proof.

Proof of Question 13.2, 5. Pick any prime p and any non-zero element a ∈ Fp. We
wish to show that f(x) = xp − x+ a ∈ Fp[x] is irreducible and separable over Fp.

We first immediately see that f(x) is separable as f ′(x) = −1, so has no roots and
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thus f(x) and f ′(x) have no roots in common. It follows that f(x) has p distinct roots in
Fp. We now show irreducibility of f(x). Our main idea is to show that f(x) is a minimal
polynomial of some element in the algebraic closure, namely a root of f(x).

Let K/Fp be the splitting field of f(x). As K = Fp(α1, . . . , αp), where αi ∈ Fp are roots
of f(x). Observe that if α is a root of f(x), then so is α + 1 as (α + 1)p − (α + 1) + a =
αp+1−α−1+a = αp+1−α−1+a = 1−1 = 0. Hence, denoting α = α1, we see that all roots
of f(x) are S = {α, α+ 1, . . . , α+ (p− 1)}. Consequently, K = Fp(α1, . . . , αp) = Fp(α).

Now, the splitting field Fp(α)/Fp is a finite extension where the minimal polynomial
mα,Fp(x) ∈ Fp[x] divides f(x). We claim that degmα,Fp(x) = deg f(x). This will imply
that f(x) = mα,Fp(x) and since the latter is irreducible, therefore so is f(x) and we would
be done. To see that degmα,Fp(x) = deg f(x), let us assume to the contrary that mα,Fp(x)
has degree atleast 1 lower than that of f(x). Thus mα,Fp doesn’t have every element in
S as its zero. Consequently, the sum of roots of mα,Fp(x) would become kα + r where
1 ≤ k ≤ p− 1 and r ∈ Fp. As sum of roots is a coefficient of mα,Fp , therefore kα+ r ∈ Fp.
It follows that kα ∈ Fp, but k is invertible in Fp, so α ∈ Fp, a contradiction. This completes
the proof.

Proof of Question 13.5, 11. Let K/F be a field extension such that F is perfect and
f(x) ∈ F [x] has no repeated irreducible factors in F [x]. We wish to show that f(x) has no
repeated irreducible factors in K[x].

Let f(x) = p1(x) . . . pk(x) for pi(x) ∈ F [x] irreducible. As F is perfect, therefore pi(x)
are further separable. Consequently, write pi(x) = qi1(x) . . . qili(x) where qij ∈ K[x] are
irreducible for each 1 ≤ i ≤ k. Thus we obtain a decomposition of p(x) into product of
irreducibles qij(x) over K. We claim that none of qij(x) repeat. Suppose they do, then we
have two cases.

1. Suppose qij(x) = qij′(x) for j ̸= j′. It follows that pi(x) has a repeated irreducible
factor in K[x]. To get a contradiction it would suffice to show that a separable
polynomial p(x) ∈ F [x] remains separable in K[x]. This is what we prove now.
Indeed, suppose p(x) is inseparable over K. Thus, there exists α ∈ K which is a
repeated root of p(x) where K is an algebraic closure of K containing F . Thus,
α ∈ F ⊆ K. It follows that p(x) has a repeated root in F , which is a contradiction to
the separability of p(x) over F .

2. Suppose qij(x) = qkj′(x) for i ̸= k. We thus have that pi(x) and pj(x) share a common
factor in K[x] for some i ̸= j, thus a common root α in an algebraic closure K of K
which contains F . Hence, mα,F (x) ∈ F [x] divides both pi(x) and pj(x). Since pi(x)
and pj(x) are irreducible, therefore pi(x) = mα,F (x) = pj(x), a contradiction to the
assumption that pi(x) and pj(x) are distinct.

This shows that all qij(x) are distinct irreducible over K. By unique factorization of K[x],
we conclude the proof.

Proof of Question 14.1, 4. We wish to show that Q(
√
2) and Q(

√
3) are not isomorphic

fields. Indeed, suppose φ : Q(
√
2) → Q(

√
3) is a field isomorphism. Since

n = nφ(1) = φ(n) = φ
( n
m

·m
)
= mφ

( n
m

)
,
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thus φ(n/m) = n/m for all n/m ∈ Q. It follows that φ is Q-linear. Now, we see that

2 = φ(2) = φ((
√
2)

2
) = φ(

√
2)2.

Thus, φ(
√
2) is an element in Q(

√
3) whose square is 2. We show that there is no element in

Q(
√
3) whose square is 2. Indeed, if a+ b

√
3 ∈ Q(

√
3) for a, b ∈ Q such that (a+ b

√
3)2 = 2,

thus

(a+ b
√
3)2 = a2 + 3b2 + 2ab

√
3 = 2.

Hence,

a2 + 3b2 = 2

2ab = 0.

It thus follows that either a or b is 0, so we may assume (WLOG) that a = 0. Hence 3b2 = 2,

thus b2 = 2/3 and b = ±
√
2√
3
, a contradiction to the fact that a, b ∈ Q.

Proof of Question 14.1, 6. a) Let k be a field and f : k[t] → k[t] be defined by t 7→ at+b
for fixed a, b ∈ k with a ̸= 0. We wish to show that f is an automorphism of k[t].

Indeed, consider the map g : k[t] → k[t] defined by t 7→ 1
a(t − b). This is a homo-

morphism. We wish to show that this is the inverse of f . Indeed, we see that f ◦ g(t) =
f(g(t)) = f( 1a(t− b)) = a · 1a(t− b)+ b = t = id(t). For the other side, g ◦ f(t) = g(at+ b) =
1
a(at+ b)− b = t = id(t). Thus f is an isomorphism. Moreover, f(c) = c for all c ∈ k, thus
f is a k-algebra isomorphism.

b) Let φ : k[t] → k[t] be a k-algebra isomorphism. We wish to show that φ(t) = at+ b for
some a, b ∈ k and a ̸= 0.

Indeed, let φ(t) = ant
n + · · · + a1t + a0, ai ∈ k. Suppose chark = p. Fix m > 1 in Z

such such that m ̸= p and choose any m > 1 if chark = 0. As m = 1+ · · ·+ 1 m-times in k
and φ(mt) = mφ(t) since φ is k-linear, therefore we deduce that

anmt
n + · · ·+ a1mt+ a0m = anm

ntn + · · ·+ a1mt+ a0.

