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1 Compactly generated spaces

Let us first engage in a discussion of the type of spaces we would like to work with, that is, compactly
generated space.

Definition 1.0.1 (Compactly generated spaces). A space X is said to be compactly generated
if it satisfies

1. (weak Hausdorff ) for any compact Hausdorff space K and a map g : K → X, the image g(K)
is closed,

2. (k-space) for any A ⊆ X, if g−1(A) is closed in K for any g : K → X where K is a compact
Hausdorff space1, then A is closed in X.

The following are some immediate observations.
1we then call A to be compactly closed
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Proposition 1.0.2. Let X be a compactly generated space. Then,
1. Every compact subspace of X is closed.
2. If K is compact Hausdorff and g : K → X is a map, then g(K) ⊆ X is compact Hausdorff.
3. If X is compactly generated and f : X → Y is a function, then f is continuous if and only if

f |K is continuous for all compact subspaces K ⊆ X.
4. Any closed subspace of a compactly generated space is compactly generated.

Example 1.0.3. Following are some examples of compactly generated spaces.
1. Any compact Hausdorff space is compactly generated. Indeed, for any compact Hausdorff K
and a map g : K → X, we have g(K) is compact in X which is Hausdorff, so closed. Furthermore,
if A ⊆ X and g−1(A) is closed in K for any such g, then letting K = X and g = id, we immediately
deduce that A is closed, as required.

2. Any Hausdorff space X which is locally compact is compactly generated. Indeed, for any
compact Hausdorff K and a map g : K → X, we have g(K) is compact in X which is Hausdorff, so
closed. Furthermore, if A ⊆ X and g−1(A) is closed in K for any such g, then letting X̃ denote the
1-pt. compactification of X, we see that X̃ is compact Hausdorff. Consequently we may consider
the map id : X̃ → X̃. As any compact Hausdorff space is compactly generated as shown above,
therefore id−1(A) = A is closed by hypothesis, as needed.

3. Hence, every CW-complex is a compactly generated space.

Remark 1.0.4. The above example in particular shows that any real or complex manifold is a
compactly generated space.

Construction 1.0.5. (k-ification) Let X be a weak-Hausdorff space. Then, X can be made into
a compactly generated space. Define kX to have the same set as X but a finer topology obtained
by deeming any compactly closed subspace to be closed in kX. It then follows that

1. kX is compactly generated,
2. the function id : kX → X is continuous,
3. X and kX have same compact subsets,
4. for weak Hausdorff spaces X and Y , we have k(X × Y ) = kX × kY .

Remark 1.0.6. From now on in this chapter, we only work with the category of compactly gen-
erated spaces, Topcg. Moreover, any construction on spaces that we do is assumed to be k-ified,
i.e. functor k is applied to it to always end up with the category of compactly generated spaces.

Next, we introduce constructions that one can do on based spaces. We denote Topcg
∗ to be the

category of based compactly generated spaces and based maps between them.

Construction 1.0.7 (Based constructions). Let X and Y be two based spaces. Then, we denote
by

1. [X,Y ] the based homotopy classes of based maps from X to Y . This is a based set itself, the
basepoint being the homotopy class of c∗ : X → Y mapping x 7→ ∗. If X ≃ X ′ and Y ≃ Y ′,
then there is a base point preserving bijection [X,Y ] ∼= [X ′, Y ′].

2. X ∧ Y the smash product given by X × Y/X ∨ Y where X ∨ Y = {∗}× Y ∪X ×{∗}. This is
a based space, the base point being the point corresponding to the subspace X ∨ Y .
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3. Map∗(X,Y ) the collection of based maps from X to Y . This is again a based space in
compact-open topology where the basepoint is c∗.

4. X+ the based space obtained by adjoining a distinct point ∗ to X.
5. X ∧ I+ the reduced cylinder of X where X is based. For any based X and unbased Y the

based space X ∧ Y+ is naturally homeomorphic to X × Y/{∗} × Y .

There is a natural "⊗-Hom" adjunction in Topcg
∗ .

Theorem 1.0.8. Let X,Y, Z be based spaces in Topcg
∗ . Then we have a natural isomorphism

Map∗(X ∧ Y,Z) ∼= Map∗(X,Map∗(Y,Z)).

Proof. (Sketch) Let f : X ∧ Y → Z. Then by universal property of quotients, we get a map
f̄ : X × Y → Z which is constant on X ∨ Y . Now construct

f̃ : X −→ Map∗(Y, Z)
x 7−→ y 7→ f̄(x, y).

The fact that this is based follows from f̄ being constant on X ∨ Y .
Let g : X → Map∗(Y,Z) a based map. Then we get

ḡ : X × Y −→ Z

(x, y) 7−→ g(x)(y).

This is based immediately. Further, on X ∨ Y , we see that ḡ is constant. By universal property of
quotients, we get the required g̃ : X ∧ Y → Z.

This theorem shows the duality between smash products and mapping space constructions.

Construction 1.0.9 (More based constructions). We now give two constructions each for smash
product and mapping space which complement each other.

1. CX the cone of X obtained by X ∧ I where 1 is the basepoint of I.
2. ΣX the suspension of X obtained by X ∧ S1.
3. PX the path space of X obtained by Map∗(I,X).
4. ΩX the loop space of X obtained by Map∗(S1, X).

It follows from Theorem 1.0.8 that we have following natural isomorphisms

Map∗(CX, Y ) ∼= Map∗(X,PY )

and

Map∗(ΣX,Y ) ∼= Map∗(X,ΩY ),

the latter being the famous suspension-loop space adjunction.

In the next few items, we give results which are simple to see but important as technical tools.
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Proposition 1.0.10. Let X,Y be based spaces in Topcg
∗ . Then

π0(Map∗(X,Y )) ∼= [X,Y ].

In particular, we have

[ΣX,Y ] ∼= [X,ΩY ].

Proof. (Sketch) In Topcg, both left and right notions of homotopy are equivalent. Consequently, a
path-component in Map∗(X,Y ) is equivalently the set of based maps X → Y which are homotopic,
as required.

Every space can be pointified.

Definition 1.0.11 (Pointification). The functor (−)+ : Top → Top∗ given by X 7→ X+ and
f : X → Y mapping to f+ : X+ → Y+ is called the pointification functor.

There are important relationships between based and unbased constructions. We first have the
following simple observation.

Lemma 1.0.12. Let X be a based space. We have the following bijection{Based homotopies h :
X × I → Y

}
∼= Map∗(X ∧ I+, Y ).

Remark 1.0.13. Let X be an unbased space. All the construction of Construction 1.0.9 have
an unbased counterpart where smash products are replaced by Cartesian product and Map∗ are
replaced by Map. In particular,

1. CX the unreduced cone of X obtained by X × I/X × {1}.
2. ΣX the unreduced suspension of X obtained by X × S1/X × {1}.
3. PX the unbased path space of X obtained by Map(I,X).
4. ΩX the unbased loop space of X obtained by Map(S1, X).

We also call them by same name, if it is clearly understood that the space in question is unbased.

The following is an important observation about pointification and cones.

Lemma 1.0.14. Let X be an unbased space. Then, the unreduced cone of X is isomorphic to the
reduced cone on X+. That is,

CX ∼= CX+.
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2 Fundamental group and covering maps

2.1 Covering spaces

We will now study a very important concept which is used everywhere in algebraic topology, the
concept of covering spaces. This concept captures the notion of when does another space covers
another space. Even though at this time it may seem completely unrelated to what we’ve been
doing, but we will soon see that using this simple idea we would be able to calculate first homotopy
group of S1. So let us first give the definition of a covering space:

Definition 2.1.1. (Covering space) Let X be a topological space and suppose π : X̃ → X is a
continuous map such that for all x ∈ X, there exists open neighborhood Ux ∋ x such that:

1. π−1(Ux) =
∐

α∈Jx Vα where Vα’s are disjoint open sets in X̃,
2. π|Vα

: Vα → Ux is a homeomorphism.
Then, π : X̃ → X is said to be a covering map and X̃ is said to be a covering space over
X. In this case, the open neighborhood Ux ⊆ X containing x is said to be the evenly-covered
neighborhood of x ∈ X.

...

→

π

Let us begin with an important example.

Example 2.1.2. Well, clearly, the easiest way to get a covering space out of any space is to simply
consider that map X ⨿X → X. But that’s not interesting.
The most important example of covering spaces that we will consider in this course is the exponential
map:

exp : R −→ S1

θ 7−→ e2πiθ.

Let us make sure that this is indeed a covering map. Take any point e2πiθ ∈ S1 where 0 < θ ≤ 1.
Now consider an open set U of S1, formed by Bϵ(e2πiθ) ∩ S1 where 0 < ϵ < 2. Denote U =:
e2πi(θ−δ,θ+δ) where clearly 0 < δ < 1/2. Consider now π−1(U) ⊆ R. We will have

π−1(U) =
∐
n∈Z

(θ + 2πn− δ, θ + 2πn+ δ).
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Denote Vn := (θ + 2πn− δ, θ + 2πn+ δ). Moreover, it is clear that

π|Vn
: Vn −→ U

is a homeomorphism. So indeed π is a covering map of S1. This is a very famous covering map as
well. You should think of it as an infinite spiral (homeomorphic to R) which covers the S1 in the
sense that when you view the spiral from the top, you will see only S1.

We will use this covering map exp : R→ S1 to find the first homotopy group of S1. The main
idea there will be resolve complicated loops in S1 to R, where each loop is homotopic to constant
loop at the starting/ending point of the loop(!)

Remark 2.1.3. It is clear that every covering map is surjective.

The following is an important example of a covering map.

Lemma 2.1.4. The map ϕ : S1 → S1 given by z 7→ zn is a covering map.

Proof. Pick any z0 = eiθ0 ∈ S1. We wish to show that there exists an open set U0 ∋ z0 in S1 such
that

ϕ−1(U0) =
n−1∐
k=0

Vk

where Vk are open in S1 and ϕ|Vk
: Vk → U0 is a homeomorphism.

Denote by γ : R → S1 the continuous surjective map given by t 7→ eit. Thus, z0 = γ(θ0).
Consider the interval I0 =

(
θ0 − π

n , θ0 +
π
n

)
. As the map γ : R→ S1 is an open map, therefore we

have U0 = γ(I0) which is an open set of S1 containing z0. We claim that U0 is an evenly covered
neighborhood for z0. Indeed, we see that

ϕ−1(U0) = {z ∈ S1 | zn ∈ U0}

=
¶
eiθ ∈ S1 | eniθ ∈ γ(I0)

©
=
¶
eiθ ∈ S1 | ∃κ ∈ I0 s.t. γ(κ) = eiκ = eniθ

©
=
¶
eiθ ∈ S1 | ∃κ ∈ I0 s.t. nθ = κ+ 2kπ, for some k ∈ Z

©
=
ß
eiθ ∈ S1 | ∃κ ∈ I0 s.t. θ = κ

n
+ 2πk

n
, for some k ∈ Z

™
=
{
eiθ ∈ S1 | θ ∈

∐
k∈Z

Å
θ0
n
− π

n2
+ 2πk

n
,
θ0
n

+ π

n2
+ 2πk

n

ã}
=

n−1∐
k=0

γ

ÅÅ
θ0
n
− π

n2
+ 2πk

n
,
θ0
n

+ π

n2
+ 2πk

n

ãã
.

This completes the proof.

We next discuss the notion of mapping torus of a map and how van Kampen can be used to
compute its fundamental group.
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Definition 2.1.5 (Mapping torus). For any map f : X → X the mapping torus of f is Tf :=
X × I/ ∼ where (x, 0) ∼ (f(x), 1).
Example 2.1.6. For id : X → X, one can check that Tid = X × S1.

We have the following basic, but useful lemma.
Lemma 2.1.7. Let π : X̃ → X be a covering map. Then, for all x ∈ X the fiber π−1(x) ⊆ X̃ is a
discrete subspace of X̃, that is, each x̃ ∈ π−1(x) is both open and closed.

Proof. To see this, take any x̃ ∈ π−1(x) and an evenly covered neighborhood Ux ⊆ X of x. Since
π−1(Ux) =

∐
α∈Jx Vα, where each Vα is homeomorphic to Ux under π|Vα

. Thus, the unique x̃α ∈ Vα
such that π(x̃α) = x is an element of π−1(x), one for each α ∈ Jx. Now an open set of π−1(x)
is of the form V ∩ π−1(x) where V ⊆ Ṽ is open, therefore Vα ∩ π−1(x) is open in π−1(x). But
Vα ∩π−1(x) = {x̃α} because each Vα are disjoint. Therefore {x̃α} is open in π−1(x). Similarly, it is
closed in π−1(x) by considering the complement of ∪β ̸=αVβ in π−1(x). Hence π−1(x) is a discrete
subspace of X̃.

2.2 Path lifting

Covering maps are important in algebraic topology because they come equipped with a lot of unique
lifting properties. We will first spell out the unique path lifting property of covering spaces, which
is a baby version of unique homotopy lifting property. Before that, we need some specific property
of a path in space X which is covered by a covering space X̃.
Lemma 2.2.1. Let γ : I → X be a path in X and π : X̃ → X be a covering map. Then there
exists a partition 0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1 of unit interval I such that for all
i = 0, . . . , k − 1, the image γ([ti, ti+1]) ⊆ X is contained in an evenly-covered neighborhood of X.

Proof. So first, for all t ∈ I, there exists an evenly-covered neighborhood Ut ⊆ X of γ(t) ∈ X. Thus,
by continuity of γ, we get that there exists (at, bt) ⊆ I containing t ∈ I such that γ((at, bt)) ⊆ Ut.
Since each open interval contains a compact interval, therefore we can assume (at, bt) to be [at, bt].
So we have a family of closed subintervals {[at, bt]}t∈I of I. By compactness of I, we get that there
exists a finite subcover [at1 , bt1 ], . . . , [atn , btn ] of I. Now suppose [ati , bti ] and [atj , btj ] intersect, then
we can break down [ati , bti ]∪ [atj , btj ] into three disjoint closed intervals [ati , atj ]∪ [atj , bti ]∪ [bti , btj ].
Furthermore note that each of the above three have their images contained inside an evenly-covered
neighborhood. Since there are only finitely many such intersections, therefore we have a finite
disjoint cover of I by closed intervals, each of which has image under γ contained in an evenly
covered neighborhood.

Theorem 2.2.2. (Unique path lifting of covering maps) Let π : X̃ → X be a covering map. Suppose
there is a path γ : I → X and a prescribed point γ̃0 : {0} → X̃ such that π(γ̃0) = γ(0), then there
exists a unique path γ̃ : I → X̃ such that π ◦ γ̃ = γ and γ̃(0) = γ̃0. That is, the following lifting
problem is uniquely filled:

{0} X̃

I X

π

γ

γ̃0

γ̃
.
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Proof. Let us first construct such a path lift. By Lemma 2.2.1, we have a partition of I into
I = ∪k−1i=0 [ti, ti+1] of disjoint closed intervals where γ([ti, ti+1]) ⊂ Ui ⊂ X and Ui is evenly-covered
in X. Now to construct the said γ̃, we will have to do it for each [ti, tt+1], starting from i = 0, mak-
ing use of γ̃0 ∈ X̃ that has been already given to us. Now, let us first denote π−1(Ui) =

∐
α∈Ji V

i
α

for all i = 0, . . . , k − 1 where V i
α
∼= Ui, which is given by the fact that π is a covering map. Also

keep in note that ∀t ∈ [ti, ti+1], γ(t) ∈ Ui ⊆ X which is evenly-covered.

So let us first define γ̃ for [t0, t1] = [0, t1]. Since π(γ̃0) = γ(0) ∈ U0, therefore γ̃0 ∈ π−1(U0) and
hence there is unique α0 ∈ J0 such that γ̃0 ∈ V 0

α0 .

γ̃|[t0,t1] : [t0, t1] −→ X̃

t 7−→
(
π|V 0

α0

)−1
(γ(t)),

where π|V 0
α0

: V 0
α0 → U0 is a homeomorphism and we are using it’s inverse map in the above

definition. Ok, so we first observe that γ̃|[t0,t1] (0) =
(
π|V 0

α0

)−1
(γ(0)) =

(
π|V 0

α0

)−1
(π(γ̃0)) = γ̃0.

That is, the starting point of path γ̃ is indeed γ̃0. So we have constructed a path in X̃ from γ̃0 to
γ̃|[t0,t1] (t1). Moreover, this path satsfies that π◦ γ̃|[t0,t1] = γ|[t0,t1], which is exactly what we wanted.

Next, let us continue defining γ̃ for [t1, t2] by using where we left off at [t0, t1]. This in turn
will suggest us how to completely define the whole path γ̃. So we first note that γ(t1) ∈ U0 ∩ U1,
therefore the end point of path γ̃|[t0,t1] at t1, takes value in π

−1(U1) as well, so let γ̃|[t0,t1] (t1) ∈ V
1
α1 .

It should be clear by now what we are about to do; now define:

γ̃|[t1,t2] : [t1, t2] −→ X̃

t 7−→
(
π|V 1

α1

)−1
(γ(t)).

As usual, we again observe that γ̃|[t1,t2] (t1) = γ̃|[t0,t1] (t1) because we have

(
π|V 1

α1

)−1
(γ(t1)) =

(
π|V 1

α1

)−1
(π( γ̃|[t0,t1] (t1)))

= γ̃|[t0,t1] (t1)

where we conclude second line from first as γ(t1) ∈ U0 ∩U1, where
(
π|V 1

α1

)−1
is indeed defined. So

we have indeed define a path γ̃|[t1,t2] whose starting point is same as the ending point of γ̃|[t0,t1],
so we have defined the γ̃ upto [t0, t2].

Having done the above, we now give general procedure of continuing the definition of path γ̃
till [tk−1, tk]. Suppose 2 ≤ j ≤ k − 1 and suppose we have constructed γ̃|[tj−1,tj ] : [tj−1, tj ] → X̃

as of yet. So we know the point γ̃|[tj−1,tj ] (tj) ∈ V
j−1
αj−1 where γ(tj) ∈ Uj−1 ∩ Uj . We now construct

with this information the next piece of path γ̃|[tj ,tj+1] : [tj , tj+1]→ X̃. Well, the following definition
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shouldn’t be a surprise:

γ̃|[tj ,tj+1] : [tj , tj+1] −→ X̃

t 7−→
Å
π|

V j
αj

ã−1
(γ(t))

where we again observe that the starting point of the above path is same as γ̃|[tj−1,tj ] (tj). Moreover,
it is easy to observe that π ◦ γ̃|[tj ,tj+1] = γ|[tj ,tj+1].

