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1 The setup : abelian categories
Methods employed in homological algebra comes in handy to attack certain type of local-global
problems in geometry. We would like to discuss some foundational homological algebra in this
chapter in the setting of additive and abelian categories. The main goal is not to illuminate
foundations but to quickly get to the working theory which can allow us to develop deeper results
elsewhere in this notebook. Using the Freyd-Mitchell embedding theorem, we can always assume
that any (small) abelian category A is a full subcategory of Mod(R) over some ring R. Thus
we will freely do the technique of diagram chasing in the following, implicitly assuming A to be
embedded in a module category. Consequently, the main example to keep in mind throughout this
chapter is of-course the category of R-modules, Mod(R).

Let us begin with the basic definitions. Let A be a category. Then A is said to be preadditive
if for any x, y ∈ A, the homset Hom (x, y) is an abelian group and the composition Hom (x, y) ×
Hom (y, z) → Hom (x, z) is a bilinear map. For two preadditive categories A,B a functor F : A →
B is called additive if for all x, y ∈ A, the function HomA (x, y) → HomB (Fx, Fy) is a group
homomorphism.

Let A be a preadditive category and f : x → y be an arrow. This mean for any two object
w, z ∈ A, there is a zero arrow 0 ∈ Hom (w, z). Then, we can define the usual notions of algebra
as follows.
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2 2 HOMOLOGY, RESOLUTIONS AND DERIVED FUNCTORS

1. i : Ker (f) → x is defined by the following universal property w.r.t. fi = 0:

x′

Ker (f) x y
fi

∀g s.t. fg=0∃!

2. j : y → CoKer (f) defined by the following universal property w.r.t. jf = 0:

y′

x y CoKer (f)f j

∀g s.t. gf=0
∃! .

3. k : x → CoIm (f) is defined to be the cokernel of the kernel map i : Ker (f) → x.
4. l : Im (f) → y is defined to be the kernel of the cokernel map j : y → CoKer (f).

Hence, for each f : x → y in a preadditive category A, we can contemplate the following four type
of maps:

Ker (f) CoKer (f)

x y

CoIm (f) Im (f)

f

Lemma 1.0.1. In a preadditive category, if a coproduct x⊕y exists, then so does the product x×y
and vice versa. In such a case, x⊕ y ∼= x× y.

A preadditive category A is said to be additive if it contains all finite products, including the
empty ones. By the above lemma, we require zero objects and sums of objects to exist.

An additive category A is said to be abelian if all kernels and cokernels exist and the natural
map for each f : x → y in A

CoIm (f) → Im (f)

is an isomorphism. This intuitively means that the first isomorphism theorem holds in abelian
categories by definition.

2 Homology, resolutions and derived functors

In this section, we shall discuss basic topics of homological algebra in abelian categories, which we
shall need to setup the sheaf cohomology in geometry and Lie group cohomology in algebra and
etcetera, etcetera.
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2.1 Homology

We first define cochain complexes and maps, cohomology and homotopy of such. Since this section
is mostly filled with trivial matters, therefore we shall allow ourselves to be a bit sketchy with
proofs.

Definition 2.1.1. (Cochain complexes, maps and cohomology) A cochain complex A• is a
sequence of object {Ai}i∈Z with a map di : Ai → Ai+1 called the coboundary maps which satisfies
di ◦ di−1 = 0 for all i ∈ Z. A map f : A• → B• of cochain complexes is defined as a collection of
maps f i : Ai → Bi such that the following commutes

Ai Ai+1

Bi Bi+1

f i f i+1

di

di

.

That is, dif i = f i+1di for each i ∈ Z. For a cochain complex A•, we define the ith cohomology
object as the quotient

hi(A•) := Ker
(
di
)
/Im

(
di−1).

With the obvious notion of composition, we thus obtain a category of cochain complexes coCh (A)
over the abelian category A.

We now show that hi forms a functor over coCh (A ).

Lemma 2.1.2. Let A be an abelian category. The ith-cohomology assignment is a functor

hi : coCh (A ) −→ A
A• 7−→ hi(A•).