Now, if ai ̸= 0 for some i ≥ 2, then we would have

aim = aim
i

in k, from which it follows that ai = aim
i−1 and since i− 1 ≥ 1, it follows that

mi−1 = 1,

a contradiction as m > 1 in Z.

Proof of Question 14.1, 7. We wish to show that Aut (()R/Q) is a singleton. We will
do this by showing that any σ ∈ Aut (()R/Q) necessarily fixes Q and is continuous. We will
then show that any continuous function R → R which is id on Q is itself id.
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First let us see that any σ ∈ Aut (()R/Q) fixes Q. Indeed, we need only observe the
following for any m,n ∈ Z.

n = nσ(1) = σ(n) = σ
( n
m

·m
)
= mσ

( n
m

)
,

which thus shows that σ(n/m) = n/m.
Next, we show that σ is continuous. To this end, we first show that σ is order preserving.

Indeed, if a > 0 in R, then a = c2 for some c > 0. As σ(a) = σ(c)2 > 0 where σ(c) ̸= 0 as σ
is an isomorphism, therefore σ takes positive real number to positive reals. Consequently,
if a− b > 0, then σ(a− b) > 0 and thus σ(a) > σ(b), as required.

To conclude that σ is continuous, we wish to show that for all every x0 ∈ R and for all
ϵ > 0, there exists δ > 0 such that |x− x0| < δ =⇒ |σ(x)− σ(x0)| < ϵ. Indeed, we see
that for any m ∈ Z such that 0 < 1

m < ϵ, we have that if

σ(x)− σ(x0) = σ(x− x0) <
1

m

for some x ∈ R, then applying σ−1 yields x−x0 < 1
m as σ−1 is also Q-linear. This conclusion

can be reversed and we thus see that,

σ(x)− σ(x0) <
1

m
⇐⇒ x− x0 <

1

m
.

This shows that we may take δ to be 1/m. Hence, σ is continuous.
Finally to complete the proof, we see that σ is id on Q and is continuous. Pick any

irrational r ∈ R and let qn → r be a sequence of rationals converging to r. Using continuity
of σ and id on Q, we conclude that σ(qn) = qn → σ(r). As R is Hausdorff, so limits are
unique. We conclude that σ(r) = r. This completes the proof.

7 Week 7 : Direct computations of Galois groups, norm and
trace, cyclotomic & Kronecker-Weber

Proof of Question 13.6, 3. Let F be a field and n ∈ N be odd. Let F contain all nth-
roots of unity, µn. We wish to show that F contains 2nth-roots of unity as well.

Indeed, let ζ ∈ F be a primitive nth-root of unity. Note that −1 /∈ µn as (−1)n ̸= 1
as n is odd. Consequently, we claim that −ζn is a primitive 2nth-root of unity. Indeed, we
see that −ζn is a 2nth-root of unity as (−ζ)2n = (−1)2n · ζ2n = (ζn)2 = 1. Thus −ζ ∈ µ2n.
Furthermore, −ζ is a primitive root of unity as if the order of −ζ is k|2n in µ2n, then either
k = 2l for some l|n or k|n. If the former, then (−ζ)2l = 1, from which it follows that ζ2l = 1.
Thus 2l|n as ζ is an element of order n in µ2n, which is a contradiction as n is odd, so no
even number can divide it.

If the latter, then k|n. Thus, (−ζ)k = 1 from which it follows that ζk = (−1)k. Clearly,
k ̸= n as otherwise ζn = (−1)n ̸= 1, a contradiction to the fact that ζ ∈ µn. Thus, k < n.
As n is odd, therefore k is odd. Consequently we have that ζk = −1 for some k|n, k < n. It
follows that µn contains −1. This is a contradiction as −1 is not an nth-root of unity since
n is odd.

Hence, we have shown that−ζ ∈ F is a primitive 2nth-root of unity in F , as required.
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Proof of Question 13.6, 9. a) Let A ∈Mn(C) be an n× n matrix such that Ak = I for
some k ≥ 1, that is, A is nilpotent. We first wish to show that A is diagonalizable.

By general theory of linear algebra, we need only show that the minimal polynomial of
A is split into distinct linear factors over C in order to conclude that A is diagonalizable.
Let m(x) ∈ C[x] be the minimal polynomial of A. Then, m(x)|xk − 1 as Ak − I = 0. As
C is algebraically closed, it follows that m(x) has all roots which are kth-roots of unity in
C. As all kth-roots of unity are distinct, thus, m(x) is split into distinct linear factors, as
required.

b) Consider the matrix

A =

ï
1 α
0 1

ò
for α ∈ Fp and α ̸= 0 where p ∈ Z is a prime. We first wish to show that Ap = I. Indeed,
observe that

An =

ï
1 nα
0 1

ò
.

As charFp = p, therefore Ap = I.
We next wish to show that A cannot be diagonalized. Indeed, we need only show that

the minimal polynomial p(x) ∈ Fp[x] of A is not split into distinct roots over Fp[x]. Observe
that p(x)|(x − 1)2 as (A − I)2 = 0. Consequently, p(x) = x − 1 or (x − 1)2. Since A ̸= I,
therefore p(x) = (x− 1)2, thus p(x) is not split into distinct linear factors, as required.

Proof of Question 14.2, 6. Let K = Q(21/8, i), F1 = Q(i), F2 = Q(21/2) and F3 =
Q(i21/2). We wish to show the following three computations:

1. Gal (K/F1) ∼= Z/8Z.
2. Gal (K/F2) ∼= D8.
3. Gal (K/F3) ∼= Q8.

Before beginning, we show that all three extensions are Galois. Indeed, observe that

1. m21/8,F1
(x) = x8 − 2 and mi,F1(x) = x− i,

2. m21/8,F2
(x) = x4 − 21/2 and mi,F2(x) = x2 + 1,

3. m21/8,F3
(x) = x8 − 2 and mi,F3(x) = x2 + 1.

All three are separable (as seen by taking derivatives) and is split into linear factors in K.
Thus they are all Galois. Note that each K/Fi has degree 8, thus, each has Galois group of
size 8. Further observe that the polynomial x8 − 2 splits over K as

x8 − 2 = (x−
√
i21/8)(x+

√
i21/8)(x− i21/8)(x+ i21/8)(x− 21/8)(x+ 21/8)(x− i3/221/8)(x+ i3/221/8).