Finally, since there are only finitely many [tj , tj+1]s, therefore we have constructed a path γ̃ in
X̃ such that it starts from γ̃0 (γ̃0 = γ̃(0)) and when projected back to X under π, we obtain the
path γ back (π ◦ γ̃ = γ). In particular, the end point γ̃(1) ∈ π−1(γ(1)). The uniqueness of γ̃ follows
by construction.

A simple yet useful observation about higher homotopy groups of universal covers is the follow-
ing.

Lemma 2.2.3. Let (X,x0) be a path-connected, locally path-connected and semi-locally simply
connected space and denote p : X̃ → X be its universal cover. Then,

p∗ : πk(X̃)→ πk(X)

is an isomorphism for all k ≥ 2.

Proof. We have a homomorphism p∗ : πk(X̃) → πk(X) for all k ≥ 2. We shall show that this
homomorphism has an inverse. Indeed, we have a map

ψ : πk(X) −→ πk(X̃)
[γ] 7−→ [γ̃]

where γ̃ is the unique lift of γ which exists as Sk and X̃ are simply connected for k ≥ 2. It follows
immediately that p∗ ◦ψ = id and by uniqueness of lifts that ψ ◦ p∗ = id. Hence p∗ is a bijection, as
required.

2.3 Homotopy lifting

The Theorem 2.2.2 will be the building block for it’s generalization, which is the homotopy lifting of
covering maps. Let us first define what does it mean for a map to have homotopy lifting property.

Definition 2.3.1. (Homotopy lifting property) Let p : E → B be a continuous map. The
map p is said to have homotopy lifting property if for any homotopy H : Y × I → B and any map
H̃0 : Y × {0} → E such that p ◦ H̃0 = H(−, 0), there exists a homotopy H̃ : Y × I → E such that
H̃(−, 0) = H̃0 and p ◦ H̃ = H. That is, the following lifting problem is filled:

Y × 0 E

Y × I B
H

p

H̃0

H̃ .
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Remark 2.3.2. It is clear that path lifting property is obtained from homotopy lifting property
by setting Y = {0} in the diagram of homotopy lifting problem above.

We then have the following theorem.
Theorem 2.3.3. (Unique homotopy lifting of covering maps) Let π : X̃ → X be a covering map.
Then π satisfies unique homotopy lifting property. That is, given any homotopy H : Y × I → X
and a map H̃0 : Y → X̃ such that π ◦H̃0 = H(−, 0), there exists a unique homotopy H̃ : Y ×I → X̃
such that H̃(−, 0) = H̃0 and π ◦ H̃ = H. In other words, the following lifting problem is uniquely
filled:

Y × {0} X̃

Y × I X

π

H

H̃0

H̃ .

2.4 π1(S1) ∼= Z

We now prove using the covering map exp : R→ S1 that the first homotopy group of S1 is Z.
Theorem 2.4.1. π1(S1) ∼= Z.
Proof. Consider the following map which is quite intuitive to define:

ϕ : Z −→ π1(S1)
n 7−→ [γn]

where γn : I → S1 is the loop θ 7−→ e2πinθ, that is, γn is the loop corresponding to travelling around
n-times on the circle S1. Let us first show that it is indeed a group homomorphism. We see that

ϕ(n+m) = [γn+m]
= [γn ∗ γm]
= [γn] ∗ [γm]
= ϕ(n) ∗ ϕ(m),

so no qualms there.

The major hurdle starts when we try to prove the injectivity and surjectivity. This is where we
will need to use the path and homotopy lifting properties of the covering map exp : R→ S1 where
we indeed verified that exp is a covering map in the example below the definition of covering spaces.

Let us first show surjectivity. So take any [γ] ∈ π1(S1). We need to show that ∃n ∈ Z such that
[γn] = [γ]. So we have that exp(x̃) = γn(0), which in diagrammatic form is

{0} R

I S1

x̃

exp

γ

.
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Since exp : R → S1 is a covering map, therefore using the unique path lifting property of cover-
ing maps (Theorem 2.2.2), we get that there is a unique γ̃ : I → R such that the above lifting
problem is filled and then we get exp ◦γ̃ = γ and γ̃(0) = x̃ ∈ (exp)−1 (1). Now, we also have that
γ̃(1) ∈ (exp)−1 (1). Therefore γ̃(1)− γ̃(0) = total number of times the loop γ crosses 1 = n, say. So
γ̃ is homotopic to the straight line joining γ̃(0) and γ̃(1), that is κ(t) = (1− t)γ̃(0)+ tγ̃(1). Let this
homotopy between κ and γ̃ be denoted by H : I × I → R. Then exp ◦H is a homotopy between
exp ◦κ and exp ◦γ̃ where the former is the γn and the latter is γ. We thus have a homotopy between
them and therefore [γ] = [γn].

Let us next show injectivity. So suppose ϕ(n) = [γn] = [c1] = [γ0] where c1 = γ0 : I → S1 is the
constant loop at 1 ∈ S1. We need to show that this implies n = 0. We will use homotopy lifting to
prove this, that is, we will lift the homotopy which makes γn homotopic to c1 to a homotopy in R
between the lift of γn to a constant path. More precisely, consider the homotopy

H : I × I −→ S1

establishing a homotopy between H(−, 0) = γn and H(−, 1) = γ0 and moreover H(0,−) =
H(1,−) = 1. Also consider the map γ̃n : I −→ R given by t 7−→ nt. This is the other map which the
lifted homotopy will give a homotopy from to some other map (which we have to figure out). We
then observe that γ̃n is the right map to define here because exp ◦γ̃n(s) = e2πins = γn(s) = H(s, 0).
Ok so now we lift. Using Theorem 2.3.3, the following lifting problem is uniquely solved:

I × {0} R

I × I S1
H

exp

γ̃n

H̃ .

So we have a homotopy H̃ : I × I −→ R such that H̃(s, 0) = γ̃n(s) and, more importantly,
exp ◦H̃ = H. Thus, exp(H̃(s, 1)) = H(s, 1) = 1, that is, Im

(
H̃(−, 1)

)
⊆ (exp)−1 (1). Since fibres

of a covering map are necessarily discrete (Lemma 2.1.7) and H̃(−, 1) is a continuous map from a
connected set I, so it’s image has to be connected as well and hence Im

(
H̃(−, 1)

)
has to be a point

inside (exp)−1 (1). What this means is that H̃(−, 1) is a constant map, to a point in R, which we
denote as a ∈ R such that exp(a) = 1. So H̃ is a homotopy between γ̃n and ca (the constant path
at a). Moreover, we also have that H̃(0, t) = H̃(1, t) for all t ∈ I because H̃ is a based homotopy.
So we get that the map H̃(1, t) = H̃(0, t) = a ∈ (exp)−1 (1) for all t ∈ I as it is a for t = 1. So this
forces ˜H(s, 0) = γ̃n(s) to have starting point and ending point same, equal to a. But this can only
happen when n = 0 (see definition of γ̃n). We are done.

2.5 Couple of properties of covering spaces

Covering maps are quite nice maps as is shown by Theorem 2.3.3. We will consider a couple of
important properties that covering spaces hold in this section. The first one being that all fibers of
a covering map of a path-connected space (which is discrete, Lemma 2.1.7) are bijective (so have
same size).
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Lemma 2.5.1. Let π : X̃ → X be a covering map and let X be a path-connected space2. Let
x0, x1 ∈ X be two points, then there is a set bijection

π−1(x0) ∼= π−1(x1).

Another use of covering spaces is that if π : X̃ → X is a covering map where both the spaces are
path-connected, then the fundamental group of X̃ is naturally embedded inside the fundamental
group of X.

Proposition 2.5.2. Let π : X̃ → X be a covering map where both X and X̃ are path-connected.
Then the map

π1(π) : π1(X̃, x̃0) −→ π1(X,π(x̃0))

is injective.

2.6 Fun applications of π1(S1) ∼= Z

We first have the famous Brouwer’s fixed point theorem.

Proposition 2.6.1. (Brouwer’s fixed point theorem) For any continuous f : D2 → D2, there exists
a point x ∈ D2 such that f(x) = x.

Next is something we know very well but didn’t knew that it can be done from the methods we
have developed till now:

Proposition 2.6.2. (Fundamental theorem of algebra) Let p(x) ∈ C[x]. Then there exists a c ∈ C
such that x− c divides p(x). That is, every complex polynomial has a root in C (and thus have all
roots in C).

The last one is something we saw in the departmental seminar a week ago, using which we saw
that one can prove very non-trivial combinatorial results.

Proposition 2.6.3. (Borsuk-Ulam theorem) If f : S2 → R2 is a continuous map, then there exists
a pair of anti-podal points which are mapped to same point under f .

2.7 Covering spaces, group actions and Galois theory of covers

So in this second phase of the course, we will be seeing some more fancy theorems, but the main
goal will be to go to some calculative things, like computing homology groups and all that. In any
case, we covered covering spaces, but it would be rather incomplete if we don’t say something about
universal covering and more theorems in that direction. The first theorem we therefore discuss,
tells us how a certain type of G-space naturally enriches the quotient map with the structure of a
covering space. We first define the type of G-space we wish to look out for.

Definition 2.7.1. (Properly discontinuous action) Let G be a group and X be a space with
a continuous action3 of G. The action of G is said to be properly discontinuous if for all x ∈ X,
there exists an open set Ux ⊆ X containing x such that gUx ∩ Ux = ∅ for all g ∈ G.

2or work over path-components.
3this means that the action map G×X → X is a continuous map where G is given the discrete topology.
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There is another type of action:

Definition 2.7.2. (Free action) Let G be a group acting continuously on space X. The the
action is said to be free if for all x ∈ X, the stabilizer subgroup is trivial, that is, SG(x) = {e}.

There are some consequences of the above definition which we collectively state in the the
following lemma:

Lemma 2.7.3. Let G be a group and X be a space with continuous G-action.
1. If the action is properly discontinuous, then it is free.
2. If G is finite and X is locally finite4, then the action is free if and only if it is properly

discontinuous.

Proof. 1. Take any x ∈ X. Let Ux be the open set containing x obtained from properly discontin-
uous action of G. If g ∈ SG(x), then gUx ∩ Ux ̸= ∅. Thus g = e.

2. R ⇒ L is simple. For L ⇒ R, we go by contradiction. So suppose the action is free but
not properly discontinuous. Take any point x ∈ X. So for any open U ∋ x and for any g ∈ G,
gU ∩ U ̸= ∅. Now, we have a sequence of open sets each containing x, Un, such that ∩nUn = {x}.
Since gUn ∩ Un ̸= ∅ for each n, therefore we get a sequence {xn} where xn ∈ Un such that
lim←−xn = x and lim←− gxn = x. Since g ∈ G can be treated as g : X → X a homeomorphism, therefore
g(lim←−xn) = x that is gx = x, a contradiction to the fact that G acts freely5.

Let us now state the theorem of interest.

Theorem 2.7.4. Let G be a group and X be a space with continuous G-action. If the action is
properly discontinuous, then the quotient map

q : X X/G

is a covering map.

Before stating the proof, we would like to give some example uses of this theorem.

Example 2.7.5. Consider G = Zn and X = Rn. There is a canonical action we can define on Rn

using Zn given by

G×X −→ X

((m1, . . . ,mn), (x1, . . . , xn)) 7−→ (m1 + x1, . . . ,mn + xn).

The fact that this is a continuous action is trivial to check. We first claim that this action is
properly discontinuous. It is simple to see why that’s the case; for an x ∈ X simply take any
0 < a < 1/2 and define U = ∏(xi−a, xi+a). This U is open and for any m := (m1, . . . ,mn) ∈ Zn,
(m+ U) ∩ U = ∅ for any m ̸= 0. So indeed the action is properly discontinuous.

Next, we observe that X/G = Rn/Zn is simply homeomorphic to [0, 1]n/G and which is in turn
homeomorphic to ([0, 1]/0 ∼ 1)n and which is just (S1)n. So that is why the questions regarding
R/Z are so innumerable in literature, as they quickly form spaces which are quite weird to imagine.

4this means that for all x ∈ X, there exists a sequence of open sets Un containing x such that
⋂

n
Un = {x}.

5this is in-line with what the wonderful man I.P. Freely had to say (joke).
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Example 2.7.6. (Configuration space of k-points in space X) Let X be a space. The configuration
space of k points in X, denoted Fk(X), is intuitively the set of all possible positions that k particles
moving in X can inhabit. More precisely, we define:

Fk(X) = {(x1, . . . , xk) ∈
k∏

i=1
X | ∀ i ̸= j = 1, . . . , k, xi ̸= xj}.

This space has an action of Sk, the symmetry group of k letters, given by:

Sk × Fk(X) −→ Fk(X)
(σ, x1, . . . , xk) 7−→ (xσ(1), . . . , xσ(k)).

In other words, we just permute the k points which we find in some position in X. For k = 2, we
get that since S2 = Z2, so the only action possible is

Z2 × F2(X) −→ F2(X)
(0, x1, x2) 7−→ (x1, x2)
(1, x1, x2) 7−→ (x2, x1).

In other words, we swap the two points. Then, orbits of the action of Z2 over F2(X) will consist of
just the point itself and it’s swapped counterpart. Hence,

F2(X)/Z2 ∼= (X ×X)/ ∼

where (x1, x2) ∼ (y1, y2) iff x1 = y2 and x2 = y1. To better understand the situation, suppose
X = S1. Then, F2(S1) = S1 × S1/ ∼. Since S1 × S2 = T 2, therefore we get F 2(S1) = T 2 \∆(S1),
where∆(S1) is the diagonal subspace of S1×S2. But T 2\∆(S1) will look like quotient of I×I\∆(I)
which looks like two disjoint right triangles together. Now, we can obtain F2(S1)/ ∼ by identifying
the two triangles and doing the ensuing identifications of I × I to reach some weird object.

Example 2.7.7. The next example that we do is known for it’s weirdness. It is the construction of
lens space. Consider the odd sphere S2k+1 ⊂ Ck+1 for k ∈ N. Consider the cyclic group Zd where
we take the following presentation of it: Zd = ⟨ξ⟩ where ξ is the dth root of unity. We then have
the following action of Zd on S2k+1:

Zd × S2k+1 −→ S2k+1

(ξ, z1, . . . , zk) 7−→ (ξz1, . . . , ξzk).

This is indeed a valid action. In particular, we claim that this is a free action so that by Lemma
2.7.3, 2, this action becomes properly discontinuous and we can then use Theorem 2.7.4 to get that
S2k+1 is a cover of this so-called lens space. To see that it is free, take any (z1, . . . , zk) ∈ S2k+1. We
see that if (ξnz1, . . . , ξnzk) = (z1, . . . , zk), then ξn = 1. So each stabilizer subgroup is trivial. Hence
the action is free. Then, the lens space is defined to be the quotient S2k+1/Zd. Whatever that may
look like, it has a structure of a 2k + 1 dimension manifold, as we have a cover by Theorem 2.7.4.

With all these examples out of the way, let us now get to the proof of the theorem at hand.
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Proof of Theorem 2.7.4. Since the action of G is properly discontinuous, therefore for each x ∈ X,
there exists open Ux ⊆ X such that gUx ∩ Ux = ∅ for all g ∈ G. We claim that for any [x] ∈ X/G,
the set Vx := q(Ux) is evenly covered open neighborhood of [x]. In order to show this, we first claim
the following

q−1(Vx) =
∐
g∈G

gUx.

Now, since g : X → X is a homeomorphism, thus gUx = g(Ux) ⊆ X is open in X. Hence, q−1(Vx)
is open in X, if the above claim is true. So in order to see the claim, we see that

q−1(Vx) = {y ∈ X | q(y) ∈ Vx = q(Ux)}
= {y ∈ X | ∃z ∈ Ux s.t. q(y) = q(z)}
= {y ∈ X | ∃z ∈ Ux s.t. y = gz for some g ∈ G}
=

⋃
g∈G

gUx.

So we need only show that gUx ∩ hUx =. This is simple because if it is not the case, then for
some y, z ∈ Ux, we get gy = hz, so y = g−1hz, a contradiction to Ux ∩ g−1hUx = ∅ by properly
discontinuous action of G on X. So indeed the claim is true.

We need only show now that for any g ∈ G, the restriction

q|gUx
: gUx −→ Vx

is a homeomorphism. Firstly, it is rather easy to see that q(gUx) = q(Ux), after all, q kills all orbits
so that q(gy) = q(y). Next, since q(Ux) =: Vx, so the above map is well defined. We now only need
to show that it is a homeomorphism. For that, we can consider the following inverse:

w : Vx := q(Ux) −→ gUx

q(y) 7−→ gy.

This is indeed well-defined. To see this, take any z ∈ Ux such that q(y) = q(z). Thus there is
an h ∈ G such that y = hz. Since y, z ∈ Ux and Ux is such that kUx ∩ Ux = ∅ ∀k ∈ G, thus, if
q(y) = q(z), then y = z, hence gy = gz. It is now easy to see that w is a continuous inverse of
q|gUx

, as gy 7→ q(gy) 7→ w(q(gy)) = gy and conversely q(y) 7→ gy 7→ q(gy) = y. This completes the
proof.

2.8 Category of covering maps

Let (X,x0) be a based space. It is easy to see that knowing information about all covers of (X,x0),
would be pretty handy. But how can one do that? Well, we will try to do exactly that in this
section. Since we want to handle all covers of X, so it is better we start giving this collection of all
covers of (X,x0) some structure. One structure that it has is that it forms a category.

Definition 2.8.1. (The category Cov (X,x0)) Let (X,x0) be a based map. The category of
covering maps of (X,x0) and homomorphisms between them is defined by:
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1. Objects: An object of Cov (X,x0) is a covering map p : (X̃, x̃0)→ (X,x0).
2. Arrows: An arrow in Cov (X,x0) is a continuous based map f : (X̃1, x̃1) → (X̃2, x̃2) such

that the following commutes:

(X̃1, x̃1) (X̃2, x̃2)

(X,x0)
p1 p2

f

.

It is clear that Cov (X,x0) is a sub-category of the category Top∗ over (X,x0), that is,
Cov (X,x0) ⊆ Top∗/(X,x0).

We will see in this and the following sections that the main ingredient of our goal to understand
a covering space will be, just like in Galois theory, the automorphism group of (X̃, x̃0) in the cate-
gory Cov (X,x0). We denote the set of all automorphisms of (X̃, x̃0) by Deck(X̃, x0). Note that
in the unbased setting, we will denote the automorphism group of X̃ ∈ Cov (X,x0) as just Deck(X).

From now, we will abbreviate a based space (X,x0) by just X. Similarly for the covering spaces.

For our purposes, we see the following result.
Proposition 2.8.2. Let X be a path connected and locally path connected based space and consider
(X̃1, p1) and (X̃2, p2) to be two path-connected covers in Cov (X). Let ϕ : (X̃1, p1)→ (X̃2, p2) be a
map of covering spaces. Then, ϕ is a covering map over (X̃2, p2).
Proof. We break the proof into following steps.

