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1 Smooth manifolds

Question 1. Show that the following two are equivalent:

1. X is a smooth manifold as in Milnor-Stasheff.
2. X is a smooth manifold as is defined contemporarily.

Proof. (1. ⇒ 2.) Let X ⊆ RA be a smooth n-manifold as in Milnor-Stasheff. We wish to produce an
atlas of X such that its transition maps are smooth. By definition, we have local parameterizations
(Uα, hα)α where Uα ⊆ Rn and hα : Uα → X is an open embedding such that ∪αhα(Uα) = X. Denote
Vα = hα(Uα). We claim that the collection (Uα, hα) forms an atlas of X in the contemporary sense.

Indeed, we need only show that for any two α, β, the transition map

h−1
β ◦ hα : h−1

α (Vα ∩ Vβ) → h−1
β (Vα ∩ Vβ)

is smooth. Indeed, this is what Lemma 1.1 of Milnor-Stasheff says, which we have done in class.

(2. ⇒ 1.) Consider A = C∞(X;R) to be the R-algebra of all smooth maps on the contempo-
rary smooth n-manifold X. Let the charts of X be (Uα, hα) where Uα ⊆ Rn open and hα : Uα → X
is an open embedding with smooth transitions. Denote Vα = hα(Uα). Consider the function

φ : X −→ RA

x 7−→ (f(x))f∈A.

1



2 1 SMOOTH MANIFOLDS

Our first claim is that f is an injective continuous map. We first show continuity. If V ⊆ RA

is a basic open set, then V =
∏

α∈A Uα where for all but finitely many α is Uα proper, say for
α1, . . . , αk. Thus

φ−1(V ) = {x ∈ X | fα(x) ∈ Uα}
= {x ∈ X | fαi(x) ∈ Uαi , i = 1, . . . , k}
=

{
x ∈ X | x ∈ f−1

αi
(Uαi)∀i

}
=

k⋂
i=1

f−1
αi

(Uαi)

and the latter is open in X as fαi ∈ A are smooth. Next, we show injectivity of φ. If φ(x) = φ(y),
then for all f ∈ A, f(x) = f(y). This follows from Proposition 2.25 of Lee.

Next, we show that the chart {(Uα, hα)}α of X gives a local parameterization of X in the sense
of Milnor-Stasheff. To this end, we first have to show that the composite φ ◦ hα : Uα → RA is a
smooth map. Indeed, it suffices to show that each for each projection πf : RA → R for f ∈ A, the
composition πf ◦ φ ◦ hα : Uα → R is a smooth map. As πf ◦ φ ◦ hα(u) = f(hα(u)) = f ◦ hα(u). As
f is smooth, hence so is f ◦ hα. This shows that φ ◦ hα is smooth.

Finally, we wish to show that the derivative D(φ ◦hα) : Rn → RA is of rank n. We’ll show that
there is an n× n submatrix of A× n matrix D(φ ◦ hα) which is full rank. Indeed, consider a chart
h : U → M with V = h(U) and consider the projection map pi : V → R given by πi ◦ h−1. There
exists a smooth map ψ :M → R such that Supp (ψ) ⊆ V . We may thus define the map

π̃i(x) =

®
0 if x /∈ V

ψpi if x ∈ V.

This is a smooth map. Moreover, Supp (π̃i) ⊆ V . It is immediate to see that these nmaps π̃1, . . . , π̃n
are such that D(π̃i ◦ h) is linearly independent set for all points in U .

Question 2. Let M ⊆ RA be a smooth n-manifold and for x ∈ M , let h : U → M ⊆ RA be a
chart with h(u) = x. Then show that any linear combination of the vectors v⃗i =

∂h
∂ui

(u) ∈ RA in
TxM is again a tangent vector. This shows that TxM is a vector space.

Proof. By translations, we may assume that u = 0 so that h(0) = x. Let v⃗ = c1v⃗1 + · · · + cnv⃗n.
Consider the path η : (−ϵ, ϵ) → U given by t 7→

∑n
i=1 tciei. Let γ = h ◦ η : (−ϵ, ϵ) →M . We get

dγ

dt
(0) =

dh ◦ η
dt

(0) =

n∑
i=1

∂h

∂ui
(0) · dηi

dt

=

n∑
i=1

ci
∂h

∂ui
(0)

=

n∑
i=1

civ⃗i,

as required.
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Question 3. Let M1 ⊆ RA and M2 ⊆ RB be two manifolds of dimensions n and m respectively.
Show the following:

1. M1 ×M2 has the structure of a smooth n+m-manifold.
2. T (M1 ×M2) is diffeomorphic to TM1 × TM2.

Proof. 1. Consider (Uα, gα)α be an atlas for M1 and (Vβ, hβ)β be an atlas for M2 where Uα ⊆ Rn

and Vβ ⊆ Rm. We claim that (Uα × Vβ, gα × hβ)α,β forms an atlas for M1 ×M2. Indeed, pick any
point x× y ∈M1 ×M2. Then for some α and β, we’ll have x× y ∈ gα(Uα)× hβ(Vβ). Denote

kαβ = gα × hβ : Uα × Vβ −→ RA⨿B

(u, v) 7−→ (gα(u), hβ(v))

We need to show that kα,β is smooth. To this end, it suffices to show that πj ◦ kαβ : Uα × Vβ → R
is smooth for any projection πj : RA⨿B → R. If j ∈ A, then note that πj ◦ kαβ = πj ◦ gα, where the
RHS is smooth as (Uα, gα) is a smooth chart for M1. Similarly, if j ∈ B. Hence, kαβ are smooth
maps, as required.

Next, we show that kαβ is an open embedding. To this end, we need only observe that product
of two open embeddings is an open embedding. Finally, we have to show that D(kαβ) is a collection
of n+m-linearly independent vectors in RA⨿B. Observe that

D(kαβ) =

ñ
∂gα
∂u 0

0
∂hβ

∂v

ô
=

ï
D(gα) 0

0 D(hβ)

ò
.

As D(gα) is of column rank n and D(hβ) is of column rank m, hence D(kαβ) is of column rank
n+m, as required. This completes the proof of item 1.

2. It is first easy to see that T(m1,m2)M1 ×M2 = Tm1M1 × Tm2M2 for any m1 ∈ M1,m2 ∈ M2.
This is essentially because local charts of M1 ×M2 are product of those for M1 and M2.

Define the map

φ : T (M1 ×M2) −→ TM1 × TM2

(x1, x2, v⃗1, v⃗2) 7−→ ((x1, v⃗1), (x2, v⃗2)) .

We wish to show that this is a diffeomorphism. First, observe that φ is a homeomorphism as φ is
the restriction of the permutation homeomorphism

φ̃ :M1 ×M2 × RA × RB −→M1 × RA ×M2 × RB

(m1,m2, v⃗1, v⃗2) 7−→ (m1, v⃗1,m2, v⃗2).

Hence, we need only show that φ is a smooth map with a smooth inverse. Indeed, pick any chart
k = g× h : U × V →M1 ×M2 of M1 ×M2 where (U, g) and (V, h) are open charts for M1 and M2

respectively. Recall that we then have a chart

k × ∂ : U × V × Rn × Rm −→ T (M1 ×M2)

(u, v, a⃗, b⃗) 7−→
Å
g(u), h(v), a⃗ · ∂g

∂u
, b⃗ · ∂h

∂v

ã
.
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We need only show that the map

φ ◦ (k × ∂) : U × V × Rn × Rm −→M1 × RA ×M2 × RB ⊆ RA × RA × RB × RB

(u, v, a⃗, b⃗) 7−→
Å
g(u), a⃗ · ∂g

∂u
, h(v), b⃗ · ∂h

∂v

ã
.

is smooth. But this is immediate as g, h are smooth charts and taking inner product is a linear
operation. One can similarly show that the inverse map

φ−1 : TM1 × TM2 −→ T (M1 ×M2)

((x1, v⃗1), (x2, v⃗2)) 7−→ (x1, x2, v⃗1, v⃗2)

is also smooth. This completes the proof.

