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1 Recollections

The notion of sheaves plays perhaps the most important role in modern viewpoint of geometry. It
is thus important to understand the various constructions that one can make on them. We assume
the reader knows the definition of a sheaf on a space X and morphism of sheaves. We begin with
some recollections.
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2 2 THE SHEAFIFICATION FUNCTOR

Remark 1.0.1 (Map on stalks). Recall that a map of sheaves ϕ : F → G on X defines for each
point x ∈ X a map of stalks ϕx : Fx → Gx given by sx 7→ ϕU (s)x where s is a section of F over
U ⊆ X. One can check quite easily that this is well-defined and that this map ϕx is in-fact the
unique map given by the universal property of the colimit in the diagram below:

G(U) lim−→V ∋x G(V )

F(U) lim−→V ∋x F(V )

ϕU ϕx .

Hence ϕx is the unique map which makes the above diagram commute.

Remark 1.0.2 (Subsheaves). Recall that F ↪→ G is a subsheaf if F(U) ⊆ G(U) such that for
U ↪→ V , the restriction map ρV,U : G(V )→ G(U) restricts to ρV,U : F(V )→ F(U).

Remark 1.0.3 (Constant sheaves). For an abelian group A and a spaceX, one defines the constant
sheaf A as the sheaf which for each open set U ⊆ X assigns A(U) = {s : U → A | s is continuous},
where A is given the discrete topology. One sees instantly that this is a sheaf. Further one
observes that if U = U1 ⨿ · · · ⨿ Uk where Ui are components of open set U and Ui are open, then
A(U) ∼= A⊕ · · · ⊕A k-times. In particular, for any open connected subset U , we get A(U) = A.

We now begin by showing how to construct a sheaf out of a presheaf over X.

2 The sheafification functor

Let X be a topological space, denote the category of presheaves on X by PSh(X) and denote the
category of sheaves over X by Sh(X). We have a canonical inclusion functor i : Sh(X) ↪→ PSh(X).
We construct it’s left adjoint commonly known as the process of sheafifying a presheaf.

Theorem 2.0.1. (Sheafification) Let X be a topological space and let F be a presheaf over X.
Then there exists a pair (F, iF ) of a sheaf F and a map iF : F → F such that for any sheaf G and
a morphism of presheaves ϕ : F → G, there exists a unique morphism of sheaves ϕ̃ : F → G such
that the following commutes

F G

F

iF ϕ

ϕ̃

,

that is, we have a natural bijection

HomPSh(X) (F,G) ∼= HomSh(X) (F,G).

Moreover:
1. (F, iF ) is unique upto unique isomorphism.
2. For every x ∈ X, the map on stalks iF,x : Fx → Fx is bijective.
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3. For any map of presheaves ϕ : F → G, we get a map of sheaves ϕ̃ : F → G which is unique
w.r.t. the commuting of the following natural square:

F G

F G

ϕ̃

iF

ϕ

iG
.

Hence we have a functor

(−)++ : PSh(X) −→ Sh(X)
F 7−→ F++ := F.

Proof. We explicitly construct the sheaf F out of F . We define the local sections of F by using
germs and turning the gluing condition of sheaf definition onto itself. In particular, define

F(U) :=
{
((six)x) ∈

∏
x∈U

Fx | ∀x ∈ U, ∃ open W ∋ x & t ∈ F (W ) s.t. ∀p ∈W, tp = (sip)p

}
.

The restriction map for U ↪→ V of F is given by ρV,U : F(V ) → F(U), ((six)x) 7→ ((six)x)x∈U ,
that is, ρV,U is just the projection map. Next, we show that F satisfies the gluing criterion and
that is where we will see how the above definition of sections of F came about. Take an open
set U ⊆ X and an open cover U = ⋃

i∈I Ui. Let si ∈ F(Ui) be a corresponding collection of
sections such that for all i, j ∈ I, we have ρUi,Ui∩Uj (si) = ρUj ,Ui∩Uj (sj). We wish to thus construct
a section t ∈ F(U) such that ρU,Ui(t) = si for all i ∈ I. Indeed let ((tix)x) ∈

∏
x∈U Fx where

t := (tix)x = (si)x if x ∈ Ui. Then since for any x ∈ U , there exists U ⊇ Ui ∋ x and si ∈ F(Ui)
such that ρU,Ui(t) = ((tix)x)x∈Ui = ((si)x)x∈Ui , we thus conclude that t ∈ F(U). So F satisfies the
gluing condition. The locality is quite simple. Next the map iF is given as follows on sections:

iF,U : F (U) −→ F(U)
s 7−→ (sx).

Now, it can be seen by definition of colimits that Fx = Fx. Finally, let G be a sheaf and let
ϕ : F → G be a morphism of presheaves, then we can define ϕ̃ by gluing the germs as follows:

ϕ̃U : F(U) −→ G(U)
((six)x) 7−→ [ϕWx(six)]

where [ϕWx(six)] denotes the unique section in G(U) that one gets by considering the open cover⋃
x∈U Wx where six ∈ F(Wx) and considering the gluing of corresponding sections ϕWx(six) ∈

G(Wx). These sections agree on intersections because ϕ is a natural transformation and (six) agree
on intersections as sections of F(U). Hence we have the unique map ϕ̃. Moreover, it is clear that
ϕ̃ ◦ iF = ϕ.

Corollary 2.0.2. Let F be a presheaf over a topological space X, then for all x ∈ X, Fx = (F++)x.

Proof. By construction of F++.
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Corollary 2.0.3. If F is a sheaf over a topological space X, then F++ = F.

Proof. Follows immediately from the universal property of the sheafification, Theorem 2.0.1.

Remark 2.0.4. The sections of sheaf F in an open set U containing x is defined in such a manner
so that f ∈ F(U) can be constructed locally out of sections of F . In particular, we can write F(U)
more clearly as follows

F(U) =
{
s : U →

∐
x∈U

Fx | ∀x ∈ U, s(x) ∈ Fx & ∃ open x ∈ V ⊆ U & ∃t ∈ F (V ) s.t. s(y) = ty ∀y ∈ V

}
.

Note that this is exactly the realization that F(U) is the set of section of the étale space of the
sheaf F (see Section 4). Most of the time in practice, we would work with the universal property of
F in Theorem 2.0.1 as it is much more amenable, but the above must be kept in mind as it is used,
for example, to make sure that certain algebraic constructions of OX -modules remains OX -modules
(no matter how trivial they may sound).

We note that sheafification and restrictions to open sets commute.

Lemma 2.0.5. Let X be a space, U ⊆ X be an open subset and F be a presheaf over X. Then,

(F |U )++ ∼= (F++)
∣∣
U
.

Proof. Immediate from universal property of sheafification (Theorem 2.0.1).

3 Morphisms of sheaves
All sheaves are abelian sheaves in this section. One of the most important aspects of using sheaves
is that the injectivity and bijectivity of ϕx can be checked on sections. We first show that taking
stalks is functorial

Lemma 3.0.1. Let X be a topological space, F,G be two sheaves over X and x ∈ X be a point.
Then the following mapping is functorial:

Sh(X) −→ AbGrp
F 7−→ Fx

F
f→ G 7−→ Fx

fx→ Gx.

Proof. Immediate, just remember how composition of two natural transforms is defined.

Another simple lemma about sheaves and stalks is that equality of two sections can be checked
at the stalk level.

Lemma 3.0.2. Let X be a topological space and F be a sheaf over X. If s, t ∈ F(U) for some open
U ⊆ X such that (U, s)x = (U, t)x ∀x ∈ U , then s = t in F(U).

Proof. By equality on stalks, it follows that we have an open set Wx ∋ x in U for all x ∈ U such
that ρU,Wx(s) = ρU,Wx(t). The result follows from the unique gluing property of sheaf F.
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The above result therefore show why almost all the time it is enough to work with stalks in
geometry. Let us now define an injective and surjective map of sheaves.

Definition 3.0.3. (Injective & surjective maps) Let X be a topological space and F,G be two
sheaves on X. A map of sheaves f : F → G is said to be

1. injective if for all opens U ⊆ X, the local homomorphism fU : F(U)→ G(U) is injective,
2. surjective if for all opens U ⊆ X and all s ∈ G(U), there exists an open covering {Ui}i∈I such

that ρU,Ui(s) ∈ Im (fUi),
3. bijective if f is injective and surjective.

Heuristically, one may understand the notion of f being surjection by saying that every local
section of G is locally constructible by the image of F under the map f .

For each map of sheaves, we can also define two corresponding sheaves which are global algebraic
analogues of the local algebraic constructions.

Definition 3.0.4. (Quotient sheaf) Let X be a topological space and F be a sheaf on X. For a
subsheaf S ⊆ F, one defines the quotient sheaf F/S as the sheafification of the presheaf F/S defined
on open sets U ⊆ X by

F/S(U) := F(U)/S(U).

Definition 3.0.5. (Image & kernel sheaves) Let X be a topological space and F,G be two
sheaves over X and f : F → G be a morphism. Then,

1. image sheaf is the sheafification of the presheaf Im (f) defined on open sets U ⊆ X by

(Im (f))(U) := Im (fU ),

and we denote it by the same symbol, Im (f),
2. kernel sheaf is the sheafification of the presheaf Ker (f) defined on open sets U ⊆ X by

(Ker (f))(U) := Ker (fU )

and we denote it by the same symbol, Ker (f).

In both the above definitions, the important aspect is the sheafification of the canonical presheaves.

The main point is that one can check all the three notions introduced in Definition 3.0.3 for
f : F → G by checking on stalks fx : Fx → Gx for all x ∈ X.

Theorem 3.0.6. 1 Let X be a topological space and F,G be two sheaves over X. Then, a map
f : F → G is

1. injective if and only if fx : Fx → Gx is injective for all x ∈ X,
2. surjective if and only if fx : Fx → Gx is surjective for all x ∈ X,
3. bijective if and only if fx : Fx → Gx is bijective for all x ∈ X,
4. an isomorphism if and only if fx : Fx → Gx is bijective for all x ∈ X2.
1Exercise II.1.2, II.1.3 and II.1.5 of Hartshorne.
2In general, we should write "... if and only if fx : Fx → Gx is an isomorphism", but since we are in the setting

of abelian sheaves and bijective homomorphism of abelian groups is an isomorphism, so we can get away with this.
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5. an isomorphism if and only if f : F → G is bijective.