Act 1 : The map ϕ is surjective.

Take any point y ∈ X̃2. Since X̃2 is path connected, so there is a path η : I → X̃2 with η(0) = x̃2
and η(1) = y. Then we have z := p2(y) ∈ X. Since X is path-connected, we thus have a path
γ : I → X such that γ(0) = x0 and γ(1) = z. By Theorem 2.2.2 on X̃2, it can be easily seen that
η is the unique lift of γ. Now, by Theorem 2.2.2 for covering space X̃1 with starting point x̃1, we
get a path γ̃1 : I → X̃1 such that γ̃1(0) = x̃1 and p1 ◦ γ̃1 = γ. Moreover, it is unique w.r.t. these
properties. Now denote x := γ̃1(1) ∈ X̃1. Now, we have another path γ̃2 := ϕ ◦ γ̃1 : I → X̃2 such
that γ̃2(0) = x̃2. Moreover, by the fact that p2 ◦ ϕ = p1, we get that p2 ◦ γ̃2 = γ. So if we apply
Theorem 2.2.2 on X̃2, then the path that we must get should exactly be γ̃2 because it satisfies
the conditions that makes the path coming from the theorem unique. But then, η = γ̃2. Hence
γ̃2(1) = η(1) = y. Hence ϕ(x) = y. This completes Act 1.

Act 2 : Each point of X̃2 has an evenly covered neighborhood.

Take any point y ∈ X̃2. To get an evenly covered neighborhood of y, we begin with z := p2(y) ∈ X.
Since both X̃1, X̃2 are covering X, therefore there are evenly covered neighborhoods U1, U2 ⊆ X
containing z. Then V := U1∩U2 is an open set which is an evenly covered neighborhood for both the
covers. Now, (p2)−1 (V ) ∋ y. Since (p2)−1 (V ) = ∐

i∈Jz Vi. Let y ∈ Viy . We claim that this Viy will
be an evenly covered neighborhood of y ∈ X̃2 for ϕ. Clearly, (ϕ)−1 (Viy) ∼= (p)−1 (V ) ∼=

∐
i∈Iz Wi

where p1|Wi
:Wi → V which is a homeomorphism. This concludes Act 2.

This concludes the proof.
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We now define universal covering space of a based space.

Definition 2.8.3. (Universal covering) Let (X,x0) be a path-connected and locally path-
connected space. A simply connected covering space (X̃, x̃0) is called a universal covering space of
(X,x0).

The justification of the name will come soon, but for the time being, let us develop some more
theory of covering spaces, which we would need in order to prove Theorem ??, which classifies
coverings of a space upto isomorphism!

2.8.1 More properties of covering spaces & classification

Let us discuss few more properties of morphisms of covering spaces. It is good to remind ourselves
that a space is path-connected and locally path-connected if and only if it is connected and locally
path-connected.

Remark 2.8.4. It is clear by the definition of covering maps that if X is a locally path-connected
space, then any covering space X̃ is also a locally path-connected space. But it is in general not true
that if X is connected then X̃ is connected, a simple example is the trivial covering X ⨿X → X.
In conclusion, if X is connected and locally path-connected, then X̃ may not be connected but is
locally path-connected.

The following lemma shows that to check equality of two maps inCov (X) of connected covering
spaces, we may check only at one point(!)

Lemma 2.8.5. Let X be a path-connected and locally path-connected space. If ϕ0, ϕ1 : (X̃1, p1) ⇒
(X̃2, p2) are two maps of covering spaces in Cov (X) between connected covers X̃1 and X̃2, such
that there exists a point x1 ∈ X̃1 for which ϕ0(x1) = ϕ1(x1), then ϕ0 = ϕ1.

Proof. Let x ∈ X̃1. We wish to show that ϕ0(x) = ϕ1(x). For this, we first denote z := p1(x) =
p2 ◦ϕ0(x) = p2 ◦ϕ1(x). Hence it is clear that y0 := ϕ0(x), y1 := ϕ1(x) ∈ (p2)−1 (z), i.e. y0, y1 ∈ X̃2
are in the same fiber. We now need to show that the points y0, y1 ∈ p−1(z) are literally the same.
Suppose to the contrary that y0 ̸= y1. Let z ∈ U ⊆ X be an evenly covered neighborhood of z.
Now, (p2)−1 (U) = ∐

i∈J Vi where p2|Vi
: Vi → U is an homeomorphism. Since y0 ̸= y1, therefore,

say y0 ∈ V0 and y1 ∈ V1 where V0 and V1 are disjoint in X̃2. Since ϕ0 and ϕ1 are continuous,
therefore there are open sets W0,W1 ⊆ X̃1 containing x such that ϕ0(W0) ⊆ V0 and ϕ1(W1) ⊆ V1.
Now, denote W =W0∩W1, so we have ϕ0(W ) ⊆ V0 and ϕ1(W ) ⊆ V1. So for each x ∈ X̃1, we have
an open set x ∈Wx ⊆ X̃1 such that ϕ0(Wx) ∩ ϕ1(Wx) = ∅. This contradicts the fact that x1 ∈ X̃1
is not such a point.

Remark 2.8.6. Hence, for any ϕ ∈ Deck(X̃) where X̃ is connected, ϕ doesn’t have any fixed
points.

The next result is an important one for our purposes, for it generalizes the unique path lifting
property of covering maps to that of any path-connected and locally path-connected space, by
comparing it’s fundamental group.



2.8 Category of covering maps 19

Theorem 2.8.7 (Unique lifting property). Let (X,x0) be a path-connected and locally path-connected
space and let p : (X̃, x̃0) → (X,x0) be a covering map. Let (Y, y0) be a path-connected and locally
path-connected space. If ϕ : (Y, y0) → (X,x0) is a based map, then there exists a unique lift
ϕ̃ : (Y, y0)→ (X̃, x̃0) if and only if ϕ∗(π1(Y, y0)) ≤ p∗(π1(X̃, x̃0)).

More diagrammatically, the following lifting problem is uniquely solved if and only if ϕ∗(π1(Y, y0)) ≤
p∗(π1(X̃, x̃0)):

(X̃, x̃0)

(Y, y0) (X,x0)

p

ϕ

∃! ϕ̃ .

Proof. (L⇒ R) Since p◦ ϕ̃ = ϕ, therefore ϕ∗(π1(Y, y0)) = (p◦ ϕ̃)∗(π1(Y, y0)) = p∗(ϕ̃∗(π1(Y, y0))) ≤
p∗(π1(X̃, x̃0)).

(R ⇒ L) We define the following candidate for the lift: for each point y ∈ Y , we join it to y0
using γy : I → Y where γy(0) = y0 and γy(1) = y, and then lift (Theorem 2.2.2) ϕ ◦ γy to a path
γ̃y in X̃ from x̃0 to γ̃y(1) ∈ p−1(ϕ(y)). This process gives the following map

ϕ̃ : Y −→ X̃

y 7−→ γ̃y(1).

We complete the rest of the proof in the following acts.

Act 1 : The map ϕ̃ is well-defined.

The plan is to use both homotopy an path liftings for this. So what we need to show is that for any
other choice η : I → Y with η(0) = y0 and η(1) = y, we get that η̃y(1) = γ̃y(1). In order to do this,
we first note that we get a loop γy ∗ η̄y at y0 in Y , so that we have an element [γy ∗ η̄y] ∈ π1(Y, y0).
Now, ϕ∗([γy ∗ η̄y]) = [ϕ◦γy ∗ϕ◦ η̄y]. Now since ϕ∗(π1(Y, y0)) ≤ p∗(π1(X̃, x̃0)), therefore there exists
a loop [ξ] ∈ π1(X̃, x̃0) such that [p◦ ξ] = [ϕ◦γy ∗ϕ◦ η̄y]. Let us denote [ϕ◦γy ∗ϕ◦ η̄y] =: [χ]. So we
have p ◦ ξ ≃ χ. Now, by Theorem 2.3.3, we get that ξ is homotopic to a loop at x̃0, denoted τ such
that p ◦ τ = χ. Now note that γ̃y joins x̃0 to a point, say ω ∈ X̃ such that p(ω) = ϕ(y). Since we
have a path ϕ ◦ η̄y which connects ϕ(y) to x0 in X, therefore if we lift (Theorem 2.2.2) ϕ ◦ η̄y to a
path ˜̄ηy beginning from ω and ending to a point in p−1(x0) in X̃, we get that we get a unique path
γ̃y ∗ ˜̄ηy from x̃0 to a point in p−1(x0) in X̃ which is unique w.r.t the property that p ◦ (γ̃y ∗ ˜̄ηy) = χ.
But, τ is also a path beginning from x̃0 such that p ◦ τ = χ, hence γ̃y ∗ ˜̄ηy = τ , and thus the lift
of η̄y in X̃ starts at ω and ends at x̃0. So now if we lift ηy in X̃, we get the path ¯̄̃ηy because of
uniqueness of path lifts. Hence η̃y is a path from x̃0 to ω =: γ̃y(1). Hence well-definedness of ϕ̃
follows.

Act 2 : The map ϕ̃ is continuous.

It is at this point that we will use the hypotheses imposed on Y . We will show that ϕ̃ is locally a
continuous map. Take any point y ∈ Y and let ϕ(y) ∈ X. There is an evenly covered neighborhood
of ϕ(y), which we denote by U ∋ ϕ(y) so that p−1(U) = ∐

i∈I Vi. Denote ϕ̃(y) ∈ V0. We also have
an open set ϕ−1(U) of Y . Since Y is locally path-connected, let W ⊆ ϕ−1(U) be a path-connected
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subset of Y containing y. We now claim that ϕ̃|W =
(
p|V0

)−1 ◦ ϕ|W . For this, take any point
z ∈ W , and since W is path-connected, therefore there exists ξ joining y → z. Since γy already
joins y0 → y, therefore we have that γy ∗ ξ joins y0 → z. By Act 1, we get

ϕ̃(z) = ˜(ϕ ◦ (γy ∗ ξ))(1)
= ( ˜ϕ ◦ γy) ∗ ( ˜ϕ ◦ ξ)(1).

Now, since p|V0
is a homeomorphism of V0 to U and since ϕ(y), ϕ(z) ∈ U are connected by a path

ϕ ◦ ξ, so V0 also has a path connecting ϕ̃(y) and ϕ̃(z). Hence, by uniqueness of path lifts (Theorem
2.2.2), we get ( ˜ϕ ◦ γy) ∗ ( ˜ϕ ◦ ξ)(1) =

(
p|V0

)−1 (ϕ(z)). We are now gladly done.

Act 3 : The map ϕ̃ is unique.

Essentially by construction. If the reader is not convinced, just start doing the brute force verifi-
cation and you will see why that’s the case.

This proof is now complete.

This theorem is an extremely important result as it will allow us to classify all connected covers
of a connected and path-connected space upto isomorphism, as we will soon see. We will in the
following few results see the beginnings of the Galois theory of covering spaces.

Lemma 2.8.8. Let (X,x0) be a path-connected and locally path-connected space and consider
Cov (X,x0). If (X̃H1, x̃1, p1) and (X̃H2, x̃2, p2) are two connected covering spaces over (X,x0)
such that

p1∗(π1(X̃H1, x̃1)) = p2∗(π1(X̃H2, x̃2)) = H ≤ π1(X,x0),

then there exists a unique homeomorphism ϕ : (X̃H1, x̃1, p1)→ (X̃H2, x̃2, p2), that is, (X̃H1, x̃1, p1)
and (X̃H2, x̃2, p2) are equivalent. In diagrammatic terms,

(X̃H1, x̃1) (X̃H2, x̃2)

(X,x0)
p1 p2

∃! ϕ
∼=

.

Proof. We will use Theorem 2.8.7 for this purpose. By the said theorem, where, in the notation
of the theorem, we let Y = X̃H1 and ϕ = p1, we get that there is a unique map ϕ : X̃H1 → X̃H1
such that p2 ◦ ϕ = p1. This follows because the condition of the theorem is trivially satisfied. We
now need only show that it has an inverse. This is also easy because of the equality of the image
subgroups; since H = p2∗(π1(X̃H2, x̃2)) ⊆ p1∗(π1(X̃H1, x̃1)) = H, therefore another application of
Theorem 2.8.7 yields a unique map ϖ : (X̃H2, x̃2) → (X̃H1, x̃1) such that p1 ◦ ϖ = p2. To show
that ϕ and ϖ are inverses of each other, consider the composite ϕ ◦ ϖ : (X̃H2, x̃2) → (X̃H2, x̃2).
Since ϕ ◦ ϖ is a unique map w.r.t. the property that p2 ◦ (ϕ ◦ ϖ) = (p2 ◦ ϕ) ◦ ϖ = p1 ◦ ϖ = p2,
but since so is id(X̃H2, x̃2), therefore ϕ ◦ϖ = id(X̃H2, x̃2). Similarly, ϖ ◦ ϕ = id(X̃H1, x̃1). This
completes the proof.
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Remark 2.8.9. Let X̃ be a connected cover of a p.c., l.p.c. space (X, x̃0). Then, we would like to
know whether for any two choice of x̃1, x̃2 ∈ X̃, we get an element ϕ ∈ Deck(X̃) such that ϕ(x̃1) = x̃2
and ϕ(x̃2) = x̃1. In such a case, we can say that the cover X̃ will be the one withmaximal symmetry.
Now with the result above, we can partly answer that, for if p1∗(π1(X̃, x̃1)) = p2∗(π1(X̃, x̃2)) in
π1(X,x0), then there is a unique deck transformation ϕ ∈ Deck(X̃) such that ϕ(x̃1) = x̃2 as
p2 ◦ ϕ = p1, where pi : (X̃, x̃i) → (X,x0). But the question for the converse remains open and we
see how to resolve it in the next big theorem.

We now state one of the major theorems of this course.

Theorem 2.8.10. (Classification of coverings) Let (X,x0) be a path-connected and locally path-
connected space. Then,

1. (Based version) Two connected covers (X̃1, x̃1, p1) and (X̃2, x̃2, p2) are equivalent if and only
if

p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)) in π1(X,x0).

2. (Unbased version) Two connected covers (X̃1, p1) and (X̃2, p2) are equivalent if and only if
for any x̃1 ∈ p−11 (x0) and x̃2 ∈ p−12 (x0), we have that

p1∗(π1(X̃1, x̃1)) & p2∗(π1(X̃2, x̃2)) are conjugate subgroups of π1(X,x0).

Proof. 1. (R ⇒ L) This is exactly the Lemma 2.8.8 above.
(L ⇒ R) Suppose the two covers are equivalent. Then there is a homeomorphism ϕ : (X̃1, x̃1) →
(X̃2, x̃2) such that p2◦ϕ = p1. Let its inverse be ϖ : (X̃2, x̃2)→ (X̃1, x̃1), which satisfies p1◦ϖ = p2.
The former gives us p1∗(π1(X̃1, x̃1)) = p2∗ ◦ ϕ∗(π1(X̃1, x̃1)) ≤ p2∗(π1(X̃2, x̃2)). Similarly, the latter
gives us p2∗(π1(X̃2, x̃2)) = p1∗ ◦ϖ∗(π1(X̃2, x̃2)) ≤ p1∗(π1(X̃1, x̃1)). Hence we get the equality.

2. (L ⇒ R) Choose x̃i ∈ p−1i (x0). We know that there is a homeomorphism ϕ : X̃1 → X̃2
such that p2 ◦ ϕ = p1. Hence ϕ(x̃1) ∈ p−12 (x0) and may not be equal to x̃2. So we have two
based covers (X̃2, x̃2) and (X̃2, ϕ(x̃1)) with the same projection map p2. Now since (X̃1, x̃1) and
(X̃2, ϕ(x̃1)) are equivalent, then by 1. above, they induce the same subgroups of π1(X,x0). So if we
can show that the subgroups induced by (X̃2, ϕ(x̃1)) and (X̃2, x̃2) are conjugates, then we would be
done. So we reduce to showing that p2∗(π1(X̃2, ϕ(x̃1))) and p2∗(π1(X̃2, x̃2)) are conjugates. Since
X̃2 is path-connected, therefore we have a path γ : I → X̃2 such that γ(0) = ϕ(x̃1) and γ(1) = x̃2.
Now recall from proof of Lemma ?? that the following establishes an isomorphism of groups:

Φ : π1(X̃2, x̃2) −→ π1(X̃2, ϕ(x̃1))
[ξ] 7−→ [γ ∗ ξ ∗ γ̄].

So, applying p2∗ on the above map Φ yields

p2∗(Φ) : p2∗(π1(X̃2, x̃2)) −→ p2∗(π1(X̃2, ϕ(x̃1)))
[p2 ◦ ξ] 7−→ [(p2 ◦ γ) ∗ (p2 ◦ ξ) ∗ (p2 ◦ γ̄)],

which is also an isomorphism. But this tells us more, that each element of p2∗(π1(X̃2, ϕ(x̃1))) can
be written as a conjugate of an element of p2∗(π1(X̃2, x̃2)) by a fixed element [p2 ◦ γ], conditioned
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on the fact that we somehow show that [p2 ◦ γ] = [p2◦γ̄], but that’s a tautology. Hence we are done.

(R ⇒ L) We are given that there exists [γ] ∈ π1(X,x0) for any choice of x̃1 and x̃2 such that

p1∗(π1(X̃1, x̃1)) = [γ̄]p2∗(π1(X̃2, x̃2))[γ].

In order to get a homeomorphism ϕ : (X̃1, x̃1, p1) → (X̃2, x̃2, p2), we will use statement 1. above.
Since we need a homeomorphism ϕ such that p2◦ϕ = p1, therefore we may show that p1∗(π1(X̃1, ỹ1)) =
p2∗(π1(X̃2, ỹ2)) for any ỹi ∈ p−1i (x0) and then use 1. to conclude the existence of such ϕ. To show
this, we first lift the loop γ in X to a unique path γ̃ in X̃2 where we start the lift at x̃2 (Theorem
2.2.2). Hence we have a path γ̃ : I → X̃2 where γ̃(0) = x̃2 and denote z := γ̃(1) ∈ p−12 (x0). Now,
if [p2 ◦ ξ] ∈ p2∗(π1(X̃2, x̃2)), then [γ̄ ∗ (p2 ◦ ξ) ∗ γ] is equal to [(p2 ◦ ¯̃γ) ∗ (p2 ◦ ξ) ∗ (p2 ◦ γ̃)] because
p2 ◦ γ̃ = γ, and then we further get that it is equal to [p2∗ ◦ (¯̃γ ∗ ξ ∗ γ̃)] where [¯̃γ ∗ ξ ∗ γ̃] ∈ π1(X̃2, z).
Conversely, for any [p2 ◦ η] ∈ p2∗(π1(X̃2, z)), we get the loop [α] := [γ̃ ∗ η ∗ ¯̃γ] ∈ π1(X̃2, x̃2) which is
such that [γ̄∗(p2◦α)∗γ] = [p2◦η]. Hence indeed, we get that [γ̄]p2∗(π1(X̃2, x̃2))[γ] = p2∗(π1(X̃2, z)).
Since p1∗(π1(X̃1, x̃1)) = [γ̄]p2∗(π1(X̃2, x̃2))[γ], therefore we get p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, z)), so
we are done as now we can take ỹ1 := x̃1 and ỹ2 := z.

