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2 1 LOCALLY RINGED SPACES AND MANIFOLDS

1 Locally ringed spaces and manifolds

We will define the notion of a real and complex manifold. Some foundational constructions are
made on them. We will take a rather modern viewpoint on the matter. We will make very fluid use
of sheaves. Let us begin by the foundational structure in all of geometry, a (locally)ringed space.

Definition 1.0.1. (Ringed and locally ringed spaces) A ringed space is a pair (X,OX) where
X is a topological space and OX is a sheaf of commutative R-algebras. The space (X,OX) is locally
ringed if the stalk OX,x at each point x ∈ X is a local ring. The sheaf OX is called the structure
sheaf of X.

In order to understand the relation between two such spaces, we next have to understand the
morphism of (locally)ringed spaces. For a motivation, see Example ??.

Definition 1.0.2. (Morphism of ringed and locally ringed spaces) Let (X,OX) and (Y,OY )
be two ringed spaces. A morphism (f, f ♯) : (X,OX) → (Y,OY ) is given by a continuous map
f : X → Y and a map of sheaves over X denoted f ♯ : f−1OY → OX . If (X,OX) and (Y,OY ) are
locally ringed, then for (f, f ♯) to be morphism of locally ringed spaces has to satisfy an additional
condition that the induced map on stalks is a map of local rings. That is, for each x ∈ X, the
induced map on stalks

f ♯
x : OY,f(x) −→ OX,x

is such that (f ♯
x)−1(mX,x) = mY,f(x) (see Special Topics, Remark ??). We call this map the co-

morphism at x ∈ X. In particular, this map is given by the unique map obtained by universality
of direct limits under question: consider any open V ∋ f(x) in Y , we then obtain the following
diagram:

OX,x OY,f(x)

OX(f−1(V )) OY (V )

ιf−1(V )

f♭
V

ιVιf−1(V )◦f
♭
V

=:f♯
x

.

In most of our purposes, the map f ♭ will be given on sections by composing with f . In such sit-
uations, the map on stalks being local corresponds to the geometric intuition that all non-invertible
functions around some open subset of f(x) comes from non-invertible maps around x. This in some
sense makes sure that the local data around f(x) is completely available via f .

Definition 1.0.3. (Composition) Composition of two maps of locally ringed spaces is defined
in the obvious manner. For X

g→ Y
f→ Z, we get maps g♭ : OY → g∗OX and f ♯ : f−1OZ → OY .

Then, the map f ◦ g : X → Z is defined on space level by just the composite f ◦ g of the continuous
maps and on the sheaf level as the corresponding flat and sharp maps of f ◦ g : X → Z:

h♭ : OZ −→ (f ◦ g)∗OX

h♯ : (f ◦ g)−1OZ −→ OX .
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In particular, for an open set U ⊆ Z, the corresponding map on local sections h♭U is given by the
following composite:

OZ(U) (f∗g∗OX)(U) OX(g−1f−1(U))

(f∗OY )(U) OY (f−1(U))

f♭
U

g♭
f−1(U)

h♭
U

.

Similarly, the corresponding morphism of stalks given by h♯x is given by the usual

h♯x : (g−1f−1OZ)x ∼= OZ,f(g(x)) −→ OX,x

which is the composite
OZ,h(x) OZ(W )

OY,g(x) OY (f−1(W ))

OX,x OX(g−1(f−1(W )))

f♭
W

g♭
f−1(W )

f♯
g(x)

g♯x

.

Lemma 1.0.4. Let h : X g→ Y
f→ Z be a morphism of ringed spaces. Consider the base change

functors corresponding to maps g and f :

g−1 : Sh(Y ) −→ Sh(X)
f∗ : Sh(Y ) −→ Sh(Z).

and consider the following composite in Sh(Y )

f−1OZ OY g∗OX
f♯ g♭

.

Then,
1. g−1(g♭ ◦ f ♯) ∼= h♯,
2. f∗(g♭ ◦ f ♯) ∼= h♭.

Proof. These are cumbersome but straightforward identities. For example, one has to observe that
f∗(f ♯) ∼= f ♭ and that for an open set U ⊆ Z, we have (f∗(g♭))U = g♭

f−1(U).

We have a simple lemma for isomorphism of ringed spaces.

Lemma 1.0.5. Let f : X → Y be a morphism of ringed spaces. Then, f is an isomorphism if and
only if f : X → Y is a homeomorphism and f ♭ : OY → f∗OX is an isomorphism.

Proof. (L ⇒ R) Use Theorem ??, 3 and 4.
(R ⇒ L) One can explicitly construct a map of sheaves in the other direction in a straightforward
manner.
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An open subspace of a ringed space also inherits the structure of a ringed space.

Definition 1.0.6. (Open subspace and embedding) Let (X,OX) be a (locally) ringed space.
An open subspace of (X,OX) is an open subset i : U ↪→ X together with the inverse image sheaf
i−1OX = OX|U

1. The pair (U,OX|U ) is called an open subspace, (U,OX|U ) ↪→ (X,OX). A map
(j, j♯) : (Z,OZ)→ (X,OX) is an open embedding if U := j(Z) ↪→ X is open and (j, j♯) : (Z,OZ)→
(U,OX|U ) is an isomorphism of ringed spaces.

An important concept is of local isomorphism of ringed spaces, which will prove it’s worth while
defining manifolds.

Definition 1.0.7. (Local isomorphism) Let f : X → Y be a morphism of ringed spaces. One
calls f to be a local isomorphism if there exists an open cover {Ui}i∈I of X such that f |Ui

: Ui → Y
is an open embedding for all i ∈ I.

1.1 Local models and manifolds

Before we proceed further, we have to clearly state some of our local model spaces that we are
going to use while defining the manifolds. Therefore the following example of ringed spaces are
foundational.

Example 1.1.1. (Sheaf of Cα-maps) Let X ⊆ Rn be an open set and α ∈ N∞. One defines the
following presheaf

Cα
X;Rm := {f : X → Rm | f is Cα}

where the restriction maps are usual functional restrictions. Then, Cα
X;Rm forms a sheaf, called the

sheaf of Cα maps on X. This sheaf has stalks as local rings which can be seen quite easily (set
of all functions defined in some neighborhood of x ∈ X has a ring structure with maximal ideal
being all those functions taking value 0 at x). Hence, (X,Cα

Rm) is a locally ringed space, where we
dropped the subscript X for notational convenience.

Example 1.1.2. (Sheaf of holomorphic maps) Let X ⊆ Cn be an open set. One defines the
following presheaf

Chol
X;Cm := {f : X → Cm | f is holomorphic}

where the restriction maps are the usual functional restriction. This is easily seen to be a sheaf,
called the sheaf of holomorphic functions over X. This endows (X,Chol

Cm) with the structure of a
locally ringed space.

With these two examples, we can come to the notion of real and complex manifolds as follows.

Definition 1.1.3. (Real and complex manifolds) Let X be a Hausdorff and second-countable
topological space. Then,

1It’s a trivial matter to observe that inverse image of a sheaf to an open inclusion will be the restriction sheaf (see
Lemma ??).
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1. A locally R-ringed space (X,OX) is a real Cα-manifold if there exists an open covering {Ui}i∈I
of X and for each i ∈ I, there exists a positive integer ni ∈ N and an isomorphism of locally R-
ringed spaces ϕi : (Ui,OX|Ui

)
∼=−→ (Yi,Cα

R) for some open Yi ⊆ Rni . Hence a real Cα-manifold
structure on X is the following tuple of data:(

X,OX , {Ui}i∈I , {Yi ⊆ Rni}i∈I , {ϕi : (Ui,OX|Ui
)

∼=→ (Yi,Cα
R)}i∈I

)
2. A locally C-ringed space (X,OX) is a complex manifold if there exists an open covering
{Ui}i∈I of X and for each i ∈ I there exists ni ∈ N and an isomorphism of locally C-ringed
spaces ϕi : (Ui,OX|Ui

)
∼=−→ (Yi,Chol

C ) for some open Yi ⊆ Cni . Hence a complex manifold
structure on X is the following tuple of data:(

X,OX , {Ui}i∈I , {Yi ⊆ Cni}i∈I , {ϕi : (Ui,OX|Ui
)

∼=→ (Yi,Chol
C )}i∈I

)
In both of these, the isomorphisms {ϕi} are called charts of the manifold and the sheaf OX the
structure sheaf of the manifold. Also, we can rather consider {ϕi}i∈I to be open embeddings. A map
of manifolds is just defined to be a map of locally ringed spaces. Let MfdR

α and MfdC denote the
category of real Cα and complex manifolds respectively. A map of manifolds are just locally ringed
maps between them. Isomorphisms in them are called Cα-diffeomorphism and biholomorphic maps
respectively.