Proof. The proof is more of an exercise to get a familiarity with the flexibility of sheaf language.
The main idea almost everywhere is to do some local calculations and use sheaf axioms to construct
a unique section out of local sections.

1. (L ⇒ R) We wish to show that fx is injective. Suppose for two (U, s)x, (V, t)y ∈ Fx we have
fx((U, s)x) = fx((V, t)x) ∈ Gx, which translates to (U, fU (s))x = (V, fU (t))x. We wish to
show that (U, s)x = (V, t)y. By definition of equality on stalks, we obtain open W ⊆ U ∩ V
containing x such that

ρU,W (fU (s)) = ρV,W (fV (t)).

By the fact that f is a natural transformation, we further translate the above equality to

fW (ρU,W (s)) = fW (ρV,W (t)).

By injectivity of homomorphism fW , we obtain

ρU,W (s) = ρV,W (t)

in F(W ). Hence by the definition of equality on stalks, we obtain (U, s)x = (V, t)x.

(R ⇒ L) Pick any open U ⊆ X. We wish to show that fU : F(U) → G(U) is injective. Let
s ∈ F(U) be such that fU (s) = 0. Thus for all x ∈ U , we have (U, fU (s))x = 0. Further, by
definition of the map fx, we obtain fx((U, s))x = (U, fU (s))x = 0. By injectivity of fx, we
obtain (U, s)x = 0 for all x ∈ U3. By definition of equality on stalks, we obtain an open cover
{Wx}x∈U such that x ∈ Wx and s|Wx

:= ρU,Wx(s) = 0. Since f is a natural transformation,
we therefore obtain that {s|Wx

}x∈U is a matching family, i.e. on intersections of Wx,Wy, the
corresponding sections agree. Hence, there is a unique glue of {s|Wx

}x∈U denote t ∈ F(U).
Since each s|Wx

= 0, therefore we have two glues of the family over U , one is 0 and the other
is s. By uniqueness of the glue, it follows that s = 0.

2. (L ⇒ R) Pick any x ∈ X. We wish to show that fx : Fx → Gx is surjective. Pick any
(V, t)x ∈ Gx. We wish to show that for some open U ∋ x, we have (U, s)x ∈ Fx such that

(V, t)x = (U, fU (s))x.

Since t ∈ G(V ), therefore by surjectivity of f that there exists an open cover {Vi}i∈I of V
such that

ρV,Vi(t) ∈ Im (fVi).

Therefore we may pick si ∈ F(Vi) such that

ρV,Vi(t) = fVi(si)
= fVi(ρVi,Vi(si))
= ρVi,Vi(fVi(si)).

3We could be done right here by Lemma 3.0.2.
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Thus, (V, t)x and (Vi, fVi(si))x are same.

(R⇒ L) We wish to show that f : F → G is surjective. Pick any open set V ⊆ X and t ∈ G(V ).
We wish to find an open cover {Wi} of V such that si ∈ F(Vi) and fVi(si) = ρV,Vi(t). Since
we have (V, t)x ∈ Gx for all x ∈ V , therefore by surjectivity of each fx : Fx → Gx, we obtain
germs (Wx, sx)x ∈ Fx such that (Wx, fWx(sx))x = (V, t)x for all x ∈ V . By shrinking Wx and
restricting sx, we may assume {Wx} covers V . Thus we have an open cover of V such that
for all sx ∈ F(Wx), we have fWx(sx) = ρV,Wx(t).

3. Trivially follows from 1. and 2.
4. (L ⇒ R) Use the fact that taking stalks is a functor (Lemma 3.0.1).

(R ⇒ L) Let gx : Gx → Fx be the inverse homomorphism of fx for each x ∈ X. Using gx, we
can easily construct a sheaf homorphism g : G → F which will be the inverse of f . Indeed,
consider the following map for any open U ⊆ X

gU : G(U) −→ F(U)
t 7−→ s

where s ∈ F(U) is formed as the unique glue of the matching family

{sx ∈ F(Ux)}x∈U

where (U, t)x = (Ux, fUx(sx))x for each x ∈ U and Ux ⊆ U . In particular, sx = gx((Ux, ρU,Ux(t))x).
This is obtained via the bijectivity of fx. Consequently, g is a sheaf homomorphism, which
is naturally the inverse of f .

5. Follows from 3. and 4.

The following theorem further tells us that our intuition about algebra can be globalized, and
equality of sheaf morphisms can be checked on each stalk.

Theorem 3.0.7. Let X be a topological space and F,G be two sheaves over X. Then, a map
f : F → G

1. is injective if and only if the kernel sheaf Ker (f) is the zero sheaf,
2. is surjective if and only if the image sheaf Im (f) is G,
3. is equal to another map g : F → G if and only if fx = gx for all x ∈ X.

Proof. The main idea in most of the proofs below is to either use the definition or the universal
property of sheafification.

1. (L ⇒ R) Let f : F → G be injective. We wish to show that Ker (f) = 0. Since the kernel
presheaf ker f = 0, therefore its sheafification Ker (f) = 0.
(R ⇒ L) Let Ker (f) = 0. We wish to show that f is injective. Suppose to the contrary that
f is not injective. We have that (Ker (f))x = 0 for all x ∈ X. Thus there exists an open set
U ⊆ X such that fU : F(U)→ G(U) is not injective. Hence, there exists, 0 ̸= s ∈ F(U) such
that fU (s) = 0. Thus, we have an element (U, s)x ∈ (ker f)x = (Ker (f))x = 0 for all x ∈ U .
Hence s = 0 by Lemma 3.0.2, which is a contradiction.

2. (L ⇒ R) Let f : F → G be a surjective map. In order to show that Im (f) = G, we will show
that G satisfies the universal property of sheafification (Theorem 2.0.1). For this, consider a
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sheaf H and a presheaf map h : im (f)→H. Consider the inclusion map ι : im (f) ↪→ G. We
will construct a unique sheaf map h̃ : G→H which will be natural such that h̃ ◦ ι = h. Pick
any open set U ⊆ X. We wish to define the map

h̃U : G(U) −→H(U).

Take t ∈ G(U). By surjectivity of f , there exists a covering {Ui} of U and matching family
si ∈ F(Ui) for all i such that

fUi(si) = ρU,Ui(t) =: ti.

We shall construct an element h̃U (t) ∈H(U). Indeed, we first claim that

{hUi(ti) ∈H(Ui)}i

is a matching family. This can be shown by keeping the following diagram in mind and the
fact that {si} is a matching family:

H(Ui) im (fUi) F(Ui)

H(Ui ∩ Uj) im
(
fUi∩Uj

)
F(Ui ∩ Uj)

ρUi,Ui∩Uj
ρUi,Ui∩Uj

hUi

hUi∩Uj

fUi

ρUi,Ui∩Uj

fUi∩Uj

.

Thus we get a unique glue which we define to be the image of h̃U for the section t ∈ G(U),
denoted h̃U (t) ∈H(U). Uniqueness and naturality follows from construction.
(R ⇒ L) We have that (im (f))++ = G. Pick any open set U ⊆ X and a section t ∈ G. We
wish to find an open cover {Ui}i∈I of U and si ∈ F(Ui) such that fUi(si) = ρU,Ui(t) for all
i ∈ I. Indeed, by Corollary 2.0.2, we obtain that Gx = im (f)x for all x ∈ X. Hence for the
chosen (U, t), we obtain for each x ∈ U , by appropriately shrinking and restricting, an open
set Wx ⊆ U containing x and a section sx ∈ F(Wx) satisfying ρU,Wx(t) = fWx(sx).

3. (L ⇒ R) Trivial.
(R ⇒ L) Suppose for all x ∈ X we have fx = gx : Fx → Gx. We wish to show that f = g.
Pick an open set U ⊆ X and consider s ∈ F(U). We wish to show that fU (s) = gU (s). For
each x ∈ U , we have (U, s)x ∈ Fx and by the fact that fx = gx, we further have

(U, fU (s))x = (U, gU (s))x.

Hence for all x ∈ U , there exists open x ∈Wx ⊆ U such that

ρU,Wx(fU (s)) = ρU,Wx(gU (s)).

It is then an easy observation that both {ρU,Wx(gU (s))}x∈U and {ρU,Wx(fU (s))}x∈U forms
the same matching family. Hence we have a unique glue by sheaf axiom of G to obtain
fU (s) = gU (s) in G(U).

Lemma 3.0.8. Let X be a topological space. Then, the following are equivalent:
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1. The following is an exact sequence of sheaves over X

F′ f→ F
g→ F′′,

that is, Ker (g) = Im (f).
2. The following is an exact sequence of stalks for each x ∈ X

F′
x
fx→ Fx

gx→ F′′
x.

Proof. (1. ⇒ 2.) Pick any (U, s)x ∈ Fx which is in ker gx. Thus, there exists V ⊆ U open
such that ρU,V (gU (s)) = gV (ρU,V (s)) = 0. Thus ρU,V (s) ∈ F(V ) is in Ker (g) = Im (f) and thus
(V, ρU,V (s))x = (U, s)x ∈ Fx is in im (fx). Conversely, for (U, fx(t))x ∈ im (fx), we see that since
g ◦ f = 0, then (U, gx(fx(t)))x = 0.

(2. ⇒ 1.) This is immediate, by looking at a section of F at any open set (use Remark 2.0.4).

Given an open subset U of X and a sheaf over U , we can extend it to a sheaf over X by zeros.
This in particular means extending a sheaf from a subspace in such a way so that stalks outside
of the subspace are always zero. This operation would be fundamental in cohomology and other
places as it yields a nice exact sequence corresponding to any closed or open subset of X.

Definition 3.0.9 (Extending a sheaf by zeros). Let X be a space and i : Z ↪→ X be an
inclusion of a closed set and j : U ↪→ X be an inclusion of an open set.

1. If F is a sheaf over Z, then i∗F is a sheaf over X called the extension of F to X by zeros.
2. If F is a sheaf over U , then the extension of F to X by zeroes, denoted j!F is the sheafification

of the presheaf over X given by

V 7−→
®
F(V ) if V ⊆ U
0 else.

The main result is as follows.