2.8.2 Construction of universal cover

We will show some striking results about the group of deck transformations of the universal cover
and the fundamental group of the base space. Before that, let us define a class of connected covers
which have in some sense maximal symmetry.

Definition 2.8.11. (Normal covers) Let (X,x0) be a path-connected and locally path-connected
space. A connected cover p : X̃ → X is said to be normal if for any two x̃1, x̃2 ∈ p−1(x0) there
exists a ϕ ∈ Deck(X̃) such that ϕ(x̃1) = x̃2.

Clearly, this induces the following map when X̃ is normal:

Deck(X̃) −→ Sp−1(x0)

ϕ 7−→ ϕ|p−1(x0) .

We will use this map later. The following gives a characterization of normal covers.

Lemma 2.8.12. Let (X,x0) be a path-connected and locally path-connected space. Then, a con-
nected cover p : X̃ → X is normal if and only if for all x̃0 ∈ p−1(x0), we have that p∗(π1(X̃, x̃0))
is a normal subgroup of π1(X,x0).

Proof. (L ⇒ R) Take any [γ] ∈ π1(X,x0) and let γ̃ be the unique lift of γ in X̃ starting from
x̃0 ∈ X̃ (Theorem 2.2.2). Denote x̃1 := γ̃(1) ∈ p−1(x0) as γ is a lift of a loop so both endpoints
are in p−1(x0). Now, since X̃ is normal, therefore there exists ϕ ∈ Deck(X̃) such that ϕ(x̃0) = x̃1.
Hence (X̃, x̃0) and (X̃, x̃1) are equivalent connected based covers. Therefore by Theorem 2.8.10, 1,
we get that Hi := p∗(π1(X̃, x̃i))6, i = 0, 1, are exactly equal. Now, [γ̄]H0[γ] = [γ̄]p∗(π1(X̃, x̃0))[γ] =
p∗([¯̃γ]π1(X̃, x̃0)[γ̃]) = p∗(π1(X̃, x̃1)) = H1 = H0 where the third to last equality follows from proof
of Lemma ??. Hence H0 is a normal subgroup.

6Should have made this notation earlier?
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(R ⇒ L) Take any two points x̃1, x̃2 ∈ p−1(x0). To find the required deck transformation ϕ, we see
that since (X̃, x̃1) and (X̃, x̃2) are two covers such thatH1 := p∗(π1(X̃, x̃1)) andH2 := p∗(π1(X̃, x̃2))
are normal subgroups of π1(X,x0). Now since X̃ is path-connected, therefore there is a path joining
x̃1 to x̃2 and let us denote it by γ : I → X̃. Now, we get a loop ξ := p◦γ : I → X, based at x0, and
hence [ξ] ∈ π1(X,x0). By uniqueness of path lifts (Theorem 2.2.2), we see that the lift of ξ (started
at x̃1) indeed has to be γ. We thus get [ξ̄]H1[ξ] = [ξ̄]p∗(π1(X̃, x̃1))[ξ] = p∗([γ̄]π1(X̃, x̃1)[γ]) =
p∗(π1(X̃, x̃2)) = H2, where second to last equality follows from proof of Lemma ??. Thus, H1
and H2 are conjugate, but both are normal, therefore H1 = H2 and by Theorem 2.8.10, 1, we are
done.

Let us now briefly outline the construction of universal covering space. Let (X,x0) be a path-
connected, locally path-connected and semi-locally simply connected space7. For such a space, the
universal cover exists and is unique upto isomorphism (in Cov (X,x0)). We construct the universal
cover by quotienting out Path∗ (X,x0), the space of all paths starting at x0, by an equivalence
relation given by the following:

γ ∼ η ⇐⇒ [γη̄] = [cx0 ] ∈ π1(X,x0).

This is a loaded relation, so let us explain. First, γ and η are two elements of Path∗ (X,x0), so
they are paths both starting from x0. The fact that we are demanding [γη̄] = [cx0 ] tells us that we
are demanding two things: 1) that γ and η̄ be joinable, that is both γ and η have same end points,
and 2) γη̄ is homotopy equivalent to constant loop x0. This is indeed an equivalence relation on
Path∗ (X,x0). Hence, by quotienting Path∗ (X,x0) by this relation we obtain a quotient, denoted:

X̃ := Path∗ (X,x0)/ ∼ .

This inherits a topology from compact-open topology of Path∗ (X,x0). Let us only state what
is a basis of that topology, because verifying that indeed is so will unnecessarily deviate us from
our goal. A basis of X̃ is given by subsets of the following form: for each path-connected, locally
path-connected and semi-locally simply connected open subset U ⊆ X and any [γ] ∈ X̃ whose
endpoint lies in U , define

U[γ] := {[γα] ∈ Path∗ (X,x0) | α is contained in U}.

Such sets U[γ] forms a basis of X̃. A basic fact that can be checked about this basis is the following:

U[γ] ∩ U[η] ̸= ∅ =⇒ U[γ] = U[η].

This is because if [γα] = [ηβ], then for any [γδ] ∈ U[γ], we have [γδ] = [ηβᾱδ] ∈ U[η], similarly the
converse. We then have the following natural map:

p : X̃ −→ X

[γ] 7−→ γ(1).

This is indeed well-defined. Moreover, it’s a covering map as for any x = γ(1) ∈ X for some path γ
and any p.c., l.p.c., s.l.s.c. open set U ∋ x, we get p−1(U) = ∐

[α]∈π1(X,x0) U[αγ]. Finally, note that
X̃ is simply-connected.

7This means that for all x ∈ X, there exists an open set U ∋ x which also contains x0 such that ι∗(π1(U, x0)) =
{0} ≤ π1(X,x0). Note that this doesn’t necessarily means that π1(U, x0) = {0}(!)
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2.8.3 Construction of a connected cover from a subgroup

Construction 2.8.13. Let (X,x0) be a connected, path-connected and semi-locally simply con-
nected space. Let H ≤ π1(X,x0) be a subgroup. We will construct a connected cover (XH , x̃0) of
X such that p∗(π1(XH , x̃0)) = H. This is obtained as follows.

Consider the following map:

H × Path∗ (X,x0)/ ∼ −→ Path∗ (X,x0)/ ∼
([α], [γ]) 7−→ [α ∗ γ].

This is well-defined because if ([α], [γ]) = ([β], [η]), then [α∗γ] = [β∗η] in Path∗ (X,x0)/ ∼ obtained
by concatenating the two homotopies. Moreover, we have the following

([cx0 ], [γ]) 7→ [γ]
([α], [βγ]) 7→ [αβγ].

So we have that the group H acts on the universal covering space Path∗ (X,x0)/ ∼= X̃. Now,
consider the quotient X̃/H. Explicitly, this is the quotient of X̃ obtained by the relation

[γ] ∼H [η] ⇐⇒ ∃[α] ∈ H s.t. [γ] = [αη].

The above holds if and only if γ(1) = η(1), hence γη̄ is a loop of X based at x0. The relation above
can thus be read as:

[γ] ∼H [η] ⇐⇒ [γη̄] ∈ H.

Now, note that the quotient space XH := X̃/H will identify certain decks of the cover. Let us
explain. Let γ(1) = x ∈ X for some path γ in X and U ⊆ X be an evenly covered neighborhood
of x. Therefore

p−1(U) =
∐

[α]∈π1(X,x0)
U[αγ].

That is, the cardinality of decks is exactly the order of π1(X,x0). Now, when we apply the quotient
map q : X̃ ↠ X̃/H, we get that

q(U[ξ]) and q(U[η]) are identified if and only if [ξ] = [αη] for some [α] ∈ π1(X,x0)

Hence, applying q on p−1(U) will give us

q(p−1(U)) = q

Ñ ∐
[α]∈π1(X,x0)

U[αγ]

é
=

⋃
[α]∈π1(X,x0)

q(U[αγ])

=
∐

[α]∈H
q(U[αγ]).

Now since q is a quotient map and p : X̃ → X is map such that p identifies all elements of an
equivalence class of X̃/H, therefore we have a unique map pH : XH → X, which is the required
covering map corresponding to subgroup H. Moreover, one can show that pH∗(π1(XH , x̃0)) = H.
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2.9 Covers of RP 2 × RP 2

We will classify all covers of this space, and in the process will portray the power of tools developed
so far. We first begin with a section on background calculations. The reader interested only in
the classification result may safely jump on to Theorem 2.9.4 and may refer back to results in the
following section whenever it is used in the proof.

2.9.1 Background calculations

Let us begin by trying to understand the structure of π1(RP 2).

Lemma 2.9.1. The antipodal action of Z2 on Sn is a free action. This induces a covering map
p : Sn → RPn.

Proof. The action is defined by

Z2 × Sn −→ Sn

(0, x) 7−→ x

(1, x) 7−→ −x.

So if x ∈ Sn is any point, then for any g ∈ SZ2(x), we get g · x = x. This implies that either
g = 0 or x = −x. Since there is no point in Sn such that x = −x, therefore g = 0. So the action
is free. Now, since Z2 is finite and Sn is locally finite, therefore by Lemma 2.7.3, 2, we get that
this action is properly discontinuous. Now, using Theorem 2.7.4, we get that the quotient map
p : Sn → Sn/Z2 is a covering map. But since Sn/Z2 is exactly how RPn constructed, therefore we
have Sn as a cover of RPn.

Aliter : One can show that we get a covering map p : Sn → RPn by the Z2 action without
using Theorem 2.7.4. For this, take any point [x] ∈ RPn where we identify RPn as the quotient of
Sn by Z2, so each element of RPn represents an equivalence class of two points which are antipodal.
To find the required evenly covered neighborhood of [x], we first notice that we get an open subset of
Sn, denoted U and it’s antipodal version −U such that x ∈ U and −x ∈ −U and, most importantly,
U ∩ −U = ∅. This last fact follows most importantly from the fact that the action of Z2 on Sn

is properly discontinuous. Defining p to be the quotient map p : Sn → Sn/Z2, we get that
p−1(U) = U . So we have that p is a 2-sheeted covering of RPn. This explicit proof shows the
importance of the action of the finite group Z2 being free on Sn.

Next we calculate the fundamental group of RP 2 and as a result, gets pleasantly surprised in
the process.8

Lemma 2.9.2. π1(RPn) = Z2 for n > 1.

Proof. Take any n > 1. The Lemma 2.9.1 tells us that p : Sn → RPn is a covering map for RPn.
We take it as a fact that π1(Sn) = 0. Thus, Sn is a simply, path and locally path-connected space
where RPn is also semi-locally simply connected. Hence by the corollary of main theorem of

8You see, the fact that RPn are such weird manifolds to imagine and also the fact that they are not embeddable
in Rn (for n > 1) entices and invites one to think that their fundamental group is quite bad and complicated. But it
is not so!
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universal covering of a space, we get that π1(RPn) ∼= Deck(Sn). It is clear that Deck(Sn) is just
Z2, as Sn is a 2-sheeted cover of RPn (by Galois equivalence for connected covers).

Lemma 2.9.3. RP 2 is connected, locally path-connected and semi-locally simply connected.

Proof. Since R3 is satisfies all of the three properties and the quotient map q : R3 ↠ RP 2 is
continuous, so RP 2 is connected. To show that RP 2 is also locally path-connected, take any point
[x] ∈ RP 2, then lx := q−1([x]) ⊆ R3 is a line passing through origin in R3. For any open set
V ∋ [x] in RP 2, we have U := q−1(V ) is open in R3, containing the line lx. Choose an ϵ > 0 small
enough so that lx × Bϵ ⊆ U . Clearly, lx × Bϵ is path-connected (it’s a solid infinite cylinder with
open boundary). Now, since q is a quotient map so q(lx × Bϵ) is an open set inside V which is
path-connected (as it is a continuous image of a path-connected set). Hence RP 2 is both connected
and locally path-connected.
Since RPn is an n-dimensional manifold, so for each point there is an open neighborhood U which
is homeomorphic to an open ball of Rn, which is contractible. Hence RPn is semi-locally simply
connected.

2.9.2 The classification theorem

Theorem 2.9.4. (Classification of covers of RP 2 × RP 2) Each connected cover of RP 2 × RP 2

belongs to equivalence class of one of the following:
1. RP 2 × RP 2,
2. RP 2 × S2,
3. S2 × RP 2,
4. S2 × S2,
5. S2 × S2/ ∼ where ∼ is generated by (x, y) ∼ (−x,−y).

Proof. In Lemma 2.9.2, we obtained π1(RP 2) = Z2. By Lemma ??, we get that π1(RP 2 ×RP 2) =
Z2 × Z2. Now, there are the following five subgroups of Z2 × Z2:

1. H1 = {(0, 0)} = {e},
2. H2 = {(0, 0), (0, 1)},
3. H3 = {(0, 0), (1, 0)},
4. H4 = {(0, 0), (0, 1), (1, 0), (1, 1)} = Z2 × Z2.
5. H5 = {(0, 0), (1, 1)}.

Now, note that Z2 × Z2 is an abelian group, therefore, each subgroup of Z2 × Z2 is normal. We
know the following equivalence:

{Connected covers of (X,x0)}/equivalence {Subgroups of π1(X,x0)}/conjugacy

XH←−[H

(X̃,p)7−→p∗(π1(X̃,x̃0))

for a path-connected, locally-path connected and semi-locally simply connected space X. Now,
remember that XH for some H ≤ π1(X,x0) is made via quotienting the universal cover of X by
the action of H that is obtained by restricting the global action of π1(X,x0) on X̃, via the deck
transformations (we have π1(X,x0) ∼= Deck(X̃)). Hence, XH will be obtained by identifying the
sheets of the universal cover X̃. In our case, Deck(RP 2) = Z2 × Z2 and (1, 0) acts on (x, y) ∈ S2
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via (1, 0) · (x, y) 7→ (−x, y), similarly for (0, 1), (1, 1). This gives the required identifications on the
sheets and hence the five classes of connected covers as stated above.

3 Cofibrations and cofiber sequences

Most of the long exact sequences appearing in algebraic topology are derived from the topics that
we will cover in this chapter. These should rather be seen as an important conceptual tool in order
to do computations. We will begin with cofibrations, closed subspaces from whose homotopies can
be extended to the whole space, and then fibrations, which can be thought of as generalizations
of covering spaces (more generally, fiber bundles) which one studies in a first course in algebraic
topology.

Cofibrations can be treated as an intermediary tool for developing more sophisticated concepts
in algebraic topology. In particular, we will be using this to derive an exact sequence of groups out
of a map of based spaces.

Note that there is little to no difference in based or unbased cofibrations, so we will prove
something for unbased context and will use it as it has been proved for based context as well. We
will give some remarks towards the end.

3.1 Definition and first properties

Definition 3.1.1. (Cofibrations) A map i : A → X is a cofibration if it satisfies the homotopy
extension property; if f : X → Y is a continuous map such that there is a homotopy h : A× I → Y
where h(−, 0) = f ◦ i, then that homotopy can be lifted to h̃ : X × I → Y where h̃(−, 0) = f . More
abstractly, if h ◦ i0 = f ◦ i in the following diagram, then there exists h̃ such that the following
diagram commutes:

A A× I

X Y X × I

i

f

i0

h
i×id

h̃

i0

.

One sees that pushout of a cofibration along any map is a cofibration.

Lemma 3.1.2. Let i : A → X be a cofibration and f : A → B be any other map. Then, the
pushout j : B → B ∪f X is a cofibration.

Proof. Take any map g : B ∪f X → Y and a homotopy h : B × I → Y where h ◦ i0 = g ◦ j. We
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have the following diagram:

A

B B × I

(B ∪f X)× I

B ∪f X Y

X

j

g

i0

h

j×id

i0

f

i (cofibration) p.o. .

We wish to show that there is a map h̃ : (B ∪f X) × I → Y which commutes with the diagram
shown above. Since we have the following pushout square:

B ∪f X X

B A
f

ij p.o. ,

therefore after applying functor − × I, which has a right adjoint, so is colimit preserving (we
are working in the category of compactly generated spaces which is cartesian closed), we get the
following pushout square which is closer to what we have in the first diagram:

(B ∪f X)× I X × I

B × I A× I
f×id

i×idj×id p.o. .

Now, we get a map h′ as below by the virtue of i being a cofibration:

A A× I

B B × I

(B ∪f X)× I

B ∪f X Y

X X × I

j

g

i0

h

i×id

i0

f

i (cofibration)

f×id

i×id

i0

i0

h′

p.o. .
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Next, by the universal property of pushout (B ∪f X)× I, we get a map h̃

A A× I

B B × I

(B ∪f X)× I

B ∪f X Y

X X × I

j

g

i0

h

i×id

i0

f

i (cofibration)

f×id

i×id

i0

i0

h′

h̃

p.o. ,

which satisfies the required commutativity.

To check that a map i : A → X is a cofibration, we can reduce to checking the homotopy
extension property to the map X →Mi where Mi is the mapping cylinder.

Definition 3.1.3 (Mapping cylinder). Let f : X → Y be a map. Then the mapping cylinder of
f is the following pushout space

Mf X × I

Y X
f

i0
⌜ .

More explicitly, it is ((X × I)⨿ Y )/ ∼ where (x, 0) ∼ f(x) for all x ∈ X.

Let f : X → Y be a map. More pictorially, Mf is formed by gluing cylinder X × I to Y along
f . In mind, one pictures a cylinder "popping out" of Y from where f(X) lived in Y , as shown in
the following diagram: A based version of mapping cylinder is as follows.

Figure 1: Schematic representation of mapping cylinder for f : X → Y .
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Definition 3.1.4 (Based mapping cylinder). Let f : X → Y be a based map. The based
mapping cylinder M∗f is the pushout of reduced cylinder about f :

M∗f X ∧ I+

Y X

i0

f

⌟ .

Indeed, we have the following result:

Proposition 3.1.5. Let i : A→ X be a map. Then the following are equivalent:
1. i is a cofibration.
2. i satisfies homotopy extension property for any f : X → Y and for any Y .
3. i satisfies homotopy extension property for the natural map X → Mi and the homotopy

h : A× I →Mi obtained from pushout.

Proof. The only non-trivial part is to show 3 ⇒ 2. Take any map f : X → Y and any homotopy
h : A× I → Y . Consider

A A× I

Mi X × I

X Y

i

i0

f

h

i×id

i0

h1

g

.