Let us now dwell into some of the immediate observations and remarks coming out of this def-
inition. Let us first ease some notations. Let (X,OX) be a real or complex manifold. The local
chart (Ui, ϕi) is usually denoted by (Ui, x) where x : Ui → Rn is a local embedding of locally (R or
C)-ringed spaces, where n depends on Ui. We usually suppress all the sheaves and their morphisms
unless necessary (we will soon see why that’s the case). For a local chart (Ui, x), the n component
maps πj ◦x : Ui → R are denoted by xj . Moreover, since x : U → x(U) is an isomorphism, therefore
we denote x−1 : x(U)→ U to be its inverse. All this will come in handy when we will start doing
geometry over (X,OX).

Let (X,OX) be a real or complex manifold. We call an open subspace (U,OX|U ) ↪→ (X,OX)
an open submanifold.

One now sees that any morphism of manifolds as locally ringed spaces is completely determined
by what happens at the level of points. In-fact, the sheaf allowed on X is also restricted if its a
manifold. This is why we usually completely suppress the map of sheaves from our notation as that
will be vacuous as long as we are working with map of manifolds. Let (M,OM ), (N,ON ) be two
manifolds (R or C, but both of same type). We can define a sheaf OM ;N on M given by following
sections: for some open U ⊆M , we have a sheaf

OM ;N (U) := {f : (U,OX|U )→ (N,ON ) | f is a map of manifolds}.

Now we show a foundational result which says that the notion of morphism of locally ringed spaces
are nothing new in the classical world of Rn or Cn. We place high importance on the following
result as it becomes our point of departure (and thus a point of motivation) as to why the notion
of a morphism of locally ringed spaces is defined as what it is; because it is the right notion of a
"geometric map" in more abstract situations.
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Theorem 1.1.4. Let K be either R or C, X ⊆ Kn and Y ⊆ Km be two open subsets of the
standard spaces. If f : (X,Cα

X)→ (Y,Cα
Y ) is a map of locally ringed spaces, then

1. f ♭ : Cα
Y → f∗C

α
X is given on an open set V ⊆ Y by the standard composition map

f ♭
V : Cα

Y (V ) −→ Cα
X(f−1(V ))

V
t→ K 7−→ f−1(V ) f→ V

t→ K,

2. f is a Cα-map.

Remark 1.1.5. As a slogan, we may remember the above theorem as the following principle:

In Rn or Cn, locally ringed maps are exactly real Cα or holomorphic maps.

As a consequence of this, whenever we would like to consider Cα maps from, say Rn to Rm, we
might as well ask to produce a map of locally ringed spaces (Rn,Cα

Rn) to (Rm,Cα
Rm), which again

shows how much geometric information is hidden in the notion of sheaves.

Proof of Theorem 1.1.4. 2 Pick any open V ⊆ Y and any t ∈ Cα
Y (V ). We wish to show that

f ♭
V (t) = t ◦ f as a map f−1(V ) → K. Consequently, pick any point p ∈ f−1(V ). We wish to
show that f ♭

V (t)(p) = t(f(p)). To this end, we consider the evaluation homomorphism which are
available at stalks. Observe that we have the following commutative square of K-algebras:

Cα
Y (V ) Cα

X(f−1(V ))

Cα
Y,f(p) Cα

X,p
f♯
p

f♭
V

.

In order to show f ♭
V (t)(p) = t(f(p)), it is sufficient to show that the following triangle commutes:

Cα
Y,f(p) Cα

X,p

K

evf(p) evp

f♯
p

.

But this is immediate from the fact that the K-algebra homomorphism f ♯
p is a local ring homomor-

phism and the kernels of the evaluation maps are exactly the corresponding unique maximal ideals,
so by quotienting by the maximal ideals, we obtain a K-algebra homomorphism K → K which
necessarily is identity as it is a K-algebra homomorphism. Hence the triangle indeed commutes.

In order to show that the map f is a Cα-map, we need only show that the m projection maps
πi : Km → K when composed with f yields Cα maps given by X → K, but that is immediate from
1.

Using the above result, one can show that any manifold essentially has a unique structure sheaf
of the form OX;R or OX;C.

2First proof in my new creator of meaning!
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Proposition 1.1.6. Let (X,OX) be a locally ringed space. If (X,OX) is a real or complex manifold,
then OX

∼= OX;R or OX
∼= OX;C.

Proof. We wish to show that there is an isomorphism of sheaves ϕ : OX;R → OX . For an open set
U ⊆ X, we define ϕU as follows:

ϕU : OX;R(U) −→ OX(U)
t : (U,OX|U )→ (R,Cα

R) 7−→ t♭R(idR).

We claim that this map of sheaves is an isomorphism. We need only show that the map on stalks
ϕx : OX;R,x → OX,x is an isomorphism. So we may assume that X has a global chart η : (X,OX) ∼=
(W,Cα

W ;R) where W ⊆ Rn is an open subset. Consequently, we have η♯x : Cα
W ;R,η(x)

∼= OX,x.
Furthermore, OX;R,x ∼= Cα

W ;R,η(x). Consequently, we wish to show that ϕx : Cα
W ;R,η(x) → Cα

W ;R,η(x)
given by (W, t : W → R)η(x) 7→ (W, t♭R(idR))η(x) is an isomorphism. Since by Theorem 1.1.4, 1, the
map t♭R is given by precomposition by t, therefore t♭R(idR) is just t. Consequently, ϕx is identity,
which proves the result.

Remark 1.1.7. By virtue of Proposition 1.1.6, we can assume that any Cα-manifold is a locally
ringed space of the form (X,OX;R) (similarly for C-manifolds).

1.2 Sheaves & atlases

We have defined a manifold to be a space with an open covering by a model locally ringed spaces.
There is a traditional definition, whereas, which is used heavily in traditional geometry because we
really care about the charts (which is usually not done in algebraic geometry). This elucidates how
one has to undertake a different viewpoint of geometry in algebraic geometry.

We wish to show that giving a manifold structure on a second countable Hausdorff space X as
defined above is equivalent to giving an atlas in the classical sense. Indeed, for each atlas on X, we
first define a sheaf on X.

Definition 1.2.1 (Atlas sheaf). Let X be a second countable Hausdorff space and A = (Ui, xi)i∈I
be a Cα-atlas on X where xi : Ui → Cni is an open embedding. Consider the following assignment
for each open V ⊆ X:

OA(V ) := {f : V → K | f ◦ x−1
i : xi(Ui ∩ V )→ K is Cα-map}.

Then OA is a sheaf of R-algebras, called the sheaf of atlas A. Similarly for the holomorphic case.

We first observe that equivalent atlases give same atlas sheaves.

Lemma 1.2.2. Let X be a second-countable Hausdorff space with A = (Ui, xi)i and B = (Vi, yi)i
being two equivalent Cα or holomorphic atlases on X. Then the atlas sheaves OA and OB are
isomorphic.