Proposition 3.0.10. 4 Let X be a space, i : Z ↪→ X be closed and j : U ↪→ X be open. Then,
1. If F is a sheaf over Z, then for any p ∈ X, we have

(i∗F)p =
®
Fp if p ∈ Z
0 if p /∈ Z.

2. If F is a sheaf over U , then for any p ∈ X, we have

(j!F)p =
®
Fp if p ∈ U
0 if p /∈ U.

Moreover, (j!F)|U = F and j!F is unique w.r.t these two properties.

4Exercise II.1.19 of Hartshorne.
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Proof. The first item follows immediately from the fact that Z ⊆ X is a closed subset. In particular,
if p /∈ Z, then there is a cofinal collection of open sets containing p on which i∗F is 0.

For the second item, we proceed as follows. Let G be the presheaf as in Definition 3.0.9, 2.
Note that

Gp =
®
Fp if p ∈ V ⊆ U for some open V ⊂ X,
0 else.

In particular, if p ∈ U , then Gp = Fp and if p /∈ U , then Gp = 0. Since stalks before and after
sheafification are same, therefore we have our result for stalks. Next, (j!F)|U = F because over U ,
the presheaf G|U itself is a sheaf, so sheafification of G will yield a sheaf equal to F over U . Further
j!F is unique with the two properties as if for any other sheaf G which satisfies that G|U = F,
then we get an map of presheaves G → G which induces an isomorphism on stalks. By universal
property of sheafification (Theorem 2.0.1), we deduce that j!F ∼= G.

With the above result, we have a useful short exact sequence.

Corollary 3.0.11. Let X be a space and F be a sheaf over X. Let i : Z ↪→ X be a closed subspace
and j : U = X \ Z ↪→ X be the corresponding open subspace. Then there is a short exact sequence

0 −→ j!F|U −→ F −→ i∗F|Z −→ 0

where F|Z = i−1F. We call this the extension by zero short exact sequence.

Proof. Following the notation of proof of Proposition 3.0.10, we see that we have an injective map
G → F, which then by universal property and local nature of injectivity gives an injective map
j!F|U → F. The map F → i∗F|Z is obtained by considering the unit map of the adjunction i∗ ⊢ i−1.
This is surjective because on the stalks, we obtain (i∗F|Z)p = Fp if p ∈ Z or 0 otherwise by above
result. To show exactness at middle, we again go to stalks (Lemma 3.0.8) and observe that if p ∈ U ,
then we get exact sequence 0 → Fp

id→ Fp → 0 → 0 and if p ∈ Z, then we get the exact sequence
0→ 0→ Fp

id→ Fp → 0.

4 Sheaves are étale spaces

Another important and in some sense dual viewpoint of sheaves over X is that they can be equiv-
alently defined as a certain type of bundle over X and all such bundles arises only from a sheaf.
This is important because this viewpoint naturally extends the usual concepts of covering spaces,
bundles and vector bundles to that of sheaves. In particular, a lot of classical constructs in algebraic
topology can be equivalently be seen as specific instantiates of the notion of étale space of the sheaf.

Definition 4.0.1. (Étale space) Let X be a topological space and let π : E → X be a bundle
over X. Then (E, π,X) is said to be étale over X or just étale if for all e ∈ E, there exists an open
set V ∋ e of E such that p(V ) is open and p|V : V → p(V ) is a homeomorphism, that is, if p is
a local homeomorphism. A morphism of étale spaces (E1, π1, X), (E2, π2, X) over X is given by a
continuous map f : E1 → E2 such that π2 ◦ f = π1. Denote the category of étale spaces over X by
Et/X.
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Clearly, covering spaces over X are étale spaces over X, but not all étale spaces over X are
covering, of-course. We now wish to show that the sheafification functor factors through a functor
mapping a presheaf to an étale space. In particular, we want to show the existence of functor F,G
so that the following commutes

Et/X

PSh(X) Sh(X)

G F

(−)++
.

Construction 4.0.2. (Étale space of a sheaf ) Let us now show the construction of the above
functors:

1. (The functor G) Let P be a presheaf over X. The étale space E := G(P ) is given by the
disjoint union of all stalks:

E :=
∐
x∈X

Px.

The topology on E is given by the initial topology of the map

π : E −→ X

sx 7−→ x.

In particular, E has a basis given by sets of the form BU,s ⊆ E where BU,s = {sx ∈ E | x ∈ U}
and s ∈ P (U). Next, we wish to establish that π is a local homeomorphism. So take any
sx ∈ E and consider the basic open set BU,s ∋ sx. The map π|BU,s

: BU,s → π(BU,s) takes
sx 7→ x. This is a homeomorphism because we can construct an inverse given by x 7→ sx. A
simple calculation checks that this is continuous. Hence indeed, (E, π,X) is an étale space
over X.

Next consider a map of presheaves ϕ : F → G. We can construct a map of corresponding
étale spaces as

ϕ̂ : (EF , πF , X) −→ (EG, πG, X)
sx 7−→ ϕx(sx).

This map is continuous and a valid bundle map over X. This defines the functor G.
2. (The functor F ) Let π : E → X be an étale space over X. Then, we can construct a sheaf E

over X out of it. This is done in a very natural way by considering the set of sections over U
of E to be quite literally the set of cross-sections5 of map π on U . That is, define:

E(U) := {s : U → E | π ◦ s = idU}.

The fact that this is indeed a sheaf can be seen by a general phenomenon that for any con-
tinuous map f : X → Y , the set of all cross-sections of f over open subsets of Y assembles

5In-fact, historically the notion of sheaf was really that of this étale space, and that is why to this day, we still
use the terminology of "sections" of a sheaf over an open subset.
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itself into a sheaf. Hence, we have constructed a sheaf E out of an étale space E over X.

Next consider a map of étale spaces ξ : (E1, π1, X)→ (E2, π2, X). we can construct a map of
corresponding sheaves ξ̃ : E1 → E2 by defining the following for open U ⊆ X:

ξ̃U : E1(U) −→ E2(U)
s 7−→ ξ ◦ s.

One can check that this is indeed a valid sheaf morphism. This defines the functor F .

We then see that the categories Et/X and Sh(X) are equivalent.

Theorem 4.0.3. 6 (The étale viewpoint of sheaves) Let X be a topological space. The functors F
and G as defined in Construction 4.0.2 defines an equivalence of categories

Sh(X) ≡ Et/X.

We will prove this result in many small lemmas below. We would first like to observe that for
any étalé bundle E over X yields a sheaf by F (E) whose stalks are bijective to fibres of E.

Lemma 4.0.4. Let (E, π,X) be an étalé bundle over X and let E be the sheaf obtained by
F ((E, π,X)). Then, for any x ∈ X, the following is a bijection

τx : Ex −→ Ex := π−1(x)
(U, s)x 7−→ s(x).

Proof. We first show that τx is injective. Let (U, s)x, (V, t)x be two germs such that p = s(x) = t(x).
We wish to show that s and t are equal on an open subset in U ∩ V . As E is étaleé, therefore we
have an open A ⊆ E with p ∈ A such that π|A : A → π(A) is a homeomorphism. Consequently,
we see that the open set W = π(A) ∩ U ∩ V would do just fine.

We now show surjectivity. Pick e ∈ Ex. As E is étalé, we thus get an open set A ∋ e in
E such that π|A : A → π(A) is a homeomorphism. Denote the inverse of this homeomorphism
by g : π(A) → A. This is therefore a section of E over π(A) where x ∈ π(A). Consequently,
(π(A), g)x ∈ Ex is such that τx maps it to e.

Proof of Theorem 4.0.3. We first show that F ◦G is naturally isomorphic to sheafification functor.
Let E be a presheaf, (E, π) = G(E) and F (E, π) = E′. We wish to show that there is a natural
isomorphism E++ → E′. By Theorem 2.0.1 and 3.0.6, 3, it suffices to show that there is a map of
presheaves E→ E′ which is isomorphism on stalks.

Consider the map ϕ : E→ E′ which on an open set U ⊆ X gives the following map

ϕU : E(U) −→ E′(U)

s 7−→ U
fU,s→ E

6Exercise II.1.13 of Hartshorne.
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where fU,s : U → E maps as x 7→ (U, s)x. Since fU,s is just the stalk map, then as in Construction
4.0.2, fU,s is continuous. Now on the stalks, we get the following commutative diagram by Lemma
4.0.4:

Ex E′
x

Ex

∼=

ϕx

,

where the vertical map takes a germ (U, s)x and maps it to the element represented in Ex = Ex,
as Ex = π−1(x) = {x ∈ E | π(e) = x} = {(U, s)y ∈ E | π((U, s)y) = y = x}. Consequently, the
vertical map is a bijection and thus ϕx is a bijection. The naturality of this isomorphism can be
checked trivially.

We now wish to show that G ◦ F is naturally isomorphic to the identity functor on Et/X.
Pick an étalé bundle (E, π) over X, denote F (E, π) = E and G(E) = (E′, π′). We wish to find a
homeomorphism ϕ so that the following commutes:

E′ E

X

π′
π

ϕ

.

Consider the following map

ϕ : E′ −→ E

(U, s)x 7−→ s(x).

By Lemma 4.0.4, ϕ is a bijective map. We thus reduce to showing that ϕ is a continuous open map.

To show continuity, consider an open set A ⊆ E and then observe that

ϕ−1(A) = {(U, s)x ∈ E′ | s(x) ∈ A}
= {(U, s)x ∈ E′ | x ∈ s−1(A)}
=

⋃
U∋x,s:U→E

BU,s

and since BU,s ⊆ E′ is a basic open, therefore ϕ is continuous.

Finally, to show that ϕ is open, one reduces to showing that if s : U → E is a continuous
section of bundle (E, π) and U ⊆ X is an open set, then s(U) is an open set in E (by working
with a basic open BU,s ⊆ E′). This follows from the fact that since π is a local homeomorphism,
therefore for each e ∈ s(U), there exists an open set A ∋ e in E such that s(U) ∩ A ∋ e and since
π : s(U)∩A→ π(s(U)∩A) = U ∩ π(A) is a homeomorphism, we further get that s(U)∩A is open
(as U ∩ π(A) is open). Consequently, s(U) is open.