1. Consider the F1-automotphism of K which on 21/8 obtained by extending id : F1 → F1

to K → K mapping

σ : 21/8 7→
√
i21/8.
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This is because 21/8 and
√
i21/8 are F1-conjugates. Then we see that

σ2 : 21/8 7→ i21/8

σ3 : 21/8 7→ i3/221/8

σ4 : 21/8 7→ −21/8

σ5 : 21/8 7→ −i1/221/8

σ6 : 21/8 7→ −i21/8

σ7 : 21/8 7→ −i3/221/8

σ8 : 21/8 7→ 21/8.

Thus, we get that σ ∈ Gal (K/F1) is an element of order 8, thus Gal (K/F1) is a cyclic
group isomorphic to Z/8Z.

2. We first show that there exists σ, τ ∈ Gal (K/F2) of order 4 and 2 respectively. Indeed,
any κ ∈ Gal (K/F2) is completely determined by its values on 21/8 and i. Furthermore, any
such κ has to map 21/8 and i to its F2-conjugates. Thus, consider the following maps

σ : 21/8 7−→ i21/8

i 7−→ i

and

τ : 21/8 7−→ 21/8

i 7−→ −i.

Observe that σ, τ ∈ Gal (K/F2) since σ : K → K is a Q-automorphism such that σ(21/2) =
σ(21/8)4 = (i21/8)4 = 21/2. Thus, σ is also a Q(21/2)-automorphism. Similarly, τ : K → K
is a Q-automorphism and since τ(21/2) = τ(21/8)4 = (21/8)4 = 21/2, therefore τ is a Q(21/2)-
automorphism of K.

Now, observe that σ, τ ∈ Gal (K/F2) are order 4 and 2 elements respectively. It now
suffices to show that τστ−1 = σ−1. Indeed, we need to check the equality only for elements
21/8 and i. To this end, we have

τστ−1(21/8) = τσ(21/8) = τ(i21/8) = −i21/8

and

σ−1(21/8) = σ−1(−i221/8) = σ−1(−i)σ−1(i21/8) = −i21/8,

as required. Similarly,

τστ−1(i) = τσ(−i) = τ(−i) = i

and

σ−1(i) = i.
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This completes the proof that Gal (K/F2) ∼= D8.

3. To show that Gal (K/F3) ∼= Q8, we have to find four elements e, α, β, γ ∈ Gal (K/F3)
such that α2 = β2 = γ2 = αβγ = e and e2 = id. Note that any κ ∈ Gal (K/F3) is
determined by its value on 21/8 and i. We thus consider the following maps:

e : 21/8 7→ −21/8

i 7→ i

α : 21/8 7→ i21/8

i 7→ i

β : 21/8 7→ i3/221/8

i 7→ −i
γ : 21/8 7→

√
i21/8

i 7→ −i.

It is immediate that e2 = id. Further, one checks immediately that α2 = β2 = γ2 = e and
αβγ = e. Thus, we need only show that each one of the above is a Q(i21/2)-automorphism,
that is, we wish to show that they take i21/2 to i21/2. Indeed, for any automorphism
κ : K → K, we have

κ(i21/2) = κ(i) · κ(21/8)4.

Using this, one immediately sees that each e, α, β, γ fixes i21/2, as needed.

Proof of Question 14.2, 12. We wish to find the Galois group of polynomial f(x) =
x4 − 14x2 + 9 ∈ Q[x] over Q.

We claim that the Galois group of f(x) is isomorphic to V4, the Klein 4-group. Let K
be the splitting field of f(x) over Q. We wish to find the Galois group of K/Q. To this end,

we first need to find K. Indeed, we first see that over Q̄, we can write (let α =
√

7 + 2
√
10

and β =
√
7− 2

√
10)

x4 − 14x2 + 9 = (x− α)(x+ α)(x− β)(x+ β).

Moreover, observe that β = 9 · α−1. Thus, we claim that

K = Q(α).

Indeed, as Q(α) by above has both α and β, therefore Q(α) ⊇ K. To show equality, it
suffices to show that [Q(α) : K] = 1. Indeed, we have

[Q(α) : Q] = [Q(α) : K] · [K : Q].

Note that f(x) ∈ Q[x] is irreducible as is clear from its splitting in K above. Thus,
f(x) = mα,Q(x). It follows that

4 = deg f(x) = [Q(α) : Q].
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We further claim that [K : Q] ≥ 4. Indeed, as f(x) is separable since it has no common
root with its degree and K is splitting field of f(x), it follows that K/Q is Galois and
thus finite normal in particular. Consequently, Gal (K/Q) has same size [K : Q] and has
to act transitively on the roots of f(x) in K. But there are four roots of f(x) in K and
thus there are atleast four elements in Gal (K/Q) and thus [K : Q] ≥ 4. This proves that
[Q(α) : K] = 1, as required.

Having found the splitting field K as Q(α) which is a degree 4 extension of Q, we now
need only find its Galois group. As |Gal (K/Q)| = [K : Q] = 4, therefore Gal (K/Q) is
a group of order 4. We now consider following maps K → K, which we prescribe to be
identity on Q and thus define only on α:

σ : α 7→ β

τ : α 7→ −β.

Observe that σ2(α) = σ(β) = σ(9α−1) = 9σ(α)−1 = 9(β)−1 = 9(9α−1)−1 = α. Similarly,
τ2(α) = α. Hence, σ and τ are automorphisms of K = Q(α) and both are order 2 elements
in Aut (()K). Since both σ and τ fix Q, thus σ, τ ∈ Gal (K/Q) are order 2 elements. Now
consider στ ∈ Gal (K/Q). We can see that (στ)2(α) = α, thus showing that (στ)2 = id.
Hence, we have shown that Gal (K/Q) has two elements σ, τ such that σ2 = τ2 = (στ)2 = id.
This shows that

Gal (K/Q) ∼= V4,

where V4 is the Klein 4-group.