Proof. Indeed, for each open W ⊆ X, define the map

ϕW : OA(W ) −→ OB(W )
f : W → K 7−→ f : W → K.
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To show that this is well-defined, we have to show that f ∈ OB(W ). Indeed, pick any chart
yi : Vi → K of B. We wish to show that f ◦ y−1

i : yi(Vi ∩W ) → K is Cα or holomorphic. As
either condition is local on domain, so pick any point in yi(Vi ∩W ). Pick a chart xi : Ui → xi(Ui)
containing that point. Note that it is sufficent to show f ◦ y−1

i : yi(Vi ∩ Ui ∩W ) → K is Cα or
holomorphic. Indeed, we can write this as

f ◦ y−1
i = (f ◦ x−1

i ) ◦ (xi ◦ y−1
i ) : yi(Ui ∩ Vi ∩W )→ K.

Since A and B are equivalent and f ∈ OA, it follows repsectively that (xi ◦ y−1
i ) and (f ◦ x−1

i ) are
Cα or holomorphic, as required.

Thus ϕ : OA → OB is a sheaf map, which is identity, hence both sheaves are same.

We next see that a Cα or holomorphic atlas sheaf on a space X gives a Cα or C manifold
structure on X.

Proposition 1.2.3. Let (X,OX;C) be a locally ringed space and Y ⊆ Cn be open. If ϕ : (X,OX;C)→
(Y,Chol

Y ;C) is a map of locally ringed spaces, then ϕ♭ on open V ⊆ Y is given by

ϕ♭
V : Chol

Y ;C(V ) −→ OX;C(ϕ−1(V ))
t : V → C 7−→ t ◦ ϕ : ϕ−1(V )→ C.

Moreover, the following are equivalent:
1. ϕ : (X,OX;C)→ (Y,Chol

Y ;C) is an isomorphism of locally ringed spaces.
2. ϕ : X → Y is a homeomorphism such that for any open U ⊆ X and any f : U → C in

OX(U), f ◦ ϕ−1 : ϕ(U)→ C is a holomorphic map.
The same conclusions hold true for Cα-manifolds as well.

Proof. The proof of the first statement is exactly same as that of Theorem 1.1.4, hence is omitted.
We now show the equivalence of items 1 and 2.

(1. ⇒ 2.) This is immediate as the map ϕ♭ is an isomorphism, so in particular a bijection on
sections.

(2. ⇒ 1.) Pick any open V ⊆ Y . Then ϕ♭
V is injective as ϕ is an isomorphism. It is also surjective

by the given hypothesis and homeomorphism ϕ. This shows that ϕ♭ is an isomorphism.

Theorem 1.2.4. Let X be a second-countable Hausdorff space and (X,OX) be a locally ringed
space. Then the following are equivalent.

1. (X,OX) is a Cα/complex manifold.
2. OX is a Cα/complex atlas sheaf.

To avoid repetitions, we will do the complex case only, as there is no change in the proof for
the real case.

Proof. (1. ⇒ 2.) By Proposition 1.1.6, we may assume that OX is just OX;C, the sheaf of locally
ringed maps from X to C. We have an open cover {Ui}i∈I of X and isomorphisms of locally ringed
spaces ϕi : (Ui,OUi;C)→ (Yi,Chol

C ). This makes (Ui, ϕi) into an usual atlas as follows. For any i, j
such that Ui ∩ Uj ̸= ∅, we obtain that the map

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj).
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This is holomorphic since ϕj : Ui ∩ Uj → C is a map of locally ringed spaces in OX;C(Ui ∩ Uj).
Now, ϕi : (Ui,OUi;C)→ (Yi,Chol

Yi;C) is an isomorphism, therefore by Proposition 1.2.3, it follows that
ϕj ◦ ϕ−1

i is a holomorphic map, as required.
We claim that this makes OX into an atlas sheaf. Indeed, observe that f ∈ OX(V ) is a locally

ringed map f : (V,OV ;C) → (Y,Chol
C ). We claim that the data of f is equivalent to saying that

f ◦ ϕ−1
i : ϕi(V ∩ Ui)→ C is holomorphic. Indeed, this is the content of Proposition 1.2.3.

(2. ⇒ 1.) Let A = (Ui, ϕi) be a complex atlas where ϕi : Ui → Yi for open Yi ⊆ Cni is a
homeomorphism with holomorphic transitions. We need only show the item 2 of Proposition 1.2.3
for ϕi as then it would follow that ϕi : (Ui,OUi;C)→ (Yi,Chol

Yi;C) is an isomorphism of locally ringed
spaces, completing the proof. Indeed, pick any open U ⊆ X and any f : U → C in OX(U). As OX

is the atlas sheaf of A, therefore for ϕi in particular, we have that f ◦ ϕ−1
i : ϕi(U ∩ Ui) → C is a

holomorphic map, as required. This completes the proof.

2 Global algebra

Let (X,OX) be a locally ringed space. We will discuss here the operations on and properties of
Mod(OX), the category of OX -modules 3. An OX -module is a sheaf M on X such that M(U) is
an OX(U)-module and the restriction maps of M are given as module homomorphism w.r.t the
corresponding restriction map of OX (more precisely below). There are several important construc-
tions and properties that one can make with these. In-fact, just like one understands a ring R by
understanding R-modules, one can understand OX by understanding OX -modules. The similarity
runs deeper as we can also define in certain cases the very same constructions we do in module, but
in the case of OX -modules, and these constructions and operations becomes indispensable in doing
geometry over locally ringed spaces of special kind, like schemes. A lot of such phenomenon is
merely due to the fact that Mod(OX) is an abelian category. In-fact, notice that for each singleton
space X = {pt.}, a ring R can be seen as the structure sheaf OX over X and any R-module as
a OX -module. Hence one may also think of the concept of OX -modules as the global version of
classical commutative algebra.

Needless to say, this is an indispensable section for the purposes of geometry in general.

Let us first observe that over any topological space X, the product of two sheaves F,G over X
defined by (F × G)(U) = F(U) × G(U) is indeed a sheaf with restriction maps as products of the
restrictions. This allows us to define OX -modules very naturally.

For the rest of this section, we fix a ringed space (X,OX).

Definition 2.0.1. (OX-modules) An abelian sheaf F over X is an OX -module if there is a map
of sheaves

OX × F −→ F

(c, s) 7−→ cs

3we will give some general constructions for arbitrary sheaves over a topological case at times, before specializing
to OX -module case.
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where c ∈ OX(U), s ∈ F(U) for all open U ⊆ X which endows F(U) an OX(U)-module structure.
An OX -linear map of OX -modules is defined as a sheaf map ϕ : F → G between OX -modules

such that for each open U ⊆ X, the map ϕU : F(U)→ G(U) is an OX(U)-linear map and that the
restrictions preserves the respective module structures.

The above definition, when unravelled, yields that the scalar multiplication of each OX(U)-
module F(U) commutes with restrictions; for c ∈ OX(U), s ∈ F(U) and an open subset V ⊆ U , we
have (c · s)|V = c|V · s|V .

Remark 2.0.2. For an OX -module F we have the following easy observations:
1. Fx is an OX,x-module for all x ∈ X. Indeed, this follows from the universal property of direct

limits and the fact that direct limits commutes with product; we have the following diagram

OX,x × Fx

lim−→x∈V OX(V )× F(V )

OX(U)× F(U) F(U) Fx
mU

∼=

m̃ .

Explicitly, the OX,x-module structure on Fx is given by

OX,x × Fx −→ Fx

((U, c)x, (U, s)x) 7−→ (U, c · s)x

where we may assume c and s are defined on same open neighborhood of x by appropriately
restricting.

2. For a homomorphism f : F → G of OX -modules, we get a OX,x-module homomorphism
fx : Fx → Gx mapping as (U, s)x 7→ (U, fU (s))x for each x ∈ X,

3. Let X be locally ringed space. Then, Fx/mX,xFx
∼= Fx ⊗OX,x

OX,x/mX,x
∼= Fx ⊗OX,x

κ(x) is
a κ(x)-vector space. This is called the fiber of module F over x, denoted by F(x). Recall this
is how the fiber of a module over a prime ideal of the ring is defined.