Remark 4.0.5. (The sheaf associated to a covering space) By the above equivalence, each covering
space space over X, which is an étale map, determines a unique sheaf (upto isomorphism). We
analyze this sheaf. Recall that a local system is just a name for locally constant sheaf. We write
LocSys(X) to denote the category of all local systems.
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Proposition 4.0.6. Let X be a connected and locally path-connected space. The there is an equiv-
alence of categories

Cov(X) ≡ LocSys(X)

where Cov(X) is the category of covering spaces over X and LocSys(X) is the category of locally
constant sheaves of sets over X.

Proof. We will show that this equivalence is induced from the equivalence of Theorem 4.0.3. It
is sufficient to show that F maps covering spaces to locally constant sheaves and vice-versa for
G. Indeed, if (E, p,X) is a covering space and E is the associated sheaf, then for a connected
evenly covered neighborhood U ⊆ X for which p−1(U) = ⨿α∈AUVα where p : Vα → U is a
homeomorphism, we get that the set of sections E(U) is just AU by connectedness. Moreover, it is
clear that E(V ) = AU again for any connected V ⊆ U . This shows that E|U = AU . Hence E is a
local system.

Conversely, if E is a local system with (E, p,X) its associated étale space, then for U ⊆ X such
that E|U = A, we get that p−1(U) = ⨿x∈UEx = ⨿x∈UA = ⨿α∈AVα where Vα = {α ∈ Ax | x ∈ U}.
We first claim that Vα is open. Indeed, it is the basic open set BU,α. Next, Vα ∩ Vβ = is clear.
Finally, p : Vα → U being a homeomorphism is also clear as this is a bijection and p is an open
map as it is étale.

5 Direct and inverse image
Let f : X → Y be a continuous map of topological spaces. Then one can derive two functors
f∗ : Sh(X) → Sh(Y ) and f−1 : Sh(Y ) → Sh(X) which are adjoint of each other, called direct
and inverse image functors respectively. While f∗ is easy to define, it is usually the inverse image
of a sheaf that causes trouble for its obscurity if one works with the definition that inverse image
functor is left-adjoint to direct image functor. This is resolved by working with the corresponding
étale spaces (Theorem 4.0.3). In this section we will show how to construct them.

Let us first define the direct image functor.

Definition 5.0.1. (Direct image) Let f : X → Y be a continuous map. Then, for any sheaf F
on X, we can define its direct image under f as f∗F whose sections on open V ⊆ Y are given by

(f∗F)(V ) := F(f−1(V )).

This can easily be seen to be a sheaf. For any map of sheaves ϕ : F → G on X, we can define the
map of direct image sheaves as

(f∗ϕ)V : f∗F(V ) −→ f∗G(V )
s 7−→ ϕf−1(V )(s).

This defines a functor

f∗ : Sh(X) −→ Sh(Y ).

One defines the inverse image of a sheaf as follows:
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Definition 5.0.2. (Inverse image) Let f : X → Y be a continuous map and let G be a sheaf over
Y . Consider a presheaf F over X constructed by the data of G as follows. Let U ⊆ X be open,
then define

f+G(U) := lim−→
open V⊇f(U)

G(V ),

where restriction maps of f+G is given by the unique map obtained by universality of colimits.
Then, f+G is a presheaf over X and this construction is functorial again by universal property of
colimits:

f+ : PSh(Y ) −→ PSh(X).

Let f−1G = (f+G)++ denote the sheafification of f+G. This sheaf is called the inverse sheaf of G
under f . Now for any map of sheaves ϕ : G → H over Y , we get a corresponding map of inverse
image sheaves f−1ϕ : f−1G −→ f−1H by composition of two functors. This yields a functor

f−1 : Sh(Y ) −→ Sh(X).

As is visible, this definition is quite obscure if one likes elemental definitions. We thus give some
general properties enjoyed by inverse sheaf.

Lemma 5.0.3. Let f : X → Y be a continuous map and G be a sheaf over Y .
1. If f is open, then f−1G = G(f(−)).
2. If f is constant to y ∈ Y , then f−1G is the constant sheaf on X with sections Gy.
3. If X = {x} is a singleton space, then f−1G is the constant sheaf on X with sections Gf(x).
4. If x ∈ X, then

(f−1G)x ∼= Gf(x).

Proof. 1. One notes that f+G(U) := lim−→V⊇f(U) G(V ) = G(f(U)). The mapping G(f(−)) is a sheaf,
hence sheafifying it will yield the same sheaf.
2. We see that f+G(U) = lim−→V⊇f(U) G(V ) = lim−→V ∋y G(V ) = Gy and presheaves with constant values
are sheaves, as restrictions are identity.
3. We see that f+G(U) = lim−→V⊇f(U) G(V ) = lim−→V ∋f(x) G(V ) = Gf(x) and presheaves with constant
values are sheaves, as restrictions are identity.
4. By passing to the right adjoint, one observes that for f : X → Y and g : Y → Z continuous
maps, one can obtain the following natural isomorphism of functors

(g ◦ f)−1 ∼= f−1 ◦ g−1.

Consider the composite f ◦ ι where ι : {x} ↪→ X is the inclusion map. Consequently, by 3. above,
we obtain the following

Gf(x) ∼= (f ◦ ι)−1(G)({x})
∼= (ι−1 ◦ f−1)(G)({x})
∼= ι−1(f−1G)({x})
∼= (f−1G)f(x).
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The following is a fundamental duality between inverse and direct image functors.

Theorem 5.0.4. 7 (Direct and inverse image adjunction) Let f : X → Y be a continuous map.
Then the the inverse image functor is the left adjoint of direct image functor 8

Sh(Y ) Sh(X)
f∗

f−1

.

In particular, we have a natural bijection

HomSh(X)
(
f−1F,G

) ∼= HomSh(Y ) (F, f∗G).

One situation that we will find ourselves a lot in algebraic geometry is when f : X → Y will
be a closed immersion of topological spaces (f : X → f(X) is homeomorphism and f(X) ⊆ Y is
closed) and for a sheaf F over X, we would like to find (f∗F)f(x) for each point x ∈ X. This is a
situation where the stalk of direct image can be calculated quite easily.

Lemma 5.0.5. Let f : X → Y will be a closed immersion of topological spaces and F a sheaf over
X. Then, there is a natural isomorphism

(f∗F)f(x) ∼= Fx.

Proof. From a straightforward unravelling of definitions of the two stalks, the result follows from
the observation that each open set U ∋ x in X is in one-to-one correspondence with open set
f(U) ∋ f(x) in Y .

Remark 5.0.6. We wish to know how the inverse image of sheaves changes the stalk. Let f : X →
Y be a continuous map and let F be a sheaf on Y . Consider the inverse sheaf f−1F on X. Let
x ∈ X. Then we have that (Lemma 5.0.3, 4)

(f−1F)x ∼= Ff(x).

The importance of this is that, suppose f : X → Y is given together with F and G are sheaves over
X and Y respectively and a map ϕ♭ : G→ f∗F over Y , which is equivalent to ϕ♯ : f−1G→ F over
X. Now, most of the time, our interest in a sheaf is only limited to stalks (functions defined in
some open subset around a point), therefore we are mostly interested in considering only the map
induced at the level of stalks at a point f(x) ∈ Y :

ϕ♭f(x) : Gf(x) −→ (f∗F)f(x).

But the description of the stalk (f∗F)f(x) is usually not simple to derive. But dually, we may ask
the map of stalks of the other map at x ∈ X, and we directly land into the stalks

ϕ♯x : Gf(x) ∼= (f−1G)x −→ Fx.

7Exercise II.1.18 of Hartshorne.
8admirers of topoi may see this as a quintessential example of geometric map of topoi.
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However, this is a strange map as the stalks are of sheaves which are not on same space. In
particular, this map is given as follows. For any open V ∋ f(x) in Y , we have the following maps:

G(V ) F(f−1(V )) Fx
ϕ♭
V .

Passing to colimits (ϕ♭V commutes with restrictions), one can see that we get the map ϕ♯x : Gf(x) →
Fx back.

It is a good principle to keep in mind that if we wish to work with explicit local sections, then
we should look for the "flat" map and if it is enough to work with germs, then we should look for
the "sharp" map, even though the above remark telling us how to construct the map of stalks from
the "flat" maps on each open set.

This map ϕ♯x can be heuristically be defined as the map which on sections which makes sure
that a non-invertible section remains non-invertible after going through the map. Hence we mostly
work only with maps f−1G → F if we are interested only at the stalk level (which is more than
enough for us).

6 Category of sheaves

We will discuss some basic properties of the category of sheaves over X, denoted Sh(X). This is
important as we wish to calculate cohomology of its objects, hence we would require the notion of
injective and projective resolutions of sheaves. We covered the homological methods necessary for
this section in the Homological Methods, Chapter ??. Let us first begin with a more categorical
definition of sheaves.

Definition 6.0.1. (Sheaf of sets - categorical defn.) Suppose X is a topological space and
O(X) is the posetal category of open sets of X, ordered by inclusion. Then a presheaf

F : O(X)op −→ Sets

is a sheaf if for any open set U and any covering of U = ⋃
i∈I Ui, we have that

FU

∏
i∈I FUi

∏
i,j∈I F (Ui ∩ Uj)

e

q

p

is an equalizer diagram, where the unique maps e, p & q are given as:
• e : for a f ∈ FU , e maps it as

e(f) = {F (Ui ⊂ U)︸ ︷︷ ︸
FU→F (Ui)

(f)} ∈
∏
i

F (Ui)

That is, e maps each element f of the FU via the set map under the functor F of the inclusion
Ui ⊂ U .
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• p : for a sequence {fi} ∈
∏
i∈I FUi, p maps it as

p({fi}) = {F (Ui ∩ Uj ⊂ Ui)︸ ︷︷ ︸
FUi→F (Ui∩Uj)

(fi)} ∈
∏
i,j∈I

F (Ui ∩ Uj)

That is, p maps each component yi of the sequence {yi} via the set map under the functor F
of the inclusion Ui ∩ Uj ⊂ Ui.

• q : for a sequence {fi} ∈
∏
i∈I FUi, q maps it as

q({fi}) = {F (Ui ∩ Uj ⊂ Uj)︸ ︷︷ ︸
FUj→F (Ui∩Uj)

(fj)} ∈
∏
i,j∈I

F (Ui ∩ Uj)

That is, q maps each component yi of the sequence {yi} via the set map under the functor F
of the inclusion Ui ∩ Uj ⊂ Uj.9

6.1 Coverings, bases & sheaves

We now quickly discuss some easy properties of sheaves. In the following, a Subsheaf of a sheaf
F is defined as a subfunctor of F which also satisfies the sheaf property (is a sheaf itself).