Proof. For a map of complexes f : A• → B•, we first define the map hi(f)

hi(f) : hi(A•) −→ hi(B•)
a+ Im

(
di−1) 7−→ f i(a) + Im

(
di−1).

This is well defined group homomorphism. Further, it is clear that this is functorial.

With this, we obtain the cohomology long-exact sequence.

Lemma 2.1.3. Let A be an abelian category and 0 → A• → B• → C• → 0 a short-exact sequence
in coCh (A). Then there is a map δi : hi(C•) → hi+1(A•) for each i ∈ Z such that the following is
a long exact sequence

hi(A•) hi(B•) hi(C•)

hi+1(A•) hi+1(B•) hi+1(C•)

δi .
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Proof. (Sketch) The proof relies on chasing an element c ∈ Ker (d) of Ci till we obtain an element
a ∈ Ai+1 in Ker (d), in the following diagram:

0 Ai−1 Bi−1 Ci−1 0

0 Ai Bi Ci 0

0 Ai+1 Bi+1 Ci+1 0

d

d

d

d

d

d

The chase is straightforward and is thus omitted. The resultant map is indeed a well-defined group
homomorphism.

We now define homotopy of maps of complexes

Definition 2.1.4. (Homotopy between maps) Let A be an abelian category and f, g : A• → B•

be two maps of cochain complexes. Then a homotopy between f and g is defined to be a collection
of maps k := {ki : Ai → Bi−1}i∈Z such that f i − gi = dki + ki+1d for each i ∈ Z:

Ai Ai+1

Bi−1 Bi

f igi
d

d

ki

ki+1
.

As one might expect, homotopic maps induces same (not isomorphic, but actually same) maps
on cohomology.

Lemma 2.1.5. Let A be an abelian category and f, g : A• → B• be two maps of cochain complexes.
If k : f ∼ g is a homotopy between f and g, then hi(f) = hi(g) as maps hi(A•) → hi(B•) for all
i ∈ Z.

Proof. (Sketch) Pick any a ∈ Ker (d) in Ai. We wish to show that f i(a) − gi(a) ∈ Im (d). This
follows from unravelling the definition of homotopy k : f ∼ g.

We now define the notion of exact functors between two abelian categories.

Definition 2.1.6. (Exactness of functors) Let A and B be abelian categories. A functor
F : A → B is said to be

1. additive if the map HomA (A,B) → HomB (FA,FB) is a group homomorphism,
2. left exact if it is additive and for every short exact sequence 0 → A′ → A → A′′ → 0 the

sequence 0 → FA′ → FA → FA′′ is exact,
3. right exact if it is additive and for every short exact sequence 0 → A′ → A → A′′ → 0 the

sequence FA′ → FA → FA′′ → 0 is exact,
4. exact if it is additive and for every short exact sequence 0 → A′ → A → A′′ → 0 the sequence

0 → FA′ → FA → FA′′ → 0 is exact,
5. exact at middle if it is additive and for every short exact sequence 0 → A′ → A → A′′ → 0

the sequence FA′ → FA → FA′′ is exact.
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Remark 2.1.7. It is important to keep in mind that all the above definitions are made for short
exact sequences; a left exact A functor may not map a long exact sequence 0 → A1 → . . . to a long
exact sequence 0 → FA1 → . . . .

There are two prototypical examples of such functors in the category of R-modules.

Example 2.1.8. (− ⊗R M and HomR (M,−)) Let R be a commutative ring and M be an R-
module. It is a trivial matter to see that the functor −⊗R M : Mod(R) → Mod(R) is right exact
but not left exact as applying −⊗Z Z/mZ on the following shows where gcd(n,m) = 1:

0 → nZ → Z → Z/nZ → 0.

Indeed, nZ ⊗Z Z/mZ → Z/mZ is not injective as the former is an infinite ring whereas the latter
is finite.

Consider the covariant hom-functor HomR (M,−) : Mod(R) → Mod(R). This can easily be
seen to be left exact. This is not right exact as applying HomZ (Z/nZ,−) to the above exact
sequence would yield (note that HomZ (Z/nZ,Z) = 0).