Proof of Question 14.2, 31. Let K/F be a finite extension of degree n and α ∈ K. We
wish to show the following three items:

1. Element α acting by left multiplication on K is an F -linear transformation, which we
denote by Tα : K → K.

2. The minimal polynomial of element α ∈ K, denoted mα,F (x) is same as the minimal
polynomial of the F -linear map Tα : K → K, denoted p(x) ∈ F [x].

3. The norm NK/F (α) and trace TrK/F (α) are respectively the determinanat and trace
of the F -linear map Tα.

1. Indeed, Tα : K → K is given by x 7→ αx which F -linear as Tα(x + cy) = α(x + cy) =
αx+ cαy = Tα(x) + cTα(y) where c ∈ F .

2. Asmα,F (x) is irreducible, we need only show that p(x)|mα,F (x). Note thatmα,F (Tα) = 0
since for any z ∈ K, we have

mα,F (Tα)(z) = mα,F (α)z = 0.

Hence p(x)|mα,F (x), as required.

3. Let mα,F (x) = xd + ad−1x
d−1 + · · · + a1x + a0 in F [x] and [K : F ] = n. By item

2, the minimal polynomial p(x) of Tα is also mα,F (x). Determinant of Tα is the product of
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all eigenvalues (with repetitions) and trace of Tα is the sum of all eigenvalues. By Questions
17 and 18 of Section 14.2 of DF, it follows that

NK/F (α) = (−1)na
n/d
0

and

TrK/F (α) =
−n
d
ad−1.

As K/F is separable, therefore we may write p(x) = mα,F (x) = (x−λ1) · · · · · (x−λd) where
λi are distinct eigenvalues of Tα or equivalently, F -conjugates of α. It is now sufficient to
show that each eigenvalue λi has algebraic multiplicity n/d.

Let Φ(x) ∈ F [x] be the characteristic polynomial of Tα. Since p(x) and Φ(x) have same
irreducible factors and p(x) is irreducible, it follows that Φ(x) = p(x)k for some k ≥ 1.
As Φ(x) has degree n and p(x) has degree d, therefore we conclude that k = n/d, as
required.

Proof of Question 14.3, 8. We wish to find the splitting field of f(x) = xp− x− a over
Fp where a ̸= 0 in Fp and then the Galois group of it.

In Question 13.2, 5, we showed that f(x) is irreducible in Fp[x]. Let α ∈ Fp be a root
of f(x). Then, we see that

f(α+ 1) = (α+ 1)p − (α+ 1)− a = αp + 1− α− 1− a = 0.

Consequently, if α is a root of f(x), then α + 1 is a root of f(x). It follows that in Fp, we
have the following roots:

α, α+ 1, . . . , α+ (p− 1).

Thus we have found p distinct roots of f(x) in Fp and all are of the form as above. This
shows that Fp(α)/Fp is the splitting field of f(x) over Fp. As f(x) is a separable polynomial,
thus Fp(α)/Fp is a Galois extension.

Next, we wish to find the Galois group Gal (Fp(α)/Fp). Indeed, we first claim that
|Gal (Fp(α)/Fp)| ≥ p. As [Fp(α) : Fp] ≤ p since α is a root of f(x) where deg f(x) = p,
therefore it would follow that |Gal (Fp(α)/Fp)| = p, thus showing that it is cyclic.

We thus reduce to showing that |Gal (Fp(α)/Fp)| ≥ p. Indeed, we can extend id : Fp →
Fp to σ : Fp(α) → Fp(α+1) mapping α 7→ α+1 as minimal polynomial of α is f(x) and α+1
is also a root of f(x). Thus σ ∈ Gal (Fp(α)/Fp). Now consider σk : Fp(α) → Fp(α + k) for
each 1 ≤ k ≤ p−1. We see that each σk ∈ Gal (Fp(α)/Fp). This shows that Gal (Fp(α)/Fp)
has atleast p-elements, as required.

Proof of Question 14.4, 1. We wish to find the Galois closure of Q(
√
1 +

√
2)/Q. To

this end, we first have to show that Q(
√

1 +
√
2)/Q is a finite separable extension. Indeed

this is finite as it is simple and α :=
√
1 +

√
2 is algebraic over Q. Furthermore, consider

the polynomial

f(x) = x4 − 2x2 − 1 ∈ Q[x].
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Observe that f(α) = 0 and over C, we may factor it as (let β =
√√

2− 1 and observe
α · β = 1):

f(x) = (x− α)(x+ α)(x− iβ)(x+ iβ).

It follows that mα,Q(x)|f(x). Moreover, f(x) is irreducible in Q[x] since the factorization
in C shows that it cannot have any degree 2 factor. Since f(x) is separable as f ′(x) has
no common roots with f(x), we deduce that mα,Q(x) is separable as well, showing that
Q(α)/Q is finite separable, as required. Thus there is a Galois closure, say E/Q of Q(α)/Q.
Note that E ̸= Q(α) as Q(α)/Q is not Galois as it doesn’t have all conjugates of α.

We now claim that Q(i, α)/Q is the Galois closure of Q(α)/Q. Indeed, we first show
that Q(i, α)/Q is a Galois extension. As mi,Q(x) = x2 + 1 and mα,Q(x) = f(x). As both
x2 + 1 and f(x) are separable and have all roots in Q(i, α), it follows that Q(i, α)/Q is
Galois.

By minimality of E, it follows that E ⊆ Q(i, α). We claim that E = Q(i, α). Indeed,
by tower law, we have

[E : Q] = [E : Q(α)] · [Q(α) : Q].

Since [Q(α) : Q] = 4 and [E : Q(α)] ≥ 2 since E ̸= Q(α), thus, [E : Q] ≥ 8. Furthermore,
we have

[Q(i, α) : Q] = [Q(i, α) : Q(α)] · [Q(α) : Q].

Since [Q(i, α) : Q(α)] = 2 as mi,Q(α)(x) = x2 + 1, therefore we get that [Q(i, α) : Q] = 8.
As E ⊆ Q(i, α), the fact that [Q(i, α) : Q] = 8 and [E : Q] ≥ 8 implies that E = Q(i, α), as
required.

Proof of Question 14.5, 5. Let ϵ1, . . . , ϵp−1 be primitive pth-roots of unit. Denote for
any n ∈ N the following quantity:

pn = ϵn1 + · · ·+ ϵnp−1.