Proposition 6.1.1. A subfunctor S of a sheaf F is a subsheaf if and only if for any open set U
and it’s open covering

⋃
i∈I Ui together with an f ∈ FU , we have f ∈ SU if and only if f |Ui

∈
SUi ∀ i ∈ I.

Proof. (L =⇒ R) Suppose S is a subsheaf, then clearly for any f ∈ SU ⊂ FU , we must have
f |Ui

∈ SUi for all i ∈ I and for any such collection of f |Ui
, by the sheaf property of S, f ∈ SU .

(R =⇒ L) Since S is a subfunctor of F , therefore SV ⊂ FV for any open V . With this, because
F is a sheaf, we have the following diagram:

SU
∏
i SUi

∏
i,j S(Ui ∩ Uj)

FU
∏
i FUi

∏
i,j F (Ui ∩ Uj)

where the bottom row is the equalizer. The condition on the right says that for f ∈ FU , f ∈
SU ⇐⇒ {f |Ui

} ∈
∏
i SUi, which means that the left square is a pullback. Now because SU

is universal due to it being a pullback, and since the top row infact commutes, therefore SU is
universal with top row commuting, hence, it is an equalizer.

6.1.1 Sheaf itself is local

Define restriction of a sheaf F on X restricted to open U ⊂ X to be the F |U (V ) = F (V ) where
V ⊂ U , and F |U (U) = F (φ) = {∗} if V ̸⊂ U .

9Refraining to write F (V ⊂ U) = FU → FV to be equal to the restriction (−)|V exaggerates the emphasis on
the abstract nature of sheaf F , that is, it helps to imagine that FU might not always be a set of specific maps over
U , even though in most examples of interest it is the case.
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Theorem 6.1.2. Suppose X is a space with a given open covering X = ⋃
k∈IWk. If there are

sheaves for each k,

Fk : O(Wk)op −→ Sets
10such that

Fk|Wk∩Wl
= Fl|Wk∩Wl

11 then, ∃ a sheaf F on X,

F : O(X)op −→ Sets

unique upto isomorphism such that
F |Wk

∼= Fk.

This theorem hence shows that the restriction functor U 7→ Sh (U) and V ⊂ U 7→ (Sh (U) →
Sh (V ), F |U 7→ F |V ) on O(X) is local enough to be almost a sheaf. If only for any sheaf F,G
on X, we had that F |Wk

= G|Wk
∀ k would imply that F = G, which is not the case in general

however, then we would have said that this restriction functor is also a sheaf.

6.1.2 Sheaf over a basis of X

A basis of a space X is a subset of topology B ⊂ O(X) such that for any open U ∈ O(X),
∃{Bi} ⊆ B such that U = ⋃

iBi.
It turns out that the restriction functor r : Sh (X) −→ Sh (XB) which restricts each sheaf over X
to that of open sets of basis B establishes an equivalence of categories!

Theorem 6.1.3. Suppose X is a topological space and B is a basis for X. Then, the restriction
functor

r : Sh (X) −→ Sh (XB)
F 7−→ F |B

η : F =⇒ G 7−→ η|B : F |B =⇒ G|B

establishes an equivalence of categories between Sh (X) and Sh (XB).

Proof. For any sheaves F,G in Sh (X), we want to show that HomSh(X) (F,G) ∼= HomSh(XB) (rF, rG),
that is, r is fully faithful. One can see that there r is an injection between the above hom-sets as
for any ϵ, η : F ⇒ G, if rF = F |B = G|B = rG, then due to the commutation of the two squares
below because of naturality, (take U = ⋃

iBi to be any open set and it’s trivial open covering from
basic open sets)

FU
∏
i FBi

GU
∏
iGBi

ϵU ηU

eF

eG

∏
i
ϵBi

∏
i
ηBi

10where O(Wk)op is the opposite category of all open subsets of open set Wk and inclusion.
11This condition implies that for any open subsets Vk ⊂ Wk and Vl ⊂ Wl, F (Vk∩Wk∩Wl) = F (Vl∩Wk∩Wl) and for

arrows X1 ⊂ X2 in O(Wk) & Y1 ⊂ Y2 in O(Wl), F (X1∩Wk∩Wl ⊂ X2∩Wk∩Wl) = F (Y1∩Wk∩Wl ⊂ Y2∩Wk∩Wl).
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one can infer ϵU = ηU (eF and eG are equalizers, so are monic).
With the information κ : rF ⇒ rG, one can construct a natural transformation γ : F ⇒ G by
defining FU and GU , for any open U with it’s basic cover U = ⋃

iBi where Bi ∈ B, as the equalizer
of the parallel arrows ∏i F |B Bi ⇒

∏
i,j F |B Bi∩Bj and

∏
i G|B Bi ⇒

∏
i,j G|B Bi∩Bj , respectively.

Then, one defines γU : FU → GU by noticing that the former forms a cone over the latter, due to
arrows ∏

i κBi :
∏
i F |B Bi →

∏
i G|B Bi and

∏
i,j κ(Bi ∩Bj) :

∏
i,j F |B Bi ∩Bj ⇒

∏
i,j G|B Bi ∩Bj ,

so that there exists a unique arrow FU → GU , which we just define as γU .
With this, we see that r is fully faithful. Finally, with the above definitions, rF ∼= F |B where
F ∈ Sh (X) is the sheaf obtained by the above process from F |B ∈ Sh (XB) because both of them
are equalizers of the same diagram for any open set U = ⋃

iBi and it’s basic covering (note that
any covering of U can be decomposed into basic covering).

6.2 Sieves as general covers

This is related to generalization of sheaves to topos theory. As we saw in Definition ??, a subfunctor
of Yon (C) = Hom (−, C) is a sieve, therefore this notion would allow us to generalize the notion
of covering of a space, as we will see later. But for now, the shadow of that more general notion
can still be felt in the usual category O(X) of open sets of X.

Definition 6.2.1. (Principal Sieve) Suppose X is a topological space and U is open. Then the
sieve S, generated from U , that is,

S = {V : open V ⊂ U}

is said to be a principal sieve, denoted S = ⟨U⟩, generated by a single open set.

With Definition 6.2.1, we can now define a new notion of covering of an open set, purely in
terms of arrows onto it!

Definition 6.2.2. (Covering Sieve) Suppose X is a topological space and U is open in it. A
sieve S on U is said to cover U if

U =
⋃
W∈S

W.

That is, when U is union of all open sets in the sieve S.

Remark 6.2.3. It can be seen quite easily that a subfunctor S of Yon (U) is a principal sieve over
U if and only if S is a subsheaf. L =⇒ R by Proposition ?? and R =⇒ L by noting that the
union of all sets in S would generate it. Remember that you can take covers of only those open
sets which are members of S because S is a subsheaf.

The above definition in effect can be replaced with in the definition of sheaves!

Proposition 6.2.4. A presheaf P : O(X)op −→ Sets on a topological space X is a sheaf if and
only if for any open U and a covering sieve S over U , we have that the inclusion nat. trans.
iS : S =⇒ Yon (U) induces an isomorphism:

Hom÷O(X) (S, P )
∼= Hom÷O(X) (Yon (U), P ).
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Proof. We can re-derive the sheaf condition in terms of the covering sieve as follows. For an open
U = ⋃

i Ui, if{fi} ∈
∏
i PUi is such that fi|Ui∩Uj

= fj |Ui∩Uj
, then because S is a covering sieve

of U , therefore this condition is equivalent to a sequence {fV } ∈ PV for all V ∈ S such that
fV |V ′ = f |V ′ whenever V ′ ⊂ V . It can also be seen that every natural transformation η between
S and P can be mapped to an element of ∏V ∈S PV by forming the collection {ηV (∗)}. Similarly,
for any {fV } ∈

∏
V ∈S PV we can construct a nat. trans. {fV : SV = {∗} → PV }. Now, with this,

we can obtain the result by a basic diagram chase around the left square of the following

Hom÷O(X) (S, P )
∏
i PUi

∏
i,j P (Ui ∩ Uj)

Hom÷O(X) (Yon (U), P ) PU

d

Hom◊�O(X)
(iS ,P ) e

where d is the equalizer of the parallel arrows on the right (the fact that this set is the equalizer is
established in the prev. paragraph)

6.3 Sh (X) has all small limits

We now see that Sh (X) has all small limits and the inclusion of Sh (X) to ÷O(X) preserves these
limits.

Proposition 6.3.1. For any topological space X, the category Sh (X) has all small limits and the
inclusion functor

i : Sh (X) ↣÷O(X)

preserves all those limits.

Proof. To show that Sh (X) has all small limits, we can first notice that the singleton functor is
a sheaf, which is the terminal object in Sh (X). Now, to see equalizers, take any parallel arrows
in Sh (X) as F ⇒ G. Since ÷O(X) has all small limits, therefore, we can take the equalizer of this
in it, in turn of taking equalizer in Sh (X). With this, there exists E, the equalizer of F ⇒ G

in ÷O(X). Now because covariant hom-functors preserves limits, therefore for any open U , the
Hom÷O(X) (Yon (U), E) and Hom÷O(X) (S,E) acts as equalizers in the diagram below:

Hom÷O(X) (Yon (U), E) Hom÷O(X) (Yon (U), F ) Hom÷O(X) (Yon (U), G)

Hom÷O(X) (S,E) Hom÷O(X) (S, F ) Hom÷O(X) (S,G)

e◦−

e◦−

−◦is −◦is

g◦−

f◦−

g◦−

f◦−
−◦isfE fF fG

Using Proposition 6.2.4, fF and fG are isomorphisms. A simple diagram chase on the left square
then shows fE is also an isomorphism. Binary products exists by the same process.

The above proposition hence allows us to infer what it means to be a subobject of a sheaf in
Sh (X).
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Corollary 6.3.2. For any topological space X, any subobject of a sheaf F in Sh (X) is isomorphic
to a subsheaf of F .

Proof. Suppose H ⇒ F is a monic, so a subobject of F . Since Sh (X) has all limits (Proposition
6.3.1), so the kernel pair of this arrow would exist in Sh (X) and it’s inclusion in ÷O(X) would
preserve it. By point-wise construction of presheaves in ÷O(X), we can see that H would be
isomorphic to some some subfunctor of F , which would be a sheaf too because it is isomorphic to
H, a sheaf.