We next dualize the above theory study the dual notion of homology, without much change.
TODO.

2.2 Resolutions

We begin with injective objects, resolutions and having enough injectives.

Definition 2.2.1. (Injective objects and resolutions) Let A be an abelian category. An object
I ∈ A is said to be injective if the functor thus represented, HomA (−, I) : Aop → AbGrp is exact.
An injective resolution of an object A ∈ A is an exact cochain complex

A
ϵ→ I0 → I1 → . . .

where each Ii is an injective object. We denote an injective resolution of A by ϵ : A → I•.

The following are equivalent characterizations of injective objects.

Proposition 2.2.2. Let A be an abelian category and I ∈ A. Then the following are equivalent
1. The functor HomA (−, I) is exact.
2. For any monomorphism i : A → B and any map f : A → I, there is an extension f̃ : B → I

to make following commute
0 A B

I

i

f
f̃

.

3. Any exact sequence

0 → I → A → B → 0

splits.
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Proof. 1. ⇒ 2. is immediate from definition. 2. ⇒ 3. follows from using the universal property
of item 2 on id : I → I and monomorphism 0 → I → A. For 3. ⇒ 1., we need only check right
exactness of HomA (−, I), which follows immediately from item 3.

The following are some properties of injective objects.

Proposition 2.2.3. Let A be an abelian category. If {Ii}i is a collection of injective objects of A
and

∏
i Ii exists, then it is injective.

Proof. As HomA (−,
∏

i Ii) ∼=
∏

iHomA (−, Ii) and arbitrary product of surjective maps is surjec-
tive, therefore the claim follows.

We see that any two injective resolutions of an object are homotopy equivalent.

Lemma 2.2.4. Let A be an abelian category and A ∈ A be an object with two injective resolutions
ϵ : A → I• and η : A → J•. Then there exists a homotopy k : ϵ ∼ η.

Proof. Comparison Theorem 2.3.7, pp 40, [cite Weibel Homological Algebra].

We then define when an abelian category has enough injectives.

Definition 2.2.5. (Enough injectives) An abelian category A is said to have enough injectives
if for each object A ∈ A, there is an injective object I ∈ A such that A is a subobject of I, A ≤ I.

In such abelian categories, all objects have injective resolutions.

Lemma 2.2.6. Let A be an abelian category with enough injectives. Then all objects A ∈ A admit
injective resolutions ϵ : A → I•.

Proof. Pick any object A ∈ A. As A has enough injectives, therefore we have 0 → A
ϵ→ I0.

Consider CoKer (ϵ) and let it be embedded in some injective object I1, which yields the following
diagram

0 A I0 I1

CoKer (ϵ)

ϵ d

.

Continue this diagram by considering CoKer (d) which embeds in some other injective I2 to further
yield the following diagram

0 A I0 I1 I2

CoKer (ϵ) CoKer (d)

ϵ d d

.

This builds the required injective resolution.

We now give examples of abelian categories with enough injectives. Recall that a divisible group
G is an abelian group such that for any g ∈ G and ay n ∈ Z there exists h ∈ G such that g = nh
(see Definition ??).
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Theorem 2.2.7. Let R be a commutative ring with 1. Then,
1. Any divisible group in AbGrp is an injective object.
2. If G is an injective abelian group, then HomZ (R,G) is an injective R-module.
3. AbGrp is an abelian category which has enough injectives.
4. Mod(R) is an abelian category which has enough injectives.

Proof. The main idea of the proofs of the later parts is to use injective objects constructed in a
bigger category and an adjunction to a lower category to construct injectives in the smaller subcat-
egory. Further, embedding each object in a large enough product of injectives (which would remain
injective by Proposition 2.2.3) would show enough injectivity.

1. By Corollary ??, the statement follows.

2. Recall that F (−) : Mod(R) ⇄ AbGrp : HomZ (R,−) is an adjunction, where F is the
forgetful functor. Consequently HomZ (F (M), G) ∼= HomR (M,HomZ (R,G)). It then follows that
HomZ (R,G) is injective.