We first give few basic constructions, which is useful to keep in mind.

Definition 2.0.3. (Support of a sheaf) Let X be a topological space and F be an abelian sheaf
over X. Let U ⊆ X be an open set. For s ∈ F(U), we define the support of s as the subset

Supp (s) := {x ∈ U | (U, s)x ̸= 0 in Fx}.

We further define the support of the sheaf as

Supp (F) := {x ∈ X | Fx ̸= 0}.

Support of a section is always a closed subset, but the support of a sheaf may not be closed.

Lemma 2.0.4. 4 Let X be a space and F be a sheaf over X with s ∈ F(U) for an open set U ⊆ X.
Then Supp (s) ⊆ U is a closed subset of U .

4Exercise II.1.14 of Hartshorne.
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Proof. Take any point y ∈ U \ Supp (s). We will find an open set W ⊆ U \ Supp (s) with W ∋ y.
Indeed, as (U, s)y = 0, therefore we get a W ⊆ U with s|W = 0. For any z ∈W , one further checks
that (U, s)z = (W, s|W )z = 0. Thus, z /∈ Supp (s) and consequently, W ⊆ U \ Supp (s).

Do skyscraper and subsheaf with support (Exercises 1.17 and 1.20 in Hartshorne.)

2.1 Global algebra : The algebra of OX-modules

In our quest to do geometry over schemes, we will make heavy use of the algebra of sheaves,
especially that of exact sequences, so we give a lot of constructions that we may have to make out
in the wild. We will make heavy use of sheafification (Theorem ??) in the sequel. An important
question that arises is whether sheafification of an algebraic construction over collection of OX -
modules actually is again an OX -module or not? The answer is yes, as can be easily checked
by explicitly looking at sections of sheafification directly (see Remark ?? to observe that its not
difficult, anyways we will show the explicit checks consistently).

Caution 2.1.1. The following pages might seem to be filled with unnecessary details about checking
whether a given construction on OX -modules results in an OX -module or not. While for some this
might be unnecessary, but working this out in experience has been satisfying and tends to give a
deeper understanding of the various module structures that gets associated with an OX -module
F and how they interrelate. Indeed, we will see that with more elaborate constructions, we get
more and more module structures to handle with. Thus it is necessary to work some details out
of this. At any rate, we will be using notions presented in the sequel quite frequently in algebraic
geometry and in particular while doing cohomology (Cěch cohomology in particular!) so we need
a good knowledge of the OX -modules and their internal technicalities.

Remark 2.1.2. Since there are a lot of constructions in the sequel, so to have a sense of mental
clarity, let us list them here:

• Submodules and ideals of OX .✓
• Quotient of modules.✓
• Image and kernel modules.✓
• Exact sequences of modules.✓
• The Γ(OX , X)-module HomOX

(F,G).✓
• HomOX

module.✓
• Direct sum of modules.✓
• Direct product of modules.✓
• Tensor product of modules.✓
• Free, locally free & finite locally free OX -modules.✓
• Invertible modules and the Picard group.✓
• Direct and inverse image modules.✓
• Sums & intersections of submodules.
• Modules generated by sections.
• Inverse limit.
• Direct limit.
• Tensor, symmetric & exterior algebras.
• Ext module.
• Tor module.
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Remark 2.1.3. Let V be the category of abelian groups and X be a locally ringed space. Consider
a functor F : V × · · · × V → V. Given abelian sheaves F1, . . . ,Fk over X, we obtain a sheaf
FF := F (F1, . . . ,Fk) by the following procedure: first define the presheaf F−

F on X given by
U 7→ F (F1(U), . . . ,Fk(U)), then define the sheaf FF = (F−

F )++ to be the sheafification of F−
F . We

will follow this general strategy in all the constructions in the following.

2.1.1 Submodules and ideals of OX

Definition 2.1.4. (Submodules and ideals) Let F be an OX -module. A submodule of F is an
OX -module which is a subsheaf G ⊆ F such that for all open U ⊆ X, the inclusion

G(U) ↪→ F(U)

is an OX(U)-module homomorphism. Since OX is an OX -module, thus, to be in line with usual
terminology, we define submodules of OX as ideals of OX .

Remark 2.1.5. Note that for any OX submodule G ⊆ F, we get a submodule Gx ⊆ Fx of the
OX,x-module Fx.

2.1.2 Quotient of modules

Definition 2.1.6. (Quotient modules) Let F be an OX -module and G be a submodule of F.
The quotient module is the sheafification of the presheaf U 7→ F(U)/G(U), denoted by F/G (see
Definition ??). Indeed, F/G is an OX -module by the following lemma.

Lemma 2.1.7. F/G is an OX-module.

Proof. We will use the definition of sheafification as given in Remark ??. For each open set U ⊆ X,
consider the following map:

ηU : OX(U)× (F/G)(U) −→ (F/G)(U)
(c, s) 7−→ ηU (c, s) : U → ⨿x∈UFx/Gx

where ηU (c, s)(x) := cx · s(x) where cx ∈ OX,x and s(x) ∈ Fx/Gx and the multiplication cx · s(x)
is coming from the OX,x-module structure that Fx/Gx has. We now need to show following two
statements:

1. ηU (c, s) is indeed in (F/G)(U),
2. η : OX × F/G→ F/G is a sheaf map.

For statement 1, we need to show that for each x ∈ U , there exists an open set x ∈ V ⊆ U and
there exists r ∈ F(U)/G(U) such that for all y ∈ V we have the equality cy · s(y) = ry in Fy/Gy.
Indeed, this can easily be seen via the fact that s ∈ (F/G)(U). Statement 2 is immediate after
drawing the relevant square whose commutativity is under investigation.

Remark 2.1.8. Note further that we get a natural map

F → F/G

which factors through the inclusion of the presheaf U 7→ F(U)/G(U) into the sheaf F/G.
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2.1.3 Image and kernel modules

Definition 2.1.9. (Image and kernel modules) Let f : F → G be a OX -module homomorphism.
We then get the image sheaf Im (f) and the kernel sheaf Ker (f) by Definition ??. Indeed, both of
these are OX -modules as the following lemma shows.

Lemma 2.1.10. Im (f) and Ker (f) are OX-modules.

Proof. Ker (f) is straightforward. For Im (f), we first observe that if we denote Im (f) = (im (f))++,
then (im (f))x = fx(Fx). We thus define the OX -module structure on Im (f) as follows:

ηU : OX(U)× Im (f)(U) −→ Im (f)(U)
(c, s : U → ⨿x∈Ufx(Fx)) 7−→ ηU (c, s)

where ηU (c, s)(x) = cx · s(x) where s(x) ∈ fx(Fx) ⊆ Gx. One checks like for quotient modules that
this defines an OX -module structure on Im (f). Further, it is clear that Im (f) ⊆ G.

Corollary 2.1.11. For a OX-module homomorphism f : F → G, we have Ker (f) ≤ F and
Im (f) ≤ G are submodules.

Proof. Use Remark ?? to get this immediately.

We have a "first isomorphism theorem" for modules then.

Lemma 2.1.12. For a map f : F → G of OX-modules, we obtain an isomorphism

F/Ker (f) ∼= Im (f).

Proof. For each x ∈ X let ϕx : Fx/ ker fx
∼=−→ im (fx). Then we define the following for any U ⊆ X

open

(F/Ker (f))(U) −→ Im (f)(U)
s : U → ⨿x∈UFx/ ker fx 7→ ϕ ◦ s

where (ϕ ◦ s)(x) = ϕx(s(x)). This is immediately an isomorphism by going to stalks (Theorem ??,
3).

2.1.4 Exact sequences of modules

Definition 2.1.13. (Exact sequences) A sequence of OX -modules

F′ f→ F
g→ F′′

is said to be exact if Ker (g) = Im (f).