6.3.1 Topology of X ∼= Subobjects of Yon (X) in Sh (X)

Finally, we observe that the topology of X is actually isomorphic to subobjects of Yon (X)12 in
Sh (X)!

Proposition 6.3.3. For any topological space X, there exists an isomorphism of the following
posets

O(X) ∼= SubSh(X) (Yon (X))

which is moreover order preserving.13

6.4 Direct and inverse limits in Sh(X)

Since Grothendieck-abelian categories have all colimits, therefore it also has direct limits. We now
show that the direct limits in Sh(X) are obtained by sheafifying the corresponding direct limit in
PSh(X).

Lemma 6.4.1. 14 Let X be a topological space and {Fi} be a direct system of sheaves over X.
Then, the direct limit lim−→i

Fi in Sh(X) is formed by sheafification of the presheaf U 7→ lim−→i
Fi(U).

Proof. Let F denote the presheaf obtained by U 7→ lim−→i
Fi(U) and further denote F = F++, the

sheafification of F . Note that we have Fi
ji→ F → F. We wish to show that F satisfies the

universal property of direct limits in Sh(X). Indeed, take any other sheaf G for which there are
maps fi : Fi → G which further satisfies that for any j ≥ i in the direct set indexing the system,
we have that the following triangle commutes:

G

Fi Fjϕij

fi fj .

12Remember that Yon (X) is the terminal object in Sh (X).
13Remember Proposition ??. Therefore this isomorphism could be extended as:

O(X) ∼= SubSh(X) (Yon (X)) ∼= HomSh(X) (Yon (X),Ω)

when Ω exists. This is the first sign of how sheaves might be related to topoi.
14Exercise II.1.10 of Hartshorne.
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We wish to show that there exists a unique map f̃ : F → G such that for all i, the following
commutes:

G F

Fi F

f̃

ji

fi .

But this is straightforward, as by the universal property of direct limits in PSh(X), we first have a
map f : F → G which makes the bottom left triangle in the above commute. Then, by the universal
property of sheafification (Theorem 2.0.1), we get a corresponding f̃ : F → G which makes the top
right triangle in the above commute. Consequently, we have obtained f̃ which makes the square
commute.
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7 Classical Čech cohomology
Sheaf cohomology becomes an important tool to any attempt at understanding any sophisticated
geometric situation in topology. It is a tool which measures the obstructions faced in extending
a local construction (which are usually not too difficult to make) to a global one (which are most
of the time very difficult to make). To get a feel of why such questions and tools developed to
solve them are important, one may look no further than basic analysis; say in case of Rn, we wish
to extend a local isometry from an open set of Rn to Rm, into a global one between Rn and Rm.
Clearly the former is much, much easier than the latter. In the same vein, we wish to understand
obstructions faced in making local-to-global leaps in the context of schemes, which covers almost
all range of algebro-geometric situations.

Construction 7.0.1 (Čech cochain complex and Čech cohomology of an abelian presheaf.). Let X
be a topological space and F be an abelian presheaf over X. We will construct and discuss the
Čech cohomology groups Ȟq(X;F ). After giving the basic constructions, we will specialize to the
case of schemes in Chapter ??, to prove the Serre’s theorem on invariance of affine refinements of
cohomology of coherent sheaves.

We first construct the Čech cochain complex of F w.r.t. to an open cover U . Let U = {Uα}α∈I
be a fixed open cover of X. We can then define for each i = 0, 1, 2, . . . , a group called the group of
i-cochains of F w.r.t. U :

Ci(U , F ) :=
∏

(α0,...,αi)∈Ii+1

F (Uα0 ∩ Uα1 ∩ · · · ∩ Uαi).

where the product runs over all increasing i + 1-tuples with entries in I15. A typical element
s ∈ Ci(U , F ) is called an i-cochain, whose part corresponding to (β0, . . . , βi) ∈ Ii+1 is denoted by
s(β0, . . . , βi) ∈ F (Uβ0 ∩ · · · ∩Uβi). For example, the set of all 0-cochains is ∏

α0∈I F (Uα0), which is
equivalent to choosing a section for each element of the cover. Similarly, choosing an element from
C1(U , F ) can be thought of as choosing a section for each intersection of two open sets from U .
Similarly one can interpret the higher cochains.

Next, we give the sequence of groups {Ci(U , F )}i∈N∪0 the structure of a cochain complex. In-
deed, one defines the required differential in quite an obvious manner, if one knows the construction
of singular homology. Define a map

d : Ci(U , F ) −→ Ci+1(U , F )
s = (s(α0, . . . , αi)) 7−→ ds

where the components of ds are given as follows for β0, . . . , βi+1 ∈ I:

(ds)(β0, . . . , βi+1) :=
i+1∑
j=0

(−1)jρj(s(β0, . . . , βj−1, βj+1, . . . , βi+1))

=
i+1∑
j=0

(−1)jρj(s(“βj))
15we choose increasing tuples only to make sure we don’t repeat an open set in the product.
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where ρj is the following restriction map of the presheaf F :

ρj : F (Uβ0 ∩ · · · ∩ Uβj−1 ∩ Uβj+1 ∩ Uβi+1) −→ F (Uβ0 ∩ · · · ∩ Uβj−1 ∩ Uβj ∩ Uβj+1 ∩ Uβi+1),

that is, the one where the open set Uβj is dropped from intersection.
This differential can be understood in the simple case of i = 0 as follows. Take s = (s(α0)) ∈

C0(U , F ). Then ds ∈ C1(U , F ) and it corresponds to a choice of a section in the intersection on
each pair of open sets in U . For β0, β1 ∈ I, this choice is given by

(ds)(β0, β1) = ρ0(s(β1))− ρ1(s(β0)).

This is interpreted as "how much far away s(β1) ∈ F (Uβ1) and s(β0) ∈ F (Uβ0) are in the intersection
Uβ1 ∩ Uβ0". If d(s) = 0, then s ∈ C0(U , F ) corresponds to a matching family.

Similarly, for a s ∈ C1(U , F ), we can think of it as a choice of a section on each intersecting pair
of open sets of U . Then, the differential ds ∈ C2(U , F ) for any (β0, β1, β2) ∈ I3 has the component

(ds)(β0, β1, β2) = ρ0(s(β1, β2))− ρ1(s(β0, β2)) + ρ2(s(β0, β1)).

If this quantity is non zero, then it measures "how much the three elements s(β1, β2) ∈ F (Uβ1 ∩
Uβ2), s(β0, β2) ∈ F (Uβ0 ∩ Uβ2) and s(β0, β1) ∈ F (Uβ0 ∩ Uβ1) differs in the combined intersec-
tion Uβ0 ∩ Uβ1 ∩ Uβ2". Indeed, suppose the three agree on F (Uβ0 ∩ Uβ1 ∩ Uβ2). Then, we have
ρ0(s(β1, β2)) = ρ1(s(β0, β2)) = ρ2(s(β0, β1)). Consequently, ds(β0, β1, β2) = ρ2(s(β0, β1)).

Now it is quite obvious that in order to measure the failure of an element of Ci(U , F ) to "match
up in one level above" will be measured by the homology of the cochain complex. Indeed that is
what we do now.

For any s ∈ Ci(U , F ), it is observed by doing the summation and using the fact that the
restriction maps ρ are group homomorphisms that

d2 = 0.

Hence, we have a cochain complex, called the Čech cochain complex w.r.t. U :

C0(U , F ) C1(U , F ) C2(U , F ) · · ·ddd

The cohomology of this complex is denoted by

Hq(U ;F ) := Ker (d)
Im (d) =: ZqU ,F

Bq(U ,F)

for Cq+1(U , F )← Cq(U , F )← Cq−1(U , F ). The subgroup Bq(U ,F) = Im (d) =⊆ Cq(U , F ) is called
the group of q-coboundaries, whereas the group Zq(U ,F) = Ker (d) ⊆ Cq(U , F ) is called the group
of q-cocycles.

To define the general Čech cohomology groups, we need to take limit of cohomology groups with
respect to finer and finer open covers. To this end, we first define the following. Let U = {Uα}α∈I
and V = {Vβ}β∈J be two open covers. Then, V is said to be finer than U if for all j ∈ J , there is
an i ∈ I such that Vj ⊆ Ui. We therefore obtain a function σ : J → I such that Vj ⊆ Uσ(j).
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For two open covers U ,V where V is finer than U as above, we first get a map of cochain
complexes given by

rU ,V : Cq(U , F ) −→ Cq(V, F )
s 7−→ rU ,V(s)

where for any (β0, . . . , βq) ∈ Jq+1, we define

rU ,V(s)(β0, . . . , βq) = ρ (s(σβ0, . . . , σβq))

for ρ : F (Uσβ0 ∩ · · · ∩ Uσβq) −→ F (Vβ0 ∩ · · · ∩ Vβq) is the restriction map of F . As restriction
homomorphisms commute with themselves, therefore we have that the following square commutes

Cq(U , F ) Cq+1(U , F )

Cq(V, F ) Cq+1(V, F )

rU,V rU,V

d

d

,

showing that rU ,V : C•(U , F ) → C•(V, F ) is a map of cochain complexes. Consequently, we get a
map at the level of cohomology also denoted by

rU ,V : Hq(U , F ) −→ Hq(V, F ).

We call the above the refinement homomorphism.
We now wish to show that if V is a refinement of U via σ : J → I, then the refinement

homomorphism rU ,V on cohomology doesn’t depend on σ; there might be many such σ making V
finer than U , but all give same refinement homomorphism on cohomology.

Lemma 7.0.2. The refinement homomorphism rU ,V is independent of σ.

Proof. Let r, r′ : Cq(U , F ) → Cq(V, F ) be the refinement homomorphisms on cochain level for
σ, τ : J → I respectively. Pick any q-cocycle s ∈ Cq(U , F ). We wish to show that r(s)− r′(s) is a
q-coboundary w.r.t. V. The following t ∈ Cq−1(V, F )

t(α0, . . . , αq−1) :=
q−1∑
j=0

(−1)jρ (s (σα0, . . . , σαj , ταj , ταj+1, . . . , ταi−1))

where ρ : F (Uσα0 ∩ · · · ∩Uσαj ∩Uταj ∩ · · · ∩Uταi−1) −→ F (Vα0 ∩ · · · ∩Vαj ∩ · · · ∩Vαi−1) is such that

r(s)− r′(s) = dt

in Cq(V, F ). This can be checked by expanding dt and using the fact that ds = 0. This calculation
is omitted for being too cumbersome to write.