Note that ϵi ∈ Q(ϵ1) where Q(ϵ1) is a cyclotomic extension. We wish to show that

pn =

®
−1 if p ̸ | n
p− 1 if p|n.

Indeed, if p|n, then ϵni = 1 for all i, so this case is immediate. So now suppose that p does
not divide n. As the following map

φ : (Z/pZ)× −→ Gal (Q(ϵ1)/Q)

ā 7−→ ϵ1 7→ ϵa1

is an isomorphism and that if n′ = n mod p with 2 ≤ n′ ≤ p−1, then ϵni = ϵn
′
i , we get that

pn = ϵn
′

1 + · · ·+ ϵn
′
p−1
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Moreover, φ(n̄)(ϵi) = ϵn
′
i for each 1 ≤ i ≤ p− 1. It follows that

pn = φ(n̄)(ϵ1 + · · ·+ ϵp−1)

= φ(n̄)(p1).

As p1 = −1 since p1 is the sum of roots of Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1, so we get by
above that

pn = φ(n̄)(−1) = −1,

as required.

Proof of Question 14.5, 10. We wish to show that Q(21/3) is not a subfield of any
cyclotomic extension.

By Kronecker-Weber, Q(21/3) is a subfield of some cyclotomic extension if and only if
Q(21/3)/Q is a finite abelian extension. It is clearly finite, we claim that it is not abelian.
To this end, it is sufficient to show that Q(21/3)/Q is not Galois. Indeed, it is separable
since m21/3,Q(x) = x3−2 is separable. But Q(21/3)/Q is not normal as x3−2 does not have

all roots in Q(21/3); roots of x3 − 2 are 21/3, ω21/3, ω221/3. Thus Q(21/3)/Q is not Galois
and thus is not abelian in particular.

8 Week 8 : Discriminants & Galois groups, polynomial with
Sp Galois group

Proof of Question 14.6, 3. Let a, b ∈ Fpn = F . We wish to show that if the polynomial
f(x) = x3 + ax+ b is irreducible, then D = −4a3 − 27b2 is square in Fpn .

Indeed, as finite fields are perfect, therefore f(x) is separable. Let K/F be the splitting
field of f(x). Note that D is just the discriminant of f(x). We wish to show discriminant
is a square. It is equivalent to showing that Gal (K/F ) is a subgroup of A3. Let α ∈ K be
a root of f(x). Then [K : F ] = [K : F (α)][F (α) : F ] where F (α)/F is a degee 3 extension.
It follows that [K : F ] is a multiple of 3. Now Gal (K/F ) ↪→ S3 and |S3| = 6, therefore
Gal (K/F ) = A3 or S3.

Let α, β, γ ∈ K be the three distinct roots so that K = F (α, β, γ). We claim that
K = F (α). Now, K = F (α) as F (α)/F is a finite extension of a finite field, and thus
Galois. Consequently, F (α) has all other roots β, γ by normality. Thus the splitting field
K is equal to F (α), as required.

It follows that [K : F ] = 3, thus |Gal (K/F )| = 3. Thus, Gal (K/F ) = A3, as required.

Proof of Question 14.6, 7. We wish to determine the Galois group of f(x) = x4+2x2+
x + 3 over Q. We first observe that f(x) is irreducible. Indeed, going mod 2, we get the
polynomial f̄(x) = x4 + x + 1. We claim that this is irreducible so by mod p-test we will
be done. Indeed, suppose that f̄(x) is reducible. Then as f̄(x) has no zeroes in F2, it
implies that f̄(x) has no linear factors. It follows that f̄(x) only has quadratic factors. One
easily checks that the only quadratic polynomial with no linear factors is x2 + x + 1. But
(x2 + x+ 1)2 = x4 + x2 + 1 ̸= f̄(x). Thus, f̄(x) is irreducible, as required. This shows that
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f(x) is irreducible over Q.
Now observe that as f(x) is irreducible and Q is characteristic 0 (i.e. perfect), therefore

f(x) is separable. It follows that Gal (K/Q) is a doubly transitive subgroup of S4, where
we are assuming that

Gal (K/Q) ↪→ S4

by permuting the four distinct roots of f(x). Now, the only doubly transitive subgroup of
S4 is A4 and S4. It follows that Gal (K/F ) can either be A4 or S4. To this end, it suffices
to check whether Gal (K/F ) is a subgroup of A4 or not. It is equivalent to checking that
whether the discriminat D of f(x) is a square or not. Since discriminant of f(x) is same
as the discriminant of the resolvent cubic h(x) = x3 − 4x2 − 8x + 1, which on calculation
yields 3877, which is not a square. Hence we deduce that Gal (K/F ) is not a subgroup of
A4, hence it is S4.

Proof of Question 14.6, 12. Let F/Q be an extension of degree 4. We wish to show
that the following are equivalent:

1. F = Q(α) where α is a root of an irreducible f(x) = x4 + ax2 + b ∈ Q[x].
2. There is an intermediate quadratic extension as in F/Q(

√
c)/Q where

√
c is an element

whose square is in Q.

(1. ⇒ 2.) Let g(y) = y2 + ay + b. Observe that g(x2) = f(x). We first claim that g(y) is
irreducible. If not, then g(y) = h(y)k(y). where h(y), k(y) ∈ Q[x] are linear non-constant
polynomials. Then, f(x) = g(x2) = h(x2)k(x2), where h(x2), k(x2) are quadratic non-
constant polynomials. This gives a contradiction to the irreducibility of f(x). This show
that g(y) is irreducible.

Roots of g(y) are given by

y =
−a±

√
a2 − 4b

2

where a2 − 4b is not a square as g(y) is irreducible. Now roots of f(x) in C are given by

x = ±

 
−a±

√
a2 − 4b

2
.

Let α be one of the above four roots. It follows that
√
a2 − 4b ∈ F . Thus,

Q(
√
a2 − 4b) ⊆ F,

where Q(
√
a2 − 4b)/Q is a quadratic extension, as required.