Question 4. Let Pn be the set of all 1-dimensional linear subspaces of Rn+1 and consider the
quotient q : Rn+1− 0 → Pn. Define F = {f : Pn → R | f ◦ q : Rn+1− 0 → R is smooth}. Show that

1. F is a smoothness structure on Pn.
2. Let M = {A ∈ Mn+1(R) | A is symmetric,Tr(A) = 1 & A · A = A}. Show that Pn is

diffeomorphic to M .
3. Show that Pn is compact and V ⊆ Pn is open if and only if q−1(V ) ⊆ Rn+1 − 0 is open.

Proof. 1. We first show that F separates points of Pn. Assuming to the contrary, we get that there
exists [x], [y] ∈ Pn two distinct points such that for all f ∈ F , f([x]) = f([y]). Indeed, consider fij
given by

fi : Pn −→ R

[z] 7−→ zizj∑n
k=0 z

2
k

.

By our assumption, we get

xixj∑n
k=0 x

2
k

=
yiyj∑n
k=0 y

2
k

.

from which we deduce that for each

xi
yi

=
xj
yj

√∑n
k=0 x

2
k∑n

k=0 y
2
k

.

The square root is a constant, say α > 0. As [x], [y] ∈ Pn, we may take x, y ∈ Sn+1 as Sn+1 → Pn

is a quotient map. Thus, we get α = 1, that is

xi
yi

=
xj
yj

for all i, j = 0, . . . , n. This shows that [x] = [y] in Pn, a contradiction. Hence F separates points.
Next we wish to show that the image of the map

φ : Pn −→ RF

[x] 7−→ (f([x]))f∈F
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is a smooth manifold. Indeed, letM = φ(Pn) and consider the subsets of Pn given by Ui, i = 0, . . . , n
where Ui = {[x0 : · · · : xn] | xi ̸= 0}. Let Vi = φ(Ui) ⊆M ⊆ RF . We claim that the maps

φ ◦ hi : Rn hi−→ Ui
φ−→M

where hi is given by (x1, . . . , xn) 7→ [x1 : · · · : xi−1 : 1 : xi : · · · : xn] is smooth. Indeed, φ ◦ hi
composed with projection on f ∈ F is the composite f ◦ hi which is smooth as it is the restriction
of f ◦ q to the open subspace of Rn+1 − 0 where xi ̸= 0.

Finally, to show that φ ◦hi is a local parameterization for M , we need to show that D(φ ◦hi) is
of rank n. Again, as in Question 1, it suffices to find n-functions fj ∈ F so that the corresponding
n × n submatrix of D(φ ◦ hi) is of full rank. One can check that this is done by the following
n-functions

fj : Pn −→ R

[x] 7−→
x2j∑n
k=0 x

2
k

for each i = 0, . . . , n and j ̸= i. This shows that Pn has F as a smoothness structure.

2. Consider the map

φ : Pn −→M ⊆ R(n+1)2

[x] 7−→ Ax

where Ax = (fij([x]))0≤i,j≤n and

fij : Pn −→ R

[x] 7−→ xixj∑n
k=0 x

2
k

.

It is immediate to see that indeed Ax ∈M . We need to show that φ is a diffeomorphism. Clearly,
φ is smooth as for the charts (Ui, hi) of Pn as in item 1, the composition

φ ◦ hi : Ui −→M

(x1, . . . , xn) 7−→ Ax

is smooth as each entry of Ax is a rational function in x1, . . . , xn with denominator never vanishing
as 0 /∈ Ui. This shows that φ is smooth.

We construct a smooth inverse of φ as follows:

ψ :M −→ Pn

A = (aij) 7−→ [l]

where l is the column space of A, i.e. the linear space spanned by n+ 1-columns A0, . . . , An of A.
Indeed, as A is a symmetric idempotent matrix of trace 1, therefore A is a projection matrix onto
a 1-dimensional subspace of Rn+1, spanned by the columns. Hence ψ is well-defined. Moreover, it
is smooth as ψ on each coordinate is a linear combination of entries of A. This shows that ψ is
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smooth. Then ψ is an inverse of φ. This shows that M and Pn are diffeomorphic.

3. The map q : Rn+1 − 0 → Pn is a quotient map. As we have the following commutative
diagram

Rn+1 − 0

Sn Pn

q

p

,

therefore we have a quotient map p : Sn → Pn. Thus, Pn is compact. By definition of quotient
maps, V ⊆ Pn is open if and only if q−1(V ) is open.

Question 5. Let M be a smooth n-manifold and R = C∞(M ;R).
1. Show that R is an R-algebra.
2. Every point x ∈ M determines evx : R → R an R-algebra homomorphism. That is, we have

a function

ev :M −→ Hom (R,R)
x 7−→ evx

3. If M is compact, then there is a bijection of sets

mspec(R) ∼=M.

4. If M is second-countable, then the map

ev :M → Hom (R,R)

is a bijection.
5. For any x ∈M , consider the R-algebra map evx : R → R, f 7→ f(x). Hence for each x ∈M ,

we get that R is an R-module via the map evx and we denote R with this R-module structure
as Rx. Then show that any R-linear map

X : R −→ R

satisfying X(fg) = X(f) · g(x) + f(x) ·X(g) for some fixed x ∈M is uniquely determined by
a choice of a vector v⃗ ∈ TxM . That is, if DerR(R,Rx) denotes the set of all R-linear maps
d : R → Rx satisfying d(fg) = d(f) · g(x) + f(x) · d(g) for some x ∈ M , then we have a
bijection

DerR(R,Rx) ∼= TxM.

Proof. 1. This is immediate by pointwise addition and multiplication.

2. Define for any x ∈M the following R-algebra homomorphism:

evx : R −→ R
f 7−→ f(x)
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which is the evaluation at x. This is the required homomorphism. Note that Ker (evx) is a maximal
ideal since R/Ker (evx) ∼= R.

3. Define the map

α :M −→ mspec(R)

x 7−→ Ker (evx).

By item 2, α(x) is indeed a maximal ideal of R. Pick any maximal ideal m ∈ mspec(R). We show
that it is kernel of evaluation at some point. If not, then for all x ∈ M , there exists fx ∈ m such
that fx(x) ̸= 0. As fx : M → R is continuous, therefore there exists an open x ∈ U ⊆ M such
that fx(y) ̸= 0 for all y ∈ Ux. We have thus obtained a cover of M by {Ux}. By shrinking each
Ux if necessary, we may assume that Ux ⊆ Cx ⊆ Vx where Cx is a compact set of M and Vx is
open in M . It follows by compactness that there is a finite cover M =

⋃n
i=1 Uxi . As M is compact

Hausdorff, therefore there exists smooth bump functions on each open Uxi . Thus we have maps
ρi : M → R such that ρi = 1 on Uxi . Consider then the map g =

∑n
i=1 ρif

2
xi
. This is a global

smooth map g : M → R such that g(x) =
∑n

i=1 ρif
2
xi
(x) ̸= 0 as for any x ∈ X, there are finitely

many Uxi containing x on which atleast one of fxi is non-zero and ρi is 1. Hence g is invertible. As
f2xi

∈ m, therefore g ∈ m and hence m = R, a contradiction. Thus α is surjective.
We next show injectivity of α. If mx = my and x ̸= y, then by Hausdorff property, we may

separate x and y by opens U and V . Consider the singleton {x} ⊆ U which is compact. By
Proposition 2.29 of Lee, we deduce that there exists f : M → R smooth such that f(x) ̸= 0 and
f = 0 onX\V . Thus f(x) ̸= 0 and f(y) = 0, as required. This establishes that α is an isomorphism.

4. It is injective as if f 7→ f(z) is same for x and y, then mx = my by item 3. By injectivity
of α we deduce that x = y. For surjectivity, pick ψ : R → R an R-algebra homomorphism. Then,
we claim that there exists x ∈M such that ψ(f) = f(x). We give a simple proof if M is compact.
Indeed, by item 3, we have that Ker (ψ) = mx for some point x ∈ M . We claim that ψ = evx.
Indeed, if not then there exists gx ∈ R such that ψ(gx) ̸= gx(x). Consider the map f = gx − ψ(gx)
in R where we assume ψ(gx) as a constant function. Applying ψ to it, we get

ψ(f) = ψ(gx)− ψ(ψ(gx)) = ψ(gx)− ψ(gx) = 0.

Thus f ∈ mx and hence gx(x) = ψ(gx), a contradiction. This completes the proof of item 4 for the
case when M is compact.