This finally allows us to define Čech cohomology of a presheaf over a topological space as follows.
Let O be the poset of all open covers of X ordered by refinement. The Čech cohomology groups
of presheaf F are then defined to be

Ȟq(X,F ) := lim−→
U∈O

Hq(U , F ).
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Diagrammatically, we have for any two open covers U and V where V is a refinement of U the
following

Ȟq(X,F )

Hq(U , F ) Hq(V, F )rU,V

.

This completes the construction of Čech cohomology groups.
Let us first see something that we hinted during the construction.

Lemma 7.0.3. Let X be a space and F be a sheaf over X. Then, for any open cover U of X, we
have

H0(U ,F) ∼= Γ(X,F).

Consequently, we have Ȟ0(X,F) ∼= Γ(X,F).
Proof. We first have H0(X,F ) = Ker (d) where d : C0(U , F ) → C1(U , F ). But any s ∈ Ker (d) is
equivalent to the data of a matching family over U . As F is a sheaf, therefore this gives rise to a
unique element in Γ(X,F). Conversely, by restriction, we get an element of Ker (d) via a global
section.

Let us first see an example computation of Ȟ1(X,F ).
Example 7.0.4. Let X = S1 and F = K be the constant sheaf of a field K. Further, let U be the
open cover obtained by dividing S1 into n-open intervals U1, . . . , Un where Ui ∩Ui+1 and Ui ∩Ui−1
are non-empty and Ui ∩ Uj is empty for all j ̸= i, i + 1, i − 1. We wish to calculate H1(U ,K). To
this end, we first see that

C0(U ,K) =
n∏
i=1

K(Ui) = K⊕n

and

C1(U ,K) =
n∏
i=1

K(Ui ∩ Ui+1) = K⊕n.

For q ≥ 2, we clearly have Cq(U ,K) = 0 as there are no higher intersections. The differential
d : C0(U ,K)→ C1(U ,K) maps as

d(x1, . . . xn) = (x2 − x1, x3 − x2, . . . , x1 − xn).

Consequently,

H0(U ,K) = Ker (d) = {(x1, . . . , xn) ∈ C0(U ,K) | x1 = x2 = · · · = xn} ∼= K

and

H1(U ,K) = C1(U ,K)
Im (d)

∼= K

as C1(U ,K) is an n-dimensional K-vector space and Im (d) is of dimension n−1 because its defined
by one equation deeming the sum of all entries to be 0.
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Construction 7.0.5 (Map in cohomology). Any map of abelian sheaves over X yields a map in
the cohomology as well. Indeed, let ϕ : F → G be a map of sheaves. Then we get a map

ϕq : Cq(U ,F) −→ Cq(U ,G)
s = (s(α0, . . . , αq)) 7−→ ϕq(s) =

(
ϕα0...αq(s(α0, . . . , αq))

)
where ϕα0...αq = ϕUα0∩···∩Uαq

.
It then follows quite immediately from the fact that each ϕα0...αq is a group homomorphism

that dϕq = ϕq+1d. It follows that we get a map of chain complexes

ϕ• : C•(U ,F) −→ C•(U ,G).

Hence, we get a map in cohomology

ϕq : Hq(U ,F) −→ Hq(U ,G).

Finally, this gives by universal property of direct limits a unique map

ϕq : Ȟq(X,F) −→ Ȟq(X,G)

such that for every open cover U , the following diagram commutes:

Ȟq(X,F) Ȟq(X,G)

Hq(U ,F) Hq(U ,G)

ϕq

ϕq

where vertical maps are the maps into direct limits.

The main tool for calculations with cohomology theories is the cohomology long exact sequence.
We put below, without proof, the main theorem of Čech cohomology which gives a condition
for an exact sequence of sheaves to induce this long exact sequence in cohomology. Recall X is
paracompact if it is Hausdorff and every open cover has a locally finite refinement. Such spaces are
always normal. We first give an explicit description of the first connecting homomorphism.

Construction 7.0.6 (Connecting homomorphism). Let X be a topological space and

0 F G H 0ϕ ψ

be an exact sequence of sheaves on X. We define the connecting homomorphism

Ȟ0(X,H) Ȟ1(X,F)δ

as follows. First, pick any h ∈ H0(X,H) = Γ(X,H). As ψ is surjective therefore there exists an
open covering U = {Ui}i∈I of X and gi ∈ G(Ui) such that ψUi(gi) = h|Ui

. Using (gi) and (Ui) we
construct a 1-cocycle for F as follows. Observe that for each i, j ∈ I, we have ψUi∩Uj (gi − gj) = 0
in H(Ui ∩ Uj). Thus, gi − gj ∈ Ker

(
ψUi∩Uj

)
. By exactness guaranteed by Lemma 3.0.8, it follows
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that there exists fα0α1 ∈ F(Uα0 ∩ Uα1) such that ϕUα0∩Uα0
(fα0α1) = gα0 − gα1 , for each α0, α1 ∈ I.

We claim that the element

f := (fα0α1)α0,α1 ∈
∏

(α0,α1)∈I2
F(Uα0 ∩ Uα1) = C1(U ,F)

is a 1-cocycle. Indeed, we need only check that df = 0 in C2(U ,F). Pick any (α0, α1α2) ∈ I3. We
wish to show that df(α0, α1α2) = 0. Indeed,

df(α0, α1α2) =
2∑
j=0

(−1)jρj
(
fα0α̂jα2

)
= fα1α2 − fα0α2 + fα0α1

in F(Uα0∩Uα1∩Uα2). We claim the above is zero. Indeed, By Lemma 3.0.8 on V := Uα0∩Uα1∩Uα2

we get that ϕV is injective. But since

ϕV (fα1α2 − fα0α2 + fα0α1) = ϕV (fα1α2)− ϕV (fα0α2) + ϕV (fα0α1)
= gα1 − gα2 − (gα0 − gα2) + gα0 − gα1

= 0,

hence it follows that df(α0, α1α2) = 0, as required. Hence f ∈ C1(U ,F) is a 1-cocycle. Thus we get
an element [f ] ∈ H1(U ,F). This defines a group homomorphism Ȟ0(X,H) → H1(U,F). Further
by passing to direct limit, we get an element [f ] ∈ Ȟ1(X,F). We thus define

δ(f) := [f ] ∈ Ȟ1(X,F).

This defines the required group homomorphism δ.
Theorem 7.0.7. Let X be a paracompact space and the following be an exact sequence of sheaves
over X

0→ F1 → F2 → F3 → 0.

Then, there is a long exact sequence in cohomology

0 Ȟ0(X,F1) Ȟ0(X,F2) Ȟ0(X,F3)

Ȟ1(X,F1) Ȟ1(X,F2) Ȟ1(X,F3)
.

8 Derived functor cohomology
We will here define the cohomology of abelian sheaves over a topological space as right derived
functors of the left exact global-sections functor (see Section ?? for preliminaries on derived func-
tors).

Let X be a topological space. In Section 6, we showed that the category of abelian sheaves
Sh(X) has enough injectives. We now use it to define cohomology of F ∈ Sh(X).
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Definition 8.0.1. (Sheaf cohomology functors) Let X be a topological space and Sh(X) be
the category of abelian sheaves over X. The ith-cohomology functor H i(X,−) : Sh(X)→ AbGrp
is defined to be the ith-right derived functor of the global sections functor Γ(−, X) : Sh(X) →
AbGrp. In other words, H i(X,F) for F ∈ Sh(X) is defined by choosing an injective resolution
0→ F

ϵ→ I• in Sh(X) and then

H i(X,F) := hi(Γ(X, I•)).

As sheaf cohomology functors are in particular derived functors, so they satisfy results from
Section ??. The main point in particular being that sheaf cohomology induces a long exact se-
quence in cohomology from a short exact sequence of sheaves. This will be our primary source of
computations.

8.1 Flasque sheaves & cohomology of OX-modules

We would like to see the following theorem.

Theorem 8.1.1. Let (X,OX) be a ringed space. Then the right derived functors of Γ(−, X) :
Mod(OX) → AbGrp is equal to the restriction of the cohomology functors H i(X,−) : Sh(X) →
AbGrp.

Remember that Mod(OX) has enough injectives (Theorem ??) but, apriori, the above two
functors might be different because an injective object in Mod(OX) may not be injective in Sh(X).
Consequently, the above result is important because its relevance in rectifying the cohomology of
OX -modules (which are of the only utmost interest in algebraic geometry) to that of the usual
sheaf cohomology functors. Hence, we may completely work inside the module category Mod(OX).
Clearly to prove such a result, we need a bridge between injective modules in Mod(OX) and either
injective or acyclic objects in Sh(X). Indeed, we will see that this bridge is provided by the
realization that injective modules in Mod(OX) are acyclic because they are flasque.

Definition 8.1.2 (Flasque sheaves). A sheaf F on X is said to be flasque if all restriction maps
of F are surjective.

The following is a simple, yet important class of examples of flasque sheaves.

Example 8.1.3. Let X be an irreducible topological space and A be the constant sheaf over X for
an abelian group A. We claim that A is flasque. Indeed, first recall that any open subspace U ⊆ X
is irreducible, therefore connected. Conseuqently, all restrictions are ρ : A(V )→ A(U) are identity
maps id : A→ A (see Remark 1.0.3). In-fact this shows that on an irreducible space, any constant
sheaf A of abelian group A has section over any open set U as A(U) = A and all restrictions are
identities.

An important property of flasque sheaves is that they have no obstruction to lifting of sections,
a hint to their triviality in cohomology. However, the proof of this is quite non-constructive and
thus a bit enlightening.