(2. ⇒ 1.) Observe that by tower law we have that F/Q(
√
c) is a degree 2 extension. Thus,

F = Q(
√
c)(

√
d), for some d ∈ Q(

√
c). Note m√

c,Q(x) = x2−c and m√
d,Q(

√
c) = x2−d. Let

d = a+ b
√
c, a, b ∈ Q. It follows that

√
d =

√
a+ b

√
c. Thus, F = Q(

√
a+ b

√
c). Consider

the polynomial f(x) = (x2 − a)2 − b2c. Observe that this is in Q[x]. Moreover, its zeroes
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are ±
√
a± b

√
c, that is, one of its roots is

√
d. We need only show that f(x) is irreducible.

We may first write

f(x) =
(
x−
»
a+ b

√
c
)(

x+
»
a+ b

√
c
)(

x−
»
a− b

√
c
)(

x+
»
a− b

√
c
)

Indeed, if f(x) is not irreducible, then either it has two quadratic factors or has a linear
factor. Clearly, latter cannot happen as all roots of f(x) are distinct and not rational.
Furthermore, if it has two quadratic factors, then by above factorization one can see that
no pairing of roots will lead to a quadratic whose coefficients are in Q. This completes the
proof.

Proof of Question 14.7, 7. Let F be a characteristic p > 0 field and ζn ∈ F where ζn is
a primitive nth-root of unity where gcd(n, p) = 1. Let K/F be a cyclic extension of degree
d, where d|n. By Kummer’s theorem, we will have K = F (a1/n) for some a ∈ F . Let
σ ∈ Gal (K/F ) be a generator. We wish to show the following three items:

1. σ(a1/n) = ζda
1/n for some primitive dth-root of unity.

2. Let K = F (a1/n) = F (b1/n). We wish to show that element a1/n

(b1/n)
k for some k ∈ Z

with gcd(k, d) = 1, is in F .
3. The following are equivalent:

(a) K = F (a1/n) = F (b1/n).
(b) There exists c, d ∈ F such that a = bkcn and b = aldn.

1. First note that since µd ↪→ µn, it follows that µd ⊆ F×. Now recall from the proof of
Kummer’s theorem that we constructed an injective group homomorphism φ : Gal (K/F ) ↪→
µn whose image is µd. This was given by φ(σ) = σ(a1/n)

a1/n
= ζkσn a1/n

a1/n
= ζkσn . As σ is the gen-

erator and group isomorphisms map generators to generators, therefore φ(σ) = ζkσn is a
generator of µd, that is, ζ

kσ
n is a primitive dth-root, as required.

2. Recall that map φ : Gal (K/F ) ↪→ µn with image µd which we used in item 1. By
fundamental theorem, it suffices to show that

σ

Ç
a1/n

bk/n

å
=
a1/n

bk/n
.

We first find the required k. We first claim that

σ(a1/n)

a1/n
=

Ç
σ(b1/n)

b1/n

åk
(1)

for some gcd(k, n) = 1. Indeed, the map φ takes σ to σ(a1/n)

a1/n
in µd. As σ is a generator of

Gal (K/F ), therefore φ(σ) = σ(a1/n)

a1/n
is the generator of µd. Similarly, writing K = F (b1/n),

we get φ(σ) = σ(b1/n)

b1/n
is a generator in µd. As µd is cyclic of order d, therefore there exists

k ∈ Z with gcd(k, d) = 1 such that Eqn. (1) holds.
Having found the required k, we observe that

σ

Ç
a1/n

bk/n

å
=
σ(a1/n)

σ(bk/n)
=
a1/n

bk/n
,
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as required.

3. ((a) ⇒ (b)) By item 2, we deduced that a1/n = bk/nc, c ∈ F . Raising nth-power,
we get the result. Replacing a by b, we get the desired result for b as well.

((b) ⇒ (a)) As a1/n = bk/nc, therefore F (a1/n) ⊆ F (b1/n). As b1/n = al/nd, therefore
F (b1/n) ⊆ F (a1/n), as required.

This completes the proof.

Proof of Question 14.7, 12. Let Q(α)/Q be a finite extension. This is separable as well
since mα,Q(x) is irreducible in a characteristic 0 field. Let L/Q be the Galois closure of
Q(α)/Q. It follows that L is the splitting field of mα,Q(x). Let G = Gal (L/Q). Suppose
p ∈ Z is a prime such that p| |G|. We wish to show that there exists a subfield F as in
L/F/Q such that L/F is a degree p-extension and L = F (α).

Indeed, by fundamental theorem and Cauchy’s theorem, we have a subgroup of order p
of G and thus an intermediate extension F/Q with |Gal (L/F )| = p. We wish to show that
there exists a field F ′/Q such that L/F ′ is of degree p. Assuming to the contrary we get
that for all intermediate fields L/F of degree p, L ̸= F (α). As

p = [L : F ] = [L : F (α)] · [F (α) : F ]

and L ̸= F (α), therefore α ∈ F . Hence we have that for each L/F of degree p, α ∈ F . Pick
any such F . Observe that if F contains all conjugates of α then L = F , a contradiction. So
L = F (β1, . . . , βk) where βi ∈ L are some conjugates of α. But since there is no intermediate
extension in L/F , it follows that k = 1 and thus L = F (β) for some Q-conjugate β of α. Let
σ ∈ Gal (L/Q) be such that σ(α) = β. Then τ = σ−1 ∈ Gal (L/Q) is such that σ−1(β) = α.
Now, τ(F ) is also an intermediate extension such that L/τ(F ) is degree p as [F : Q] =
[τ(F ) : Q]. It follows that α ∈ τ(F ). Now observe that [τ(L) : τ(F )] = p, where τ(L) = L.
But since τ(L) = τ(F (β)) = τ(F )(τ(β)) = τ(F )(α) = L. Thus, τ(F )(α)/τ(F ) is a degree p
extension. By our hypothesis, α ∈ τ(F ), but then τ(F )(α) = τ(F ), a contradiction to the
fact that τ(F )(α)/τ(F ) is degree p.