Now consider M to be only second countable. If ψ ̸= evx for all x, then for all x ∈ M , there
exists gx ∈ R such that ψ(gx) ̸= gx(x). We thus get maps fx = gx − ψ(gx) ∈ R which are non-zero
at x. It follows that there exists opens Ux containing x such that fx on Ux is non-vanishing, so we
may assume wlog that fx > 0. Note that for each fx, we have

ψ(fx) = 0.

Thus, each fx ∈ Ker (ψ). We next deduce by second countability, in particular, by Lindelöf property
that there exists a countable subcover Uxn of M . By refinement, we may assume that {Uxn}n is a
locally finite cover. This allows us to construct a non-zero global smooth map given by

g =
∑
n

fxn
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where g(x) =
∑

n fxn(x) is finite as {Uxn} is a locally finite cover, so there exists U ∋ x such that
U ∩Uxn ̸= ∅ only for finitely many n. Consequently, Ker (ψ) contain g which is non-zero and hence
a unit, a contradiction to non-triviality of ψ.

5. Consider the map

φ : TxM −→ DerR(R,Rx)

v⃗ 7−→ Xx,v⃗

where Xx,v⃗(f) = Dfx(v⃗) ∈ R, the directional derivative of f at x along v⃗. This is injective as if
Xx,v⃗ = Xx,w⃗ for v⃗, w⃗ ∈ TxM , then Dfx(v⃗) = Dfx(w⃗) for all f ∈ R. As Dfx(v⃗) = ∇fx · v⃗ where
∇fx ∈ Rn is the gradient vector of f at x, therefore we get that ∇fx(v⃗ − w⃗) = 0 for all f ∈ R. We
may let f to be the global projection maps on M obtained by using partitions of unity and the
n-projection maps on the local charts. This yields that v⃗ − w⃗ = 0, as required.

For surjectivity, consider any derivation d : R → Rx. We wish to show that d = Xx,v⃗ for some
v⃗ ∈ TxM . Begin by fixing a coordinate chart h : U → M such that h(0) = x where U ⊆ Rn is an
open neighborhood of 0. Consider the basis vectors v⃗i ∈ TxM given by

v⃗i =
∂h

∂ui
(0).

We do the Taylor expansion of f ◦h : U → R, so that for some open U ′ ⊆ U around 0, we can write

f ◦ h(p) = f ◦ h(0) +D(f ◦ h)0(p) + pTH(f ◦ h)0p

= f(x) +

n∑
i=1

∂f ◦ h
∂xi

(0) · pi +
n∑

i,j=1

∂2f ◦ h
∂xixj

(0)pipj .

where H(f ◦ h)0 is the Hessian of f ◦ h at 0 ∈ U ′. Let ϕ : V ′ = h(U ′) → U ′ be the inverse of h on
U ′. Thus for any y ∈ V ′, we may get the following by replacing p by ϕ(y):

f(y) = f(x) +
n∑

i=1

∂f ◦ h
∂xi

(0) · ϕi(y) +
n∑

i,j=1

∂2f ◦ h
∂xixj

(0)ϕi(y)ϕj(y).

Applying d on above equation, we get

d(f) = d(f(x)) +

n∑
i=1

∂f ◦ h
∂xi

(0) · d(ϕi) +
n∑

i,j=1

∂2f ◦ h
∂xixj

(0)d(ϕiϕj)

Now note that derivation applied at a constant is 0, so d(f(x)) = 0. Further, d(ϕiϕj) = ϕi(x)d(ϕj)+
ϕj(x)d(ϕi) = 0 as ϕi(x) = 0 = ϕj(x). Hence, we get

d(f) =

n∑
i=1

∂f ◦ h
∂xi

(0) · d(ϕi).

Now, observe that

d(ϕi) ·Xx,v⃗i(f) = d(ϕi) ·Dfx(v⃗i)

=
∂f ◦ h
∂xi

(0) · d(ϕi).
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Hence, we get that

d(f) =

n∑
i=1

d(ϕi)Xx,v⃗i = Xx,
∑n

i=1 d(ϕi)v⃗i(f),

as required.

2 Vector bundles

Question 6. Let M be a smooth n-manifold. Show that the tangent manifold TM with the
projection map π : TM →M is a vector bundle of rank n.

Proof. Fix a point x ∈ M . We wish to find an open set U ∋ x in M such that π : π−1(U) → U
is a trivial bundle. Indeed, consider a chart (U, h) around x, so that h : U → Rn is an open
embedding. We claim that π−1(U) is the tangent manifold of U ⊆M . Indeed, π−1(U) = {(x, v⃗) ∈
U × Rn | v⃗ ∈ TxU} and since TxU = TxM , therefore π−1(U) = TU . It hence suffices to show that
TU ∼= U × Rn, that is, U is parallelizable. We claim that TU ∼= TV where h : U → V ⊆ Rn is a
homeomorphism. Indeed, as each chart is a diffeomorphism by inverse function theorem, hence the
map dh : TU → TV induced by h is a fiberwise isomorphism. It now suffices to show that TV is
trivial.

To complete the proof, it suffices to show that any open subset of Rn is parallelizable. Indeed for
V ⊆ Rn and x ∈ V , we may consider TxV = Rn obtained by shifting the origin to x. Consider the
sections si : V → TV mapping x 7→ (x, e⃗i) where e⃗i is the i

th standard vector in TxV = Rn. This
is continuous since it is continuous as a map V → V ×Rn. Note that this may not be continuous if
V was not a manifold with one chart, as then different charts would give different coordinates for
the same tangent vector. As the collection s1, . . . , sn is everywhere independent collection of global
sections of TV → V hence TV → V is trivial.

Question 7. Show the following about n-spheres.

1. If Sn admits a non-vanishing vector field, then the identity map id : Sn → Sn is homotopic
to the antipodal map a : Sn → Sn.

2. If n is even, then antipodal a : Sn → Sn is homotopic to the reflection r : Sn → Sn given by
(x1, x2 . . . , xn+1) 7→ (−x1, x2, . . . , xn+1).

3. If n ≥ 2 is even, then Sn is not parallelizable.

Proof. 1. Let s : Sn → TSn be a non-vanishing vector field, so that s : x 7→ (x, s̃(x)) where
s̃ : Sn → Rn is a continuous map. We construct the following homotopy:

H : Sn × I −→ Sn

(x, t) 7−→ x cos(tπ) +
s̃(x)

∥s̃(x)∥
sin(tπ)

Indeed, as ⟨x, s̃(x)⟩ = 0, therefore H is a well-defined homotopy from id to a.

2. Done in class.



10 2 VECTOR BUNDLES

3. Suppose n ≥ 2 is even. Assume that Sn is parallelizable. Then TSn = Sn × Rn. Conse-
quently, Sn admits a non-vanishing vector field, say f : Sn → TSn, x 7→ (x, v⃗) where v⃗ is fixed in
Rn. By item 1, we get id ∼ a and by item 2, we further get a ∼ r. Thus id ∼ r. But deg id = 1,
deg r = −1, a contradiction to the homotopy invariance of degree map.

Question 8. Show that any vector bundle p : E → B where B is a paracompact space has an
Euclidean metric.

Proof. Cover B by local trivializations {Uα} such that for each α, we have isomorphisms of families:

Uα × Rn p−1(Uα)

Uα

hα

∼=
π1

p
.

Define on each p−1(Uα) the following Euclidean metric:

µα : p−1(Uα)
h−1
α−→ Uα × Rn

∑
i x

2
i−→ R

which maps as e 7→ (p(e), kα(e)) 7→
∑n

i=1 kαi(e)
2 where kα(e) = (kαi(e)). We will patch these µα

up by using partitions of unity. First, by paracompactness of B, we may assume that {Uα} is a
locally finite cover. Consequently, p−1(Uα) is a locally finite cover of E. By partitions of unity, we
get maps ρα : B → R with

∑
α ρα = 1 and Supp (ρα) ⊆ Uα. Denote σα = ρα ◦ p : E → R and

observe that
∑

α σα = 1 and Supp (σα) ⊆ p−1(Uα). We will now patch up µα.
Define µ =

∑
α σα · µα which is a map E → R. This is well-defined by construction. We need

only show that for each b ∈ B, the map on fibers Eb → R is a positive definite quadratic form.
Indeed, by local finiteness of {Uα}, we get that each b ∈ B is contained in say Uα1 ∩ · · · ∩Uαmb

and

hence Eb ⊆ p−1(Uα1) ∩ · · · ∩ p−1(Uαmb
). Consequently on fiber Eb, the map µ is

µb =

mb∑
j=1

σαi · µαi ,

where each σαi is a constant function on Eb as for any e ∈ Eb, σαi(e) = ραi ◦ p(e) = ραi(b) ∈ R≥0.
Hence µb is a positive definite quadratic form, as required.