Remark 2.1.14. By Lemma ??, F′ f→ F
g→ F′′ is exact if and only if Ker (gx) = Im (fx) at all

points x ∈ X.
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2.1.5 The Γ(OX , X)-module HomOX
(F,G)

We now consider the set of all OX -module homomorphisms f : F → G and observe very easily that
it has a Γ(OX , X)-module structure. This generalizes the fact that under point-wise addition and
scalar multiplication, the set HomR (M,N) for two R-modules M,N is again an R-module.

Definition 2.1.15. (Γ(OX , X)-module HomOX
(F,G)) Let F,G be two OX -modules. Then the

collection of all OX -module homomorphisms HomOX
(F,G) is a Γ(X,OX)-module. Indeed, for two

f, g ∈ HomOX
(F,G) and c ∈ Γ(OX , X), we define f + g : F → G by s 7→ f(s) + g(s) and we define

c · f : F → G by s 7→ ρX,U (s) · f(s) for any open set U ⊆ X and s ∈ F(U).

We will now globalize the construction of HomOX
(F,G) to obtain an OX -module out of it.

2.1.6 HomOX
module

Definition 2.1.16. (Hom module HomOX
(F,G)) Let F,G be two OX -modules. Then the fol-

lowing presheaf

U 7→HomOX|U (F|U ,G|U )

with restriction given by restriction of sheaf maps, is an OX -module denoted by HomOX
(F,G), as

the following lemma shows.

Lemma 2.1.17. HomOX
(F,G) is an OX-module

Proof. The fact that Hom(F,G) is a sheaf can be seen immediately. The OX -module structure is
defined as follows: pick any open U ⊆ X

ηU : OX(U)×HomOU

(
F|U ,G|U

)
−→ HomOU

(
F|U ,G|U

)
(c, f) 7−→ cf

where cf : F|U → G|U is given on an open set V ⊆ U by

(cf)V : F(V ) 7−→ G(V )
s 7−→ ρU,V (c) · fV (s).

One easily check that η is a well-defined natural map of sheaves, thus making HomOX
(F,G) into

an OX -module.

Remark 2.1.18. It is in general NOT true that HomOX
(F,G)x ∼= HomOX,x

(Fx,Gx).

We now define the dual of a module in the obvious manner.

Definition 2.1.19. (Dual module) Let F be an OX -module. The dual of F is defined to be the
module HomOX

(F,OX). We denote the dual by F∨.

There are some isomorphisms regarding Hom that is akin to their usual algebraic counterparts.
We outline them in the following lemma.

Lemma 2.1.20. Let F be an OX-module. Then,
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1. Hom(On
X ,F) ∼= Hom(OX ,F)n,

2. Hom(OX ,F) ∼= F.

Proof. In both cases we construct a map and its inverses and it is straightforward to see that they
are well-defined, natural and indeed inverses of each other.
1. Consider the map

Hom(On
X ,F) −→Hom(OX ,F)n

which on an open set U ⊆ X maps as

HomOX|U

Ä
On

X|U ,F|U
ä
−→ HomOX|U

(
OX|U ,F|U

)n
f : On

X|U → F|U 7−→ (fi)i=1,...,n

where for V ⊆ U , we have that fi,V : OX(V )→ F(V ) maps as s 7→ s · fV (ei) = fV (s · ei) where ei
is ith standard vector in OX(V )n. Conversely, define the map

Hom(OX ,F)n −→Hom(On
X ,F)

which on U ⊆ X open maps as(
gi : OX|U → F|U

)
i=1,...,n 7−→ g : On

X|U → F|U

where on V ⊆ U open, we define gV : OX(V )n → F(V ) as (s1, . . . , sn) 7→
∑n

i=1 gi,V (si) =
∑n

i=1 si ·
gi,V (ei).
2. Define the map

Hom(OX ,F) −→ F

on open U ⊆ X by

HomOX|U

(
OX|U ,F|U

)
−→ F(U)

f : OX|U → F|U 7−→ fU (1).

Define the inverse

F −→Hom(OX ,F)

on an open set U ⊆ X by

F(U) −→ HomOX|U

(
OX|U ,F|U

)
s 7−→ f : OX|U → F|U

where for an open set V ⊆ U , we define fV (t) = fV (t · 1) := t · s.

The following the usual adjunction from algebra.

Proposition 2.1.21 (⊗-hom adjunction). For any OX-modules E, F and G, we have

HomOX
(E⊗ F,G) ∼= HomOX

(
F,HomOX

(E,G)
)
.
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Proof. LetR = Γ(OX , X). We construct anR-linear map ϕ : HomOX
(E⊗ F,G)→ HomOX

(
F,HomOX

(E,G)
)

as follows: for any f ∈ HomOX
(E⊗ F,G), define ϕ(f) : F → HomOX

(E,G) by the following on
open U ⊆ X:

ϕ(f) : s 7→ ϕ(f)(s) : t 7→ f(s⊗ t).

This is R-linear by construction. To show its a bijection, we construct an inverse as follows: for
any f : F → Hom(E,G), define θ(f) : E⊗ F → G as the unique map corresponding to the map on
presheaves:

(E⊗ F)− −→ G

s⊗ t 7→ f(t)(s).

It is easy to see that this is an inverse of ϕ, as required.

2.1.7 Direct sum of modules

Definition 2.1.22. (Direct sum of modules) Let {Fi}i∈I be a family of OX -modules. The
direct sum of Fi is the sheafification of the presheaf

U 7→
⊕
i∈I

Fi(U)

whose restriction is the direct sum of the corresponding restrictions. We denote this sheaf by⊕
i∈I Fi and it is an OX -module by the following lemma. If for all i ∈ I, we have Fi = F, then we

write ⊕
i∈I

F = F⊕I = F(I)

as usually is done in algebra.

Lemma 2.1.23.
⊕

i∈I Fi is an OX-module and (⊕i∈I Fi)x ∼=
⊕

i∈I Fi,x for all x ∈ X.

Proof. Since stalks functor is left adjoint (to skyscraper, we didn’t covered this but this is a basic
known fact), therefore it preserves all colimits and thus (⊕i∈I Fi)x ∼=

⊕
i∈I Fi,x. Now, the OX -

module structure over ⊕
i∈I Fi is obtained as follows: pick any U ⊆ X open and consider the

map

ηU : OX(U)×
(⊕

i∈I
Fi

)
(U) −→

(⊕
i∈I

Fi

)
(U)

(c, s : U → ⨿x∈U ⊕i∈I Fi,x) 7−→ cs

where cs(x) = cx · s(x) where s(x) ∈⊕
i∈I Fi,x and ⊕

i∈I Fi,x is an OX,x-module. By exactly same
techniques employed in proving them in earlier cases, it can be observed that the above defines a
map η : OX ×⊕i∈IFi → ⊕i∈IFi which is a sheaf map.

We now cover the other construction we know from algebra.
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2.1.8 Direct product of modules

Definition 2.1.24. (Direct product of modules) Let {F}i∈I be a family of OX -modules. The
direct product of them is defined to be the sheaf

U 7→
∏
i∈I

Fi(U)

with product of restrictions as its restriction. Indeed, it is immediate it is a sheaf and that the
canonical map ηU : OX(U)×∏

i∈I Fi(U) → ∏
i∈I Fi(U) mapping as (c, (si)i∈I) 7→ (c · si)i∈I makes∏

i∈I Fi an OX -module. If Fi = F for all i ∈ I, then we denote∏
i∈I

F = F
∏

I = FI

as is usually done in algebra.

We now define tensor product of two OX -modules.

2.1.9 Tensor product of modules

Definition 2.1.25. (Tensor product of modules) Let F,G be two OX -modules. The tensor
product of F and G is given by the sheafification of the presheaf

U 7→ F(U)⊗OX(U) G(U),

denoted by F ⊗OX
G, as the following lemma shows.

Lemma 2.1.26. F ⊗OX
G is an OX-module and (F ⊗OX

G)x ∼= Fx ⊗OX,x
Gx for each x ∈ X.