The map h1 is formed by homotopy extension property of i forX →Mi and g is formed by universal
property of pushout which is Mi. The map gh1 : X × I → Y follows the required commutativity
relations.

Consequently, we have the following result.

Proposition 3.1.6. Any cofibration i : A→ X is an inclusion with closed image.

Proof. Consider the natural maps j : X → Mi and h : A × I → Mi obtained by the pushout
square. Since hi0 = ji, therefore by Proposition 3.1.5, 3, we obtain a map h̃ : X × I → Mi fitting
in the following commutative diagram

A A× I

X Mi X × I

i

i0

j

h

h̃
i0

.
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Let k :Mi→ X × I be obtained by the following diagram

A A× I

X Mi

X × I

i

i0

j

h⌜

i0
k

i×id .

It follows that h̃ ◦ k : Mi → Mi is id, that is, Mi is a retract of X × I. Consequently, restricting
onto i(A), we see that i(A) is a retract of X × I, hence closed as X × I is compactly generated. It
also follows from h̃ ◦ k = id that i is injective.

We see the following from the proof of the above result.

Corollary 3.1.7. Let i : A→ X be a map. Then the following are equivalent:
1. Map i : A→ X is a cofibration.
2. Mapping cylinder Mi is a retract of X × I.

Proof. 1. ⇒ 2. is immediate from the proof. For 2. ⇒ 1. we seee that if Mi ↪→ X × I ↠ Mi is a
retract, then letting h̃ : X × I ↠Mi, we have h̃ ◦ i0 = idX and h̃

∣∣
A×I = h, as needed.

Let f : X → Y be an arbitrary map of spaces. We can replace f by a cofibration followed by a
homotopy equivalence.

Construction 3.1.8 (Replacement by a cofibration and a homotopy equivalence). Let f : X → Y
be a map of spaces. Consider the following commutative triangle:

Mf

X Y
f

j r

where Mf = Y ∪f (X × I) is the mapping cylinder and the other two maps are given as follows:
1. Map j : X → Mf is given by x 7→ (x, 1). We claim that j is a cofibration. Indeed, if
g :Mf → Z is any map and we have a diagram as in Definition 3.1.1, then we can form the
required homotopy h̃ :Mf × I → Z by defining

h̃([(x, s)], t) :=
®
g(x) if x ∈ Y
h(x, st) if [(x, s)] ∈ X × I.

We then see that h̃(j× id)(x, t) = h̃([(x, 1)], t) = h(x, t) and that h̃i0([(x, s)]) = h̃([(x, s)], 0) =
h(x, 0) = g(x). So we have the required extension and hence j : X →Mf is a cofibration.

2. Map r : Mf → Y is given by r|Y = idY and r|X×I (x, t) = f(x) for t > 0. We claim that r
is a homotopy equivalence. For this, we have a map i : Y → Mf taking y 7→ [y]. We then
see that ri = idY and ir ≃ idMf . The former is simple and the latter is established by the
following homotopy h :Mf × I →Mf mapping as ([(x, s)], t) 7→ [(x, (1− t)s)] on X × I and
(y, t) 7→ y on Y . This is indeed a homotopy from ir to idMf . Thus, r : Mf → Y establishes
that Y is a deformation retract of the mapping cylinder Mf .
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Hence, one can replace a map of spaces f : X → Y by a cofibration j : X → Mf followed by a
homotopy equivalence r :Mf → Y .

We now discuss an important characterization of cofibrations. For this we define first the
following notion.

Definition 3.1.9 (Neighborhood deformation retract). A pair (X,A) where A ⊆ X is a
neighborhood deformation retract (NDR) if there exists a map u : X → I such that u−1(0) = A
and a homotopy h : X × I → X such that h(x, 0) = idX(x) = x, h(a, t) = a for all a ∈ A and all
t ∈ I and h(x, 1) ∈ A if u(x) < 1.

Remark 3.1.10. Let (X,A) be an NDR-pair. If u(X) ⊆ [0, 1), then A ↪→ X is a closed subspace
which is a deformation retract of X.

Theorem 3.1.11. Let A be a closed subsapce of X. Then the following are equivalent:
1. (X,A) is an NDR-pair.
2. i : A→ X is a cofibration.

We now define the notion of homotopy equivalence under a space. This will come in handy
later. Recall that if C is a category c ∈ C is an object, then Cc/ denotes the under category at c,
i.e., where objects are i : c→ a and maps are commutative triangles

c

a b

i j

f

.

Definition 3.1.12 (Relative homotopy). Let i : A → X and j : A → Y be in Topcg
A/

. Let
f, g : X ⇒ Y be maps in Topcg

A/
. Then h : X × I → Y is a homotopy rel A between f and g if

h(x, 0) = f(x), h(x, 1) = g(x) and h(i(a), t) = j(a) for all a ∈ A and t ∈ I.

The notion of homotopy equivalence rel A is special as the Theorem 3.1.14 shows, hence we
give it the following name.

Definition 3.1.13 (Cofiber homotopy equivalence). Let i : A → X and j : A → Y be two
spaces under A in Topcg

A/
. If i and j homotopy equivalent under A, then X and Y are said to be

cofiber homotopy equivalent.

Theorem 3.1.14. Let i : A→ X and j : A→ Y be two cofibrations under A and f : X → Y be a
map under A. If f is a homotopy equivalence, then f is a cofiber homotopy equivalence.

Example 3.1.15. Let i : A→ X be a cofibration. Then by Construction 3.1.8, we have

Mi

A X
i

j r

where j is a cofibration and r is a homotopy equivalence. Since r is a homotopy equivalence under
A, therefore by Theorem 3.1.14, r is a cofiber homotopy equivalence. Consequently, there is a
homotopy inverse κ : X →Mi of r under A.
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The following is a mild generalization of Theorem 3.1.14 in the sense that we allow mapping
between two cofibration pairs now.

Proposition 3.1.16. Let (X,A) and (Y,B) be two cofibration pairs and let f : X → Y and
d : A→ B be maps such that f |A = d. If f and d are homotopy equivalences, then the map of pairs
(f, d) : (X,A)→ (Y,B) is a homotopy equivalence of pairs9.

We next portray how a cofibration pair (X,A) in some cases behaves homotopically same as
the quotient X/A.

Proposition 3.1.17. Let i : A→ X be a cofibration and A be contractible. Then the quotient map
p : X ↠ X/A is a homotopy equivalence.

Proof. As A is contractible, therefore for some x0 ∈ A, we have a homotopy h : A × I → A such
that h0 = idA and h1 = cx0 . Consequently, we obtain h̃ as in the commutative square

A A× I

X X X × I

i

id

i0

h
i×id

h̃

i0

where we have h̃0 = idX , h̃t(A) ⊆ A for all t ∈ I and h̃1(A) = {x0} ∈ A. Consequently, h̃1 fits in
the following diagram

X

X/A X

p

g

h̃1

where g : X/A→ X comes from the universal property of quotients. We claim that g is the required
homotopy inverse of p. Indeed, by definition h̃ : idX ≃ g ◦ p. Consequently, we need only show
that idX/A ≃ p ◦ g. We derive this homotopy from h̃ as well. Indeed, for any t ∈ I, we obtain q̃t by
universal property of quotients as in

X X

X/A X/A

p

q̃t

h̃t

p .

It follows that the homotopy q̃ : X/A × I → X/A is such that q̃0 = idX/A and q̃1 = p ◦ g, as
needed.

Let us end this section by discussing how we will tell the same story in the based setting.

Remark 3.1.18 (Based cofibration). A based map i : A → X is a based cofibration if it satisfies
the based version of homotopy extension property. The following are few remarks which are easily
verifiable of the situation in the based case.

9as defined in Definition 5.1.1.
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1. If a based map i : A→ X is an unbased cofibration, then it is a based cofibration.
2. If A ⊆ X is a closed subspace such that ∗ → A and ∗ → X are cofibrations and i : A→ X is

a based cofibration, then i : A→ X is an unbased cofibration.
3. A based map i : A→ X is a based cofibration if and only if M∗i is a retract of X ∧ I+.

We see the following example of above remark.

Lemma 3.1.19. Let X be a based space. Then the inclusion X ↪→ CX to the base of the cone
1. is a deformation retract,
2. is a cofibration.

Proof. The inclusion map is x 7→ [x, 0]. The fact that X is deformation retract is immediate by the
based homotopy h : CX × I → CX given by ([x, t], s) 7→ [x, t(1− s)]. We will use Remark 3.1.18,
3 for showing i : X ↪→ CX is a cofibration. Indeed, consider the map CX ∧ I+ → M∗i given by
[[x, t], s] 7→ [x, s+ t]. The inclusion M∗i→ Y ∧ I+ is the map which on CX is [x, t] 7→ [[x, t], 0] and
on X ∧ I+ is [x, t] 7→ [[x, 0], t]. One checks that this makes M∗i a retract of CX ∧ I+.

3.2 Based cofiber sequences

The main point of cofiber sequences is to obtain an exact sequence of groups, which will prove to be
helpful later. All cofibrations in this section are based cofibrations. We first observe that [ΣX,Y ]
is a group.

Proposition 3.2.1. Let X,Y be based spaces. Then
1. [ΣX,Y ] is a group under concatenation,
2. [Σ2X,Y ] is an abelian group under the same operation.

Proof. The concatenation operation here is as follows : for f, g ∈ Map∗(ΣX,Y ), define f + g as

(f + g)([(x, t)]) :=
®
f([(x, 2t)]) if 0 ≤ t ≤ 1/2
g([x, 2t− 1]) if 1/2 ≤ t ≤ 1.

This tells us that [ΣX,Y ] ∼= [X,ΩY ] is a group. The second statement uses Theorem 1.0.8 to
observe that a map Σ2X → Y is a map S1 ∧S1 = S2 → Map∗(X,Y ). Hence we reduce to showing
that [S2, X] is an abelian group, this is well-known.

Definition 3.2.2. (Homotopy cofiber/Mapping cone) Let f : X → Y be a based map and let
j : X → M∗f , x 7→ (x, 1) be it’s cofibrant replacement. The homotopy cofiber Cf of f is defined
to be the quotient of the based mapping cylinder M∗f of f by the image of the map j taking
x 7→ (x, 1). That is,

Cf :=M∗f/j(X).

Alternatively, it is the pushout Cf = Y ∪f CX.

There is a relationship between unbased cofiber and based cofiber.

Lemma 3.2.3. Let X be an unbased space. Then the unreduced cone of X is isomorphic to the
reduced cone of pointification of X. That is,

CX ∼= CX+.



3.2 Based cofiber sequences 35

Proof. We have

CX+ = X+ ∧ I = X+ × I
{pt.} × I ⨿X × {1} = X × I ⨿ {pt.} × I

{pt.} × I ⨿X × {1}
∼=

X × I
X × {1} = CX,

as needed.

This is an important observation, as it says that unreduced homotopy cofiber is isomorphic to
the homotopy cofiber of the poinitification.

Proposition 3.2.4. Let X,Y be unbased spaces and f : X → Y be an unbased map. Then the
unreduced homotopy cofiber of f is isomorphic to the homotopy cofiber of f+ : X+ → Y+. That is,

Cf ∼= Cf+.

Proof. By Lemma 3.2.3, we can write

Cf+ = Y+ ∪f+ CX+ ∼= Y+ ∪f+ CX

where X+ → CX is the map which takes pt. 7→ [x, 1] as the basepoint of CX is [x, 1]. Consequently,
Y+ ∪f+ CX is isomorphic to Y ∪f CX.

Remark 3.2.5. It follows from Proposition 3.2.4 that there is really no difference between re-
duced and unreduced cofiber as unreduced cofiber is really a special case of reduced cofiber by
pointification.

The following result shows that the homotopy cofiber of a based cofibration is is of the same
homotopy type as X/A. This is an important property of cofibrations.

Proposition 3.2.6. Let i : A→ X be a based cofibration between based spaces. Then,
1. Ci/CA ∼= X/A,
2. π : Ci→ Ci/CA is a based homotopy equivalence.

Pictorially, one sees that the mapping cone Cf of f : X → Y is obtained by gluing Y to the
cone of X at it’s base. We are now ready to construct cofiber sequence of a based map f : X → Y .

Construction 3.2.7 (Cofiber sequence). Let f : X → Y be a based map and denote Cf to be the
mapping cone of f . We have a natural map i : Y → Cf which is the inclusion of Y into the mapping
cone. This is a cofibration because it is the pushout (Lemma 3.1.2) of the inclusion X → CX of X
into the 0-th level of the cone CX and this inclusion is a cofibration (Lemma 3.1.19). The sequence
X → Y → Cf is called the short cofiber sequence of f .

Consider also the map −Σf : ΣX → ΣY which maps [(x, t)] 7→ [(f(x), 1− t)]. We have another
natural map from the mapping cone to its quotient by Y given by π : Cf → Cf/Y ∼= ΣX. We
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then get the following sequence of based maps, called the long cofiber sequence of map f :

X Y Cf

ΣX ΣY ΣCf

Σ2X Σ2Y Σ2Cf

f i

π

−Σf

−Σi

−Σπ

Σ2f

Σ2i

The main theorem that will be used continuously elsewhere is that cofiber sequence of a map
gives a long exact sequence in homotopy sets. First, recall that for any based space Z, we have the
homotopy classes of maps [X,Z]. Moreover, [−, Z] is contravariantly functorial as for any based
map f : X → Y , we get

[f, Z] : [Y, Z] −→ [X,Z]
g 7−→ g ◦ f.

We are now ready to state the main theorem.

Theorem 3.2.8 (Main theorem of cofiber sequences). Let f : X → Y be a based map and Z be
a based space in Topcg

∗ . Then the functor [−, Z] applied on the long cofiber sequence of f yields a
long exact sequence of based sets:

[Σ2Cf,Z] [Σ2Y,Z] [Σ2X,Z]

[ΣCf,Z] [ΣY,Z] [ΣX,Z]

[Cf,Z] [Y,Z] [X,Z]

π∗

i∗ f∗

The proof of this theorem relies on the following fundamental observation.

Proposition 3.2.9. Let f : X → Y be a based map and Z be a based space. Consider the short
cofiber sequence

X
f−→ Y

i−→ Cf.

Then the sequence of based sets

[Cf,Z] −→ [Y,Z] −→ [X,Z]

is exact.
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Proof. Let g ∈ [Y, Z] such that gf ≃ c∗ in [X,Z]. We wish to show that there is a map k ∈ [Cf,Z]
such that ki ≃ g in [Y, Z]. We first have a based homotopy h : X × I → Z between gf and c∗. As
h is constant on X ∨ I, therefore we obtain a map h̄ : CX → Z. Note that the following pushout
diagram commutes so to give a unique map k : Cf → Z

Z

Cf CX

Y X
f

i0i
⌜

g

h̄
k

Hence we have that ki = g, hence we don’t even need to construct a homotopy between ki and
g.

We will now show that each term in the cofiber sequence is obtained by taking cofiber of the
previous map. For that, we would need the following small result.

Lemma 3.2.10. Let f : X → Y be a based map. Then,
1. We have a natural based homeomorphism ΣCf ∼= CΣf .
2. The suspension functor takes the short cofiber sequence

X
f−→ Y

i−→ Cf

to a short cofiber sequence

ΣX Σf−→ ΣY Σi−→ ΣCf.

Proof. The first one follows from Σ being a left adjoint. The second statement follows from first
statement as we have the following isomorphism

ΣX ΣY ΣCf

CΣf

Σf Σi

∼= .

This completes the proof.

Proposition 3.2.11. Let f : X → Y be a based map. Then each consecutive pair of maps in the
long cofiber sequence of f is a short cofiber sequence.

Proof. Note that the following square commutes

ΣCf Σ2X Σ2Y

CΣf Σ2X Σ2Y

∼= τ

Σπ

π′

−Σ2f

Σ2f
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where τ([x, t, s]) = [x, s, t] is a homeomorphism and π′ : CΣf → CΣf/ΣY is the quotient map. We
claim that τ is homotopic to −id, where (−id)([x, t, s]) = [x, t, 1− s]. With this claim and Lemma
3.2.10, we would reduce to showing that Y → Cf → ΣX and Cf → ΣX → ΣY in the cofiber
sequence of f are short cofiber sequences.

To see a based homotopy between τ and −id as based maps Σ2X → Σ2X, we see that the
following map will work

h : Σ2X × I −→ Σ2X

([x, t, s], r) 7−→ [x, (1− r)s+ rt, (1− r)t+ r(1− s)].

We now wish to show that the two pairs are short cofiber sequenes. The fact that Y → Cf → ΣX
is a short cofiber sequence is immediate from Proposition 3.2.6 as it will yield the following diagram

Ci

Y Cf ΣX
i π

π′
≃ .

The fact that Cf → ΣX → ΣY is also a short cofiber sequence follows from the following diagram
which can be seen to be commutative, albeit requires a lot of work:

Cf ΣX ΣY

Cf Ci Ci/Cf

π −Σf

≃ ∼=

π′ π′′

.

This completes the proof.

4 Fibrations and fiber sequences

We now study fibrations, which is a generalization of covering spaces. Indeed, recall that covering
spaces satisfies homotopy lifting property. That becomes the definition of a fibration. Indeed, one
can have a fruitful time reading about fibrations by keeping the basic results about covering spaces
in mind. We’ll see that familiar objects from geometry are fibrations (fiber bundles, for example).

4.1 Definition and first properties

Definition 4.1.1 (Fibrations). A surjective map p : E → B is a fibration if it satisfies homotopy
lifting property. That if, for any map f : Y → E and any homotopy h : Y × I → B such that
p ◦ f = h ◦ i0, there exists h̃ : Y × I → E such that the following commutes

Y E

Y × I B

i0

h

p

f

h̃ .
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Just as pushouts of cofibrations along any map is a cofibration, we have pullback of a fibration
along any map is a fibration.
Lemma 4.1.2. Let p : E → B be a fibration and g : A → B be any map. Then the pullback of p
along g given by p′ : E ×B A→ A is a fibration.

Proof. Consider the following diagram

Y E ×B A E

Y × I A B

i0

h

p′

f π

p

g

.

As p is a fibration, we yield a homotopy h̃1 : Y × I → E as in

Y E

Y × I B

i0

gh

p

πf

h̃1 .

Consequently, we get a pullback diagram

Y × I E ×B A E

A B

p

g

p′

π

⌟

h

h̃1

!h̃

which yields h̃ : Y × I → E ×B A. We claim that this is the required homotopy extension. We
immediately have p′h̃ = h from the above diagram. We need only show that h̃i0 = f . To this end,
consider the following pullback square

Y E ×B A E

A B

p

g

p′

π

⌟

hi0

πf

!κ

which yields a unique κ : Y → E×BA. It follows that both f and h̃i0 satisfies the same commutation
properties as κ. It follows from uniqueness of κ w.r.t. these properties that h̃i0 = f , as required.