Proof of Question 14.7, 17. Let a ∈ Q be non-zero rational and D ∈ Z be a square-free

integer. We wish to show that K = Q(
√
a
√
D) cannot be a degree 4 cyclic extension over

Q.
Suppose K/Q is a cyclic extension of degree 4. Observe that Q(

√
D)/Q is a degree 2

intermediate extension of K/Q. Now, by Question 14.6, 12, K = Q(α) where α is a root of
irreducible f(x) = x4 + bx2 + c ∈ Q[x]. As K/Q is Galois (as it is cyclic), therefore K has
all roots of f(x). Thus, K is the splitting field of f(x) and has all the four roots of f(x)
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listed below:

α1 =

 
−b+

√
b2 − 4c

2

α2 =

 
−b−

√
b2 − 4c

2

α3 = −

 
−b+

√
b2 − 4c

2

α4 = −

 
−b−

√
b2 − 4c

2
.

Let us assume that α = α1, wlog. Moreover, as we have K = Q(α), therefore we may also
write K = Q(αi) for each i = 1, . . . , 4. Note that in a cyclic group of order 4, there is only
one element of order 2. We claim that Gal (K/Q) has two elements of order 2, thus yielding
us a contradiction.

Indeed, consider the following two maps in Gal (K/Q) where since K = Q(α1), they are
determined by their values on any of the αi (we choose α1 for below):

σ : α1 7→ α3

τ : α1 7→ α2.

Indeed, σ2(α1) = σ(α3) = σ(−α1) = −σ(α1) = −(σ3) = α1. We next show the same for τ .
Indeed, we first show that τ(

√
b2 − 4c) = 0. Indeed, this follows by squaring both sides in

the equation τ(α1) = α2. Thus, we get

τ(τ(α1)) = τ(α2).

Now, observe that

α2
2 = α2

1 −
√
b2 − 4c.

Thus, τ(α2)
2 = τ(α1)

2 = α2
2. Thus, we have

τ(α2) = ±α2.

If τ(α2) = −α2 = α4, then τ2(α2) = τ(−α2) = −(−α2) = α2. As K = Q(α2) as well,
therefore τ is determined by its value on α2. It follows that τ2 = id. However, above
calculation shows that τ2(α1) = −α2 ̸= α1, a contradiction. Hence τ(α2) ̸= −α2. Hence
τ(α2) = α2, thus showing that τ2(α1) = α1, that is, τ

2 = id.
We have thus exhibited two order 2 elements of Gal (K/F ), where Gal (K/F ) is cyclic

of order 4, thus a contradiction.

Proof of Question 7. a) We wish to show that a subgroup H of Sp containing a p-cycle
and a transposition is Sp. We first show that H is a transitive subgroup. As we have seen
in class, a transitive subgroup of Sp containing a transposition is Sp, therefore we will be
done.
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Pick any k, l ∈ {1, . . . , p}. Assume l > k. Then observe that (1 2 . . . p)l−k is an element
of H which takes k to k + (l − k) = l, as required.

b)1 Let p be a prime. Construct a polynomial f(x) ∈ Z[x] of degree p such that if K/Q is
the splitting field of f(x), then K/Q is Galois and Gal (K/Q) = Sp.

Clearly, we need f(x) to be irreducible, so that K/Q is Galois and Galois group being
transitive. Now, f(x) must have one pair of complex roots and p − 2 real roots so that
G := Gal (K/Q) atleast has a conjugation. Consider q(x) = (x2 + 1)

∏p−2
i=1 (x − i) which is

in Z[x] and has exactly two complex roots. Define for each k ∈ N the following:

pk(x) = q(x) +
xp + p

kp2
∈ Q[x]

where p ∈ Z is some prime. It can be checked that this is an Eisenstein polynomial for
prime p. Hence pk(x) is irreducible in Q[x].

Observe that the roots of q(x) are

V (q(x)) = {i,−i, 1, 2, . . . , p− 3, p− 2}.

Let a ∈ V (q(x)) be any zero. We wish to show that pk(x) for some k has exactly one root
in B1/2(a) in C. To this end we apply Rouché’s theorem as follows. One can observe that
on the circle C1/2(a), we have for some large k the following:

|pk(x)− q(x)| =
∣∣∣∣xp + p

kp2

∣∣∣∣ ≤ q(x).

Thus pk(x) for some k has exactly one root in B1/2(a) in C. By taking maximum of ks
obtained by a ∈ V (q(x)), we get that pk(x) has one root in B1/2(a) for each a ∈ V (q(x)).
But since pk(x) only has real coefficients, so all complex roots must occur in pairs. If the
roots are purely complex, then we can derive a contradiction to uniqueness of roots in
B1/2(a). Thus all roots in B1/2(a) must be real, thus we get p− 2 real roots of pk(x). Now
since for a = ±i, we have one roots in B1/2(±i) each and since these balls don’t intersect
R nor each other, hence we have exactly two purely complex roots and they therefore must
be conjugates of each other.

Now Gal (K/Q) has a transposition and since p|Gal (K/Q), therefore it also has an order
p-element. As Gal (K/Q) ↪→ Sp, it follows that the only order p-element is a p-cycle. By
item 1, we thus deduce that pk(x) has Galois group Sp, as required.

9 Week 9 : Constructible reals, pure inseparability, more on
norm & trace

Proof of Question 13.3, 2. Consider the Archimedes’ construction to trisect an angle
with a ruler and a compass (see Figure 1 below).

We wish to show that α = θ/3. Indeed, as OB = OC = 1, therefore triangle OBC is
isosceles, that is β = γ. Similarly, since OB = AB, thus triangle ABO is isosceles, that is

1Solution primarily from Shubham Sharma.
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Figure 1: Archimedes’ construction for trisecting an angle.

α = ∠BOA. It follows that ∠OBA = π− 2α. Thus, β+π− 2α = π, from which we deduce
that β = 2α = γ. Hence ∠BOC = π − 4α. As ∠BOA + ∠BOC + θ = π, it follows that
α+ π − 4α+ θ = π, that is θ = 3α, as required.

Proof of Question 13.3, 4. We wish to show that α = cos(2π/7) is not constructible by
straightedge and compass. Observe that α satisfies the polynomial f(x) = x3+x2− 2x− 1.
We need only show that [Q(α) : Q] ̸= 2n for some n ∈ N. Consider mα,Q(x) ∈ Q[x]. As
mα,Q(x)|f(x), therefore degmα,Q(x) = 2 or 3. It follows that [Q(α) : Q] = 2 or 3. We
claim that f(x) is irreducible over Q, this would show that mα,Q(x) = f(x) and hence
[Q(α) : Q] = 3. This will complete the proof.