Proof. The second statement is immediate from Lemma ??. The OX -module structure is the
obvious one: pick any open U ⊆ X and then consider the map

ηU : OX(U)× (F ⊗OX
G)(U) −→ (F ⊗OX

G)(U)
(a, s : U → ⨿x∈UFx ⊗OX,x

Gx) 7−→ as

where as(x) = axs(x). One easily checks that this defines a well-defined natural sheaf map.

A simple observation also yields the usual identity we know from modules.

Lemma 2.1.27. Let F be an OX-module. Then,

F ⊗OX
OX
∼= F.

Proof. Consider the map

η : F ⊗OX
OX −→ F

given on an open U ⊆ X by the map corresponding to the following natural isomorphism (Theorem
??)

ηU : F(U)⊗OX(U) OX(U)
∼=→ F(U).

This yields the similar isomorphic map on stalks via Lemma 2.1.26 to yield the result via Theorem
??, 3.
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Tensor product of modules is obviously commutative.

Lemma 2.1.28. Let F,G be two OX-modules. Then, F ⊗ G ∼= G⊗ F.

Proof. Construct the map η̃ : F ⊗ G→ G⊗ F as the unique map corresponding to the following

F(U)⊗OX(U) G(U) G(U)⊗OX(U) F(U)

(G⊗ F)(U)

ηU
∼=

jU
jUηU

.

This map on the stalks gives the usual twist isomorphism Fx ⊗OX,x
Gx
∼= Gx ⊗OX,x

Fx.

2.1.10 Free, locally free & finite locally free OX-modules

Definition 2.1.29. (Free, locally free and finite locally free modules) Let F be an OX -
module. Then,

1. F is called free if F ∼= O
(I)
X for some index set I,

2. F is called locally free if for all x ∈ X, there exists open U ∋ x such that F|U ∼= O
(Ix)
X|U where

Ix is an indexing set depending on x,
3. F is called finite locally free if F is locally free and the indexing set Ix is finite for each x ∈ X.

If Ix = I and I has size n, then we say that F is locally free of rank n.

We now observe that the hom sheaf of two locally free modules of finite rank is again locally
free of finite rank.

Lemma 2.1.30. Let F,E be two locally free OX-modules of ranks n and m respectively. Then
HomOX

(F,E) and F ⊗OX
E are both locally free module of rank nm.

Proof. For each x ∈ X, there exists an open set U ∋ x such that F|U ∼= On
X|U and E|U ∼= Om

X|U . We
then observe the following

HomOX
(F,E)(U) = HomOX|U

(
F|U ,E|U

) ∼= HomOX|U

Ä
On

X|U ,O
m
X|U

ä
∼= Onm

X|U

where the last isomorphism can be established easily by reducing to the usual module case (HomR (Rn, Rm) ∼=
Rnm).

For tensor, we proceed similarly as above. By replacing X by U , we need only show that
On

X ⊗ Om
X
∼= Onm

X . Indeed, by universal property of sheafification, it is sufficient to describe a map
of presheaves (On

X ⊗ Om
X)− → Onm

X which is an isomorphism on stalks. The usual isomorphism
Rn ⊗Rm → Rnm gives such a map of presheaves, as required.

An important corollary of the above lemma is as follows.

Corollary 2.1.31. Let F be be a locally free module of rank n. Then the dual F∨ is locally free of
rank n.

Proof. By Lemma 2.1.30, F∨ is locally free of rank n.
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One may think of finite locally free modules as those modules which are locally free in the usual
sense. Consequently, these modules satisfy global version of the properties enjoyed by the usual
notion of free modules, as the following result shows.

Proposition 2.1.32. 5 Let E be a finite locally free of rank n. Then,
1. E∨∨ ∼= E.
2. For any OX-module F, we have

HomOX
(E,F) ∼= E∨ ⊗OX

F.

Proof. As E is locally of free of rank n, therefore there is an open cover {Ui} of X such that
E|Ui

∼= On
X|Ui

. Let {Bj} be a basis of X where each Bj is in some Ui. Consequently, we reduce to
constructing an isomorphism in each case only as sheaves over the basis {Bj}.

1. Indeed, as each Bj is in some Ui, therefore E|Bj
∼= On

X|Bj
. Consequently, we get the follow-

ing isomorphisms for any U ∈ {Bj}

E∨∨(U) = HomOX|U (HomOX
(E,OX)

∣∣
U
,OX|U )

∼= HomOX|U (HomOX
(On

X ,OX)
∣∣
U
,OX|U )

∼= HomOX|U ((HomOX
(OX ,OX))n

∣∣
U
,OX|U )

∼= HomOX|U (O
n
X|U ,OX|U )

∼= HomOX|U

(
OX|U ,OX|U

)n
∼= HomOX

(OX ,OX)(U)n
∼= OX(U)n
∼= E(U),

and its naturality with resepect to restrictions is evident.

2. Pick any U ∈ {Bj}. We then have

HomOX
(E,F)(U) ∼= HomOX|U

(
E|U ,F|U

)
∼= HomOX|U

Ä
On

X|U ,F|U
ä

∼= HomOX|U

(
OX|U ,F|U

)n
∼= HomOX

(OX ,F)(U)n
∼= F(U)n
∼= (On

X⊗OXF)(U)

by Lemma 2.1.27. The fact that this isomorphism is natural with respect to restrictions is imme-
diate.

5Exercise II.5.1 of Hartshorne.
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2.1.11 Invertible modules and the Picard group

Definition 2.1.33. (Invertible modules) An OX -module L is said to be invertible if it is locally
free of rank 1.

The name is justified by the fact that the set of all invertible modules upto isomorphism forms
a group under tensor product and is one of the important invariants of a (ringed) space amongst
many others. We now show that indeed this forms a group. We will drop the subscript OX from
the tensor product, for clarity, in the following.

Proposition 2.1.34. Let L,L1,L2,L3 be invertible OX-modules. Then,
1. L1 ⊗L2 is invertible,
2. (L1 ⊗L2)⊗L3 ∼= L1 ⊗ (L2 ⊗L3),
3. L∨ ⊗L ∼= OX .

Proof. 1. This is a local question, so pick x ∈ X and an open set U ∋ x such that L1|U ∼= OX|U ∼=
L2|U . We wish to construct a natural map (L1 ⊗OX

L2)(U) → OX(U) which is an isomorphism.
By Theorem ??, it suffices to show a natural isomorphism L1(U)⊗OX(U) L2(U)→ OX(U). This is
constructed quite easily as L1(U)⊗OX(U) L2(U) ∼= OX(U)⊗OX(U) OX(U) ∼= OX(U). Thus we just
need to consider idOX(U).
2. This is again a local question, which can be answered by establishing an isomorphism (by using
Theorem ??)

(L1(U)⊗OX(U) L2(U))⊗OX(U) L3(U) ∼= L1(U)⊗OX(U) (L2(U)⊗OX(U) L3(U))

for any open U ⊆ X, but that is an immediate observation from algebra.
3. By Corollary 2.1.31, we have that L∨ is invertible. By Theorem ??, 3, the result would follow
if we can show that there is a natural OX -linear map ϕ : L∨ ⊗ L → OX such that for each point
x ∈ X there exists an open set x ∈ U ⊆ X such that on U , ϕ yields an OX(U)-linear isomorphism
(L∨ ⊗ L)(U) ∼= OX(U). We may take U small enough so that L∨

|U
∼= OX|U ∼= L|U . Thus, after

replacing X by U , we may assume L = OX = L∨. By Lemmas 2.1.20 and 2.1.27, we obtain the
following isomorphisms

L∨ ⊗L = Hom(L,OX)⊗OX
∼= Hom(OX ,OX)⊗OX

∼= OX ⊗OX
∼= OX .

This can easily be promoted to a sheaf map.