Theorem 8.1.4. Let X be a space. If 0 → F1 → F2 → F3 → 0 is an exact sequence of sheaves
and F1 is flasque, then we have an exact sequence of sections over any open U ⊆ X

0→ F1(U)→ F2(U)→ F3(U)→ 0.
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Proof. By left-exactness of global sections functor, we need only show the surjectivity of Γ(F2, X)→
Γ(F3, X). To this end, pick any s ∈ Γ(F3, X). We wish to lift this to an element of Γ(F2, X).
Consider the following poset

P = {(U, t) | U ⊆ X open & t ∈ F2(U) is a lift of s|U}

where (U, t) ≤ (U ′, t′) iff U ′ ⊇ U and t′|U = t. We reduce to showing that P has a maximal element
and it is of the form (X, t). This will conclude the proof.

To show the existence of a maximal element, we will use Zorn’s lemma. Pick any toset of P
denoted T . We wish to show that it is upper bounded. Indeed, let V = ⋃

(U,t)∈T U and t̃ ∈ F2(V )
be the section obtained by gluing t ∈ F2(U) for each (U, t) ∈ T (they form a matching family
because T is totally ordered). We thus have (V, t̃) which we wish to show is in P. Indeed, as t̃ is
obtained by lifts of restrictions of s, therefore t̃ is a lift of s|V by locality of sheaf F3. This shows
that P has a maximal element, denote it by (V, t̃).

We finally wish to show that V = X. Indeed, if not, then V ⊊ X. Pick any point x ∈ X \ V .
Since we have a surjective map on stalks F2,x → F3,x → 0, hence the germ (X, s)x ∈ F3,x can be
lifted to (U, a)x for some open U ∋ x and a ∈ F2(U). We now have two cases. If U ∩ V = ∅, then
(V ∪U, t̃⨿ a) is a lift of s|V ∪U , contradicting the maximality of (V, t̃). On the other hand, suppose
we have U ∩ V ̸= ∅. Let W = U ∩ V . Since W ⊆ V , therefore we have tW ∈ F2(W ) a lift of s|W .
Moreover, by restriction, we have a ∈ F2(W ) also a lift of s|W . It follows that a − tW ∈ F1(W ).
As F1 is flasque, therefore there exists b ∈ Γ(F1, X) which extends a− tW . Consequently, we have
a − b = tW ∈ F2(W ). Observe that a − b ∈ F2(U) is also a lift of s|U because b = 0 in Γ(F3, X)
by the left-exactness of global sections functor. It follows that (U, a − b) and (V, t̃) is a matching
family, which glues to (U ∪ V, c) where c is a lift of s|U∪V as well, contradicting the maximality of
(V, t̃).

Corollary 8.1.5. Let X be a space. If 0 → F1 → F2 → F3 → 0 is an exact sequence of sheaves
where F2 is flasque, then F3 is flasque.

Proof. This is immediate from Theorem 8.1.4 and the following diagram where U ⊇ V an inclusion
of open subsets of X:

F2(U) F3(U) 0

F2(V ) F3(V ) 0

ρ ρ .

Lemma 8.1.6. Let (X,OX) be a ringed space and F be an OX-module. Denote OU = i!OX|U to
be the extension by zeros of OX|U for any open set i : U ↪→ X. Then,

HomOX
(OU ,F) ∼= F(U).

Proof. Indeed, we have the following isomorphisms

HomOX
(OU ,F) ∼= HomOX|U

(
OU |U ,F|U

) ∼= HomOX|U

(
OX|U ,F|U

) ∼= F(U).

The first isomorphism follows from the universal property of sheafification. The second isomorphism
follows from the observation that OU |U = OX|U as is clear from Definition 3.0.9 and the fact that
sheafification of a sheaf is that sheaf back. The last isomorphism follows from Lemma ??, 2.
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Proposition 8.1.7. Let (X,OX) be a ringed space. If I is an injective OX-module, then I is
flasque.

Proof. Let i : U ↪→ X be an open set. Denote OU = i!OX|U (see Definition 3.0.9). We know from
Lemma 8.1.6 that HomOX

(OU , I) ∼= I(U) for any open U ⊆ X. Now, let U ⊆ V be an inclusion of
open sets. To this, we get ρ : I(V )→ I(U) the restriction map. Restricting to open set V , we get
the following injective map by Corollary 3.0.11

0→ OU → OV .

Using injectivity of I, we obtain a surjection

HomOX
(OV , I)→ HomOX

(OU , I)→ 0.

Consequently, we have

I(V )→ I(U)→ 0

where the map is the restriction map of sheaf I. Indeed, this follows from the explicit isomorphism
HomOX

(OX , I) ∼= I(X) constructed in the proof of Lemma ??, 2.

Finally, we see that flasque sheaves have trivial cohomology.

Proposition 8.1.8. Let X be a space and F be a flasque sheaf over X. Then

H i(X,F) = 0

for all i ≥ 1. That is, flasque sheaves are acyclic for the global sections functor.

Proof. Let 0→ F → I be an injective map where I is an injective sheaf. Consequently, we have an
exact sequence of sheaves

0→ F → I→ G→ 0

where G = I/F. It follows from Proposition 8.1.7 that I is flasque. By Corollary 8.1.5 it follows
that G is flasque. By Theorem ??, we have a long exact sequence in cohomology

H i(X,F) H i(X, I) H i(X,G)

H i+1(X,F) H i+1(X, I) H i+1(X,G)

δi

δi+1

.

Since I is injective, therefore by Remark ??, we have H i(X, I) = 0 for all i ≥ 1. It follows from
exactness of the above diagram that δi are isomorphisms for each i ≥ 1, that is,

H i(X,G) ∼= H i+1(X,F).
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But since G is also flasque, therefore by repeating the above process, we deduce that H i+1(X,F) ∼=
H1(X,H) where H is some other flasque sheaf. It thus suffices to show that H1(X,F) = 0. This
follows immediately as we have an exact sequence

0→ Γ(F, X)→ Γ(I, X)→ Γ(G, X)→ H1(X,F)→ 0

where by Theorem 8.1.4, the map Γ(I, X) → Γ(G, X) is surjective and since Γ(G, X) → H1(X,F)
is surjective by exactness, it follows that the map Γ(G, X) → H1(X,F) is the zero map and
H1(X,F) = 0, as required.

An immediate corollary is the proof of Theorem 8.1.1.

Proof of Theorem 8.1.1. Pick any F ∈Mod(OX) and pick an injective resolution of F inMod(OX)

0→ F
ϵ→ I•.

By Proposition 8.1.7, it follows that each Ii is flasque. By Proposition 8.1.8, it follows that the
above is an acyclic resolution for the sheaf F in Sh(X). Denote by Γ̄ : Mod(OX) → AbGrp the
restriction of the global sections functor. We wish to show that RiΓ̄(F) ∼= H i(X,F). By Proposition
??, we have the following isomorphism

RiΓ̄(F) ∼= hi(Γ̄(I•)) = hi(Γ(I•)) ∼= H i(X,F),

as needed.

An important property of flasque sheaves over noetherian spaces is that it is closed under direct
limits.

Proposition 8.1.9. Let X be a noetherian space and {Fα} be a directed system of flasque sheaves.
Then lim−→Fα is a flasque sheaf as well.

8.1.1 Examples

We now present some computations.

Example 8.1.10. 16 Let X = A1
k be the affine line over an infinite field k and Z be the constant

sheaf over X. Let P,Q ∈ X be two distinct closed points and let U = X \C where C = {P,Q} be
an open set. Denote ZU to be the extension by zero sheaf of Z|U over X. We claim that

H1(X,ZU ) ̸= 0.

We will use the extension by zero short exact sequence of Corollary 3.0.11. Denote i : C ↪→ X to
be the inclusion. Then, we have

0→ ZU → Z→ i∗Z|C → 0.

By Theorem ?? and Example 8.1.3, it follows that the following sequence is exact

0→ Γ(ZU , X)→ Γ(Z, X)→ Γ(i∗Z|C , X)→ H1(X,ZU )→ 0.
16Exercise III.2.1, a) of Hartshorne.
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Now suppose that H1(X,ZU ) = 0. It follows that the map Γ(Z, X) → Γ(i∗Z|C , X) is surjective.
Since X is irreducible and hence connected, we yield Γ(Z, X) = Z. Consequently, we have a
surjective map Z → Γ(i∗Z|C , X). It follows that Γ(i∗Z|C , X) = Z or Z/nZ. We claim that this is
not possible by showing that Γ(i∗Z|C , X) is isomorphic to Z⊕ Z, which will yield a contradiction.

We first observe that Γ(i∗Z|C , X) = Γ(Z|C , C). Recall that Z|C = i−1Z. Note that (Z|C)P =
Zp = Z = (Z|C)Q by Lemma 5.0.3. Hence, by Definition 5.0.2 and Remark 2.0.4, we deduce that
(i+Z)P = (i+Z)({P}) = ZP = Z = (i+Z)Q and

Γ(Z|C , C) =


(s, t) ∈ Z ⊕ Z | ∃ opens UP ∋ P,UQ ∋
Q in C & s′ ∈ i+Z(UP ) & t′ ∈
i+Z(UQ) s.t. s = s′P , t = t′Q, s = t′P if P ∈
UQ & t = s′Q if Q ∈ UP .


With this, we observe that for each (s, t) ∈ Z ⊕ Z, if we keep UP = {P} and UQ = {Q} (which is
possible since P ̸= Q are closed points in X), we obtain i+Z(UP ) = Z = i+Z(UQ). Then, we may
take s′ = s and t′ = t to obtain that Γ(Z|C , C) ∼= Z⊕ Z. This completes the proof.

Moreover, one can see that the only properties of A1
k that we needed was that it is irreducible

and P,Q ∈ A1
k are distinct closed points. Consequently, the above result holds true for X an

arbitrary irreducible space and U = X \ {P,Q} where P,Q are two distinct closed points.

Example 8.1.11. Consider the notations of Example 8.1.10. As an exercise in working with
sheaves and sheafification, one can also show that

Γ(ZU , X) = 0.


	Recollections
	The sheafification functor
	Morphisms of sheaves
	Sheaves are étale spaces
	Direct and inverse image
	Category of sheaves
	Coverings, bases & sheaves
	Sheaf itself is local
	Sheaf over a basis of  X 

	Sieves as general covers
	 Sh(X)   has all small limits
	Topology of X  .5-.5.5-.5.5-.5.5-.5 Subobjects of  Yon (X)   in  Sh(X)  

	Direct and inverse limits in Sh (X)

	Classical Čech cohomology
	Derived functor cohomology
	Flasque sheaves & cohomology of OX-modules
	Examples