We now introduce a sort of intermediary space for further studying fibrations.
Definition 4.1.3 (Mapping path space). Let f : X → Y be a map. The mapping path space
Nf is defined to be the following pullback

Nf := X ×Y Y
I X

Y I Y

f

p0

⌟
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where p0 : Y I → Y takes γ 7→ γ(0).

Remark 4.1.4. Consequently, the mapping path space Nf = {(x, γ) ∈ X × Y I | f(x) = γ(0)}.
Hence a point in Nf is the data of a point x ∈ X upstairs and a path γ ∈ Y I starting downstairs
at the image of x under f .

With regards to mapping path spaces, one important type of function Nf is that of a path
lifters.

Definition 4.1.5 (Path lifters). Let f : X → Y be a map. Let k : XI → Nf be the unique map
obtained by the following pullback diagram

XI Nf X

Y I Y

f

p0

⌟

p0

fI

k

.

A path lifter s : Nf → XI is a global section of k, i.e. k ◦ s = idNf .

Remark 4.1.6. The main content of a path lifter s : Nf → XI is the fact that its a global section
of k. That is, if we let γ̃ = s(x, γ) ∈ XI , then k(γ̃) = (p0(γ̃), f ◦ γ̃) = (x, γ). It follows that
s(x, γ) = γ̃ is a lift of the path γ ∈ Y I starting at f(x) to a path γ̃ ∈ XI starting at x. We may
keep the following picture in mind (Figure 2).

Figure 2: Path lifter s taking (x, γ) downstairs to a lift s(x, γ) in X upstairs.

Remark 4.1.7. (Covering maps have a unique path lifter). Recall that a covering space p : E → B
has unique homotopy lifting property, hence in particular it is a cofibration. Furthermore recall
that a covering space also has unique path lifting property, hence in particular it has a unique
path-lifter.

We have the following reduction of fibration criterion to mapping path space.

Proposition 4.1.8. Let p : E → B be a surjective map. Then the following are equivalent:
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1. p is a fibration.
2. p satisfies homotopy lifting property for the natural projection map Np→ E.

Proof. 1. ⇒ 2. is definition. For 2. ⇒ 1. we proceed as follows. Consider the following diagram

Y E Np

Y × I B BI

i0

h

p

f π

η

p0

⌟

.

We may write h : Y × I → B as hT : Y → BI . Observe that p0hT = pf , leading to the following
unique map κ : Y → Np as below

Y Np E

BI B

p

π

η

p0

⌟

hT

f

κ

.

Similar to hT , we also have ηT : Np× I → B. It is immediate from ηκ = hT that ηT (κ× id) = h :
Y × I → B. Consequently, we have the following commutative diagram

Y Np E

Y × I Np× I B

i0 i0

κ×id

κ

p

ηT

π

η̃T

h

f

and composing η̃T with κ× id yields the required lift of h.

Proposition 4.1.9. Let p : E → B be a map. Then the following are equivalent:
1. p : E → B is a fibration.
2. There exists a path lifter s : Np→ EI .

Proof. The forward direction is immediate from dualizing the homotopy lifting property into map-
pings into path space. For the converse, use Proposition 4.1.8.

We see that map that the canonical maps p0, p1 : Y I → Y is a fibration.

Lemma 4.1.10. Let Y be a space. The map

p0 : Y I −→ Y

γ 7−→ γ(0)

is a fibration.
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Proof. By Proposition 4.1.9, it suffices to show that there is a path lifter s : Np0 → Y I×I , i.e. a
global section of k : Y I×I → Np0 mapping h(s, t) 7→ (h(s, 0), h(0, t)). Indeed, we define s((γ1, γ2))
for γi ∈ Y I such that γ1(0) = γ2(0) by the following homotopy square:

γ1

γ2

t

s

This gives us a map h ∈ Y I×I such that h(0, t) = γ1 and h(s, 0) = γ2. This completes the proof.

Let f : X → Y be an arbitrary map of spaces. We can replace f by a homotopy equivalence
followed by a fibration.

Construction 4.1.11 (Replacement by a homotopy equivalence and a fibration). Let f : X → Y
be a map. Consider the following commutative triangle

X Y

Nf

f

ν ρ

where

ν : X −→ Nf

x 7−→ (x, cf(x))

and

ρ : Nf −→ Y

(x, γ) 7−→ γ(1).

We now make the following claims:
1. Map ν is a homotopy equivalence. Indeed, consider the natural projection map π : Nf → X

given by (x, γ) 7→ x. We claim that π is a homotopy inverse of ν. Indeed, πν = idX is
immediate. We claim νπ ≃ idNf . Indeed, we may consider the homotopy

h : Nf × I −→ Nf

((x, γ), t) 7−→ (x, γt)

where γt(s) = γ((1− t)s).
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2. Map ρ is a fibration. Let g : A→ Nf be a map such that the following square commutes

A Nf

A× I Y

i0

h

ρ

g

.

We wish to construct h̃ : A × I → Nf which would lift h. Indeed, let g(a) = (g1(a), g2(a))
where g1 : A→ X and g2 : A→ Y I are the component functions. In order to construct h̃, we
need only construct α : A× I → Y I and β : A× I → X such that the following holds (these
are obtained by unravelling ρh̃ = h, h̃i0 = g and the respective pullback square):
(a) fβ = p0α,
(b) β(a, 0) = g1(a),
(c) α(a, 0) = g2(a),
(d) α(a, t)(1) = h(a, t).
We may immediately set β(a, t) = g1(a). For α : A × I → Y I , we may dually write α as
α : A × I × I → Y (recall we are in compactly generated spaces, where the dual notion of
homotopy is equivalent to the usual one). We construct this α as follows. Fix a ∈ A. We
then define the following homotopy

s = 0

s = 1

t = 0 t = 1

h(a, t)

g2(a)(s)
s = 1

1+t

t

s = 1
2

which more explicitly is given by

α(a, t, s) =
®
g2(a)(s · (1 + t)) if 0 ≤ s ≤ 1

1+t

h(a, s · (1 + t)− 1) if 1
1+t ≤ s ≤ 1.

One can then observe that this α satisfies conditions (a), (c) and (d) mentioned above.

4.2 Bundles and change of fibers

We now see that, under some mild hypothesis, fibration is a local property on base. As a conse-
quence, we will show that under some mild hypothesis any bundle (Definition ??) is a fibration.

An open cover {Uα} of B will be called numerable if for each α, there is a map fα : B → I such
that f−1α ((0, 1]) = Uα and {Uα} is a locally finite cover.
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Theorem 4.2.1. Let p : E → B be a map and {Uα} be a numerable open cover of B. Then the
following are equivalent:

1. p : E → B is a fibration.
2. p : p−1(Uα)→ Uα is a fibration for each α.

For (1. ⇒ 2.), the statement is immediate from Lemma 4.1.2. Whereas for (2. ⇒ 1.), the
main idea is to patch up the lifts of a homotopy that we obtain by virtue of each p|p−1(Uα) being a
fibration.

We claimed in the beginning that fibrations are upto homotopy generalizations of covering
spaces/certain bundles. We know that such objects have homeomorphic fibres (say, when base
is path-connected). This fact can be generalized to fibrations which would yield that fibres of a
fibration may not be homeomorphic, but will be of same homotopy type!

Construction 4.2.2. (Homotopy invariance of path-lifting for fibrations). We now show that a
path γ in the base gives a map of fibers which is invariant under homotopy class of γ.

In particular, let p : E → B be a fibration and γ : I → B be a path from b to b′ in B. Let Eb

and Eb′ be fibers at b and b′ respectively under p. We claim that we get a map γ̃ : Eb → Eb′ whose
homotopy class is independent of the path γ upto homotopy.

We first construct γ̃ : Eb → Eb′ . Indeed, we have the following diagram

Eb E

Eb × I I B

p

γπ2

i0

i

Hγ

by virtue of fibration p. Observe that Hγ,1(e) = Hγ(e, 1) is such that pHγ(e, 1) = γ(1) = b′ for all
e ∈ Eb. Consequently, γ̃ = Hγ,1 : Eb → Eb′ is the required map. This shows the construction of γ̃.
We now show that its homotopy class is invariant of homotopy class of γ.

Let γ, η ∈ BI be two paths joining b and b′ together with a homotopy h : I × I → B rel {0, 1}
such that h0 = γ and h1 = η, that is h is a homotopy between γ and η through paths joining b
and b′. We wish to show that γ̃ and η̃ are homotopy equivalent as well. To this end, we need to
construct a homotopy h̃ : Eb × I → Eb′ satisfying h̃0 = γ̃ = Hγ,1 and h̃1 = η̃ = Hη,1.

Fix an e ∈ Eb. Our goal is to fill the right side of this square continuously with e ∈ Eb

Hγ

Hη

i
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where i : Eb ↪→ E the inclusion. To this end, we first observe that there is a homeomorphism of
pairs

(I × I, S) α−→ (I × I, I × 0)

where S is the union of three sides of the square as shown above; S = I × {0, 1} ∪ {0} × I. Using
this homeomorphism, we obtain the following square

Eb × S E

Eb × I × I I × I B

k

κ h

f

pl

where k = ι(id × α) where ι : Eb × (I × 0) ↪→ Eb × (I × I) and κ(e, t, s) = α−1(t, s). Moreover,
f : Eb × S → E is defined as in the incomplete square above; on I × {0}, f is given by Hγ , on
I × {1}, f is given by Hη and on 0× I, f is given by i. .Observe that κk(e, t, s) = (t, s). The fact
that this is a commutative square is immediate. It follows from p being a fibration that there is a
lift l : Eb× I× I → E which fits in the above commutative square. Consequently, we have pl = hπ2
and lk = f . By appropriately composing l with α and replacing l with this composition, we get
that l : Eb× I × I → Eb′ which is given by following schematic homotopy cube, which we leave the
reader to draw. Consequently, we get the following map h̃ : Eb × I → Eb′ where

h̃(−, s) := l(−, 1, s) : Eb × I → Eb′

where l(e, 1, s) ∈ Eb′ because h(1, s) ∈ b′ (h is a homotopy through paths joining b and b′).
Moreover, h̃(e, 0) = l(e, 1, 0) = Hγ,1(e) = γ̃(e) and h̃(e, 1) = Hη,1(e) = η̃(e). Thus, h̃ is the
required homotopy between γ̃ and η̃.

4.3 Based fiber sequences

Just as for cofibrations, we had a long cofiber sequence, similarly we have a long fiber sequence for
a map of based spaces. As is customary, for based case, we change the definition of mapping path
space of f : X → Y , to Nf = {(x, γ) | f(x) = γ(1)}. We thus define homotopy fiber of a map and
construct the short and long fiber sequences of a map.

Definition 4.3.1 (Homotopy fiber/Mapping path space). Let f : X → Y be a based map of
based spaces. The homotopy fiber of f , denoted Ff , is the following pullback space:

Ff X

PY Y

π

⌟
f

p1

.

Remark 4.3.2 (Homotopy fiber is the fiber of mapping path space). Let f : X → Y be a based
map. Denote Nf = X ×Y Y

I = {(x, γ) ∈ X × Y I | f(x) = γ(1)} to be the mapping path space of
Y . Then, we have a map

q : Nf −→ Y

(x, γ) 7−→ γ(0).
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As the base point of Nf is (∗, c∗) which is mapped to ∗ under q, thus, q is based as well. Moreover,
the fiber of q is

q−1(∗) = {(x, γ) | f(x) = γ(1) & γ(0) = ∗}.

Hence, q−1(∗) = Ff , as required.

We first see why this is called homotopy fiber.

Lemma 4.3.3. Let f : X → Y be a based map of based spaces.
1. The map π : Ff → X is a fibration.
2. If ρ : Nf → Y is the fibration replacement of f (Construction 4.1.11) where Nf is the

mapping path space of f , then

ρ−1(∗) = Ff.

Proof. For item 1, consider the fibration p1 : PY → Y (Lemma 4.1.10). By Lemma 4.1.2, we see
that π : Ff → X as above is a fibration. For item 2, recall that ρ(x, γ) = γ(0). Thus, we have
ρ−1(∗) = {(x, γ) ∈ Nf | γ(0) = ∗, γ(1) = f(x)}. But this is exactly the fiber Ff as PY is the
based path space.

We expect the fiber of a fibration to be homotopy equivalent to the homotopy fiber. Indeed it
is true.

Proposition 4.3.4. Let p : E → B be a based fibration. Then the fiber F := p−1(∗) is based
homotopy equivalent to homotopy fiber Fp.

Proof. Let F = p−1(∗). Consider the map

φ : F −→ Fp

e 7−→ (e, c∗).

Indeed as p1(c∗) = ∗ = p(e), so (e, c∗) ∈ Fp. To construct a homotopy inverse, we will begin from
the mapping path space of p. Recall from Remark 4.3.2 that Fp is the fiber of mapping path space
q : Np→ B, (e, γ) 7→ γ(0). Consider the following homotopy

H : Np× I −→ B

((e, γ), t) 7−→ γ(1− t).

Observe that the following map commutes where the top horizontal map is (e, γ) 7→ e, so that we
get H̃ as shown:

Np E

Np× I B

i0 pH̃

H

.

Define the following homotopy using H̃:

G : Fp× I −→ Fp

((e, γ), t) 7−→
Ä
H̃((e, γ), t), γ|[0,1−t]

ä
.
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Indeed, as p(H̃((e, γ), t) = H((e, γ), t) = γ(1 − t) = p1(γ|[0,1−t]), thus G is well-defined. Let
g : Fp× I → E given by ((e, γ), t) 7→ H̃((e, γ), t), that is the first coordinate of homotopy G. Then
consider the map

ψ : Fp −→ F

(e, γ) 7−→ g((e, γ), 1).

Indeed, as p(H̃((e, γ), 1)) = H((e, γ), 1) = γ(1−1) = γ(0) = ∗ as (e, γ) ∈ Fp, thus ψ is well-defined.
We claim that ψ is the homotopy inverse of φ. Indeed, we have

φ ◦ ψ : Fp −→ Fp

(e, γ) 7−→ (g((e, γ), 1), c∗).
Observe that G1(e, γ) = (g((e, γ), 1), c∗) and G0 = idFp, so that G forms a homotopy between φ◦ψ
and id. Conversely, we have

ψ ◦ φ : F −→ F

e 7−→ g((e, c∗), 1) = H̃((e, c∗), 1).
Consider the restriction of G onto the subspace T of elements ((e, c∗), t) ∈ Fp × I. Note that G
maps onto T as well. Thus we have G : T × I → T and G1(e, c∗) = H̃((e, c∗), 1) and G0 = idT .
Moreover, observe that F → T , e 7→ (e, c∗) is a homeomorphism. Hence the above restriction of G
is a homotopy from ψ ◦ φ to idF . This completes the proof.

Construction 4.3.5 (Fiber sequence). Let f : X → Y be a based map of based spaces. Consider
the following three maps

π : Ff −→ X

(x, γ) 7−→ x

ι : ΩY −→ Ff

γ 7−→ (∗, γ).
The sequence

Ff
π−→ X

f−→ Y

is called the short fiber sequence.
We can continue the above short fiber sequence into a long fiber sequence as follows. Consider

the functor −Ω : Topcg
∗ → Topcg

∗ taking X to ΩX and f : X → Y to −Ωf : −ΩX → −ΩY given
by γ(t) 7→ f ◦ γ(1− t). Thus, we get the following sequence of maps

Ω2Ff Ω2X Ω2Y

ΩFf ΩX ΩY

Ff X Y

Ω2π

Ω2f

−Ωι

−Ωπ

−Ωf

ι

π f
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which we call the long fiber sequence of f : X → Y .

The main theorem is the following, which associates an exact sequence of based sets to the long
fiber sequence.

Theorem 4.3.6 (Main theorem of fiber sequences). Let f : X → Y be a based continuous map
of based spaces and Z be a based space. Then, the long cofiber sequence of f induces a long exact
sequence of based homotopy sets:

[Z,Ω2Ff ] [Z,Ω2X] [Z,Ω2Y ]

[Z,ΩFf ] [Z,ΩX] [Z,ΩY ]

[Z,Ff ] [Z,X] [Z, Y ]π∗ f∗

Taking Z = S0 and recalling the suspension-loop space adjunction (Proposition 1.0.10), we
immediately get the following long exact sequence of homotopy groups.

Corollary 4.3.7 (Homotopy L.E.S.-1). Let f : X → Y be a based map of based space. Then
the fiber sequence of f induces the following long exact sequence of homotopy groups (basepoint
suppressed):

π2(Ff) π2(X) π2(Y )

π1(Ff) π1(X) π1(Y )

π0(Ff) π0(X) π0(Y )

∂

π∗

f∗

∂

π∗

f∗

∂

π∗

f∗

.

4.4 Serre spectral sequence

For any fibration (more generally, for Serre fibration) p : E → B, there is a spectral sequence
converging to homology of the total space E.

Theorem 4.4.1. Let F i→ E
π→ B be a Serre fibration with fiber F . If B is simply connected, then

there is a first quadrant homology spectral seqeunce converging to homology of E:

E2
pq = Hp(B;Hq(F ))⇒ Hp+q(E).

See cite[HopSSeq] for a proof. We will see some applications of the above spectral sequence
below.
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Theorem 4.4.2 (Loop fibration). Let ΩB → PB
π→ B be the loop space fibration where π(γ) = γ(1)

(see Lemma 4.1.10). Then,
1. H1(ΩB;Z) ∼= H2(B;Z),
2. there is an exact sequence

H4(B)→ H2(B)⊗H2(B)→ H2(ΩB)→ H3(B)→ 0.

Theorem 4.4.3 (Fibrations over Sn/Wang sequence). Let F i→ E
π→ Sn be a fibration for n ≥ 2.

Then there is a long exact sequence

Hq−n+1(F ) Hq(F ) Hq(E)

Hq−n(F ) Hq−1(F ) Hq−1(E)

dn−1
i∗

dn
i∗

.

Theorem 4.4.4 (Sphere fibrations/Gysin sequence). Let Sn i→ E
π→ B be a fibration for n ≥ 1

and B be simply connected. Then there is a long exact sequence

Hp−n(B) Hp(E) Hp(B)

Hp−n−1(B) Hp−1(E) Hp−1(B)

π∗

dn+1

π∗

.

We discuss some more general properties now.

4.4.1 Useful properties of Serre spectral sequence
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4.4.2 Acyclic fiber theorem

Theorem 4.4.5 (Acyclic fiber). Let f : X → Y be a based map between connected CW-complexes.
Then the following are equivalent:

1. For all k ≥ 0, we have

f∗ : Hk(X;M)
∼=→ Hk(Y ;M)

for every π1(Y )-module M10.
2. The homotopy fiber Ff of f is acyclic11.