Definition 2.1.35. (Picard group of X) The Picard group of X is defined to be the set of all
isomorphism classes of invertible modules with the operation of tensor product. We denote this by

Pic(X)

The Proposition 2.1.34 and Lemma 2.1.28 shows that Pic(X) is indeed an abelian group.

2.1.12 Direct and inverse image modules

In this and the next sections, we show how the modules behave under map of ringed spaces.
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Definition 2.1.36. (Direct image) Let f : (X,OX) → (Y,OY ) be a map of ringed spaces and
let F be an OX -module. Then the direct image of F under f is the direct image sheaf f∗F which
is again an OY -module given by the following composition

OY × f∗F
f♭×id−→ f∗OX × f∗F

f∗m−→ f∗F

where m : OX ×F −→ F is the OX -module structure on F. Note that f∗ commutes with products
as f∗ is a right-adjoint.

The inverse image of a module, on the other hand, is an involved construction.

Definition 2.1.37. (Inverse image) Let f : (X,OX) → (Y,OY ) be a map of ringed spaces and
let G be an OY -module. The inverse image of G is defined to be the map

f∗G := OX ⊗f−1OY
f−1G

which is indeed an OX -module as the following lemma shows.

Lemma 2.1.38. The sheaf f∗G is an OY -module.

Proof. We need to show three statements:
1. OX is an f−1OY -module.
2. f−1G is an f−1OY -module.
3. f∗G is an OX -module.

Statement 1 follows from the following composition

f−1OY ×OX
f♯×id−→ OX ×OX −→ OX

where the latter is just the multiplication structure on OX . Statement 2 follows from OY -module
structure on G and the fact that f−1(G×G′) = f−1G× f−1G′ for two sheaves G,G′ over Y . Indeed,
the latter follows from the fact that f+(G× G′) = f+G× f+G′, which in turn follows from the fact
that filtered colimit commutes with finite limits. Statement 3 now follows immediately.

We now state an important result, that is f∗ ⊢ f∗.

Proposition 2.1.39. Let f : (X,OX)→ (Y,OY ) be a map of ringed spaces. Then,

Mod(OY ) Mod(OX)
f∗

f∗

⊣ .

In other words, we have a natural isomorphism of groups

HomOX
(f∗G,F) ∼= HomOY

(G, f∗F).

Proof. Omitted.
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2.1.13 Sums & intersections of submodules

2.1.14 Modules generated by sections

2.1.15 Inverse limit

Do Hartshorne Exercise 1.12 as well.

2.1.16 Direct limit

Do Hartshorne Exercise 1.11 as well.
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2.1.17 Tensor, symmetric & exterior powers

We now define T (F), S(F) and ∧(F) for a module F.

Definition 2.1.40 (T (F), Sym(F) and ∧(F)). Let F be an OX -module. The sheafification of
presheaf U 7→ T (F(U)) or Sym(F(U)) or ∧(F(U)) is denoted to be T (F) or S(F) or ∧(F) called
the tensor or symmetric or exterior algebra, respectively. This is an OX -algebra, i.e. a sheaf of
rings which is an OX -module. Moreover, we have

T (F) =
⊕
n≥0

Tn(F)

where Tn(F) is the sheafification of U 7→ Tn(F(U)). Note that this makes sense as sheafification is
a left adjoint, so it commutes with all colimits. We call Tn(F) the nth-tensor power of F. Similarly,
we define Symn(F) and ∧n(F).

Lemma 2.1.41. If F = On
X is a free OX-module of rank n, then

1. T r(F) ∼= Onr

X ,
2. Symr(F) ∼= O

n+r−1Cn−1
X ,

3. ∧r(F) ∼= O
nCr
X .

Proof. All three isomorphisms are obtained by defining a corresponding map of presheaves which
is an isomorphism on stalks, where this map is induced from the usual map in algebra:

Rn ⊗Rm ∼= Rnm

Symr(Rn) ∼= R
n+r−1Cr

∧r(Rn) ∼= R
nCr .

Then the corresponding map on sheaves induced by universal property of sheafification is an iso-
morphism as it is so on stalks.

We now indulge in generalizing some local properties of tensor algebra to this global case. We
first have the standard observation of instantiating these definitions on the finite locally free case,
which generalizes the usual tensor calculations of free modules.

Lemma 2.1.42. 6 Let F be a finite locally free OX-module of rank n. Then, T r(F), Symr(F) and
∧r(F) is a finite locally free OX-module of rank nr, n+r−1Cn−1 and nCr respectively.

Proof. Let {Uα} be an open cover of X where F is On
X|Uα

for each α. Let B be a basis of X such
that for any B ∈ B, we have B ⊆ Uα for some α. Observe that F|B ∼= On

X|B. Hence, we may replace
X by B to assume that F is free of rank n. The result now follows from Lemma 2.1.41.

Another global phenomenon that is borrowed by tensor calculation of free modules is the perfect
pairing of wedge product.

6Exercise II.5.16 of Hartshorne.
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2.1.18 Ext module

2.1.19 Tor module

2.2 The abelian category of OX-modules

We now show an important result that category of OX -modules over any ringed space is an abelian
category (thus we can do whole of homological algebra over it!). We have essentially done every-
thing, but we write it here for clear reference.

Theorem 2.2.1. Let (X,OX) be a ringed space. Then the category Mod(OX) of OX-modules is
an abelian category.

Proof. For any two OX -modules F,G, we have HomOX
(F,G) is an abelian group where for any

two f, g ∈ HomOX
(F,G), the sum h = f + g is defined to as follows: pick any open U ⊆ X and

define hU = fU + gU . This is an OX -linear sheaf map because f and g are. Hence Mod(OX) is
preadditive. Moreover Mod(OX) is additive. This is what we did in the preceding section while
defining finite products of OX -modules. The preceding section also shows that Mod(OX) has all
kernels and cokernels. Consequently, we need only show that the for any f : F → G in Mod(OX),
CoIm (f) ∼= Im (f). Indeed, this is a local question and can be thus immediately seen by first
isomorphism theorem. More precisely, we need only construct this isomorphism on a basis of X,
where the canonical map CoIm (f)→ Im (f) is an isomorphism by first isomorphism theorem. This
completes the proof.

Theorem 2.2.2. Let (X,OX) be a ringed space. Then the abelian category Mod(OX) has enough
injectives.

Proof. Let F be an OX -module. We wish to find an injective OX -module I such that F ↪→ I. First
note that for each x ∈ X, we have an injective OX,x-module Ix such that Fx ↪→ Ix by Theorem ??.
Observe that Ix is a sheaf over i : {x} ↪→ X. Let I = ∏

x∈X i∗Ix be the corresponing OX -module.
We claim that I is an injective OX -module and there is an injective map F ↪→ I.

To see that there is an injective map F ↪→ I, we claim the following three isomorphisms

HomOX
(F, I) ∼=

∏
x∈X

HomOX
(F, i∗Ix) ∼=

∏
x∈X

HomOX,x
(Fx, Ix).

The first isomorphism is immediate from limit preserving property of covariant hom. The second
isomorphism is obtained by the following isomorphism

HomOX
(F, i∗Ix) ∼= HomOX,x

(Fx, Ix) (∗)

for each x ∈ X. Indeed, this follows from the maps f 7→ fx and (κ̃ : F → i∗Ix) ←[ (κ : Fx → Ix)
where κ̃ is defined on an open set U ⊆ X as κ̃U : F(U) → Ix mapping as s 7→ κ((U, s)x). These
are clearly inverses of each other. It then follows that a map F → I is equivalent to a collection of
maps Fx → Ix and since we have Fx ↪→ Ix, therefore we obtain a unique injective map F ↪→ I.

Finally, we claim that HomOX
(−, I) is exact as a functor into the category of abelian groups.