Question 9 (Alexandroff line). Show that the Alexandroff line doesn’t admit a Riemannian metric.

Proof. Alexandroff line L is a 1-dimensional smooth connected manifold. Recall that every Rie-
mannian manifold has a metric space structure. But since L is not paracompact and every metric
space is paracompact, therefore L cannot admit a Riemannian structure.

Question 10 (Isometry theorem). Let p : E → B be a vector bundle and µ, µ′ be two Euclidean
metrics on E. Denote E = (E,µ) and E′ = (E,µ′). Show that there exists an isomorphism
f : E → E′ of vector bundles such that for all b ∈ B, the linear map fb : (Eb, µb) → (Eb, µ

′
b) is a

linear isometric isomorphism.
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Proof. Fix b ∈ B. Observe that for any v⃗ ∈ Eb, we have µb(v⃗) = v⃗TAbv⃗ and µ′b(v⃗) = v⃗TA′
bv⃗ where

Ab, A
′
b are positive definite symmetric matrices corresponding to the positive definite quadratic

forms µb, µ
′
b : Eb → R, respectively. Recall that every positive definite symmetric matrix M has

a unique square root, that is, a positive definite symmetric matrix
√
M such that (

√
M)2 = M .

Since a positive definite matrix is always invertible as it has all positive eigenvalues, therefore if we
write

Ab =
√
Ab ·

√
Ab

A′
b =
»
A′

b ·
»
A′

b,

then for Bb = (
√
A′

b)
−1 ·

√
Ab we get

BT
b ·A′

b ·Bb = Ab.

We thus define a map

fb : Eb −→ E′
b

v⃗ 7−→ Bbv⃗.

Observe that µ′b(fb(v⃗)) = (Bbv⃗)
TA′

b(Bbv⃗) = v⃗TBT
b A

′
bBbv⃗ = v⃗TAbv⃗ = µb(v⃗), hence fb is a linear

isometric isomorphism. Thus we get a function f : E → E′, which is isomorphism on fibers. To
see the continuity of f , we need only show that the mapping b 7→ Bb is continuous as b varies in B.
As the map b 7→ Bb is the product of b 7→ (

√
A′

b)
−1 and b 7→

√
Ab, and since the mapping b 7→ Ab,

b 7→ A′
b are continuous by continuity of µ and µ′, therefore it is sufficient to show that for the

mapping M 7→
√
M for positive definite symmetric matrices M is continuous. This is immediate

from power series expansion of
√
M .

3 Constructions on vector bundles

Question 11. Let M,N be two smooth manifolds of dimension m and n. Let g : M → N be
a smooth map which is a submersion. Construct a subbundle Ker (g) of TM whose fibers are
Ker

(
gx : TxM → Tg(x)N

)
. If M is Riemannian, show that

TM ∼= Ker (g)⊕ g∗(TN).

Proof. As a submersion is of locally constant rank, therefore by Theorem 3.0.1, we have the kernel
bundle Ker (g). Now supposeM is Riemannian. Let U be a common trivialization of both Ker (g)⊕
g∗TN and TM . To show the splitting, it is sufficient to show that there is a map hx : Tg(x)N → TxM
such that x 7→ hx is continuous and hx is a splitting of the following s.e.s:

0 Ker (gx) TxM Tg(x)N 0
gx

hx

.

Indeed, let µ : TM → R be the given Euclidean metric, thus each TxM is an inner product space.
Recall from linear algebra that Ker (gx) ⊕ (Ker (gx))

⊥ = TxM . Thus we have gx : (Ker (gx))
⊥ →

Tg(x)N is an isomorphism. Let hx : Tg(x)N → (Ker (gx))
⊥ be its inverse. As taking inverse of linear

isomorphisms is a continuous map, therefore x 7→ hx is continuous, as required.
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Question 12. Let ξ = (E, p,B) and η = (E′, q, B) be two bundles of rank n and m respectively.
Let f : B → Hom(ξ, η) be a global section such that the map b 7→ dim Im(f(b) : Eb → E′

b) is a
locally constant function. Then construct Ker (f) and CoKer(f) two vector bundles over B whose
fibers are Ker (f(b)) and CoKer(f(b)) respectively.

Proof. This is done in Theorem 3.0.1 as any f : B → Hom(ξ, η) is equivalent to the data of a
vector bundle map f : ξ → η.

Question 13. If a vector bundle ξ = (E, p,B) admits a Euclidean metric, then it is isomorphic to
the dual Hom(ξ, ϵ1).

Proof. Let µ : E → R be the Euclidean metric and ξ be of rank n. Let U ⊆ B be a common local
trivialization of both E and Hom(ξ, ϵ1). We then have the following diagram:

U × Rn p−1(U) π−1(U) U ×Hom (Rn,R)

U U

∼=
h

π1

f

p π

k
∼=

π1

where we define f by defining the map k−1 ◦ f ◦ h : U × Rn → U ×Hom (Rn,R) as follows:

k−1 ◦ f ◦ h : (b, v⃗) 7→ (b, ⟨v⃗,−⟩b)

where ⟨−,−⟩b is the inner product on Eb defined by the positive definite quadratic form µb : Eb → R.
As µ : E → R is continuous, therefore the ⟨−,−⟩b : Eb × Eb → R, is continuous in b ∈ B and thus
the above map k−1 ◦ f ◦ h is continuos. This defines a global continuous map f : E → Hom(ξ, ϵ1).
To show that f is an isomorphism, it is sufficient to show that fb : Eb → Hom (Eb,R) is a linear
isomorphism for each b. Indeed, this is clear as Eb is an inner-product space, therefore the map
fb : e 7→ ⟨e,−⟩b is an isomorphism by Riesz-representation theorem, as required.

Question 14. Construct the Picard group Pic(B) of a space B and show that those elements of
Pic(B) of order ≤ 2 are equivalent to Euclidean line bundles on B.

Proof. Let Pic(B) denote the set of isomorphism classes of line bundles over B. For two line bundles
ξ = (L1, π1, B) and η = (L2, π2, B), we define ξ⊗ η to be the tensor product bundle (L1⊗L2, π,B).
As rank of L1⊗L2 is equal to product of ranks of L1 and L2, therefore π : L1⊗L2 → B is also
a line bundle. As ξ⊗ η ∼= η⊗ ξ, therefore we have a well-defined commutative product on Pic(B).
To show group structure, it suffices to show that ξ⊗ ϵ1 ∼= ξ and the existence of inverses. Indeed,
define φ : ξ⊗ ϵ1 → ξ which on fiber at b ∈ B is L1,b⊗RR → L1,b mapping as e⊗λ 7→ λe. Clearly
φ is an isomorphism on fibers. To see continuity, consider the following diagram for a common
trivializing open U ⊆ B for both the bundles:

U × R⊗RR π−1(U) π−1(U) U × R

U U

k
∼=

φ h
∼=

.

As the horizontal map can be checked is equal to (b, λ⊗ γ) 7→ (b, λγ), which is continuous, therefore
φ is continuous. Hence, φ is an isomorphism, as required.
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Next suppose ξ = (L, π,B) is a line bundle and let ξ̌ = Hom(ξ, ϵ1) be the dual bundle. Note
that ξ̌ is also a line bundle. We claim that ξ⊗Hom(ξ, ϵ1) ∼= ϵ1. Indeed, define the map φ :
ξ⊗Hom(ξ, ϵ1) → ϵ1 which on fiber at b ∈ B is defined as L1,b⊗Hom (L1,b,R) → R, e⊗φ 7→ φ(e).
Clearly, this is an isomorphism on fibers. To show continutiy, take U ∋ b a trivializing neighborhood
of b for both the bundles. By drawing the similar diagram as above, we conclude that φ is continuous
and isomorphism on fibers, hence an isomorphism.