3. Observe that Q/Z is a divisible, thus injective abelian group by item 1. Let G be an abelian
group. Consider the abelian group

I =
∏

HomZ(G,Q/Z)
Q/Z.

By Proposition 2.2.3, I is an injective abelian group. We now construct an injection ϕ : G → I,
which would complete the proof. We have the canonical map

θ : G −→ I

g 7−→ (ϕ(g))ϕ∈HomZ(G,Q/Z).

For this to be well-defined, we need to show that HomZ (G,Q/Z) is non-zero. Indeed, we claim
that for any element g ∈ G, there is a Z-linear map ϕg : G → Q/Z such that ϕg(g) ̸= 0. This would
suffice as if θ(g) = 0 for some g ∈ G, then ϕ(g) = 0 for all ϕ ∈ HomZ (G,Q/Z). Consequently,
ϕg(g) = 0, which cannot happen, hence θ is injective. So we need only show the existence of ϕg.
Indeed, if |g| = ∞, then we have an injection Z ↪→ G taking 1 7→ g. Pick any non-zero map
f : Z → Q/Z. By injectivity of Q/Z, f extends to ϕg : G → Q/Z which is non-zero at g. On the
other hand, if |g| = k < ∞, then consider the inclusion Z/kZ ↪→ G taking 1̄ 7→ g. Then, consider
the map f : Z/kZ → Q/Z taking 1̄ 7→ 1

k . Then, by injectivity of Q/Z, it extends to ϕg : G → Q/Z
which is non-zero at g.

4. Pick any R-module M . We wish to find an injective R-module I such that M ≤ I. By
items 1 and 2, we know that HomZ (R,Q/Z) is an injective R-module. By the proof of item 2, we
also know that

HomZ (M,Q/Z) ∼= HomR (M,HomZ (R,Q/Z)).

Conseuqently, by Proposition 2.2.3, we have an injective module

I =
∏

HomZ(M,HomZ(R,Q/Z))
HomZ (R,Q/Z),
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We claim that the following map

θ : M −→ I

m 7−→ (ϕ(m))ϕ∈HomZ(M,HomZ(R,Q/Z))

is injective. Indeed, we claim that for each m ∈ M , there exists ϕm ∈ HomZ (M,HomZ (R,Q/Z))
such that ϕm(m) ̸= 0. By the above isomorphism, we equivalently wish to show the existence of
gm ∈ HomZ (M,Q/Z) such that gm(m) ̸= 0. This is immediate from the proof of item 3.

We next dualize the above theory and study projective objects, projective resolutions and having
enough projectives to define homology. TODO.

2.3 Derived functors and general properties

First, for each covariant left exact functor F : A → B between abelian categories, we will produce
a sequence of functors RiF for each i ≥ 0. We will then dualize it.

Definition 2.3.1. (Right derived functors of a left-exact functor) Let F : A → B be a left
exact functor of abelian categories where A has enough injectives. Then, define for each i ≥ 0 the
following

RiF : A −→ B
A 7−→ hi(F (I•))

where ϵ : A → I• is any injective resolution of A. We call RiF the ith right derived functor of the
left exact functor F .

Remark 2.3.2. Indeed the above definition is well-defined, by Lemmas 2.1.5 and 2.2.4. Further,
keep in mind the Remark 2.1.7.

Some of the basic properties of right derived functors are as follows. First, the 0th-right derived
functor of F is canonically isomorphic to F .

Lemma 2.3.3. Let A,B be two abelian categories where A has enough injectives. Let F : A → B
be a left-exact functor. Then, there is a natural isomorphism

R0F ∼= F.