To this end, by left exactness of hom, we need only show that this is right exact. This immediately
follows from isomorphism (∗) and Ix being injective and that product of surjective homomorphisms
is surjective. This completes the proof.
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3 Bundles
We give here the general theory of fiber, principal and vector bundles. When the need arises, we
will instantiate this into different areas (like in the chapter on differential geometry). The material
in previous chapter will allow a very united way of looking at the notion of bundles, and will start
portraying the intimate connection that bundles and cohomology has.

3.1 Generalities on twisting atlases

Let p : E → B be a map of topological spaces/manifolds together with a specified subsheaf of
groups G ⊆ AB(E) ∈ Sh(B) where AB(E) is the sheaf of homeomorphisms/isomorphisms over
B; for any open U ⊆ B, the group AB(E)(U) consists of all homeomorphisms/isomorphisms
ϕ : p−1(U)→ p−1(U) such that p ◦ ϕ = p.

The tuple (p : E → B,G) is the pre-datum for defining (p,G)-twisting atlas for a map π : X → B.

Definition 3.1.1 ((p,G)-twisting atlas for a map). Let p : E → B be a map and G be a subsheaf
of groups G ⊆ AB(E). Let π : X → B be a map. Then, a (p,G)-twisting atlas for π is a family
(Ui, hi)i∈I where {Ui}i∈I is an open cover of B and hi : π−1(Ui)

∼=−→ p−1(Ui) is an isomorphism
over Ui such that for any i, j ∈ I, denoting Uij = Ui ∩ Uj , we have

p−1(Uij) π−1(Uij)

Uij

hi|π−1(Uij)

h−1
j

∣∣∣
p−1(Uij)p

π

and from which we require that

hij = hi|π−1(Uij) ◦ h
−1
j

∣∣∣
p−1(Uij)

is a section in G(Uij). We then call π : X → B together with (Ui, hi) a twist of p : E → B with
structure sheaf G.

Using this, we may define a general notion of a bundle.

Definition 3.1.2 (Bundles). Let π : X → B be a map, F a space/manifold and p : B×F → B be
the projection map onto first coordinate. Then π is a bundle with fiber F if there is a (p,AB(B×F ))-
twisting atlas for π. Equivalently, π is a bundle with fiber F if it is a twist of p : B × F → B with
full structure sheaf AB(B × F ).

Remark 3.1.3. Let π : X → B be a bundle with fiber F . Consequently we have a AB(B × F )-
twisting atlas of p : B × F → B denoted (Ui, hi), where hi : π−1(Ui)→ p−1(Ui) is an isomorphism
over Ui such that the transition maps hij : p−1(Uij) = Uij × F → Uij × F = p−1(Uij) is just an
isomorphism over Uij (i.e. hij ∈ AB(B × F )(Uij)).
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4 Differential forms and de-Rham cohomology
Do this from Section 8.6 and Section 10.4 of Wedhorn, via sheaf cohomology. Add motivation from
courses.

4.1 Differential forms on Rn

We first discuss differential forms on Rn as this provides clear and sufficient motivation for the
abstract treatment of differential forms in all other places where it is used. We begin by defining
the main ingredients. The material of Section ?? is used in the following.

Definition 4.1.1. (Coordinate forms on Rn) Fix n ∈ N. Let V = Rn be the n-dimensional
R-module. The functional

dxi : V −→ R
(x1, . . . , xn) 7−→ xi

is called the ith-coordinate form on V , for each i = 1, . . . , n. Note that dxi is a 1-form/1-tensor,
i.e. dxi ∈ M1(V ) = V ∗. Observe that dxi is the dual basis of V ∗ corresponding to standard basis
ei of V .

Next, we define a multilinear map which for each choices of axes, gives the volume of the
parallelopiped obtained by the projection along those axes, given a parallelopiped spanned by some
vectors.

Definition 4.1.2. (Projection forms on Rn) Fix n ∈ N and k ∈ N. Let V = Rn be the
n-dimensional R-module. Let I = (i1, . . . , ik) be an ordered k-tuple where 1 ≤ ij ≤ n for each
j = 1, . . . , k. Then, we define the I-projection form as

dxI := πk(dxi1 ⊗ . . .⊗ dxik) = DI

which is an alternating k-form on V , that is dxI ∈ Λk(V ) (see Example ??). More explicitly, it is
given by the following k-linear form on V

dxI : V × · · · × V −→ R

(v1, . . . , vk) 7−→ det


dxi1(v1) dxi2(v1) . . . dxik(v1)
dxi1(v2) dxi2(v2) . . . dxik(v2)

...
... . . .

...
dxi1(vk) dxi2(vk) . . . dxik(vk)

 .

Remark 4.1.3. Recall from Theorem ?? that Λk(V ) has basis given by dxI for distinct increasing
k-tuples from 1, . . . , n. Thus, {dxI}I forms an R-basis of Λk(V ) of size nCk.

Remark 4.1.4. Recall that wedge product of forms is given by the following (where one defines
them only on the basis elements)

Λk(V )× Λl(V ) −→ Λk+l(V )
(dxI , dxJ) 7−→ dxI ∧ dxJ := dx(I,J)
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where recall that dx(I,J) will be zero if there is any index common in I and J (see Definition ??),
where I, J are increasing tuples of indices from {1, . . . , n} of lengths k and l respectively. From the
above, we see that for any alternating k-form ω = ∑

I aIdxI and alternating l-form η = ∑
J bjdxJ ,

their wedge product is defined as

ω ∧ η =
∑
J

∑
I

aIbJ(dxI ∧ dxJ).

Remark 4.1.5. Let U ⊆ Rn be an open subset of Rn. Observe that C∞(U), the ring of smooth
R-valued functions on U , is an R-algebra. In the same vein, we know that alternating k-forms
Λk(Rn) forms an R-vector space of dimension nCk (see Theorem ??).

Definition 4.1.6. (Differential k-forms) Let U ⊆ Rn be an open set and 0 ≤ k ≤ n. The
module of differential k-forms is defined to be the following R-vector space

Ωk
U = Λk(Rn)⊗R C∞(U).

As Λk(Rn) is a free R-module with rank nCk, therefore Ωk
U is a free C∞(U)-module of rank nCk.

Remark 4.1.7. Observe that {Ωk
U} obtains the wedge product structure from the wedge product

on {Λk(Rn)} as we may define for ω = ∑
I fIdxI ∈ Λk(Rn) and η = ∑

J gJdxJ the following

ω ∧ η :=
Ç∑

I

fIdxI

å
∧
Ç∑

J

gJdxJ

å
=

∑
I

∑
J

fIgJdxI ∧ dxJ .

Thus, ⊕k≥0Ωk
U forms a graded C∞(U)-algebra.

Remark 4.1.8. An arbitrary element ω ∈ Ωk
U is called a differential k-form over U and is written

as

ω =
∑
I∈Xk

fI(x1, . . . , xn)dxI

whereXk is the set of size nCk of all k-combinations in increasing order of {1, . . . , n} and fI ∈ C∞(U)
is a smooth function. Observe that Ω0

U = C∞(U).

We now construct the exterior derivative which will be a differential over the chain complex
Ωk
U , as we will see soon.

Definition 4.1.9. (Exterior derivative) Let U ⊆ Rn be an open subset and {Ωk
U}k∈N be the

modules of differential k-forms. For each k ∈ N∪ {0}, we define a map d : Ωk
U → Ωk+1U as follows.

Define for k = 0 the following

d : Ω0
U −→ Ω1

U

f 7−→
n∑

i=1

∂f

∂xi
dxi
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where since f ∈ C∞(U) is smooth, therefore so is ∂f/∂xi. Further, since dxi ∈ Λ1(Rn), therefore
the above is well-defined. For k ≥ 1, we define d as follows

d : Ωk
U −→ Ωk+1

U

ω =
∑
I∈Xk

fIdxI 7−→ dω =
∑
I∈Xk

dfI ∧ dxI

where dxI ∈ λk(Rn). Observe that dfI ∈ Ω1
U , thus indeed dfI ∧ dxI ∈ Ωk+1

U . This map d is called
the exterior derivative of differential forms.
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