Now pick ξ = (L, π,B) to be a Euclidean line bundle on B which is not trivial. We then claim
that ξ⊗ ξ ∼= ϵ1. Indeed, first observe that for any inner product space V , there is an isomorphism
V ⊗R V → R given by v⊗w 7→ ⟨v, w⟩. We use this to define an isomorphism ξ⊗ ξ ∼= ϵ1. Define
φ : ξ⊗ ξ → ϵ1 on fiber at b ∈ B by L1,b⊗L1,b → R, e⊗ f 7→ ⟨e, f⟩b where ⟨−,−⟩b is the inner
product on fibers given by the Euclidean structure. Clearly φ is a fiber isomorphism. We need only
show that it is continuous. Indeed, drawing the same diagram as above one immediately sees this.
Hence, ξ is an order 2 element of Pic(B).

Conversely, pick an order 2 element ξ ∈ Pic(B). Then, there is an isomorphism φ : ξ⊗ ξ → ϵ1.
It follows that we have an isomorphism φb : Lb⊗Lb → R which varies continuously on b. As
Lb⊗Lb

∼= R, therefore we have φb : R → R. It is sufficient to show that φb is positive definite. To
this end, we need to show that φb(λ

2) > 0 for all λ ̸= 0 in R. As φb(λ
2) = λ2φb(1), therefore we

need only show that φb(1) > 0. Observe that the map b 7→ φb(1) is continuous and since each φb is
an isomorphism, therefore by intermediate value theorem, either φb(1) > 0 or < 0 for each b ∈ B.
If φb(1) < 0, we may replace φ by −φ. Hence we have φb(1) > 0 for all b ∈ B, as required.

Theorem 3.0.1 (Theorem 8.2 of Husemoller). Let (E′, π′, B′) and (E, π,B) be vector bundles of
ranks n and m respectively and (f, g) : (E′, π′, B′) → (E, π,B) be a map of vector bundles where
f : E′ → E is of locally constant rank. Then, there exists bundles Kg over B′ and Cg over B
such that fiber of Kg and Cg at x ∈ B is Ker

(
gx : E′

x → Eg(x)

)
and CoKer(gx : E′

x → Eg(x)),
respectively.

Proof. Define Kg = ⨿x∈B′Ker
(
fx : E′

x → Eg(x)

)
and Cg = ⨿x∈BCoKer(fx : E′

x → Eg(x)). Give Kg

the subspace topology of E′. It is thus sufficient to show that π′ : Kg → B′ is locally trivial. To this
end, pick any point b ∈ B′. There exists trivializing neighborhood U ∋ b and V ∋ g(b) such that
g−1(V ) = U such that f : π′−1(U) → π−1(V ) is of constant rank k. We thus have the following
diagram:

U × Rn π′−1(U) π−1(V ) V × Rm

U V

∼=
h

π1

f

π′ π

k
∼=

π1

g

.

Let the horizontal composite be u : U ×Rn → V ×Rm and denote for each b ∈ U the corresponding
linear map as ub : Rn → Rm.

We now have the following split exact sequences for each x ∈ U

0 → Ker (ux) → Rn ux→ Im(ux) → 0

and

0 → Im(ux) → Rm → CoKer(ux) → 0.
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Thu for a fixed b0 ∈ U , we may write

Rn = V1 ⊕ V2

Rm =W1 ⊕W2

where V1 ∼= Im(ub0), V2 = Ker (ub0), W1 = Im(ub0) and W2
∼= CoKer(ub0). Now construct the

following linear map for each x ∈ U :

V = Rn ⊕W2 = V1 ⊕ V2 ⊕W2
wx−→W1 ⊕W2 ⊕ V2 = Rm ⊕ V2 =W,

where wx on V1 is ux, on V2 is ux ⊕ idV2 and on W2 is idW2 . Note that wb0 is a linear isomorphism.
Since ux is continuous in x and isomorphisms form an open subset of linear maps, hence we may
assume by shrinking U appropriately that wx is isomorphism for all x ∈ U . Let vx : W → V be
the inverse of wx. Note that x 7→ vx is also continuous.

Using wx, we show that Kg is locally trivial. Indeed, a vector (v⃗1, v⃗2) ∈ Rn = V1 ⊕ V2 is in
Ker

(
gx : E′

x → Eg(x)

)
if and only if wx(v⃗1, v⃗2, 0) = (0, v⃗2, 0). Thus, (v⃗1, v⃗2) ∈ Ker (fx) if and only

if vx(0, v⃗2, 0) = (v⃗1, v⃗2). Hence the map

U × V2 −→ U × Rn h−→ π′−1(U)

(x, v⃗2) 7−→ (x, vx(0, v⃗2, 0)) 7−→ h(x, vx(0, v⃗2, 0))

maps U ×V2 isomorphically onto π′−1(U)∩Kg, thus giving a local trivialization of Kg, as required.
Finally, we show that Cg is locally trivial. Observe that Im(ux) ∩W2 = 0. Indeed, if not then

for some (v⃗1, v⃗2) ∈ Rn = V1 ⊕ V2, we have ux(v⃗1, v⃗2) ∈ W2 ⊆ Rm. Then, ux(v⃗1, v⃗2, y) = 0 and by
injectivity of ux, we conclude that v⃗i = 0. Hence, we may define

V ×W2 −→ V × Rm−k

(x, w⃗2) 7−→ (x, w⃗2 + Im(ux)).

This gives the required local trivialization for Cg.

4 Stiefel-Whitney classes & Grassmannian

Question 15. Show that for two vector bundles ξ = (E1, π1, B1) and η = (E2, π2, B2), we have

wk(ξ × η) =

k∑
i=0

wi(ξ)× wk−i(η)

where × denotes the cohomology cross product.

Proof. Recall that ξ × η = p∗1ξ ⊕ p∗2η where p1 : X × Y → X and p2 : X × Y → Y are projections.
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Consequently,

wk(ξ × η) = wk(p
∗
1ξ ⊕ p∗2η) =

k∑
i=0

wi(p
∗
1ξ)⌣ wk−i(p

∗
2η)

=
k∑

i=0

p∗1(wi(ξ))⌣ p∗2(wk−i(η))

=
k∑

i=0

wi(ξ)× wk−i(η).

This completes the proof.

Question 16. Show that for n + 1 = 2rm where m ≥ 3 is odd, there are no 2r everywhere
independent vector fields on Pn.

Proof. Let {Xi}i=1,...,2r be 2
r-everywhere independent vector fields on Pn. These define independent

sections Xi : Pn → TPn. Hence, this defines a trivial subbundle E ⊆ TPn of rank 2r. As Pn is
compact, therefore TPn has an Euclidean metric. Consequently, there exists E⊥ ⊆ TPn of rank
n− 2r = 2rm− 1− 2r = 2r(m− 1)− 1 such that

E ⊕ E⊥ = TPn.

By Whitney product formula, we have

w(TPn) = w(E) · w(E⊥)

where the product is in HΠ(B;Z2). As E is trivial, therefore w(E) = 1. Hence, w(TPn) = w(E⊥).
Note w(TPn) = (1 + a)n+1 = (1 + a)2

rm = ((1 + a)2
r
)m = (1 + a2

r
)m. This has largest term given

by m · a2r(m−1). This is non-zero as m is odd, so mod 2 it is non-zero. On the other hand, the
largest possible non-zero term of w(E⊥) is a2

r(m−1)−1 by above. This contradicts the conclusion
that w(TPn) = w(E⊥), as required.

Question 17. Show that Pn admits a field of tangent 1-planes if and only if n is odd. Show that
P4 and P6 doesn’t admit a field of tangent 2-planes.

Proof. Let E be the subbundle of TPn of rank 1. We show that n is odd. Note we have a
decomposition TPn ∼= E ⊕ E⊥, where E⊥ has rank n− 1. By product formula, we have

(1 + a)n+1 = w(E) · w(E⊥).

We have two cases. First, if w(E) = 1, then w(E⊥) = (1 + a)n+1. As the largest possible degree
term of (1 + a)n+1 is (n + 1)an and for w(E⊥) the largest possible degree term is an−1, thus
we must have n + 1 = 0 mod 2, that is, n is odd. In the second case, w(E) = 1 + a. Then,
w(E⊥) = (1 + a)n, whose largest non-zero term is an. But the largest non-zero term of w(E⊥)
must be an−1, a contradiction. Conversely, if n is odd, then Pn admits a non-vanishing vector field
as Sn has a non-vanishing vector field for n odd. This shows the first part.
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Suppose E ⊆ TP4 is a rank 2 subbundle of TP4. Then, we have E ⊕ E⊥ ∼= TP4, where E⊥ is
also rank 2. By product formula,

(1 + a)5 = 1 + a+ a4 = w(E) · w(E⊥).