Proof.

10That is, M is a left Z[π1(Y )]-module.
11that is, Ff has homology of a point.
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5 Homology theories

We will begin by introducing (co)homology from an axiomatic point of view and will derive few
properties off of it. This will come in handy for discussing the main properties of differential
manifolds in (co)homological language, especially characteristic classes and orientations and what
not. The main thing that we wish to do is the Hurewicz theorem, which will allow us to connect
homotopy groups and homology groups on the one hand, and will allow us to prove the uniqueness
of homology theories for CW complexes on the other hand.

All spaces X are assumed to be compactly generated (Definition 1.0.1).
We will use the theory of cofibrations and fibrations as developed above quite freely.

5.1 Homology theories

We begin with the category of pairs on which homology theories are defined.

Definition 5.1.1 (Top2). The Top2 denotes the category of pairs (X,A) of spaces where A ↪→ X
and maps (X,A)→ (Y,B) which consists of the pair f : X → Y and g : A→ B such that g = f |A.
A map of pairs (f, d) : (X,A) → (Y,B) is said to be a homotopy equivalence if there is a map of
pairs (g, e) : (Y,B)→ (X,A) and there are homotopies H : g ◦ f ≃ idX and K : f ◦ g ≃ idY which
extends the homotopies h : e ◦ d ≃ idA and k : d ◦ e ≃ idB respectively.

Definition 5.1.2. (Homology theory) A homology theory for an abelian group π is a sequence
of functors

Hq(−,−;π) : Top2 −→ AbGrp

for q ∈ Z equipped with natural transformations

∂ : Hq(−,−;π) −→ Hq−1(−,−;π)

whose component at (X,A) is given by ∂ : Hq(X,A;π) → Hq−1(A, ∅;π). Denote Hq(X;π) :=
Hq(X, ∅;π). This data must satisfy the following axioms:

1. (Homology of a point) : If X = {pt.}, then homology must be concentrated at degree 0:

Hq({pt.};π) =
®
π if q = 0,
0 if q ̸= 0.

2. (Homology long exact sequence) : The trivial inclusions A ↪→ X and (X, ∅) ↪→ (X,A) induces
the following long exact sequence:

. . .

Hq(A;π) Hq(X;π) Hq(X,A;π)

Hq−1(A;π) Hq−1(X;π) Hq−1(X,A;π)

. . .

∂

∂

∂

.
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3. (Excision invariance) : For an excisive triple (X,A,B), that is A,B ↪→ X and X = A◦ ∪B◦,
the inclusion (A,A ∩B) ↪→ (X,B) induces an isomorphism at all degree q ∈ Z:

Hq(A,A ∩B;π) Hq(X,B;π)
∼= .

4. (Coproduct preserving) : If (Xi, Ai) is an arbitrary collection of objects in Top2, then the
homology in any degree of their disjoint union is the sum of the corresponding homology
groups:

⊕
i

Hq(Xi, Ai;π)
∼=−→ Hq

Ç∐
i

(Xi, Ai);π
å

where the maps are induced by the inclusions (Xi0 , Ai0) ↪→
∐

i(Xi, Ai).
5. (π∗-insensitivity) : If f : (X,A) −→ (Y,B) is a weak equivalence, then in all degrees the

corresponding homology groups are isomorphic:

fp : Hq(X,A;π)
∼=−→ Hq(Y,B;π).

Remark 5.1.3. In nature, there are some homology theories which satisfy all of the above axioms
except the dimension axiom, that is, the group that they assign to a point is not concentrated in
degree 0 (axiom 1. above). A famous example of this is K-theory via the Bott-periodicity theorem.
One calls such a homology theory to be a generalized homology theory. All results that we will
derive here will hold true for a generalized homology theory Eq.

5.1.1 General properties

We now discuss some general properties of homology theories that one can deduce from the axioms.

Proposition 5.1.4. Let π be a group and Eq be a generalized homology theory. Let X be a space.
1. If A ↪→ X

r→ A is a retract of X, then the following natural maps form a short-exact sequence
of E-homology groups:

0→ Eq(A)→ Eq(X)→ Eq(X,A)→ 0.

2. Eq(X,X) ∼= 0.

Proof. 1. The fact that Eq(A) → Eq(X) is injective follows from a set theoretic observation; any
factorization of identity is a monic followed by an epic. By homology long-exact sequence, we then
have that all boundary maps ∂ are trivial. It follows that maps Eq(X) → Eq(X,A) is surjective.
The exactness at middle is given by the homology long-exact sequence.
2. Since X is always a retract of itself, therefore from item 1, it follows that Eq(X,X) ∼=
Eq(X)/Eq(X) ∼= 0.

The following is a long exact sequence in homology that one obtains from a triplet (X,A,B)
where X ⊇ A ⊇ B.
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Proposition 5.1.5 (Triplet long-exact sequence). Let (X,A,B) be a triplet and denote i : (A,B) ↪→
(X,B) and j : (X,B) ↪→ (X,A) to be inclusions. Also denote ∂′ : Eq(X,A) → Eq−1(A,B) to be
the composite Eq(X,A) ∂→ Eq−1(A)→ Eq−1(A,B). Then there is a long exact sequence

Eq(A,B) Eq(X,B) Eq(X,A)

Eq−1(A,B) Eq−1(X,B) Eq−1(X,A)

i∗ j∗

∂′

i∗ j∗

.

Proof. This follows from a fairly long diagram chase involving the homology long-exact sequence
corresponding to each of the pairs (A,B), (X,B) and (X,A) which one has to expand for degrees
q and q − 1. From that big diagram, the chase is straightforwad after some reductions and hence
is omitted.

There is an equivalent form of excision which is also quite useful.

Lemma 5.1.6 (Excision-II). Let (X,A) ∈ Top2 be a pair and Eq be a homology theory. If B ⊆ A
is a subspace such that B̄ ⊆ A◦, then B can be excised, that is, the inclusion

(X −B,A−B) ↪→ (X,A)

induces an isomorphism in homology:

Eq(X −B,A−B;π) ∼= Eq(X,A;π).

Proof. Consider the triple (X,A,X −B). This is an excisive triple since A◦ ∪ (X −B)◦ = X since
(X −B)◦ = X − B̄. Thus by excision axiom, the inclusion

j : (X −B,A ∩X −B) ↪→ (X,A)

induces isomorphism in Eq. As A ∩ (X −B) = A−B, we get the desired result.

5.2 Reduced homology

For each homology theory Eq(−,−), we can construct a based version of the theory denoted
Ẽq(−, pt.). For a based space (X,pt.), define the following

Ẽq(X) := Eq(X,pt.).

This tends to remove the effect of the defining group of the homology theory, so to normalize the
theory in the sense of Lemma 5.2.1, 1. In particular, if Eq satisfies dimension axiom, it follows that
E0(pt.) = π. Thus this lemma will tell that Ẽ0(X) = Ẽ0(X)⊕ π.

Let us spell out some basic relations of this reduced homology Ẽq to that of original homology
Eq.
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Proposition 5.2.1. Let π be a group and Eq be a generalized homology theory. Let (X,pt.) be a
based space and (A, pt.) ↪→ (X,pt.) be a based subspace.

1. Eq(X) = Ẽq(X) ⊕ Eq(pt.) and the map ι∗ : Eq(A) → Eq(X) restricted on Eq(pt.) is the
identity map ι∗ : Eq(pt.)→ Eq(pt.).

2. There is a long exact sequence

· · ·

Ẽq(A) Ẽq(X) Eq(X,A)

Ẽq−1(A) Ẽq−1(X) Eq−1(X,A)

· · ·

∂

∂

∂

.

3. If Eq is an ordinary homology theory, then for any q ≥ 2, we have

Ẽq(X) ∼= Eq(X).

Proof. 1. The following is split exact on the left as the map pt. ↪→ X is a retract (Proposition
5.1.4):

0→ Eq(pt.)→ Eq(X)→ Eq(X,pt.)→ 0.

Note that the left map here is split by the retraction r∗ : Eq(X) → Eq(pt.). The latter statement
follows from the fact that Eq(−, ∅) is a functor and thus takes idpt. to id : Eq(pt.)→ Eq(pt.).
2. Consider i : A ↪→ X. Then Eq(A) → Eq(X) takes Eq(pt.) to Eq(pt.) isomorphically as in item
1. Hence we may quotient it out under the exactness to get the desired sequence.
3. This is immediate from long exact sequence of the pair (X,pt.).

In-fact, one can obtain the unreduced homology back by reduced homology via a simple use of
coproduct preservation axiom.

Lemma 5.2.2. Let X be a space and denote X+ to be the based space obtained by disjoint union
of X with a point pt.. For any generalized homology theory Eq, we have

Eq(X) ∼= Ẽq(X+).

Proof. As X+ = X ⨿ {pt.}, therefore by additivity of homology theories, we obtain

Ẽq(X+) = Eq(X ⨿ {pt.},pt.) = Eq((X,pt.)⨿ (pt., pt.)) ∼= Eq(X,pt.)⊕ Eq(pt.,pt.)
∼= Ẽq(X)⊕ Eq(pt.) ∼= Eq(X)

where the second-to-last isomorphism follows from Proposition 5.2.1, 1 and the last from 4.
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5.3 Mayer-Vietoris sequence in homology

We now cover an important calculational tool for generaized homology theories, which relates the
homology groups of X with those of A, B and A ∩B where (X,A,B) forms an excisive triad.

Theorem 5.3.1 (Mayer-Vietoris for homology). Let (X,A,B) be an excisive triple and denote
i : A ∩B ↪→ A, j : A ∩B ↪→ B, k : A ↪→ X and l : B ↪→ X. Then there is a long exact sequence

Eq(A ∩B) Eq(A)⊕ Eq(B) Eq(X)

Eq−1(A ∩B) Eq−1(A)⊕ Eq−1(B) Eq−1(X)

i∗
j∗

 [
k∗−l∗

]

∂

where ∂ is obtained as the following composite

Eq(X) Eq(X,B)

Eq−1(A ∩B) Eq(A,A ∩B)
∂ ∼=

∂

where top horizontal arrow is corresponds to (X, ∅) ↪→ (X,B), the right vertical is exicision iso-
morphism and the bottom horizontal is the boundary map of homology long exact sequence of the
pair (A,A ∩B).

5.4 Relative homology of cofibrations and suspension isomorphism

There are two important results for homology. The first affirms our intuition that the homology
of pair (X,A) ought to behave as homology of X/A, but it works out only when A ↪→ X is a
cofibration. The second gives a suspension isomorphism type result akin to that of homotopy
groups.

5.4.1 Relative homology of cofibrations

Theorem 5.4.1. Let i : A ↪→ X be a cofibration and Eq a generalized homology theory. Then the
quotient map p : (X,A) ↠ (X/A,pt. induces an isomorphism

p∗ : Eq(X,A)
∼=−→ Eq(X/A).

5.4.2 Suspension isomorphism

Theorem 5.4.2. Let (X,x0) be a non-degenerately based space, that is, the inclusion {x0} ↪→ X
is a cofibration. Let Eq be a generalized homology theory. Then, there is a natural isomorphism

Ẽq(ΣX) ∼= Ẽq−1(X).
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5.5 Fundamental theorem of homology theories

We will now see that reduced homology and unreduced homology theories are equivalent. To this
end, we first axiomatize reduced homology theory. The category Top∗ denotes the category of
well-pointed spaces.

Definition 5.5.1 (Reduced homology theory). A reduced homology theory for an abelian
group π is a sequence of functors

H̃q(−;π) : Top∗ −→ AbGrp

for q ∈ Z which satisfies the following axioms (we suppress π):
1. (Cofibration exactness) If i : A ↪→ X is a cofibration, then

H̃q(A)→ H̃q(X)→ H̃q(X/A)

is exact.
2. (Suspension isomorphism) For all q ≥ 0, we have a natural isomorphism

Σ : H̃q(X)
∼=→ H̃q+1(ΣX).

3. (Additivity) If X = ∨
i∈I Xi where each Xi is well-pointed, then the natural inclusions ιi :

Xi ↪→ X induces an isomorphism ⊕
i∈I

H̃q(Xi) ∼= H̃q(X)

4. (Weak equivalence) If f : X → Y is a weak equivalence, then

f∗ : H̃q(X)→ H̃q(Y )

is an isomorphism.

5.6 Singular homology & applications

We define the usual singular homology groups and will mention that it is a homology theory. Once
that’s set-up, then with the explicit description of chain complexes in singular homology and the
ES-axioms and all the surrounding results, we will have a good toolbox to compute homology
groups of very many spaces. In-fact, these applications are important to really showcase that if in
any situation we have an invariant of any class of objects which is a homology theory, then we can
immediately make this invariant very palpatable to calculations, which is very important in aspects
where the objects are abstract entities like rings or schemes.

For this section, we may assume that our spaces are not compactly generated.

Definition 5.6.1 (Singular homology). Let X be a space and fix a field F . Let Si(X) be the
free F -vector space generated by the set of all i-simplices {f : ∆i → X | f is continuous}. An
element of Si(X) is called singular i-chain. Consider the map ∂ : Si(X) → Si−1(X) which on an
i-simplex σ is given by σ 7→ ∑i

j=0(−1)j∂jσ where ∂jσ is the σ restricted to the face opposite to
jth-vertex. It follows that ∂2 = 0. Thus, we have a chain complex (Si(X), ∂), called the singular
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chain complex. The homology of this chain complex is defined to be the singular homology of X,
denoted Hi(X;Z) or simply Hi(X). A map f : X → Y on spaces yields a map on singular complex
f♯ : S•(X)→ S•(Y ). As map of complexes induces map on homology, we get f∗ : H•(X)→ H•(Y ).

Let (X,A) be a pair. We define the relative singular i-chains to be

S•(X,A) := S•(X)/S•(A).

The boundary map of S•(X) descends to a boundary map on S•(X,A) by properties of quotients
and thus we define the singular homology of a pair (X,A) to be homology of the complex S•(X,A)
denoted Hi(X,A;Z).

In the following result, we state some important first properties of singular homology.

Theorem 5.6.2 (Singular homology is a homology theory). Let X be a space.
1. If {Xk} is the collection of path-components of X, then

Hi(X;Z) ∼=
⊕
k

Hi(Xk Z).

2. Singular homology satisfies dimension axiom:

Hi({pt.};Z) =
®
Z if i = 0
0 else.

3. X is path-connected if and only if

H0(X;Z) ∼= Z.

4. Singular homology has long exact sequence of pairs, that is, if (X,A) is a pair, then there is
a long exact sequence obtained by inclusions A ↪→ X and (X, ∅) ↪→ (X,A) as follows:

. . .

Hq(A;π) Hq(X;π) Hq(X,A;π)

Hq−1(A;π) Hq−1(X;π) Hq−1(X,A;π)

. . .

∂

∂

∂

.

5. Singular homology is excision invariant; for an excisive triple (X,A,B), that is A,B ↪→ X
and X = A◦ ∪ B◦, the inclusion (A,A ∩ B) ↪→ (X,B) induces an isomorphism at all degree
q ∈ Z:

Hq(A,A ∩B;Z) Hq(X,B;Z)
∼= .

An equivalent restatement is that if A ⊇ B such that B̄ ⊆ A◦, then the inclusion (X −B,A−
B) ↪→ (X,A) induces isomorphism in homology

Hq(X −B,A−B;Z)
∼=−→ Hq(X,A;Z).
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6. Singular homology preserves coproducts, that is, if {(Xi, Ai)}i∈I is a collection of pairs of
spaces, then

⊕
i

Hq(Xi, Ai;π)
∼=−→ Hq

Ç∐
i

(Xi, Ai);π
å

where the maps are induced by the inclusions (Xi0 , Ai0) ↪→
∐

i(Xi, Ai).
7. Singular homology satisfies strong π∗-insensitivity, that is, if f, g : X → Y are two homotopic

maps, then f∗ = g∗ : Hi(X;Z)→ Hi(Y ;Z).

Proof. 1. Observe that Si(X) = ⊕
k Si(Xk) by path-connectedness of each Xk. Moreover, Zi(X) =⊕

k Zi(Xk) and Bi(X) = ⊕
k Bi(Xk). The result follows.

2. First observe that every Si(X) is isomorphic to Z as there is only one i-simplex, namely cpt.,
the constant map. We have for cpt. ∈ Zi+1(X) its boundary as

∂(cpt) =
i+1∑
j=0

(−1)j∂j(cpt.)

where note that the jth-boundary of cpt. is still cpt.. Thus, if i+2 is even, then ∂ : Si+1(X)→ Si(X)
is zero and if i+ 2 is odd, then ∂ : Si+1(X)→ Si(X) is an isomorphism. Hence, we get that

dp : Sp(X)→ Sp−1(X)

is 0 if p is odd and an isomorphism if p is even. From this, it immediately follows that Hp(pt.;Z) = 0
if p > 0 and H0(pt.;Z) ∼= Z.

3. (L⇒ R) Let X be a path-connected space. Recall that H0(X;Z) = S0(X)/Im (∂1). Consider
the following map

ϵ : S0(X) −→ Z∑
j

njxj 7−→
∑
j

nj .

Clearly this is surjective. We claim that Ker (ϵ) = Im (∂1). Suppose ∑
j njxj ∈ S0(X) and each

xj is distinct with ∑
j nj = 0. We wish to find a 1-chain σ = ∑

j mjσj such that ∂1σ = ∑
j njxj .

Fix x0 ∈ X a point different from xj and let γj : I → X be a path joining x0 to xj . Consider
σ = ∑

j njγj . We claim that ∂σ = ∑
j njxj . Indeed, we have

∂σ =
∑
j

nj(γj(1)− γj(0)) =
∑
j

nj(xj − x0) =
∑
j

njxj −

(∑
j

nj

)
x0 =

∑
j

njxj ,

as required.

TODO

Corollary 5.6.3. The construction of the sequence of functors Hk(−,−;Z) : Top2 → AbGrp is
a homology theory.
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Remark 5.6.4 (Mayer-Vietoris sequence for singular homology). Consider a space X and an
excisive triple (X,A,B). Then since singular homology is a homology theory, hence we have the
Mayer-Vietoris sequence as in Theorem 5.3.1. After long exact sequence for pairs, this is the second
most important long exact sequence in homology:

Hq(A ∩B) Hq(A)⊕Hq(B) Hq(X)

Hq−1(A ∩B) Hq−1(A)⊕Hq−1(B) Hq−1(X)

i∗
j∗

 [
k∗−l∗

]

∂ .

This also holds for reduced homology.