Indeed, going modulo 2, we get that f̄(x) = x3 + x2 − 1. As it is a cubic, to check that
it is irreducible it suffices to show whether f̄(x) has roots in F2 or not. We immediately see
that f̄(0) = 1 = f̄(1). It follows that f̄(x) has no roots, thus, f̄(x) is irreducible in F2[x]
and thus is irreducible in Q[x], as required.

Proof of Question 3. Let b ∈ R be constructible by straightedge and compass. We wish
to show that the Galois closure of Q(b)/Q is a solvable extension.

Observe that if K/Q is the Galois closure of Q(b)/Q, then K/Q is the splitting field
of f(x) := mb,Q(x). Consequently, we need only show that f(x) is a polynomial which is
solvable by radicals, that is, every root of f(x) in K is solvable by radicals. Indeed, we may
write

f(x) = (x− b)(x− σ1(b)) . . . (x− σn−1(b))

where σi ∈ Gal (K/Q). Consequently, we reduce to showing that for any σ ∈ Gal (K/Q),
element σ(b) ∈ K is also solvable by radicals. Indeed, since we have the following series

Q = K0 ⊆ K1 ⊆ · · · ⊆ Ki ⊆ Ki+1 ⊆ · · · ⊆ Kn ⊆ K

where Ki+1 = Ki(a
1/2
i ) where ai ∈ Ki, therefore applying σ, we get

Q = K0 ⊆ σK1 ⊆ · · · ⊆ σKi ⊆ σKi+1 ⊆ · · · ⊆ σKn ⊆ σK = K

where we claim that σKi+1 = (σKi)(σ(ai)
1/2). Indeed, as a

1/2
i ∈ Ki+1 satisfies x2 − ai,

therefore σ(a
1/2
i ) satisfies x2 − σ(ai). Thus, denoting σ(ai)

1/2 as a root of x2 − σ(ai), we
see that σKi+1 ⊇ (σKi)(σ(ai)

1/2). Converse is immediate by observing that any element of
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Ki+1 is of form c+ da
1/2
i , where c, d ∈ Ki. This proves the claim.

As σ(b) ∈ σKn ⊆ K, therefore the above claim shows that σ(b) is solvable by radicals,
as required.

Proof of Question 4. a) Let K/F be a field extension where char(F ) = p > 0. We wish
to show that the following two are equivalent:

1. K/F is purely inseparable.
2.

∣∣homF (K, F̄ )
∣∣ = 1.

(1. ⇒ 2.) As [K : F ]s =
∣∣homF (K, F̄ )

∣∣, thus it suffices to show that [K : F ]s = 1. AsK/F is
finite, therefore by tower law for separable degree, it suffices to show that [F (α) : F ]s = 1.
Since [F (α) : F ]s = number of distinct roots of mα,F (x), therefore it suffices to show
that mα,F (x) has only one distinct root. Indeed, as K/F is purely inseparable, therefore
mα,F (x)|xp

n −a for a ∈ F where a = αp
n
. However, in K, we can write xp

n −a = (x−α)pn ,
showing that xp

n − a has only one root. Hence, so does mα,F (x), as required.

(2. ⇒ 1.) We have [K : F ]s =
∣∣homF (K, F̄ )

∣∣ = 1. By tower law, it follows that each
element α ∈ K is such that mα,F (x) has only one distinct root. As K/F is finite where F
is characteristic p, therefore the minimal polynomial mα,F (x) has each root of same mul-
tiplicity which is some pn. Consequently, we can in write in K, mα,F (x) = (x − α)p

n
for

α ∈ K. But then

mα,F (x) = xp
n − αp

n

over F . It follows that αp
n ∈ F , as required.

b) We wish to show that K/F a purely inseparable extension is normal. Indeed, as α ∈ K is
such that mα,F (x)|xp

n − a for some a = αp
n ∈ F , therefore all distinct roots of mα,F (x) are

distinct roots of xp
n −a as well. However, over K we have xp

n −a = xp
n −αpn = (x−α)pn .

Thus, xp
n − a has only one distinct root, it follows that mα,F (x) has only one distinct root,

α ∈ K. Since α ∈ K is arbitrary, hence K/F is normal, as required.

Proof of Question 5. Let L/K/F be a finite extension. We wish to show the transitivity
of trace and norm, that is,

TrK/F (TrL/K(α)) = TrL/F (α)

NK/F (NL/K(α)) = NL/F (α).

We know that if E/D is a finite extension, then for any α ∈ E/D

TrE/D(α) = [E : D]i ·
∑

σ∈homD(E,D̄)

σ(α).

Applying this in our case, we get

TrL/K(α) = [L : K]i ·
∑

σ∈homK(L,K̄)

σ(α).
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Applying TrK/F onto above, we yield (note that F̄ = K̄ as K/F is finite):

TrK/F
(
TrL/K(α)

)
= TrK/F

Ñ
[L : K]i ·

∑
σ∈homK(L,K̄)

σ(α)

é
= [L : K]i[K : F ]i ·

∑
τ∈homF (K,F̄ )

τ

Ñ ∑
σ∈homK(L,K̄)

σ(α)

é
= [L : F ]i ·

∑
τ∈homF (K,F̄ )

∑
σ∈homK(L,K̄)

τ̃(σ(α))

where τ̃ is an extension of τ : K → F̄ to τ̃ : K̄ → F̄ . We now define a bijection

φ : homK(L, K̄)× homF (K, F̄ ) −→ homF (L, F̄ )

(σ, τ) 7−→ τ̃ ◦ σ. (5.1)

Note that τ̃ ◦ σ is id on F and τ on k. This is injective as if τ̃ ◦ σ = τ̃1 ◦ σ1, then restricting
to K we get τ = τ1 and thus, σ = σ1. Moreover, this is surjective as the size of domain
is [L : K]s · [K : F ]s which is same as the size of codomain [L : F ]s. It follows that φ is a
bijection.

We can now write Eqn. (5.1) as

TrK/F (TrL/K(α)) = [L : F ]i ·
∑

κ∈homF (L,F̄ )

κ(α)

= TrL/F (α),

as required. One can follow exact same procedure to show that

NK/F (NL/K(α)) = NL/F (α),

as required.
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