As w(E), w(E⊥) = 1, 1 + a, 1 + a2, 1 + a+ a2, one then easily sees that none of their product ever
gives 1 + a+ a4, as required.

Similarly, if TP6 ∼= E ⊕ E⊥ where E and E⊥ are of rank 2 and 4 respectively, then

(1 + a)7 = w(E) · w(E⊥).

Now, w(E) = 1, 1 + a, 1 + a2, 1 + a + a2. One then again checks similar to the P4 case that in all
cases for w(E) we get a contradiction.

Question 18. If an n-manifoldM can be immersed into Rn+1, then show that wk(M) = w1(M)⌣k.
If Pn can be immersed into Rn+1, then n = 2r − 1 or n = 2r − 2.

Proof. Let NM → M be the normal bundle of rank 1, hence either w(NM) = 1or 1 + b, for
b = w1(NM) ∈ H1(M ;Z2). As TM ⊕ NM ∼= ϵn+1, therefore if w(NM) = 1, then w(TM) = 1
and hence w1(TM) = 0 and hence wi(TM) = w1(TM)⌣k vacuously. On the other hand, if
w(NM) = 1 + b, then

w(TM) = w(NM) = 1 + b = 1 + b+ b2 + · · ·+ bn.

From above expression, we deduce that w1(NM) = w1(TM) = b. Hence for any k ≥ 1, we have
wk(TM) = w1(TM)k, as required.

For the second statement, suppose Pn immerses into Rn+1. Thus we have a splitting

TPn+1 ⊕ L ∼= ϵn+1,

where L is a line bundle. Thus we have

w(TPn) · w(L) = 1.

Now either w(L) = 1 or 1 + a. Hence, w(TPn) = 1 or (1 + a)−1. In the former, by the theorem
that says w(TPn) = 1 if and only if n+ 1 = 2r, we deduce that n = 2r − 1. In the latter, we have
(1 + a)n+1 = w(TPn) = (1 + a)−1. Consequently, (1 + a)n+2 = 1. If n+ 2 is not a power of 2, then
we have n+ 2 = 2rm where m > 1 is odd. Expanding (1 + a)n+2, we get

1 = (1 + a)n+2 = (1 + a)2
rm = (1 + a2

r
)m = 1 +ma2

r
+ . . . .

This yields that m is even, a contradiction, as required.

Question 19 (Unoriented cobordism group). Let Mn denote the collection of all n-dimensional
closed manifolds. Denote

ΩO
n = Mn / ∼

where M ∼ N if and only if there exists W an n + 1-dimensional compact manifold such that
∂W =M ⨿N . The set ΩO

n is called the unoriented cobordism group.
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1. Show that ΩO
n is an abelian group under disjoint union.

2. Show that ΩO
n is a finite-dimensional Z2-vector space.

3. Show that ΩO
4 has atleast four distinct elements.

Proof. 1. Define

[M ] + [N ] := [M ⨿N ].

We first show that this is well-defined. If [M ] = [M ′] and [N ] = [N ′], then there exists A,B com-
pact n+1-dimensional manifolds such that ∂A =M ⨿M ′ and ∂B = N ⨿N ′. Consequently, A⨿B
is a compact n+1-dimensional manifold with boundary ∂(A⨿B) = ∂A⨿∂B =M ⨿M ′⨿N ⨿N ′.
Hence, [M⨿N ] = [M ′⨿N ′], as required. Associativity and commutativity is immediate. Moreover,
identity of ΩO

n is given by the empty manifold ∅, which is considered to be a manfiold of every dimen-
sion. Finally the additive inverse of [M ] is given by [M ] itself sinceM⨿M is the boundary ofM×I.

2. Since for any [M ] ∈ ΩO
n , we have [M ] + [M ] = 0, hence we have a natural Z2-vector space

structure on ΩO
n . To show finite dimensionality, it is sufficient to show that ΩO

n is finite. Indeed,
by Thom-Pontryagin theory, two closed n-manifolds M,N ∈ Mn give [M ] = [N ] if and only if
all of their Stiefel-Whitney numbers are same. As there are only finitely many possibilities for
Stiefel-Whitney numbers for a given closed n-manfiold, therefore there can atmost be finitely many
cobordism classes with different Stiefel-Whitney numbers. Hence there are only finitely many
cobordism classes, as required.

3. We will show that P2 × P2 and P4 are not cobordant. It will then follow that ΩO
4 has atleast

three elements. Since ΩO
n is a Z2-vector space, therefore it must then atleast have four elements,

as required. To this end, it suffices to show that there exists a Stiefel-Whitney monomial which
evaluates to different numbers for P2 × P2 and P4. We first calculate the Stiefel-Whitney classes
for both these spaces.

For P4, we have

w(P4) = (1 + a)5 = 1 + a+ a4

where a ∈ H1(P4 Z2) is the non-zero term. On the other hand, the tangent bundle on P2 × P2 is
given by the Cartesian product TP2 × TP2. If p, q : P2 × P2 ⇒ P2 are the coordinate projections,
then we can write this Cartesian product as

TP2 × TP2 = p∗(TP2)⊕ q∗(TP2).

Consequently, by naturality of Stiefel-Whitney classes, we must have

w(TP2 × TP2) = p∗(w(TP2)) · q∗(w(TP2)).

As p∗ = q∗, we further have

w(TP2 × TP2) = p∗(w(TP2) · w(TP2)).

Let b ∈ H1(P2 Z) be the non-zero element. Then w(TP2) = (1 + b)3 = 1 + b + b2. Consequently,
we have

w(TP2 × TP2) = p∗((1 + b+ b2)2) = p∗(1 + b2) = 1 + (p∗b)2.



18 4 STIEFEL-WHITNEY CLASSES & GRASSMANNIAN

Now, consider the Stiefel-Whitney monomial w4. We claim that w4[P4] ̸= 0. Indeed, asH4(P4;Z2) ∼=
HomZ2

(
H4(P4;Z2),Z2

)
by the evaluation map and since w4(P4) ̸= 0, hence w4[P4] ̸= 0. On the

other hand, w4(P2 × P2) = 0, as calculated above. Thus, w4[P2 × P2] = 0. This shows that P2 × P2

and P4 have different Stiefel-Whitney number corresponding to the top monomial w4, hence they
are not cobordant, as required.

Question 20 (Smooth structure on Grk(n)). Show that Grk(n) is a smooth manifold of dimension
k(n− k).

Proof. We’ll show that Grk(n) is a closed subamnifold of P(∧kRn). Consider the function

P : Grk(n) −→ P ∧k V

Λ 7−→ [v1 ∧ · · · ∧ vk]

where Λ has basis {v1, . . . , vk}. This is well-defined as if {w1, . . . , wk} forms another basis of Λ,
then w1 ∧ · · · ∧ wk = d · (v1 ∧ · · · ∧ vk) where d is the determinant of the change of basis matrix,
and thus they determine same point in P ∧k V .

We next wish to write P in projective coordinates of P∧kV . To this end, fix a basis {e1, . . . , en}
of V . Writing each vi in this basis, we deduce that the k-plane Λ is the row space of the k × n
matrix AΛ whose rows are vi. We can then write

v1 ∧ · · · ∧ vk =
∑

I∈Inc(k,n)

pIeI

where I = (i1, . . . , ik) is an increasing sequence of elements from {1, . . . , n}, eI = ei1 ∧ · · · ∧ eik
forms the basis of ∧kV and pI = detAΛ[I], the k × k-minor of AΛ determined by columns with
index I. In projective coordinates (of which there are nCk many), the map P is merely

P : Λ 7→ [pI ]I∈Inc(k,n)

where pI = detAΛ[I] is a polynomial in the entries of a general k × n matrix.
We first wish to show that this function is injective. Indeed, if P (Λ) = P (Λ′), then v1∧· · ·∧vk =

d ·w1∧ . . . wk for d ∈ R× where {v1, . . . , vk} is a basis of Λ and {w1, . . . , wk} is a basis of Λ′. If [pI ]I
and [qI ]I are projective coordinates of v1∧· · ·∧vk and w1∧· · ·∧wk respectively, then pI = d ·qI . It
follows that every k×k minor of AΛ is a common multiple of the same minor of AΛ′ . Consequently,
AΛ and AΛ′ have same row space, as required.