Remark 5.6.5 (Triplet long exact sequence for singular homology). Consider a triplet (X,A,B)
where X ⊇ A ⊇ B. Then since singular homology is a homology theory, hence we get a triplet long
exact sequence induced by inclusions as in Theorem 5.1.5. This is the third long exact sequence
that one derives in singular homology, after l.e.s. of pairs and Mayer-Vietoris. This also holds for
reduced homology.

We now showcase a result which we will meet again later, which relates fundamental group and
first homology group.

Theorem 5.6.6 (Hurewicz for π1). Let X be a path-connected space and x0 ∈ X. The canonical
map

ϕ : π1(X,x0) −→ H1(X;Z)
⟨α⟩ 7−→ [α]

is surjective with Ker (ϕ) = [π1(X,x0) : π1(X,x0)].

Corollary 5.6.7. Let (X,x0) be a path-connected space and such that π1(X,x0) is abelian. Then
π1(X,x0) ∼= H1(X;Z).

Remark 5.6.8 (Suspension isomorphism). Let X be a space and SX be unreduces suspension.
Then we have an isomorphism as in Theorem 5.4.2:

Hq(SX;Z) ∼= H̃q−1(X;Z).

One can also directly prove this by analyzing the Mayer-Vietoris for the X1 = SX − [x, 1] and
X2 = SX − [x, 0].

5.7 Results & computations for singular homology

We now present many computations for singular homology theory, which showcases the strength
of the tools available.

For this section, we may assume that our spaces are not compactly generated.
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Remark 5.7.1. We begin with the list of topics that we cover here, for mental clarity and quick
reference.

• Path components & relative homology.
• Map of long exact sequence of pairs.
• Immediate applications of Mayer-Vietoris.
• Degree of a map f : Sn → Sn.
• Antipode preserving maps f : Sn → S1.
• Jordan-Brower separation theorem.

5.7.1 Path components & relative homology

Lemma 5.7.2. Let A ⊆ X be a non-empty subspace and X be path-connected. Then

H0(X,A;Z) = 0.

Proof. Consider d̄ : S1(X,A)→ S0(X,A). We claim that Im
(
d̄
)
= S0(X,A). Suffices to show that

Im
(
d̄
)
contains the class of generators x : ∆0 → X. Pick any x as given. To show that there exists

σ+ S1(A) ∈ S1(X,A) whose boundary is x. Indeed, as X is path-connected, so for any fixed point
x0 ∈ A, we may consider a path σ joinging x0 to x. This defines an element σ + S1(A) whose
boundary is x− x0 + S0(A) = x+ S0(A), as needed.

Lemma 5.7.3. Let {Xk} be path-components of X and A ⊆ X be non-empty. Then

Hn(X,A;Z) ∼=
⊕
k

Hn(Xk, A ∩Xk;Z).

Proof. As Sn(X,A) =
⊕

k Sn(Xk, A ∩Xk), the result then follows by quotienting.

Lemma 5.7.4. Let A ⊆ X be a non-empty subspace, then

rank(H0(X,A;Z)) = # path components of X not intersecting A.

Proof. By Theorem 5.6.2, 3 and Lemmas 5.7.2 and 5.7.3, the result is immediate.

Lemma 5.7.5. Let X have r-path components. Then,

H0(X,pt.;Z) ∼= Z⊕r−1

Proof. Use Lemma 5.7.4.

Example 5.7.6 (Homology of (Dn, Sn−1)). We claim that

H̃i(Dn, Sn−1;Z) =
®
Z if i = n

0 else.

Indeed, this follows immediately from les of a pair and Lemma 5.7.4.

The following is an important observation in geometry.
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Proposition 5.7.7 (Künneth formula-1). Let X be a T1-space and x ∈ X. If U ⊆ X is an open
set containing x, then we have

Hi(X,X − x;Z) ∼= Hi(U,U − x;Z).

Proof. For A = U and B = X − x, we see that both of them are open (B is open as {x} is closed).
Then, (X,A,B) forms an excisive triple. Performing excision, we observe (as A∩B = U − x) that

Hi(U,U − x;Z) ∼= Hi(X,X − x;Z),

as required.

Remark 5.7.8. It is really necessary for U in Künneth formula above to be open, for (S2− x, I −
x) ↪→ (S2, I) for some path I ↪→ X does not induces isomorphism in homology, as is readily visible
a small computation in the associated les of pairs.

5.7.2 Map of long exact sequence of pairs

Proposition 5.7.9. Let f : (X,A) → (Y,B) be a map of pairs. Then, we get a map in the long
exact sequences of the corresponding pairs. That is, the following commutes12

Hn(A) Hn(X) Hn(X,A) Hn−1(A)

Hn(B) Hn(Y ) Hn(Y,B) Hn−1(B)

∆

∆

f∗f∗f∗f∗ .

Proof. Since all maps in the long exact sequence of a pair except the connecting homomorphism
are induced by inclusions, therefore we need only check the commutativity of the rightmost square.
This follows from unravelling the definition of connecting homomorphism as constructed from the
chain level.

We also have a map in Mayer-Vietoris.

Proposition 5.7.10. Let f : (X,A,B)→ (Y,C,D) be a map of triples, where each is an excisive
triple. Then we get a map in the Mayer-Vietoris sequences of the corresponding pairs. That is, the
following commutes

Hn(A ∩B) Hn(A)⊕Hn(B) Hn(X) Hn−1(A ∩B)

Hn(C ∩D) Hn(C)⊕Hn(D) Hn(Y ) Hn−1(C ∩D)

∆

∆

f∗f∗f∗f∗ .

Proof. Follows directly from Proposition 5.7.9 and the proof of original Mayer-Vietoris (in which
we show that Mayer-Vietoris is obtained by les of a pair and excision).

12we drop the group Z in the following diagram.
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Lemma 5.7.11. If f : (X,A) → (Y,B) is a homotopy equivalence of pairs, that is, there exists
g : (Y,B) → (X,A) such that f : X ⇄ Y : g and f : A ⇄ B : g are both homotopy equivalences,
then

f∗ : Hn(X,A)
∼=−→ Hn(Y,B)

is an isomorphism.

Proof. Use 5-lemma on the diagram in Proposition 5.7.9.

5.7.3 Immediate applications of Mayer-Vietoris

Example 5.7.12 (Homology of spheres). We wish to show that

H̃i(Sn;Z) =
®
Z if i = n

0 else.

Indeed, let U = Sn − p and V = Sn − q where p, q are north and south poles respectively. Note
U ∩ V ≃ Sn−1. Then (Sn, U, V ) is an excisive triple and thus by Mayer-Vietoris (Remark 5.6.4),
we deduce that the connecting homomorphism Hq(Sn) ∼= H̃q−1(Sn−1). We conclude by induction.

Example 5.7.13 (Homology of wedge of spheres). We wish to show that for each i ≥ 0, we have

H̃i(Sm ∨ Sn) ∼= H̃i(Sm)⊕ H̃i(Sn)

Indeed this follows by considering U to be Sm with some open part of Sn and V to be Sn with
some open part of Sm. We get that U ∩V ≃ pt., U ≃ Sm, V ≃ Sn and (X,U, V ) an excisive triple.
The result now follows by Mayer-Vietoris (Remark 5.6.4).

Using Example 5.7.12, we can prove the following seemingly obvious, but otherwise hard to
prove statement.

Theorem 5.7.14. Let n,m ∈ N.
1. Sn is homeomorphic to Sm if and only if n = m.
2. Rn is homeomorphic to Rm if and only if n = m.

Proof. Item 1 is immediate application of computation in Example 5.7.12. Item 2 can be obtained
from removing a point from the given homeomorphism ϕ : Rn

∼=→ Rm to get a homotopy equivalence
Sn−1 → Sm−1. Thus, they have same homology. Invoking Example 5.7.12, we win.

5.7.4 Degree of a map f : Sn → Sn

For a map f : Sn → Sn, consider the map f∗ : Z → Z obtained by Hn(Sn) → Hn(Sn). Thus, f∗
takes a generator a to k · a, k ∈ Z. We define deg(f) = k. We begin with some basics.

Lemma 5.7.15. Let f : Sn → Sn be a map.
1. If f : Sn → Sn and g : Sn → Sn,

deg(g ◦ f) = deg(g) · deg f.



5.7 Results & computations for singular homology 63

2. If f, g : Sn → Sn are homotopy equivalent, then deg(f) = deg(g).

Proof. Immediate.

The main theorem is the following, which computes the degree of reflections.

Theorem 5.7.16 (Degree of reflections). Define the following map

f : Sn −→ Sn

(x1, x2 . . . , xn+1) 7−→ (−x1, x2, . . . , xn+1).

Then,

deg(f) = −1.

Proof. Use induction on n and observe that for X1 = Sn − p and X2 = Sn − q, we get a map
induced in Mayer-Vietoris (Proposition 5.7.10). This yields the following commutative square
where connecting homomorphism is an isomorphism:

Hn(Sn) H̃n−1(Sn−1)

Hn(Sn) H̃n−1(Sn−1)

f∗ f∗

∆

∆

.

The result now follows by inductive hypothesis.

Corollary 5.7.17. Define the following map

f : Sn −→ Sn

(x1, x2 . . . , xn+1) 7−→ (−x1,−x2, . . . ,−xn+1).

Then,

deg(f) = (−1)n+1.

Proof. Immediate from Theorem 5.7.16.

Remark 5.7.18 (Fixed points and degree). It is an easy observation that if f : Sn → Sn has no
fixed points, then f is homotopic to a : Sn → Sn which is the antipodal map. Thus the degree of
a map f : Sn → Sn which has no fixed points is (−1)n+1.

An easy corollary of this observation is that if f : Sn → Sn is null homotopic, then f has a
fixed point. Indeed as deg f = 0, therefore by contrapositive of above, we deduce that f must have
a fixed point.

A simple use of above remark yields the following fact for maps f : S2n → S2n.

Proposition 5.7.19. Let f : S2n → S2n be a map. Then, there exists x ∈ S2n such that either
f(x) = x or f(x) = −x.
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Proof. Suppose f has no fixed points. Then by Remark 5.7.18, it follows that f ≃ a, where
a : S2n → S2n is the antipodal map. Thus, deg f = deg a = (−1)2n+1 = −1. It follows that
deg(−f) = 1. Hence, −f must have a fixed point by Remark 5.7.18. Consequently, there exists
x ∈ S2n such that −f(x) = x, as required.

We also have the following conclusion.

Proposition 5.7.20. Let f : Sn → Sn be a degree 0 map. Then there exists x, y ∈ Sn such that
f(x) = x and f(y) = −y.

Proof. Indeed, by above we immediately conclude that both f and −f has degree 0, thus have fixed
points.

A more non-trivial application of ideas surrounding degree is the following.

Lemma 5.7.21. Any linear map T : R2n+1 → R2n+1 has an eigenvector.

Proof. We may assume that T is a bijection. Thus, T takes one dimensional linear subspaces to
one dimensional linear subspaces. We get in particular a map g : S2n → S2n given by v

∥v∥ 7→
Tv
∥Tv∥ .

Use Proposition 5.7.19 to conclude.

5.7.5 Antipode preserving maps f : Sn → S1

Another interesting application of singular homology is to show that if n > 1, then there is no
antipode preserving map f : Sn → S1, where a map f : Sm → Sn is antipode preserving if for all
x ∈ Sm, we have −f(x) = f(−x).

Theorem 5.7.22. If n > 1, then there is no antipode preserving map f : Sn → S1.

Remark 5.7.23. One can deduce Borsuk-Ulam theorem, that for any map f : S2 → R2 there
exists x ∈ S2 such that f(x) = f(−x), from Theorem 5.7.22 as follows. By composing by linear
shift, we may assume Im (f) does not contain origin. Composing with the map y 7→ y

∥y∥ , we obtain
the map g : S2 → S1 mapping as x 7→ f(x)

∥f(x)∥ . Applying the above theorem, Borsuk-Ulam follows.

5.7.6 Jordan-Brower separation theorem

We wish to show the following result.

Theorem 5.7.24 (JBST). Suppose C ⊆ Sn is a subspace of Sn homeomorphic to Sn−1. Then
Sn − C has two components and has boundary C.

More important for us is the two homological results which will be used to prove the above
theorem.

Definition 5.7.25 (Cells in a space). A k-cell in a space X is a subspace A ⊆ X homeomorphic
to Dk.

Theorem 5.7.26. Let A be a k-cell in Sn. Then,

H̃i(Sn −A;Z) = 0

for every i ≥ 0.
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Using above theorem, we have the following result.

Proposition 5.7.27. Let h : Sk ↪→ Sn be an embedding where n > k ≥ 0. Then

H̃i(Sn − h(Sk);Z) =
®
Z if i = n− k − 1,
0 else.

Proof. This follows from Mayer-Vietoris and induction on k, where we defineX1, X2 ⊆ Sn−h(Sk) =
X as follows. Let E+

k = Sk−q and E−k = Sk−p, p, q are north, south poles, respectively. Then define
X1 = Sn−h(E+

k ) and X2 = Sn−h(E−k ). Then X1∩X2 = Sn−h(Sk) and X1∪X2 = Sn−h(Sk−1).
Using Theorem 5.7.26 will yield the isomorphism H̃q(Sn − h(Sk−1)) ∼= H̃q−1(Sn − h(Sk−1)). We
conclude by inductive hypothesis.

Remark 5.7.28. Note that Proposition 5.7.27 already shows the first statement of Theorem 5.7.24.
Indeed, Using the result, we get for k = n − 1, that H̃0(Sn − h(Sn−1);Z) = Z, that is, there are
two path-components of Sn − h(Sn−1). As Sn is locally path-connected, so number of components
and path-components are same.

An important application is the invariance of domain.

Theorem 5.7.29 (Invariance of domain). Let U ⊆ Rn be a n open set and consider a map f :
U → Rn which is a continuous bijection. Then,

1. f(U) is open in Rn,
2. f : U → f(U) is a homeomorphism.

That is, f is an open embedding.

Proof. Pick any open ball B ⊆ U such that B̄ ⊆ U . Observe Sn−1 ∼= B̄ − B = ∂B. Consider
the composite f : ∂B → f(U) ↪→ Sn where we consider Rn ↪→ Sn. By JBST, f : Sn−1 → Sn

separates Sn into two components, say Sn − f(Sn−1) = W1 ⨿W2. If f(B) ⊆ W1, we claim that
f(B) =W1. Indeed, this follows from Theorem 5.7.26 which says that removing a k-cell still keeps
Sn path-connected.

6 CW-complexes & CW homotopy types

One of the important properties of compactly generated spaces is that any such space can be
approximated upto homotopy by a class of spaces constructed in a rather simple manner. These
are precisely the CW complexes. Once the above approximation theorems are set up, we can
safely reduce a lot of computation in homology to such a CW-approximation. Moreover, the
reductions run so deep that in-fact any homology theory Eq on general compactly generated spaces
necessarily induces and comes from the restriction of Eq to CW-complexes. An application of
Hurewicz theorem will then tell us that upto natural isomorphism, there is a unique homology
theory over CW-complexes. Moreover, the fundamental result of Whitehead would allow us to
interpret homotopy groups as a complete set of homotopical invariants for CW-complexes
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6.1 Basic theory

6.2 Approximation theorems

6.3 CW homotopy types

We wish to prove some foundational results on homotopy equivalences of CW-complexes.

6.3.1 Whitehead’s theorem

We wish to see the following important result.

Theorem 6.3.1 (Whitehead). Let X and Y be weakly equivalent CW-complexes. Then X and Y
are homotopy equivalent.

6.3.2 Applications of Whitehead’s theorem

Lemma 6.3.2 (Weak uniqueness of universal covers). Let X be a CW-complex. If E is a CW-
complex and f : E → X is such that

f∗ : πk(E)→ πk(X)

is an isomorphism for all k ≥ 2 and πk(E) = 0 for k = 0, 1, then E is homotopy equivalent to the
universal cover X̃ of X.

Proof. As π0(E) = 0, therefore E is connected. It follows by unique lifting (which is possible as
π1(E) = 0) that we have a commutative diagram of spaces:

X̃

E X

p
f̃

f

.

Applying πk for any k ≥ 2, we deduce from our hypothesis that f̃∗ : πk(E) → πk(X̃) is an
isomorphism. As π0(X̃) = π1(X̃) = 0, therefore f̃ is a weak equivalence. It follows by Whitehead’s
theorem (Theorem 6.3.1) that f̃ is a homotopy equivalence, as required.

7 Homotopy and homology

7.1 Hurewicz’s theorem

Theorem 7.1.1 (Hurewicz-1). Let X be an (n−1)-connected based space. Then the Hurewicz map

hn : πn(X)→ Hn(X;Z)

is an isomorphism and

hn+1 : πn+1(X)→ Hn+1(X;Z)

is a surjection.
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It is also very beneficial to keep the following version of Hurewicz in mind as it is usually used
to deduce conclusion about homology groups from some information about homotopy groups and
vice-versa. The second item is often used after passing to universal covers.

Theorem 7.1.2 (Hurewicz-2). Let X,Y be path-connected based spaces and f : X → Y be a based
map. Let n ∈ N.

1. If f∗ : πk(X) → πk(Y ) is an isomorphism for k < n and a surjection for k = n, then
f∗ : Hk(X;Z)→ Hk(Y ;Z) is an isomorphism for k < n and a surjection for k = n.

2. If X,Y are simply connected and f∗ : Hk(X;Z) → Hk(Y ;Z) is an isomorphism for k < n
and a surjection for k = n, then f∗ : πk(X) → πk(Y ) is an isomorphism for k < n and a
surjection for k = n.

8 Homotopy & algebraic structures

8.1 H-spaces

Definition 8.1.1 (H-spaces & groups). Let (X, e) be a based space. Then X is said to be a an
H-space if there exists a continuous map

m : X ×X −→ X

(x, y) 7−→ x · y

such that
1. e · e = e,
2. me : X → X, x 7→ x · e and me : X → X, x 7→ e · x are both homotopy equivalent to idX rel
{e}.

An H-space (X, e, ·) is said to be an H-group if moreover the map m satisfies the following:
1. the two associativity maps X ×X ×X ⇒ X are homotopic to each other rel {(e, e, e)},
2. there exists an inverse map (−)−1 : X → X such that e−1 = e and that the two left/right

multiplication by inverse maps X ⇒ X, x 7→ x ·x−1 and x 7→ x−1 ·x is homotopic to constant
map ce rel {e}.

Example 8.1.2. Every topological group is a strict H-group.

Example 8.1.3. Every loop space ΩX is an H-group where the product of two loops is the
concatenation and inverse is the inverse of the loop. The required conditions for ΩX to be an
H-group is then immediate.

The following is one of the most important result for H-spaces. It says that the contravariant
hom functor that they represent is group valued.

Theorem 8.1.4. Let Y be an H-group. Then for any based space X, the based homotopy classes
of maps [X,Y ] forms a group whose operation is

(f · g)(x) := f(x) · g(x).
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