Proof. Pick any object A ∈ A with an injective resolution 0 → A
ϵ→ I•. Consequently, R0F (A) is

the cohomology of

0 → F (I0) Fd0→ F (I1),

that is, R0F (A) = Ker
(
Fd0

)
. But since F is left-exact and we have the following exact sequence

0 → A
ϵ→ I0

d0→ Im
(
d0
)
,

therefore we get that Ker
(
Fd0

)
= Im (Fϵ). This also needs the observation that if F is left-exact,

then for any map f ∈ A, we have F (Im (f)) ∼= Im (Ff). Since ϵ is injective, then so is Fϵ and thus
Im (Fϵ) ∼= FA.
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Remark 2.3.4. Let I ∈ A be an injective object. Then we claim that RiF (I) = 0 for all i ≥ 1.
Indeed, this follows immediately because we have 0 → I

id→ I → 0 as a trivial injective resolution
of I.

The following is an important property of right derived functors which makes them ideal for
defining the general notion of cohomology, because they always have long exact sequene in coho-
mology.

Theorem 2.3.5. Let A,B be two abelian categories where A has enough injectives. Let F : A → B
be a left-exact functor. If

0 → A → B → C → 0

is a short exact sequence in A, then we have a long exact sequence in right derived functors of F
as in

0 R0FA R0FB R0FC

R1FA R1FB R1FC

δ0

δ1

.

It follows from above theorem that if F is exact, then RiF are trivial for i ≥ 1.

Corollary 2.3.6. Let A,B be two abelian categories where A has enough injectives. Let F : A → B
be an exact functor. Then,

RiF = 0

for all i ≥ 1.

Proof. Pick any object A ∈ A and let I ∈ A be an an injective object such that 0 → A → I is an
injective map. Then we have a short-exact sequence

0 → A → I → B → 0

where B = I/A. By Theorem 2.3.5, Lemma 2.3.3 and Remark 2.3.4, it follows that we have a long
exact sequence in right derived functors of F as in

RiFA 0 RiFB

Ri+1FA 0 Ri+1FB

δi
.
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It follows from exactness of the above sequence that RiFB ∼= Ri+1FA for all i ≥ 1. Repeating the
same process for B (embedding B into an injective object and observing the resultant long exact
sequence), we obtain that

Ri+1FA ∼= R1FC

for some object C ∈ A. Replacing A by C, it thus suffices to show that R1FA = 0.
In the beginning of the above long exact sequence we have

0 FA FI FB

R1FA 0 R1FB

δ0

from which it follows via exactness that δ0 is surjective and Ker (δ0) = FB. We then deduce that
R1FA = 0, as required.

Injective resolutions might be hard to find in general, but given a left exact functor F , it would
be somewhat easier to find objects J such that RiF (J) = 0 for all i ≥ 1. The remarkable property
of such objects is that it can help to calculate the value of right derived functors of F for objects
admitting resolutions by them.

Definition 2.3.7 (Acyclic resolution). Let A,B be two abelian categories where A have enough
injectives. Let F : A → B be a left-exact functor. An object J ∈ A is said to be acyclic if
RiF (J) = 0 for all i ≥ 1. An acyclic resolution of A ∈ A is an exact sequence of the form

0 → A
ϵ→ J0 → J1 . . .

where each J i is acyclic.

The name "acyclic" is justified since they have zero cohomology, so all cocycles are coboundaries,
so there are no cycles for that object.

Remark 2.3.8. Note that for an acyclic resolution 0 → A
ϵ→ J•, we have h0(F (J•)) ∼= FA by

following the steps as in the proof of Lemma 2.3.3.

We then have the following useful theorem.

Proposition 2.3.9. Let A,B be two abelian categories where A have enough injectives. Let F :
A → B be a left-exact functor. For A ∈ A, let 0 → A

ϵ→ J• be an acyclic resolution. Then for all
i ≥ 0, there is a natural isomorphism

RiF (A) ∼= hi(F (J•)).

Derived functors are equivalent to datum of what is defined to be a universal δ-functor. In the
rest of this section we setup the definitions and only state the result.

TODO : Universal δ-functors.
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3 Results for Mod(R)
When the abelian category is that of modules over a commutative ring R, then we have some
special results which is very useful in homotopy theory.

3.1 Universal coefficients

3.2 Künneth theorem

3.3 ⊗-Hom adjunction
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