The map P embeds Grk(Rn) as a subspace of P(∧kV ). We next claim that Grk(n) is in-fact a
closed subspace. We need only show that the image of P is closed. To this end, we first claim that

ImP =
{
[η] ∈ P(∧kV ) | dim ImV

∧η→ ∧k+1V ≤ n− k
}
.

Indeed, image of P consists of classes of all those η ∈ ∧kV where η = v1 ∧ · · · ∧ vk for vi ∈ V , i.e.

η is a pure tensor. The vector η is of this form if and only if dimKer
(
V

∧η→ ∧kV
)
≥ k and hence

the desired claim follows.
As ∧η is a linear map, therefore dim ImV

∧η→ ∧k+1V ≤ n− k if and only if all n− k + 1 minors
of ∧η are 0. This is a closed condition, as required.
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Question 21 (Tangent bundle of Grk(n)). Let Vk → Grk(n) be the universal k-plane bundle on
the Grassmannian of k-planes in Rn.

1. Show that the tangent bundle of Grk(n) is isomorphic to

Hom(Vk,Q)

where Q is the orthogonal complement of Vk in ϵn. In other words, Q = ϵn/Vk is the universal
quotient n− k-plane bundle over Grk(n).

2. Let M ⊆ Rn be a smooth manifold of dimension k with normal bundle ν. If g :M → Grk(n)
is the Gauss map of M , then show that g determines a unique global section of the bundle
Hom(TM ⊗TM, ν).

Proof. 1. We denote G = Gr(k, V ) and p : TG → G and q : Hom(V,Q) → G be the two given
rank k(n − k) bundles. Let Γ ⊆ V be an n − k plane of V and consider the open affine patch
UΓ of all k-planes linearly disjoint to Γ. For a fixed Ω ∈ UΓ, we have UΓ = Hom (Ω,Γ). Then,
TG|UΓ

= UΓ×Hom (Ω,Γ) since TG is trivial over any affine chart of G. Our first claim is that fibers
of Hom(V,Q) at Ω ∈ UΓ is isomorphic to (TG)Ω. Indeed, as (TG)Ω = Hom (Ω,Γ), therefore we
need only show that VΩ = Ω and QΩ = Γ. To this end, by construction VΩ = Ω and QΩ = V/Ω = Γ
since V = Ω⊕ Γ. Consequently we have isomorphism

φΩ : (TG)Ω −→ Hom(V,Q)Ω

for each Ω ∈ G. We claim that these define a bundle isomorphism. To this end, we need only
show that transition maps UΓ ∩ UΓ′ → GLk(R) that both the bundle induces are isomorphic for
any two affine open patches UΓ, UΓ′ of G. To this end, we first observe the transition maps for TG.
Recall that transitions for tangent bundle comes from the derivative of transition maps of the base
manifold. As the transition of the G from UΓ to U ′

Γ is given by (denote U = UΓ ∩ UΓ′)

ψ : UΓ = Hom (Ω,Γ) −→ UΓ′ = Hom
(
Ω,Γ′)

which is obtained by the composite linear isomorphisms Γ
α→ V/Ω

β−1

→ Γ′, the transition map of
TG is the differential of ψ:

dψ : U ×Hom (Ω,Γ) → U ×Hom
(
Ω,Γ′)

which is again same as ψ on second factor as ψ is linear. We next wish to show that Hom(V,Q) has
the same transitions. Indeed, by theory of continuous functor it is immediate that the transition
of Hom(V,Q) on U is same as dψ.

2. Given the map g : M → Grk(n) which maps x 7→ TxM , we get the map on tangent bun-
dles

dg : TM → Hom(Vk,Q)

which takes (x, v⃗) 7→ dg(x, v⃗) where dg(x, v⃗) is a bundle map given by (note Vk
TxM

= TxM and
QTxM = V/TxM = νx)

dg(x, v⃗) : TxM −→ νx.
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It follows that we have a bundle map dg : TM → Hom(TM, nu). Consequently, g gives a global
section dg of Hom(TM,Hom(TM, ν)) ∼= Hom(TM ⊗TM, ν) and this section is unique w.r.t. the
property that it is the differential of the map g :M → Grk(n), as required.

Question 22 (Universal property of Grassmannians). Let B be a paracompact space. Then there
is a one-to-one correspondence between maps B → Grk to Grassmannian of k-planes in R∞ and
collection of k-plane bundles over B.

Proof. Let Bunk(B) be the collection of all k-plane bundles over B and Vk be the universal k-plane
bundle over Grk. Consider the map

Hom (B,Grk) −→ Bunk(B)

φ 7−→ φ∗(Vk).

We claim that this map is a bijection. We first show injectivity. If we have bundle equality
φ∗(Vk) = ψ∗(Vk), then we at once have φ = ψ. The difficult part now is to show that the above
map is surjective.

Let ξ = (E, p,B) be a k-plane bundle over B. We wish to construct φ : B → Grk such that
φ∗Vk = ξ. By Lemma 5.9 of Milnor-Stasheff, it follows by paracompactness that there exists a
countable cover {Ui} of B such that restriction of ξ to Ui is trivial. By partitions of unity, there
exists maps ρi : B → R and Wi ⊆ Wi ⊆ Vi ⊆ Vi ⊆ Ui such that ρi = 1 on Wi, Supp(ρi) = Vi and
Vi covers B. Let hi be the composition of local trivialization with projection:

hi : p
−1(Ui) → Ui × Rk → Rk.

Note that hi,b : Eb → Rk is a linear isomorphism. We then extend hi to whole of E by using ρi as
follows; define

ĥi : E −→ Rk

e 7−→
®
ρi(p(e))hi(e) if p(e) ∈ Ui

0 else.

At this point, we have a countable family of maps {ĥi}. Using the we construct the following map

f̂ : E −→ Rk × Rk × · · · = R∞

e 7−→ (ĥ1(e), ĥ2(e), . . . ).

This is continuous as it is coordinatewise so. Moreover, for b ∈ B, the restriction

f̂ : Eb −→ R∞

is linear and injective. Indeed, linearity is immediate and if for some e ∈ Eb, we have f̂(e) = 0,
then since for some i, ρi(p(e)) ̸= 0, hence hi(e) = 0. By injectivity of hi on Eb, it follows that
e = 0, as required.

We finally construct the pullback square

E Vk

B Grk

f

p
⌟

φ
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by first defining f as follows:

f : E −→ Vk

e 7−→
Ä
f̂(Ep(e)), f̂(e)

ä
which then induces the map φ : b 7→ f̂(Eb). Observe further that f is an isomorphism on fibers as
fb : Eb → f̂(Eb) is the map f̂ : Eb → R∞, which is proved to be injective. To complete the proof,
we need only show that f is continuous.

To see continuity of f , it is sufficient to show that f composed with local trivializations of ξ
are continuous. Indeed, let ki : p

−1(Ui) → Ui × Rn be the local trivialization of ξ as stated in the
beginning. Then, we claim that the map f ◦ k−1

i is continuous. Indeed, we have

f ◦ k−1
i : (b, v⃗) 7−→

Ä
f̂(Eb), f̂(k

−1
i (b, v⃗))

ä
.

This is continuous as both factors are so by continuity of f̂ and k−1
i . This completes the proof.

5 Cohomology ring of Grassmannian

Question 23. Show that the inclusion i : Grk(n) ↪→ Grk(∞) induces an isomorphism

i∗ : Hp(Grk(∞);R) −→ Hp(Grk(n);R)

for every p < n− k and for any ring R.

Proof. Let X = Grk(∞) and A = Grk(n). From the long exact sequence of pairs, we get the
following exact sequence

· · · → Hp(X,A;R) → Hp(X;R) → Hp(A;R) → Hp+1(X,A;R) → · · · .

We claim that Hp+1(X,A;R) = 0 = Hp(X,A;R). Indeed, pick 0 ≤ q ≤ n− k. We will show that
the relative cellular chain group Cq(X,A;R) is 0. This is sufficient as then Hq(X,A;R) = 0 and
thus the above exact sequence i∗ will be an isomorphism.

We have

Cq(X,A;R) =
Cq(X;R)

Cq(A;R)
=
Rd

Re
= Rd−e

where d and e are the number of q-cells in X and A respectively. As

d = #{n− k ≥ a1 ≥ · · · ≥ ak ≥ 1 | a1 + · · ·+ ak = q}
e = #{∞ > b1 ≥ · · · ≥ bk ≥ 1 | b1 + · · ·+ bk = q}

and q ≤ n−k, therefore b1 ≤ n−k always. Hence d = e and thus Cq(X,A;R) = 0, as required.

Question 24. Let f : Grk(Rn) → Grk+1(R⊕ Rn) be defined by X 7→ R⊕X.

1. Show that f is an embedding.
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2. Show that there is a fiber square:

ϵ1 ⊕ Vk Vk+1

Grk(Rn) Grk+1(R⊕ Rn)

g

⌟

f

.

3. Let e(σ⃗) be an r-cell of Grk(Rn) determined by the Schubert symbol σ⃗ = (σ1, . . . , σk) with
the partition of r being (i1, . . . , is). Show that f(e(σ)) is also an r-cell of Grk+1(R⊕Rn) with
the partition of r being same (i1, . . . , is).

Proof. 1. We have to show that f is injective, smooth, homeomorphic to its image and an immer-
sion. Injectivity is immediate since if R⊕X = R⊕ Y in R⊕ Rn for X,Y ⊆ Rn, then X = Y . For
smoothness, we use Plücker coordinates. Observe that we have a map ∧k(Rn) → ∧k+1(R ⊕ Rn)
which maps on the basis vector as ei1 ∧ · · · ∧ eik 7→ en+1 ∧ ei1 ∧ · · · ∧ eik . This defines a map
P(∧kRn) → P(∧k+1(R⊕Rn)). Clearly, this is a smooth map as it is so coordinatewise. This further
restricts to the closed subspace Grk(Rn) → Grk+1(R⊕Rn) and the map becomes [v1 ∧ · · · ∧ vk] 7→
[en+1 ∧ v1 ∧ · · · ∧ vk]. This shows smoothness of f . The map f is homeomorphic to its image as
f is injective and Grk(Rn) is already compact. We need only show f is an immersion. Indeed the
map on tangent spaces induced by f is

df : Hom(Vk,Qn−k) −→ Hom(Vk+1,Qn−k)

which defined on Λ ∈ Grk(Rn) maps

dfΛ : Hom (Λ, V/Λ) −→ Hom (R⊕ Λ, V/Λ)

φ 7−→ 0⊕ φ.

This is clearly an injective map, as required. This completes the proof that f is an embedding.

2. Define the map g : ϵ1 ⊕ Vk −→ Vk+1 on fiber at Λ ∈ Grk(Rn) as follows; define

gΛ : ϵ1Λ ⊕ Vk
Λ = R⊕ Λ −→ Vk+1

R⊕Λ = R⊕ Λ

to be identity. Then clearly this defines a continuous map g : ϵ1⊕Vk → Vk+1 which is furthermore
isomorphism on fibers. As g makes the square commute, therefore g provides the required fiber
square.

3. Let σ⃗ : 1 ≤ σ1 < σ2 < · · · < σk ≤ n be a Schubert symbol for Grk(Rn) and let e(σ) be
the open cell of dimension r = σ1 − 1 + σ2 − 2 + · · ·+ σk − k that it determines. We claim that

f(e(σ⃗)) = e(τ⃗)

where τ⃗ = (1, σ1 + 1, σ2 + 1, . . . , σk + 1) in Grk+1(R⊕ Rn). To this end, observe that if

0 ⊂ R ⊂ R2 ⊂ · · · ⊂ Rn
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is the complete flag for Rn, then

0 ⊂ R⊕ R ⊂ R⊕ R2 ⊂ . . .R⊕ Rn

is a complete flag for R⊕ Rn. We now have

f(e(σ⃗)) = {R⊕ Λ | Λ ∈ e(σ⃗)}
=

{
R⊕ Λ | dimΛ ∩ Rσi = i & dimΛ ∩ Rσi−1 = i− 1

}
=

{
R⊕ Λ | dim(R⊕ Λ) ∩ (R⊕ Rσi) = i+ 1 & dim(R⊕ Λ) ∩ (R⊕ Rσi−1) = i

}
= e(τ⃗),

as required. Now, the dimension of e(τ⃗) is

dim e(τ⃗) =
k+1∑
i=1

τi − i = 0 + σ1 − 1 + σ2 − 2 + · · ·+ σk − k = r = dim e(σ⃗)

and from this its also clear that the partition of r that τ⃗ gives rise to is same as that of σ⃗, as
required.

Question 25. Let M be an n-dimensional manifold. Show that the number of distinct Stiefel-
Whitney numbers for M is p(n), i.e. the number of unordered positive partitions of integer n.

Proof. Our first claim is that a Stiefel-Whitney number is determined by the corresponding Stiefel-
Whitney monomial, that is, the monomial wr1

1 . . . wrn
n determines the number wr1

1 . . . wrn
n [M ] ∈ Z2

completely. Indeed, for M , the SW-number corresponding to wr1
1 . . . wrn

n is given by

⟨wr1
1 . . . wrn

n (TM), µM ⟩ ∈ Z2.

But since the Kronecker pairing

Hn(M ;Z2)×Hn(M ;Z2)
⟨−,−⟩−→ Z2

is non-degenerate, therefore we have an isomorphism

Hn(M ;Z2) ∼= HomZ2 (Hn(M ;Z2),Z2) ∼= Z2.

Thus SW-number corresponding to wr1
1 . . . wrn

n is 1 if and only if wr1
1 . . . wrn

n (TM) ∈ Hn(M ;Z2) is
1. Similarly for 0. Hence we need only count the number of SW-monomials. Indeed, the no. of
SW-monomials is same as the size of the set

A = {(r1, . . . , rn) | ri ≥ 0 & r1 + 2r2 + · · ·+ nrn = n}.

We claim that there is a bijection from B to A where

B = {(i1, . . . , is) | ij ≥ 1 & i1 + · · ·+ is = n}.

Indeed, define

φ : B −→ A

I = (i1, . . . , is) 7−→ (r1, . . . , rn)

where rj = # of j in I. Then clearly,
∑n

j=1 jrj = n. Converse is also immediate. Hence φ is a
bijection and thus #A = #B = p(n), as required.
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Question 26. Let ξ and η be two bundles of rank n and m. Show that there is a polynomial p in
n+m variables such that

1. we have

w(ξ⊗ η) = p(w1(ξ), . . . , wn(ξ), w1(η), . . . , wm(η)),

2. if σ1, . . . , σn are elementary symmetric functions in variables t1, . . . , tn and σ′1, . . . , σ
′
m are in

t′1, . . . , t
′
m, then

p(σ1, . . . , σn, σ
′
1, . . . , σ

′
m) =

n∏
i=1

m∏
j=1

(1 + ti + t′j).

Proof. This is an application of splitting principle which says that for any bundle ξ = (E, p,B),
there is a space X and a map f : X → B such that f∗ : H∗(B;Z2) → H∗(X;Z2) is injective and
f∗ξ is a sum of line bundles. Thus, any relation we may obtain amongst SW classes while assuming
ξ and η are direct sum of line bundles is true in general. We omit the proof of splitting principle
as it is well-known.

Assuming the above result, we may complete the proof as follows. We may assume ξ = ⊕n
i=1Li

and η = ⊕m
j=1L

′
j . Then

ξ⊗ η =
n⊕

i=1

Li⊗
m⊕
j=1

L′
j

=
⊕

1≤i≤n

⊕
1≤j≤m

Li⊗L′
j .

Thus by Whitney formula

w(ξ⊗ η) =
∏

1≤i≤n

∏
1≤j≤m

w(Li⊗L′
j)

=
∏

1≤i≤n

∏
1≤j≤m

(1 + ai + a′i)

where w(Li⊗L′
j) = 1 + ai + a′j , w1(Li) = ai and w1(L

′
j) = a′j . Since

w(ξ) =
n∏

i=1

(1 + ai)

w(η) =
m∏
j=1

(1 + a′j)

therefore wp(ξ) and wq(η) are elementary symmetric polynomials in ai and a′j respectively. This
completes the proof.
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